北师大版七年级数学期中考试
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题2022年一、单选题1.12-的相反数是( ) A .2- B .12 C .0 D .2 2.在227,3π,1.62,0四个数中,有理数的个数为( ) A .4 B .3 C .2 D .13.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( ) A .点动成线 B .线动成面 C .面动成体 D .以上都不对 4.下列图形经过折叠不能围成棱柱的是( )A .B .C .D . 5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学记数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 6.下列说法错误的是( )A .15ab -的系数是15-B .235x y 的系数是15 C .224a b 的次数是4 D .42242a a b b -+的次数是47.用一个平面截六棱柱,截面的形状不可能是( )A .等腰三角形B .梯形C .五边形D .九边形 8.有理数a ,b 在数轴上的位置如图所示,那么下列式子成立的是( )A .0a b +>B .0ab <C .a b >D .0ab >9.若m 、n 满足21(2)0m n ++-=,则n m 的值等于( )A .-1B .1C .-2D .1410.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .361521=+D .491831=+二、填空题11.月球表面白天的温度是零上126℃,记作126+℃,夜间平均温度是零下150℃,则记作______.12.比较大小:7-_____3-(填“>”,“<”或“=”).13.新冠肺炎疫情期间,某单位买单价为20元的温度计a 个,单价为3元的口罩b 个,共花钱__元.14.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a b c ++的值为______.15.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)16.若20m =,按下列程序计算,最后得出的结果是________.17.在学习绝对值后,我们知道,在数轴上分别表示有理数a 、b 的A 、B 两点之间的距离等于||-a b .现请根据绝对值的意义并结合数轴解答以下问题:满足1|27|x x -++=的x 的值为___________.三、解答题18.计算.(1)()121821---;(2)42112(3)6⎡⎤--⨯--⎣⎦.19.用简便方法计算:(1)4571961236⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (2)356(6)36⨯-.20.在数轴上表示下列各数:2153,|3|,2,0,,222⎛⎫----+ ⎪⎝⎭,并用“<”将它们连接起来.21.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.22.如图,是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置上的小正方体的个数.请你画出从它的正面和左面看所得到的平面图形.23.已知a 、b 均为有理数,现定义一种新的运算,规定:25a b a ab ⊗=+-,例如2111115⊗=+⨯-,求:(1)()-36⊗的值;(2)()32---592⎡⎤⎛⎫⎡⎤⊗⊗ ⎪⎢⎥⎣⎦⎝⎭⎣⎦的值24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-180,+200,-110,-60,+160,-68(1)若每千米耗油0.3升,问小明家的汽车这一天共耗油多少升?(2)B 地在A 地的哪个方向?它们相距多少千米?(3)汽车从A 出发后,在整个行驶过程中,有多少次再次经过出发地A ?请计算说明理由.25.先阅读并填空,再解答问题. 我们知道111122=-⨯,1112323=-⨯,1113434=-⨯, 那么145=⨯ ______,120182019=⨯ ______. 利用上述式子中的规律计算: (1)1111111126122030425672+++++++; (2)111124466820162018++++⨯⨯⨯⨯.26.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分②面积的一半,部分②是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++的值吗?参考答案1.B【解析】【分析】根据相反数的定义直接进行求解即可.【详解】由12-的相反数是12;故选:B.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.2.B【解析】【分析】根据有理数的定义,即可解答.【详解】在227,3π,1.62,0四个数中,有理数为227,1.62,0,共3个,故选:B.【点睛】整数和分数统称为有理数,无限不循环小数由于不能化成分数,因而不属于有理数.3.B【解析】【分析】根据“线动成面”的意义得出答案.【详解】解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.【点睛】本题考查点、线、面、体之间的关系,理解“点动成线、线动成面,面动成体”是解决问题的关键.4.D【解析】【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A 可以围成四棱柱,B 可以围成三棱柱,C 可以围成五棱柱,D 选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D .【点睛】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.B【解析】【分析】根据单项式与多项式的定义、次数与系数的概念解答即可.【详解】A 、15ab -的系数是15-,正确;B、235x y的系数是35,故B错误;C、224a b的次数是4,正确;D、42242a ab b-+的次数是4,正确,故答案为B.【点睛】本题考查了单项式和多项式的次数,系数的识别,掌握单项式与多项式的判断方法是解题的关键.7.D【解析】【分析】六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形、七边形、八边形.【详解】解:用平面去截一个六棱柱,得的截面可能为三角形、四边形、五边形、六边形、七边形、八边形,不可能为九边形.故选:D.【点睛】本题考查六棱柱的截面.六棱柱的截面的几种情况应熟记.8.B【解析】【分析】根据数轴可以判断a、b的正负,从而可以解答本题.【详解】解:由数轴可得,a<0<b且|a|>|b|,则a+b<0,a<b,ab<0,只有选项B正确.故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:②正数都大于0;②负数都小于0;②正数大于一切负数;②两个负数,绝对值大的其值反而小.同时考查了数轴的特征,以及在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.9.B【解析】【分析】先根据绝对值和偶次幂的非负性求得m 、n 的值,然后再代入解答即可.【详解】解:②()2120m n ++-=,1m +≥0,()22n -≥0, ② 1m +=0,()22n -=0,即m=-1,n=2,②()211 n m =-=.故答案为B .【点睛】本题主要考查了绝对值和偶次幂的非负性以及乘方运算,运用绝对值和偶次幂的非负性确定m 、n 的值是解答本题的关键.10.C【解析】【分析】根据给定的部分“三角形数”和“正方形数”找出“三角形数”可看成从1开始几个连续自然数的和以及“正方形数”可看成某个自然数的平方,依此规律逐一分析四个选项中的三个数是否符合该规律,由此即可得出结论.【详解】解:A 、13不是正方形数,不合题意;B 、9和16不是三角形数,不合题意;C 、36=62=(5+1)2,n=5;两个三角形的数分别是:1+2+3+4+5=15;1+2+3+4+5+6=21;故C 符合题意;D 、18和31不是三角形数,不合题意;故选:C .【点睛】本题考查了规律型中数字的变化类,根据给定的部分“三角形数”和“正方形数”找出“三角形数”和“正方形数”的特点是解题的关键.11.-150②【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:零上温度记为正,则零下温度就记为负,直接得出结论即可.【详解】解:零下150②,记作-150②.故答案为:-150②.【点睛】本题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.<【解析】【分析】两个负数比较,绝对值大的反而小,依此即可求解.【详解】解:②|-7|=7,|-3|=3,7>3,②-7<-3.故答案为:<.【点睛】本题考查了负数大小比较,任意两个数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数比较,绝对值大的反而小.13.(20a+3b)【解析】【分析】先表示出温度计的钱数,再表示出口罩的钱数,相加即可得出答案.【详解】解:单价为20元的温度计a 个,单价为3元的口罩b 个,∴温度计的钱数为20a 元,口罩的钱数为3b 元∴共花钱()203a b +元.故答案为:()203a b +.【点睛】本题主要考查列代数式的知识点,解决问题的关键是读懂题意,找到所求的量的等量关系,注意:书写代数式的时候,数字应写在字母的前面.此题基础题,比较简单.14.12【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和相等,列出方程求出a 、b 、c 的值,从而得到a+b+c 的值.【详解】解:这是一个正方体的平面展开图,共有六个面,可知a 与b 相对,c 与一2相对,3与2相对,②相对面上两个数之和相等,②a+b=c -2=3+2,②a+b=5,c=7,②a+b+c=12.故答案为:12.【点睛】本题考查了正方体相对两个面.注意正方体的空间图形,从相对面入手,分析及解答问题.15.6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:②圆柱的底面直径为2,高为3,②侧面积= 2•π×3=6π..故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.16.21【解析】【分析】根据程序写出代数式,再将20m =代入代数式计算即可.【详解】由题意知:代数式为()2-2m m m ÷+=1m +,当20m =时,原式=21,故填:21 .【点睛】本题考查程序运算题,根据程序写出代数式并化简是关键.17.3或4-【解析】【分析】根据两点间的距离公式,对x 的值进行分类讨论,然后求出x ,即可解答;【详解】 解:根据题意,2|1|x x -++表示数轴上x 与1的距离与x 与2-的距离之和,当2x <-时,|(1)(2)2=1|7x x x x =---+-++,解得:4x =-;当21x -≤≤时,|(1)(2)2=1|7x x x x =--++-++,此方程无解,舍去;当1x >时,|(1)(2)2=1|7x x x x =-++-++,解得:3x =;②满足1|27|x x -++=的x 的值为:3或4-.故答案为:3或4-.【点睛】本题考查了两点之间的距离,以及绝对值的几何意义,解题的关键是熟练掌握绝对值的几何意义,正确的把绝对值进行化简.注意利用分类讨论的思想解题.18.(1)9;(2)16.【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)12(18)21---3021=-9=.(2)原式11(29)6=--⨯-11(7)6=--⨯-761=-+16=.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.19.(1)35;(2)5416-.【解析】【分析】(1)根据乘法分配律即可求解;(2)根据351673636=-,再利用乘法分配律即可求解.【详解】解:(1)原式457(36)9612⎛⎫=--⨯- ⎪⎝⎭457(36)(36)(36)9612=⨯--⨯--⨯-163021=-++35=(2)356(6)36⨯- 17(6)36⎛⎫=-⨯- ⎪⎝⎭ 1426=-+ 5416=- 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.20.在数轴上表示如图所示,见解析;2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭. 【解析】【分析】根据数轴的三要素:原点、正方向、单位长度画出数轴,分别根据绝对值、有理数的乘方、相反数的定义等化简各数,然后在数轴上把点表示出来,再根据数轴上的数,越往右,数越大解题即可.【详解】21533,|3|=3,2,0,,=22242=⎛⎫-----+- ⎪⎝⎭ 在数轴上表示2531203222⎛⎫-<-<-+<<<- ⎪⎝⎭【点睛】本题考查数轴、利用数轴表示数、利用数轴比较大小,涉及绝对值、有理数的乘方、相反数等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.3或7【解析】【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:②a,b互为相反数,②a+b=0,②c,d互为倒数,②cd=1,②|m|=2,②m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m2-(-1)+|a+b|-cdm的值为3或7.22.见解析.【解析】由已知条件可知,主视图有3列,每列小正方形数目分别为4,1,3;左视图有3列,每列小正方形数目分别为2,4,3,据此画出图形解题.【详解】从正面看:从左面看:【点睛】本题考查几何体的三视图画法,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)-14;(2)21.【解析】【分析】(1)根据⊗的含义,以及有理数的混合运算的运算方法,求出(-3)⊗6的值是多少即可.(2)根据⊗的含义,以及有理数的混合运算的运算方法,求出[2⊗(-32)]-[(-5)⊗9]的值是多少即可.【详解】(1)(-3)⊗6,=(-3)2+(-3)×6-5,=9-18-5,=-14;(2)[2⊗(-32)]-[(-5)⊗9],=[22+2×(-32)-5]-[(-5)2+(-5)×9-5],=[4-3-5]-[25-45-5],=-4+25,=21.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.(1)233.4升;(2)B地在A地的正南方,它们相距58千米;(3)4次【解析】【分析】(1)由行驶记录取绝对值相加,算出汽车行驶的总路程,再乘以每千米的耗油量即可得出结果;(2)要求出B地在A地的哪个方向,相距多少千米,只要将汽车行驶的记录相加,如果是正数,就是B在A地的正北方向;如果是负数,就是B在A的正南方向;行驶记录相加的绝对值就是A、B的距离;(3)将行驶记录逐一相加,当每次运算结果与前一次运算结果的符号相反时,汽车会再次经过出发地A.【详解】解:(1)依题意得:行驶的总路程=180+200+110+60+160+68=778(千米),778×0.3=233.4(升),所以小明家的汽车这一天共耗油233.4升;(2)因为(−180)+(+200)+(−110)+(−60)+(+160)+(−68)=−58,所以B地在A地的正南方,它们相距58千米;(3)因为0+(−180)=−180,−180+200=20,20−110=−90,−90−60=−150,−150+160=10,10−68=−58,有4次运算结果与前一次运算结果的符号相反,所以汽车有4次再次经过出发地A.【点睛】本题考查了正负数在实际生活中的应用,特别需要注意绝对值的计算.25.观察:1145-,1120182019-;(1)89;(2)2521009.【解析】【分析】观察阅读材料中的式子得出拆项法,原式利用拆项法变形,计算即可求出值.【详解】观察:1114545=-⨯,1112018201920182019=-⨯;(1)11111111 26122030425672 +++++++=1111111 ++++++ 12233456677889⨯⨯⨯⨯⨯⨯⨯=1-12+12-13+13-14+②②+1189-=1-1 9=89;(2)1111 24466820162018 ++++⨯⨯⨯⨯=1111111 () 2244620162018⨯-+-++-=111() 222018⨯-=252 1009.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分②的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分②面积是12,部分②面积是(12)2,部分②面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是164;(2)原式=12+23456611111163122222264 ++++=-=.【点睛】本题考查了有理数的乘方,解题的关键是仔细观察图形并发现图形变化的规律.。
北师大版七年级上册数学期中考试试题及答案
北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。
北师大版初一数学上册期中考试试卷及答案
北师大版初一数学上册期中考试试卷及答案七年级数学期中试卷班级:________姓名:________分数:________一、选一选,比比谁细心(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.| - | 的绝对值是()。
2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长m,用科学记数法表示这个数为()。
3.如果收入15元记作+15元,那么支出20元记作()元。
4.有理数 (-1)2,(-1)3,-1/2,-1,-(-1),-1 中,其中等于1的个数是()。
5.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()。
6.在代数式 ab221.-abc。
0.-5.x-y。
33xπ 中,单项式有()。
7.下列变形中,不正确的是()。
8.如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是()。
9.下列说法正确的是()。
10.一个多项式加上5x2-4x-3得-x2-3x,则这个多项式为()。
11.化简x-y-(x+y)的最后结果是()。
12.已知a、b互为相反数,c、d互为倒数,x等于-4的2次方,则式子(cd-a-b)x-x的2次方的值为()。
1.第一题:求 |-| 的绝对值。
2.第二题:武汉长江二桥全长m,用科学记数法表示这个数为()。
3.第三题:如果收入15元记作+15元,那么支出20元记作()元。
4.第四题:有理数 (-1)2,(-1)3,-1/2,-1,-(-1),-1 中,其中等于1的个数是()。
5.第五题:已知p与q互为相反数,且p≠0,那么下列关系式正确的是()。
6.第六题:在代数式 ab221.-abc。
0.-5.x-y。
33xπ 中,单项式有()。
7.第七题:下列变形中,不正确的是()。
8.第八题:如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是()。
9.第九题:下列说法正确的是()。
10.第十题:一个多项式加上5x2-4x-3得-x2-3x,则这个多项式为()。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.﹣22=()A .﹣2B .﹣4C .2D .42.一个七棱柱的顶点的个数为()A .7个B .9个C .14个D .15个3.我国正在设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A .1678×104千瓦B .16.78×106千瓦C .1.678×107千瓦D .0.1678×108千瓦4.多项式1+2xy ﹣3xy 2的次数为()A .1B .2C .3D .55.如图,点A 表示的实数是a ,则a ,a -和1的大小顺序为()A .1a a <-<B .1a a -<<C .1a a <<-D .1a a<-<6.下列说法正确的是()A .23表示2×3B .﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D .a 3=(﹣a )37.下列说法中正确的是()A .5不是单项式B .2x y+是单项式C .2x y 的系数是0D .32x -是整式8.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x 道题,则用式子表示他的成绩为()A .5x ﹣(20+x)B .100﹣(20﹣x)C .5xD .5x ﹣(20﹣x)9.一种袋装面粉的质量标识为“25±0.25千克”,则下列合格的有()A .25.30千克B .24.70千克C .25.51千克D .24.80千克10.若||2a =,||5b =,则a b +的值应该是()A .7B .-7和7C .3D .±7或±3二、填空题11.-9的绝对值是______.12.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.13.计算:3π-=________.14.若650x y -++=,则x y -=____;15.(1011)(1112)(100101)=--- ________.16.比较大小:-3_______13-.(填:“<”或“>”)17.绝对值不大于5的所有整数的和是______.18.单项式256x y-的系数是____________.19.若a<0,b <0,则()a b --一定是_________(填负数,0或正数)20.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.三、解答题21.计算:(1)0.5(15)(17)|12|-+-----;(2)313()(24)864+-⨯-;(3)2113()()3838---+-;(4)31175(3)24(2)412÷--⨯-.22.-13.5,2,-5,0,0.128,-2.236,3.14,+27,45-,-15℅,32-,227,.0.3,π.正有理数数集合:{},整数集合:{},负分数集合:{}23.如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.24.a,b分别是数轴上两个不同的点A,B所表示的有理数,且a=5,b=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点B点的距离是C点到A点距离的13,求C点表示的数;25.一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.26.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元):星期一二三四五每股涨跌3+ 2.5+4-2+ 1.5-(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)已知王先生买进该股票时付了0.1%的手续费,卖出股票时须支付0.15%的手续费和0.1%的交易税,若他在星期五结束时将股票全部卖出,则他的收益情况如何?(注:股票市场周末不交易)27.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-20.(1)将最后一名乘客送到目的地时,小李在出车地的什么方向?距下午出车地点的距离是多少千米?(2)小李将最后一名乘客送到目的地,总共行驶了多少千米?(3)若每千米耗油0.1升,这天下午共耗油多少升?参考答案1.B【解析】【分析】根据有理数的乘方的运算法则计算即可.【详解】解:根据有理数的乘方的运算法则,可得﹣22=﹣4,故选B.【点睛】本题考查了有理数的乘方,解题的关键是掌握相应的运算法则.2.C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将16780000千瓦用科学记数法表示为:1.678×107千瓦.故选:C.4.C【解析】【分析】根据多项式的次数是多项式中最高次项的次数进行作答即可得.【详解】解:多项式1+2xy-3xy2的最高次项是-3xy2,次数为3,故多项式的次数为3,故选C.【点睛】本题考查了多项式的次数,解题的关键是熟知多项式的次数是多项式中最高次项的次数.5.A【解析】【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【详解】解:因为-1<a<0,所以0<-a<1,可得:a<-a<1.故选:A.【点睛】此题考查有理数大小的比较问题,要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.6.B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选:B.【点睛】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.7.D 【解析】【分析】根据整式的概念、单项式的相关概念即可确定.【详解】解:A 选项5是单独的数字,是单项式,故A 错误;B 选项222x y x y+=+是两个单项式的和,是多项式,故B 错误;C 选项2x y 的系数是1,故B 错误;D 选项32x -是多项式,当然是整式,故D 正确.故选:D.【点睛】本题考查了整式的分类及单项式和多项式的相关概念,整式分为单项式和多项式,单项式是由数字或字母的积组成的代数式,单独的一个数或字母也叫做单项式,单项式中的数字因数叫做单项式的系数,几个单项式的和叫多项式,熟练掌握相关的概念是解题的关键.8.D 【解析】【分析】根据答对题目的得分-不答或答错的题数,列式可得结论.【详解】解:由题意可得,他的成绩是:5x-(20-x ),故选D .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.D 【解析】【分析】根据题意可确定合格的范围是24.75千克到25.25千克之间,判断即可.【详解】解:根据题意可确定合格的范围是24.75千克到25.25千克之间,只有24.80符合标准,故选:D.【点睛】本题考查了正负数的意义,解题关键是根据负数的意义确定合格的范围.10.D【解析】【分析】求出a=±2,b=±5,分为四种情况①当a=2,b=5时,②当a=2,b=−5时,③当a=−2,b=5时,④当a=−2,b=−5时,代入求出即可.【详解】解:因为|a|=2,|b|=5,所以a=±2,b=±5,①当a=2,b=5时,a+b=2+5=7;②当a=2,b=−5时,a+b=2+(−5)=−3;③当a=−2,b=5时,a+b=−2+5=3;④当a=−2,b=−5时,a+b=−2+(−5)=−7;即a+b的值为7或−3或3或−7,故选D.【点睛】本题考查了绝对值,解题的关键是熟知绝对值等于一个正数的数有两个,它们互为相反数.11.9【解析】【分析】根据负数的绝对值是它的相反数,即可得到答案.【详解】-9的绝对值是9,故填9.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.此题主要考查了绝对值,关键是掌握①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.12.圆锥【解析】【详解】因为圆锥的展开图为一个扇形和一个圆形,所以这个立体图形是圆锥.故答案为∶圆锥13.3π-【解析】【分析】先分析3π-的符号,再关键绝对值是含义可得答案.【详解】解:3 <π,3π∴-<0,()333,πππ∴-=--=-故答案为: 3.π-【点睛】本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.14.11【解析】【分析】先根据非负数的性质求出x 、y 的值,再代入x-y 进行计算即可.【详解】解:∵|x-6|+|y+5|=0,∴x-6=0,y+5=0,解得x=6,y=-5,∴原式=6+5=11.故答案为11.【点睛】本题考查非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.15.-1【解析】【分析】根据有理数的乘法和乘方运算法则进行计算即可.【详解】解:(1011)(1112)(100101)--- =(1)(1)(1)--- =91(1)-=-1.故答案为:-1.【点睛】本题主要考查了有理数的乘法和乘方,熟练掌握有理数的乘法和乘方运算法则是解答本题的关键.16.<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:11133,,3333-=-=> 133∴-<-故答案为:<.【点睛】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.17.0【解析】【分析】根据有理数大小比较的方法,可得:绝对值不大于5的所有整数有:±5、±4、±3、±2、±1、0,再把它们相加,求出绝对值不大于5的所有整数的和是多少即可.【详解】解:绝对值不大于5的所有整数为5-、4-、3-、2-、1-、0、1、2、3、4、5,它们的和为0.故答案为:0【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.56-【解析】【详解】单项式256x y -的系数是5.6-故答案为:5.6-【点睛】本题考查单项式的系数,单项式中的数字因数就是单项式的系数.19.负数【解析】【分析】由于a <0,b <0,然后根据有理数减法法则即可判定a-(-b )是正数还是负数.【详解】解:∵a <0,b <0,而a-(-b )=a+b ,∴a-(-b )一定是负数.故答案为:负数.【点睛】此题主要考查了正负数的定义及实数的大小的比较,判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.20.﹣29【解析】【分析】根据a ⊕b=ab+(a-b ),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊕b=ab+(a-b ),∴(-4)⊕5=(-4)×5+[(-4)-5]=(-20)+(-9)=-29,故答案为-29.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(1)-10.5;(2)5;(3)12;(4)50【解析】【详解】解:(1)0.5(15)(17)|12|-+-----0.5151712=--+-10.5=-(2)313()(24)864+-⨯-9418=--+5=(3)2113()()3838---+-21133388⎛⎫=+-+ ⎪⎝⎭112=-12=(4)31175(3)24(2)412÷--⨯-15357524412=-÷+⨯4757015=-⨯+2070=-+50=【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.22.2,0.128,3.14,+27,227,.0.3;2,-5,0,+27;-13.5,-2.236,45-,-15℅,32-.【解析】【分析】根据有理数的分类填写即可【详解】正有理数数集合:{2,0.128,3.14,+27,227,.0.3,……},整数集合:{2,-5,0,+27,……},负分数集合:{-13.5,-2.236,45-,-15℅,32-……}【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.23.见解析【解析】【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.24.(1)a=-5,b=-2;(2)3个单位长度;(3)1-2或11 -4【解析】【分析】(1)根据绝对值的定义结合由数轴得出a、b的符号即可得;(2)根据数轴上两点间的距离公式即可得;(3)设C点表示的数为x,分以下两种情况:点C在A、B之间、点C在点B右侧,利用两点间距离公式列方程求解.【详解】解:(1)∵|a|=5,|b|=2,∴a=5或-5,b=2或-2,由数轴可知,a<b<0,∴a=-5,b=-2;(2)A、B两点间的距离是-2-(-5)=3;(3)设C点表示的数为x,当点C在A、B之间时,根据题意有:x-(-5)=3(-2-x),解得:114x=-;当点C在点B右侧时,根据题意有:x-(-5)=3[x-(-2)],解得:12x=-.∴C点表示的数为12-或114-.【点睛】本题主要考查绝对值和数轴及两点间的距离公式,根据题意分类讨论思想的运用是解题的关键.25.(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【解析】【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.26.(1)星期三结束时,该股票每股19.5元;(2)本周内最高价是每股23.5元,最低价每股19.5元;(3)他赚了1932元.【解析】【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)根据题意列得:18+3+2.5-4=19.5(元);答:星期三结束时,该股票每股19.5元;(2)根据表格得:星期一每股18+3=21元,星期二每股21+2.5=23.5元,星期三每股23.5-4=19.5元,星期四每股19.5+2=21.5元,星期五每股21.5-1.5=20元,则本周内最高价是每股23.5元,最低价每股19.5元;(3)根据题意列得:1000×20×(1-0.15%-0.1%)-1000×18×(1+0.1%)=19950-18018=1932(元).则他赚了1932元.【点睛】本题考查了有理数的混合运算的应用,弄清题意是解本题的关键.27.(1)小李在出车地的西面方向,距下午出车地点的距离是2千米;(2)小李将最后一名乘客送到目的地,总共行驶了120千米;(3)若每千米耗油0.1升,这天下午共耗油12升.【解析】【分析】(1)根据有理数的加法运算,可得和,根据和的大小,可得答案;(2)根据行车就耗油,距离乘以单位耗油量,可得到答案.【详解】解:(1)15+(-3)+14+(-11)+10+(-12)+4+(-15)+16+(-20)=-2,答:将最后一名乘客送到目的地时,小李在出车地的西方,距下午出车地点的距离是2千米;++-+++-+++-+++-+++-(2)|15||3||14||11||10||12||4||15||16||20|=120(千米)所以,小李将最后一名乘客送到目的地,总共行驶了120千米(3)120×0.1=12(升),答:这天下午共耗油12升.。
北师大版七年级上册数学期中考试试卷有答案
北师大版七年级上册数学期中考试试题一、单选题1.-5的相反数是()A .15-B .15C .5D .-52.将数据6500用科学记数法表示为()A .6.5×102B .6.5×103C .65×103D .0.65×1043.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .4.下列计算正确的是()A .()3864⎛⎫-⨯-= ⎪⎝⎭B .()10.524-÷=C .13434⎛⎫÷-⨯=- ⎪⎝⎭D .32833⎛⎫-=- ⎪⎝⎭5.一个数的倒数是它本身的数是()A .1B .﹣1C .±1D .06.若a ,b 为有理数,0a >,0b <,且||||a b <,那么a ,b ,a -,b -的大小关系是()A .b a b a <-<-<B .b b a a <-<-<C .b a a b<-<<-D .a b b a-<-<<7.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A ,B ,C 内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A ,B ,C 内的三个数依次为()A .1,-2,0B .0,-2,1C .-2,0,1D .-2,1,08.下列判断正确的是()A .3a 2bc 与bca 2不是同类项B .25m n 和2a b +都是单项式C .单项式-x 3y 2的次数是3,系数是-1D .3x 2-y +2xy 2是三次三项式9.在代数式12,0,,,,4a x ym x y x π++中,整式共有()A .3个B .6个C .5个D .4个10.下列图形中不是正方体的表面展开图的是()A .B .C .D .11.下列去括号正确的是()A .()a b c a b c +-=++B .()a b c a b c --=--C .()a b c a b c--+=--D .()a b c a b c---=++12.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,⋯,按此规律排列,则第⑧个图形中小圆圈的个数为()A .24B .27C .30D .33二、填空题13.在323⎛⎫- ⎪⎝⎭中,指数是_______,底数是_______.14.在()2--,2--,()22-,22-四个数中,负数有______个.15.计算:20202019(1)(1)---=___________.16.几何体的下列性质:①侧面是长方形;②底面形状相同;③底面平行;④棱长相等.其中是棱柱的性质的有______.17.小明与小刚规定了一种新运算*:若,a b 是有理数,则*32a b a b =-.小明计算4*334236=⨯-⨯=,请你帮小刚计算()2*5-=_____________18.若单项式39mxy 与24n x y 是同类项,则m n +的值是______.19.如果多项式()32242176x x kx x -+--中不含2x 的项,则k 的值为______三、解答题20.计算:(1)()155********⎛⎫-+-⨯- ⎪⎝⎭(2)()245150.813⎛⎫-÷-⨯-+- ⎪⎝⎭21.合并同类项(1)223247a a a a-+-(2)()()22154312x y x y +---22.先化简,再求值:()()22222123633x y x y xyx y xy -++--,其中1x =-,1y =.23.如图,已知点A 在数轴上,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是-3的相反数,按要求完成下列各小题.(1)请在数轴上标出点B 和点C ;(2)求点B 所表示的有理数与点C 所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和数所表示的点重合.24.十月一日公园的进园人数为20.3万人,以后的6天里每天的进园人数变化如下表(正数表示比前一天多的人数负数表示比前一天少的人数,单位:万人)日期2日3日4日5日6日7日人数变化1.2+8.4- 1.4+ 6.3- 2.7+ 3.9+(1)10月2日的进园人数是多少?(2)10月1日-10月7日这7天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?25.已知,一个点从数轴上的原点开始.先向左移动6cm 到达A 点,再从A 点向右移动10cm 到达B 点,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A 以每秒2cm 的速度向左移动,同时C 、B 两点分别以每秒1cm 、4cm 的速度向右移动,设移动时间为t 秒,①运动t 秒时,点C 表示的数是(用含有t 的代数式表示);②当t =2秒时,CB•AC 的值为.③试探索:点A 、B 、C 在运动的过程中,线段CB 与AC 总有怎样的数量关系?并说明理由.26.已知A 、B 为整式,A 的表达式为3a 2b ﹣2ab 2+abc ,小明错将“C =2A ﹣B”看成“2A+B”,算得结果C =4a 2b ﹣3ab 2+4abc .(1)求B 的表达式;(2)求正确的结果的表达式.参考答案1.C 2.B 3.A 4.A 5.C 6.C 7.A 8.D 9.C 10.B 11.D 12.B 13.323-【分析】n a 中,a 是底数,n 是指数,据此作答.【详解】解:在323⎛⎫- ⎪⎝⎭中,指数是3,底数是23-,故答案为3,23-.【点睛】本题考查了有理数的乘方,解题的关键是掌握乘方中的各部分的名称.14.2【分析】先根据相反数,绝对值,数的乘方等相关概念对题中的数据进行计算,再根据负数的定义进行逐一判断即可.【详解】解:∵()22--=,22--=-,()224-=,224-=-∴()2--,2--,()22-,22-这四个数中,负数是:2--和22-,共2个,故答案为:2.【点睛】本题考查了正数和负数,相反数的意义,绝对值的性质,有理数的乘方,是基础题,准确化简是解题的关键.15.2【解析】【分析】直接根据乘方的概念即可求解.【详解】解:20202019(1)(1)---11=+2=故答案为:2.【点睛】此题主要考查有理数的混合运算,解题的关键是正确理解乘方的概念.16.②③【详解】只有直棱柱的侧面是长方形,故①不正确;棱柱的底面形状相同,故②正确;棱柱的底面平行,故③正确;棱柱只有侧面的棱长相等,故④不正确综上所述,正确的有②③故答案为:②③【点睛】本题考查了棱柱的性质,掌握棱柱的性质是解题的关键.17.16【分析】利用a*b=3a-2b ,则()()2*53225-=⨯-⨯-进而求出即可.【详解】解:∵a*b=3a-2b ,∴()()2*53225-=⨯-⨯-=16,故答案为:16.【点睛】此题主要考查了新定义以及有理数的混合运算,利用已知得出“*”的意义是解题关键.18.5【解析】【分析】根据同类项的定义,字母相同,相同字母的指数也相同,即可求出m ,n 的值,故可求解.【详解】解:∵39mxy 与24n x y 是同类项,∴2m =,3n =,∴5m n +=,故答案为:5.【点睛】此题主要考查同类项的定义,解题的关键是熟知同类项的特点.19.2-【解析】【分析】先去括号,然后合并同类项,再根据“不含2x 的项”列出式子求解即可得.【详解】解:()()223234217621476x x k x x k x x x -+----=++,∵多项式不含2x 项,∴2=0k +,解得:=2k -.故答案为:2-.【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.20.(1)-7;(2)415【解析】【分析】(1)利用乘法分配律展开计算;(2)先算乘方和绝对值,再算乘除,最后算加减.【详解】解:(1)()155********⎛⎫-+-⨯- ⎪⎝⎭=-18+20-30+21=-7;(2)()245150.813⎛⎫-÷-⨯-+- ⎪⎝⎭=51250.23⎛⎫-÷⨯-+ ⎪⎝⎭=114=15515+【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.21.(1)279a a -;(2)213122x y -++【解析】【分析】同类项是指所含的字母相同,并且相同字母的指数相同的项,常数项也是同类项.根据定义计算即可.【详解】解:(1)原式=279a a -(2)原式=22315222x y x y +-++=213122x y -++【点睛】本题考查同类项的合并和去括号原则,牢记概念并能够准确运算是解题的重点.22.224xy xy -+,5-【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=22222232x y x y xy x y xy -++-+,=224xy xy -+.当x=-1,y=1时,原式=()()2211411--+⨯-⨯⨯=14--=5-.【点睛】本题考查了整式的加减-化简求值,熟练掌握整式加减的运算法则是解题关键.23.(1)见详解;(2)6;(3)0【解析】【分析】(1)确定点B 和点C 表示的数并在数轴上画出即可;(2)计算两个数的乘积即可;(3)根据折叠求出AB 中点表示的数,再求出点C 到中点的距离即可求出它与哪个点重合.【详解】(1)解:∵点B 所表示的有理数是-3的相反数∴点B 表示的数是3;∵点A 表示的数是-1,∴点C 表示的数是-1+3=2,.(2)解:由(1)得,点B 表示的数是3;点C 表示的数是2,∴3×2=6.(3)∵点A 表示的数是-1,点B 表示的数是3,∴若将该数轴进行折叠,使得点A 和点B 重合,中点表示的数是1312-+=,点C 在中点右侧1个单位,和它重合的点在中点左侧1个单位,即为0;∴点C 与数0重合.故答案为:0.【点睛】本题考查了数轴上的点,解题关键是树立数形结合思想,准确理解题意,求出中点表示的数.24.(1)21.5万人;(2)10月2日最多,10月5日最少,相差13.3万人.【解析】【分析】(1)根据题意,利用有理数加法运算法则计算出答案即可;(2)根据题意得出各天之中进园的人数,然后进一步加以比较即可.【详解】(1)根据题意可得:20.3 1.221.5+=(万人),答:10月2日的进园人数是21.5万人;(2)根据题意可得各天的进园人数为:10月1日:20.3万人;10月2日:20.3 1.221.5+=(万人)10月3日:21.58.413.1-=(万人);10月4日:13.1 1.414.5+=(万人);10月5日:14.5 6.38.2-=(万人);10月6日:8.2 2.710.9+=(万人);10月7日:10.9 3.914.8+=(万人)∴10月2日人最多,10月5日人最少,二者相差21.58.213.3-=(万人).答:10月2日人最多,10月5日人最少,相差13.3万人.【点睛】本题主要考查了正负数的意义与有理数加减法的应用,熟练掌握相关方法是解题关键.25.(1)-1;(2)①﹣1+t ;②121;③线段CB 与AC 相等,理由详见解析.【解析】【分析】(1)依据条件即可得到点A 表示﹣6,点B 表示﹣6+10=4,再根据点C 是线段AB 的中点,即可得出点C 表示的数;(2)依据点C 表示的数为﹣1,点以每秒1cm 的速度向右移动,即可得到运动t 秒时,点C 表示的数是﹣1+t ;②依据点A 表示的数为﹣6﹣2×2=﹣10,点B 表示的数为4+4×2=12,点C 表示的数是﹣1+2=1,即可得到CB•AC的值;③依据点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,即可得到点A、B、C在运动的过程中,线段CB与AC相等.【详解】解:(1)∵一个点从数轴上的原点开始,先向左移动6cm到达A点,再从A点向右移动10cm 到达B点,∴点A表示﹣6,点B表示﹣6+10=4,又∵点C是线段AB的中点,∴点C表示的数为642-+=﹣1,故答案为:﹣1.(2)①∵点C表示的数为﹣1,点以每秒1cm的速度向右移动,∴运动t秒时,点C表示的数是﹣1+t,故答案为:﹣1+t;②由题可得,当t=2秒时,点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1,∴当t=2秒时,AC=11,BC=11,∴CB•AC=121,故答案为:121;③点A、B、C在运动的过程中,线段CB与AC相等.理由:由题可得,点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,∴BC=(4+4t)﹣(﹣1+t)=5+3t,AC=(﹣1+t)﹣(﹣6﹣2t)=5+3t,∴点A、B、C在运动的过程中,线段CB与AC相等.【点睛】本题考查数轴上动点问题,整式的加减,与线段有关的动点问题.(1)理解数轴上线段的中点表示的数是两个端点所表示的数的和除以2;(2)掌握数轴上两点之间的距离求解方法是解决问题的关键,数轴上两点之间对应的距离等于它们所表示的数差的绝对值.26.(1)﹣2a2b+ab2+2abc;(2)8a2b﹣5ab2.【分析】(1)根据题意可得B=C﹣2A,然后再代入表示表示C和A的整式,然后去括号,合并同类项即可;(2)代入表示A、B的整式,然后去括号,合并同类项可得答案.【详解】解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;(2)C=2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2.。
北师大版七年级上册数学期中试卷及答案【完整版】
北师大版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a =3a =________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β. ①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、A7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、40°3、724、-405、±26、1800°三、解答题(本大题共6小题,共72分)1、23 xy=⎧⎨=⎩2、x=3或-3是原方程的增根;m=6或12.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、25元超市一共购进1200个魔方。
北师大版七年级上册数学期中试卷含答案
北师大版七年级上册数学期中试卷含答案1.冥王星地表背阴面的温度比向阳面低476℃。
2.不是互为相反数的是:C。
-100与(-10)²。
3.下列计算正确的是:A。
3x2-x2=3.4.该几何体是B。
正方体。
5.最大的是C。
a+b。
6.正确的是A。
球的截面可能是椭圆。
7.6万亿元用科学记数法可表示为D。
6×1013元。
8.若-3x2my3与2x4yn是同类项,那么m-n= B。
1.9.长方形长是2a+3b,宽为a+b,则其周长是D。
6a+4b。
10.代数式2a2+4a-4的值为B。
4a-2.11.立体图形的名称分别是:正方体、正四面体、正八面体、正十二面体。
12.代数式-ab-7ab-6ab+1是三次多项式,二次项是-6ab,常数项是1.13.点B表示数是4.14.x+y+z=5.15.(a+b)2000=2000.16.摆第n个图形时,需要4n-1根火柴棒。
根据题意可知,要求的是“1+2+3+。
+100”的值,可以使用等差数列求和公式,即:S = (a1 + an) * n / 2其中,a1为首项,an为末项,n为项数。
将题目中的数列代入公式,得:S = (1 + 100) * 100 / 2 = 5050因此,选项B为正确答案。
温差是指最高气温与最低气温之间的差值,可以通过将向阳面的温度减去冥王星的背阴面温度来计算。
因此,本题的答案为B,即温差为30.本题考察了相反数的定义、绝对值的性质和有理数的乘方,需要逐一分析各选项。
选项A中的两个数互为相反数,但是它们的绝对值不同,因此选项A错误。
选项B中的两个数的绝对值相同,但是它们并不互为相反数,因此选项B错误。
选项C中的两个数互为相反数,但是它们的绝对值不同,因此选项C错误。
选项D中的两个数互为相反数,且它们的绝对值相同,因此选项D正确。
本题要求合并同类项,根据合并同类项法则进行计算即可。
选项A和B中的计算结果不是同类项,因此它们错误。
24-25七年级数学期中模拟卷【范围:北师大版2024七年级上册1~3章】(辽宁专用)(全解全析)
2024-2025学年七年级数学上学期期中模拟卷(辽宁专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版2024七年级上册1~3章(丰富的图形世界、有理数及其运算、整式及其加减)。
5.难度系数:0.69第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.长海县海洋岛红石渔港是全国首批由农业农村部认定的国家中心渔港.渔港码头货物年卸港量达80000 吨以上.数 80000用科学记数法表示为( )A .38010´B .5810´C .4810´D .60.810´【答案】C【解析】480000810=´,故选C .2.如图,绕虚线旋转一周可以得到的立体图形是( )A .B .C .D .【答案】D【解析】将所给的图形绕虚线旋转一周得到的立体图形上、下是圆锥体,中间是圆柱体的组合体,因此选项D 中的立体图形符合题意,故选D .3.一个多面体有7个面,10个顶点,则它的棱数只能是( )A .11B .13C .15D .17【答案】C【解析】Q 多面体有7个面,10个顶点,\棱数为:107215+-=,故选C .4.若343m a b +与2n a b 是同类项,则mn 的值为( )A .4B .4-C .8D .12【答案】B【解析】因为343m a b +与2n a b 是同类项,所以32,4m n +==,所以1m =-,所以144mn =-´=-.故选B .5.下列各组的两个数,运算后结果相等的是( )A .47-与()47-B .34与43C .()6--与6--D .()31-与()20231-6.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示( )A .(x +y )B .(x -y )C .3(x -y )D .3(x +y )【答案】C【解析】甲乙两人的年龄和为x y + ,年龄差为x y - ,由题意,()3x y x y +=- ,所以本题应选C.7.一个正方体的展开图如图所示,每个面上都写有一个数并且相对两个面所写的数互为相反数,那么a b c +-=( )A .37-B .13-C .13D .37【答案】C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“”a 与“8”是相对面,“”b 与“4”是相对面,“”c 与“25”是相对面,因为每个面上都写有一个数并且相对两个面所写的数互为相反数,所以8a =-,4b =-,25c =-,所以842513a b c +-=--+=.故选C .8.若有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .2d c <9.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x 的值是1时,根据程序,第一次计算输出的结果是8,第二次计算输出的结果是4……,这样下去第2024次计算输出的结果是( )A .1B .3C .4D .8【答案】A【解析】第一次计算输出的结果是8,第二次计算输出的结果是4,第三次计算输出的结果是2,第四次计算输出的结果是1,第五次计算输出的结果是8,……所以每4次输出的结果8,4,2,1循环出现,¸=,因为20244506所以第2024次计算输出的结果是1,故选A.10.用长度相同的木棒按如图所示的规律拼图案,其中第①个图案用了9根木棒,第②个图案用了14根木棒,第③个图案用了19根木棒,第④个图案用了24根木棒,…,按此规律排列下去,则第⑨个图案用的木棒根数是()A.39B.44C.49D.54二、填空题(本大题共5小题,每小题3分,满分15分)11.有下面四种现象:①旋转一扇门,门运动的痕迹;②扔一块小石子,石子在空中飞行的路线;③夜晚天空划过流星的痕迹;④汽车雨刷在挡风玻璃上画出的痕迹.其中能说明“线动成面”的现象是__________(填序号).【答案】④【解析】①旋转一扇门,门运动的痕迹是面动成体,不符合题意;②扔一块小石子,石子在空中飞行的路线是点动成线,不符合题意;1213.如图所示,用经过A 、B 、C 三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为m ,棱数为n ,则m n +=__________.【答案】21【解析】根据题意得:617m =+=,12n =,所以71221m n +=+=.故答案为:21.14.已知:,a b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=__________.15.汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点…依此规律,则图⑧中共有圆点的个数是__________.【答案】75【解析】在图①中,圆点个数为112y =个,在图②中,圆点个数为212418y y =++=个.在图③中,圆点个数为322525y y =++=个,在图④中,圆点个数为432633y y =++=个....以此类推,在图⑧中,圆点个数为876(210)(29)12y y y =++=+++5(28)1112y =++++4(27)101112y =+++++339101112=++++75=.故答案为:75.三、解答题(本大题共8小题,满分75分,其中16题10分,17题~21题每题8分,22题12分,23题13分。
北师大版(2024)数学七年级上册期中综合素质评价(含答案)
期中综合素质评价七年级数学 上(BS 版) 时间:120分钟 满分:120分一、选择题(每题3分,共30分)1.下列物体的形状类似于圆柱的是( )A B C D2.[新考向 数学文化]中国古代数学著作《九章算术》就最早提到了负数.|-2 025|的相反数是( )A .12 025B .2 025C .-12 025D .-2 0253.[2024合肥西苑中学月考]安徽以“两强一增”为牵引,全方位夯实粮食安全根基,据统计,2023年安徽粮食产量超过820亿斤,其中820亿用科学记数法表示为( )A .8.2×109B .8.2×1010C .8.2×108D .8.2×1024.用四舍五入法按要求对2.895 37取近似值,其中错误的是( )A .2.9(精确到0.1)B .2.80(精确到百分位)C .2.895(精确到千分位)D .2.895 4(精确到0.000 1)5.[2024济南市中区月考]下列说法正确的有( )①绝对值等于它本身的数一定是正数;②0不是单项式;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数;⑤-32x 2y 3的次数是7;⑥13πr 2h 的系数是13.A .0个B .1个C .2个D .3个6.将如图所示的三角形ABC 沿着斜边AB 所在直线旋转一周后可得一几何体,从正面看该几何体,所看到的形状图是( )A B C D7.[2024滨州一模]在数学课上,老师让甲、乙、丙、丁四名同学分别做了一道有理数计算题,你认为做对的同学是( )甲:12-(2×32)=12-2×6=0; 乙:(36-12)÷43=36×34-12×34=18;丙:(-3)2÷34×4=9÷3=3; 丁:9-32÷4=0÷4=0.A .甲B .乙C .丙D .丁8.已知a <0,ab <0,且|a |>|b |,那么a ,b ,-a ,-b 按照由小到大的顺序排列是( )A . a <b <-b <-aB .-b <-a <a <bC .-b <a <-a <bD . a <-b <b <-a9.[教材P94习题T9变式 2024 长沙月考]若代数式2mx 2+4x -2y 2-3(x 2-2nx -3y +1)的值与x 的取值无关,则m 2 025n 2 026的值为( )A .32B .23C .-23D .-3210.[新视角 规律探究题 2024 东莞期中]观察下列图形,它们是按一定规律排列的,依照此规律,第2 024个图形中五角星的个数为( )(第10题)A .6 076B .6 075C .6 074D .6 073二、填空题(每题3分,共24分)11.如图,过长方体的一个顶点,截掉长方体的一个角(阴影部分),则剩余部分的顶点有 个.(第11题)12.一次考试中,老师采取一种记分制:得120分记为+20分,李明的成绩记为-8分,那么他的实际得分为 .13.[情境题 生活应用2024 成都期末]冰箱启动时内部的温度为6 ℃,在冰箱的降温范围内,如果每小时冰箱内部的温度降低4 ℃,那么2小时后冰箱内部的温度为 ℃.14.[新考法 折叠法 教材P33习题T17变式]如图是一个正方体的表面展开图,在正方形A ,B ,C 内分别填入适当的数,使其折叠成正方体后,相对面上的两个数互为倒数,则填入正方形A ,B ,C 内的三个数依次是 .3(第14题)15.小明在化简(4x 2-6x +7)-(4x 2-□x +2)时发现系数“□”印刷不清楚,老师提示他此题的化简结果是常数,则“□”表示的数是 .16.[新考法 分类讨论法]由若干个相同的小立方体可以搭成一个几何体,从正面和上面看到的该几何体的形状图如图所示,其中小正方形中的字母和数字表示该位置上小立方体的个数,则x +y = .(第16题)17.[新趋势 学科内综合]如图,在数轴上点A 表示的数a 是(-2)3的相反数,点B 表示的数b 是最小的正整数,点C 表示的数c 是绝对值是3的负整数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是 .(第17题)18.[新视角 规律探究题 2024 北京西城区月考]按如图所示的程序进行计算,如果第一次输入x 的值是-3,则第2 024次计算后输出的结果为 .(第18题)三、解答题(19题6分,20题8分,25题12分,其余每题10分,共66分)19.(6分)[教材P 30随堂练习T 1变式]画出数轴,表示下列有理数,并按从小到大的顺序用“<”连接起来:-(-512),-2,-(+1),|-3|,-413.20.(10分)[2024宿州期末]计算:(1)7+(-6.9)+(-3.1)+(-8.7); (2)25×34-(-25)×12+25×(-14).21.(10分)(1)已知A =x 2-5xy ,B =-6xy +x 2,求2A -B ;(2)先化简,再求值:7x 2y -2(2x 2y -3xy 2)-(-4x 2y -xy 2),其中x =-2,y =1.22.[教材P 16习题T 3变式]下列几何体是由五个棱长为1 cm 的小正方体组成的.(1)该几何体的体积是 ,表面积是 ;(2)分别画出该几何体从正面、左面、上面看到的形状图.23.[情境题 生活应用]某果农把自家果园的柑橘包装后放到了网上销售.原计划每天卖10箱,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某个星期的销售情况(超额记为正,不足记为负,单位:箱).星期一二三四五六日与计划量的差值+4-3-5+7-8+21-6(1)根据记录的数据可知前五天共卖出多少箱?(2)本星期实际销售总量是否达到了计划总量.(3)若每箱柑橘售价为100元,同时需要支出运费8元,那么该果农本星期总共收入多少元?24.[情境题 方案策略型 2024 天津和平区月考]甲、乙两商场分别出售A 型、B 型两种电暖气,零售价及运费如下表所示:零售价运费商场A 型电暖气B 型电暖气A 型电暖气B 型电暖气甲200元/台300元/台10元/台10元/台乙220元/台290元/台免运费12元/台某公司计划在甲商场或乙商场选择一家购买两种电暖气共100台,其中A 型电暖气需购买x 台.(1)请用含x的代数式分别表示在两家商场购买电暖气所需要的总费用(总费用=购买价+运费);(2)若需购买A型电暖气40台,在哪家商场购买划算?若可以同时在两家商场自由选择,还有更优惠的方案吗?请你设计一种方案.25.[新视角动点探究题2024上海徐汇区月考]已知:|a+2|+(b-4)2=0,c比b大2.(1)a= ,b= ,c= .(2)在数轴上,点A,B,C分别对应数a,b,c.①数轴上点P到点A的距离是点P到点B的距离的2倍,求点P对应的数.②动点M从点A出发以每秒4个单位长度的速度向右运动,动点N从点B出发以每秒1个单位长度的速度向右运动,点D在数轴上对应的数是10,动点M与动点N同时出发,当点M运动到点D后立即以原来的速度向左运动,当点M到达出发点A时,两个动点同时停止运动,设运动时间是t秒,当t= 时,M,N两点到点C的距离相等.5参考答案一、1. D 2. D 3. B 4. B 5. A 6. A 7. B 8. D 9. B 10. D二、11.9 12.92分 13.-214.1,12,-13 15.6 16.4或5 17.4 18.-8三、19.解:在数轴表示各数如图.-413<-2<-(+1)<|-3|<-(-512).20.(1)-11.7 (2)2521.解:(1)2A -B =2(x 2-5xy )-(-6xy +x 2)=x 2-4xy .(2)7x 2y -2(2x 2y -3xy 2)-(-4x 2y -xy 2)=7x 2y +7xy 2.当x =-2,y =1时,原式=7×(-2)2×1+7×(-2)×12=14.22.解:(1)5 cm 3;22 cm 2(2)如图所示.23.解:(1)前五天共卖出5×10+(4-3-5+7-8)=45(箱).(2)7×10+(4-3-5+7-8+21-6)=80(箱),7×10=70(箱).因为80箱>70箱,所以本星期实际销售总量达到了计划总量.(3)该果农本星期总共收入80×(100-8)=7 360(元).24.解:(1)在甲商场购买电暖气所需要的总费用:200x +300(100-x )+10x +10(100-x )=(-100x +31 000)(元),在乙商场购买电暖气所需要的总费用:220x +290(100-x )+12(100-x )=(-82x +30 200)(元).(2)当x =40时,在甲商场购买电暖气所需要的总费用:-100×40+31 000=27 000(元),在乙商场购买电暖气所需要的总费用:-82×40+30 200=26 920(元).因为27 000元>26 920元,所以在乙商场购买便宜.7 根据表格易知,甲商场的A 型电暖气便宜,乙商场的B 型电暖气便宜,此时费用为(200+10)×40+(290+12)(100-40)=26 520(元).所以更优惠的方案为在甲商场购买40台A 型电暖气,在乙商场购买60台B 型电暖气.25.解:(1)-2;4;6(2)①设点P 对应的数为x ,则点P 到点A 的距离是|x +2|,点P 到点B 的距离是|x -4|.因为点P 到点A 的距离是点P 到点B 的距离的2倍,所以|x +2|=2|x -4|.当x <-2时,-x -2=2(4-x ),解得x =10,不符合题意舍去;当-2≤x ≤4时,x +2=2(4-x ),解得x =2;当x >4时,x +2=2(x -4),解得x =10.综上可知,点P 对应的数为2或10.②2或185或143点拨:当动点M 向右运动,即0<t ≤3时.因为动点M 从点A 出发以每秒4个单位长度的速度向右运动,所以点M 对应的数为(-2+4t ).因为动点N 从点B 出发以每秒1个单位长度的速度向右运动,所以点N 对应的数为(4+t ).因为点C 对应的数为6,所以MC =|-2+4t -6|,NC =|4+t -6|.因为M ,N 两点到点C 的距离相等,所以|-2+4t -6|=|4+t -6|,即4|t -2|=|t -2|,所以|t -2|=0,所以t =2;当动点M 向左运动,即3<t ≤6时.因为动点M 从点D 出发以每秒4个单位长度的速度向左运动,所以点M 对应的数为[10-4(t -3)]=22-4t .所以MC =|22-4t -6|.易知NC =4+t -6=t -2.因为M ,N 两点到点C 的距离相等,所以|22-4t -6|=t -2,解得t =185或t =143.综上可知,当t =2或185或143时,M ,N 两点到点C 的距离相等.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题2022年7月一、单选题1.下列各数中,最小的数是()A .4-B .2-C .1D .32.据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A .37.00610⨯B .47.00610⨯C .370.0610⨯D .40.700610⨯3.下列运算正确的是()A .236=B .660a a --=C .2416-=-D .523xy xy -+=-4.单项式23a b π-的系数和次数分别是()A .3π,3B .3π-,3C .13-,4D .13,45.在代数式:234x ,3ab ,5x +,5yx ,4-,3y ,2a b a -中,整式有()A .4个B .5个C .6个D .7个6.有理数a 在数轴上的对应点的位置如图所示,若有理数b 满足-a <b <a ,则b 的值不可能是()A .2B .0C .-1D .-37.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x 分钟,再乘车y 分钟,则小明家离书店的路程是()千米A .454x y+B .445x y +C .344x y +D .13154x y +8.下列判断正确的是()A .两个数相加,和一定大于其中一个加数B .两数相减,差一定小于被减数C .两数相乘,积一定大于其中一个因数D .|a|一定是非负数9.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A .33cmB .143cm C .53cm D .73cm 10.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是()A .9913m ⎛⎫ ⎪⎝⎭B .9923m ⎛⎫ ⎪⎝⎭C .10013m⎛⎫ ⎪⎝⎭D .10023m⎛⎫ ⎪⎝⎭二、填空题11.如果盈利80元记作+80元,那么亏损40元记作______元.12.﹣5的倒数是_____;12018-的相反数是_____.13.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.14.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________.15.已知代数式235x x +-的值等于6,则代数式2268x x ++的值为_____________.16.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是_____17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.三、解答题18.计算:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭19.某公司的某种产品由一商店代销,双方协议,不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时,商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示,这两个月公司分别应付给商店的钱数;(2)假设代销费为每月20元,每件产品的提成为2元,一月份销售了20件,二月份销售了25件,求该商店这两个月销售其总产品的总收益.20.如图是由几个小立方体所组成几何体从上面看到的形状图,其中小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体从正面和从左面看到的形状图.21.已知多项式()()2223221M x xy y x x yx =++-+++.(1)当()2120x y -+-=,求M 的值;(2)若多项式M 与字母x 的取值无关,求y 的值.22.一辆出租车沿着南北方向的道路来回行驶接送客人,一天早晨从某商店门口出发,中午到达B 地,约定向南为正,向北为负,当天记录如下(单位:千米)18.3-,9.5-,+7.1,+14, 6.2-,+12,+6.8,8.5-(1)B 地在商店何处,相距多少千米?(2)第4个客人下车地点距离商店多少千米?(3)若汽车行驶每千米耗油0.1升,那么这天上午共耗油多少升?23.定义新运算:对于任意a ,b ,都有()()223a b a b a ab b b ⊕=+-+-,等式右边是通常的加法、减法、乘法及乘方运算,比如:()()223525255222⊕=+⨯-⨯+-7198=⨯-1338=-125=(1)求()32⊕-的值.(2)化简()()223a b a ab b b +-+-.24.观察下列等式:①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭…根据上述等式的规律,解答下列问题:(1)请写出第④个等式:_____________;(2)写出第n 个等式(用含有n 的等式表示):_____________;(3)应用你发现的规律,计算:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯.25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.例:三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:1113a b c a b ca b c a b c++=++=++=,②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:()()1111a b c a b c a b c a b c--++=++=+-+-=-.综上,a b c a b c++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知3a =,1=b ,且a b <,求a b +的值;(2)已知a ,b 是有理数,当0ab >时,求a ba b+的值.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求a b c a b c++.参考答案1.A 【解析】【分析】根据有理数的大小比较即可求解.【详解】解:∵4213-<-<<,故选:A .【点睛】本题考查有理数的大小比较,掌握有理数的大小比较法则是解题的关键.2.B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:4700607.006010=⨯,故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.3.C 【解析】【分析】A.根据有理数的乘方法则解题;B.根据合并同类项法则解题;C.根据有理数的乘方法则解题;D.根据合并同类项法则解题.【详解】A.239=,故A 错误;B.6612a a a --=-,故B 错误;C.2416-=-,故C 正确;D.523xy xy xy -+=-,故D 错误,故选:C .【点睛】本题考查乘方、合并同类项等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.B 【解析】【分析】根据单项式系数和次数的概念分析即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式23a b π-的系数和次数分别是3π-,3故选B 【点睛】本题考查了单项式系数和次数的概念,掌握概念是解题的关键.5.C 【解析】【分析】根据整式的概念辨析即可得到答案,单项式和多项式统称为整式.【详解】234x ,3ab ,5x +,5y x,4-,3y ,2a b a -是整式的有234x ,3ab ,5x +,4-,3y ,2a b a -,共6个故选:C 【点睛】此题考查了整式的概念,注意5yx分母中含有字母,是分式不是整式.6.D 【解析】【分析】先根据点在数轴上的位置得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴上点的位置得:23a <<32a ∴-<-<-23a ∴<<又a b a -<< 2b ∴≤观察四个选项,只有选项D 不符合故选择:D .【点睛】本题考查了用数轴上的点表示有理数,比较简单,正确表示取值范围是解题关键.7.D 【解析】【分析】首先根据速度×时间=路程,用小明步行的速度乘x ,求出从小明家到车站的路程是多少;然后根据速度×时间=路程,用公交车行驶的速度乘y ,求出从车站到学校的路程是多少;最后把它们相加即可.【详解】解:小明家离书店的路程为:134456060154x y x y ⨯+⨯=+故选:D .【点睛】此题主要考查了列代数式,注意行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.D 【解析】【详解】试题分析:A 、(-1)+(-2)=-3,和小于每一个加数,故选项错误;B 、1-(-2)=3,差大于被减数,故选项错误;C 、1×(-2)=-2,积都不大于每一个因数,故选项错误;D 、|a|一定是非负数是正确的.故选D .9.A 【解析】【分析】首先根据三视图确定该几何体的形状,然后确定其体积即可.【详解】易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,体积为:3×1×1×1=3(cm3).故选:A.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.C【解析】【分析】根据题意得每次减绳子后的长度都是上次剩下长度的13,根据乘方的定义我们可以得出关于x的关系式,代入100x=求解即可.【详解】∵第一次剪去绳子的23,还剩213⎛⎫-⨯⎪⎝⎭原长第二次剪去剩下绳子的23,还剩213⎛⎫-⨯⎪⎝⎭上次剩下的长度因此每次减绳子后的长度都是上次剩下长度的1 3根据乘方的定义,我们得出第n次剪去绳子的23,还剩13x⎛⎫⎪⎝⎭第100次剪去绳子的23,还剩10013⎛⎫⎪⎝⎭故答案为:C.【点睛】本题考查了乘方的定义,掌握乘方的定义从而确定它们的关系式是解题的关键.11.-40【解析】【分析】【详解】盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.12.-1512018【解析】【分析】根据倒数和相反数的定义进行解答即可.【详解】解:-5的倒数是-15;12018-的相反数是12018.故答案为:-15;12018.【点睛】本题主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.13.18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.14.55【解析】【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910<则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦.故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.15.30【解析】【分析】将代数式化为:2(x 2+3x )+8,由于代数式x 2+3x-5的值等于6,那么x 2+3x=11,将其代入代数式并求出代数式的值.【详解】解:由题意得:x 2+3x-5=6,即:x 2+3x=11,∴2x 2+6x+8=2(x 2+3x )+8=2×11+8=30.故答案为:30.【点睛】本题考查代数式的求值,关键在于找出代数式与已知条件的关系,根据已知条件求出代数式中的未知项,代入求解.16.强【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这个特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“文”与“强”相对,“富”与“主”相对,“民”与“明”相对,故答案为:强.【点睛】本题考查了正方体的展开图,注意从相对面入手,分析及解答问题.17.2-【解析】【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-.【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.0【解析】【详解】解:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭()()114188211=---⨯+-÷()()121=---+-1210=-+-=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.19.(1)一月份:()a bm +元;二月份:()a bn +元(2)该商店这两个月销售其总产品的总收益为130元【解析】【分析】(1)每月应付费用为:a 元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【详解】(1)一月份:()a bm +元二月份:()a bn +元(2)当20a =,2b =,20m =,25n =时()()a bm a bn +++()2022020225=+⨯++⨯20402050130=+++=(元)答:该商店这两个月销售其总产品的总收益为130元.【点睛】本题考查列代数式和代数式求值,用代数式表示出代销费和提成是解题的关键.20.见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,1;从左面看有3列,每列小正方形数目分别为3,4,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(1)M=2(2)2y =【解析】【分析】(1)先化简M ,进而根据非负数的性质求得,x y 的值,进而代入求解即可;(2)根据(1)中M 的化简结果变形,令含x 项的系数为0,进而求得y 的值解:()()2223221M x xy y x x yx =++-+++222322222x xy y x x yx -=++---222xy y x =+-- ()2120x y -+-=1,2x y ∴==原式12222122=⨯+⨯-⨯-=(2)M 222xy y x =+--()222y x y =-+-与字母x 的取值无关,20y ∴-=解得2y =【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.22.(1)B 点在商的北边2.6千米;(2)第4个客人下车地点距离商店6.7千米;(3)这天上午共耗油8.24升【解析】【分析】(1)把所给数据相加,若和为正,则说明B 地在商店的南边,若和为负,则说明B 地在商店的北边,再求出和的绝对值即可解答;(2)求出前4个数据相加的和的绝对值即可;(3)求出所有数据的绝对值的和,再乘以每千米的耗油量即可求解.(1)解:18.39.57.114 6.212 6.88.5 2.6--++-++-=-(千米),所以B 点在店的北边2.6千米;(2)解:18.39.57.114 6.7--++=-(千米),所以第4个客人下车地点距离商店6.7千米;解:18.39.57.114 6.212 6.88.582.4+++++++=(千米)82.40.18.24⨯=升.所以这天上午共耗油8.24升.【点睛】本题考查正负数的实际应用、有理数的混合运算的实际应用,理解相反意义的量的含义是解答的关键.23.(1)27;(2)3a 【解析】【分析】(1)先根据新定义运算的运算顺序运算即可;(2)先用乘法分配律算乘法,再合并同类项即可.【详解】解:(1)∵()()223a b a b a ab b b ⊕=+-+-,∴()2332(32)(3324)(2)⊕-=-+⨯+--=198+=27;(2)()()223a b a ab b b-+++=3222233a ab ab a b ab b b ++---+=3a .【点睛】本题考查了整式的混合运算,理解新定义运算顺序并正确运用运算法则进行计算是解此题的关键.24.(1)111179279⎛⎫=⨯- ⎪⨯⎝⎭(2)()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦(3)20202021【解析】【分析】(1)根据所给等式总结规律解答;(2)根据(1)中规律写出答案即可;(3)根据(2)中规律裂项相消即可;(1)解:∵①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭,…,∴111179279⎛⎫=⨯- ⎪⨯⎝⎭,故答案是:17×9=12×−(2)解:由(1)可知,第n 个等式为:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦,故答案是:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦;(3)解:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111121335577920192021=⨯++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111111111212335577920192021=⨯⨯-+-+-+-+⋅⋅⋅+-112021=-20202021=.【点睛】本题考查了数字类规律探究,以及有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.25.(1)-2或-4;(2)2±;(3)1【解析】【分析】(1)根据绝对值的意义和a <b ,确定a 、b 的值,再计算a+b ;(2)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,根据绝对值的意义进行计算即可;(3)根据a ,b ,c 是有理数,a+b+c=0,0abc <,则a ,b ,c 两正一负,然后进行计算即可.【详解】解:(1)因为3a =,1=b ,且a b <,所以3a =-,1b =或1-,则2a b +=-或4a b +=-.(2)①当0a <,0b <时,112a b a b+=--=-;②当0a >,0b >时,112a b a b+=+=;综上,a b a b+的值为2±.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.所以a ,b ,c 两正一负,不妨设0a >,0b >,0c <,所以1111a b c a b c++=+-=.【点睛】考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键;。
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题一、单选题1.下列说法正确的个数有()①0是整数;② 1.2-是负分数;③1π是分数;④自然数一定是正数;⑤负分数一定是负有理数.A .1个B .2个C .3个D .4个2.3-的倒数是()A .3B .13C .13-D .3-3.有下列式子:①2;②2a ;③31x -;④39s t+;⑤12S ab =;⑥4x y +>;⑦2x .其中代数式有()A .4个B .5个C .6个D .7个4.在﹣(﹣8),(﹣1)2017,﹣32,0,﹣|﹣1|,﹣23中,负数的个数有()A .2个B .3个C .4个D .5个5.如图,是一个正方体的平面展开图,把展开图折成正方体后,“党”字一面相对的字是()A .一B .百C .周D .年6.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为()A .316410⨯B .416.410⨯C .51.6410⨯D .60.16410⨯7.下面图形经过折叠不能围成棱柱的是()A .B .C .D .8.数轴上,到原点距离是8的点表示的数是()A .8和﹣8B .0和﹣8C .0和8D .﹣4和49.下列各组数中,数值相等的是()A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-10.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A .4B .﹣2C .8D .311.如图,将小正方体切去一个角后再展开,其平面展开图正确的是()A .B .C .D .12.已知()29320x y z -++++=,则2x y z-+=()A .4B .6C .10D .13二、填空题13.如果一个棱柱共有15条棱,那么它一定是______棱柱.14.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作______.15.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.16.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),c 和f 的关系是:()5329c f =-,某日兰州和银川的最高气温分别是72℉和88℉,则他们的摄氏温度分别是:______℃和______℃.三、解答题17.计算:(1)()281510---+;(2)22523963⎛⎫-⨯+-⎪⎝⎭;(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭;18.如图所示,a 、b 是有理数,请化简式子|a|﹣|b|+|a+b|+|b ﹣a|.19.a 的绝对值2b+1,b 的相反数是其本身,c 与d 互为倒数,求23cd a b ++的值.20.人体血液的质量约占人体体重的6%-7.5%.(1)如果某人体重是a kg ,那么他的血液质量大约在什么范围?(2)亮亮体重是35kg ,他的血液质量大约在什么范围?21.商店出售甲、乙两种书包,甲种书包每个38元,乙种书包每个26元,现已售出甲种书包a 个,乙种书包b 个.(1)用代数式表示销售这两种书包的总金额;(2)当a=2,b=10时,求销售总金额.22.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m-6)2+|n-8|=0,求出该广场的面积.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某公司仓库一周内货物进出的吨数记录如下:(“+”表示进库,“-”表示出库)日期星期日星期一星期二星期三星期四星期五星期六吨数+22-29-15+37-25-21-19(1)若星期日开始时仓库内有货物465吨,则星期六结束时仓库内还有货物多少吨?(2)如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元装卸费?26.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB a b =-,若a>b ,则可简化为AB a b =-;线段AB 的中点M 表示的数为2a b+.【问题情境】已知数轴上有A 、B 两点,分别表示的数为10-,8,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)运动开始前,A 、B 两点的距离S 为多少;线段AB 的中点M 所表示的数是多少?(2)点A 运动t 秒后所在位置的点C 表示的数为多少;点B 运动t 秒后所在位置的点D 表示的数为多少;(用含t 的式子表示)(3)它们按上述方式运动,A 、B 两点经过多少秒会相距4个单位长度?27.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是下部分①面积的一半,部分③是部分②面积的一半,依次类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出611112482++++ 的值吗?参考答案1.C 【解析】【分析】根据有理数的意义,逐一判断即可.【详解】①0是整数,故①正确;②-1.2是负分数,故②正确;③1π是无理数,故③错误;④自然数一定是非负数,故④错误;⑤负分数一定是负有理数,故⑤正确;综上,正确的有3个,故选:C .【点睛】本题考查了有理数的分类,熟记有理数的意义是解题关键.2.C 【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C 3.B 【解析】【分析】根据代数式的定义,即可求解.【详解】解:代数式有2;2a ;31x -;39s t+;2x ,共5个.故选:B 【点睛】本题主要考查了代数式的定义,熟练掌握用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式是解题的关键.4.C 【解析】【分析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.【详解】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,负数有:(-1)2017,-32,-|-1|,23-,负数的个数有4个,故选:C .【点睛】本题考查了有理数的乘方、绝对值、相反数和负数,解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.5.B 【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定隔着一个正方形,据此作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“周”是相对面,“党”与“百”是相对面,“一”与“年”是相对面.故选:B .【点睛】本题考查了正方体的展开图,解题的关键是从相对面入手进行分析及解答问题.6.C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:16.4万=51.6410 ,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D 【解析】【详解】A 可以围成四棱柱,B 可以围成五棱柱,C 可以围成三棱柱,D 选项侧面上只有三个长方形,而两个底面都是长方形,因此从图形中看少了一个侧面,故不能围成长方体,故选D .【点睛】本题考查了展开图,解决此题的关键是要有一定的空间想象能力.8.A 【解析】【分析】根据数轴上的点到原点的距离的意义解答.数a 到原点的距离为a .【详解】解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A .【点睛】本题考查了数轴上点到原点的距离,根据数轴的意义解答.9.C 【解析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=- ,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=- ,211(24-=,2211(22-≠-,∴选项B 不符合题意;2(2)4-= ,224=,22(2)2-=,∴选项C 符合题意;211(24--=- ,21122-=-,2211(22--≠-,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.10.A 【解析】【详解】根据题意中的计算程序,可直接计算为:12×2-4=-2<0,把-2输入可得(-2)2×2-4=4>0,所以输出的数y=4.故选A.11.D 【解析】【详解】只有D,可以还原回去,所以选D.12.D 【解析】【分析】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,分别求出x,y,z 的值,然后代入2x y z -+求值.【详解】根据题意可知,()29320x y z -++++=,所以|x-9|=0,|y+3|=0,(z+2)2=0,所以x=9,y=-3,z=-2,2x y z -+=9-2×(-3)+(-2)=13,故选:D.【点睛】本题考查了绝对值和平方的非负性以及代数式求值,熟练掌握非负数和为0的解题方法是本题的解题关键.13.五【解析】【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五楼柱.【详解】解:一个棱柱共有15条棱,那么它是五棱柱,故答案为:五【点睛】本题主要考查了认识立体图形,关键是掌握五棱柱的构造特征.14.-0.15米【解析】【分析】根据多于标准记为正,可得少于标准记为负.【详解】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作-0.15米,故答案为:-0.15米.【点睛】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.15.﹣2916.20092809【解析】【分析】把兰州和银川的最高气温的华氏温度代入c 和f 的关系式()5329c f =-,即可求出最高气温的摄氏温度.【详解】当f=72℉时,()5329c f =-=()572329-=2009,当f=88℉时,()5329c f =-=()588329-=2809,所以兰州和银川的最高摄氏温度分别是2009℃和2809℃.【点睛】本题考查了代数式的求值,会进行代数式的代入求值是本题的解题关键.17.(1)3-(2)72-(3)0(4)16【解析】(1)解:28(15)10---+281510=-++3=-(2)解:22523963⎛⎫-⨯+- ⎪⎝⎭415129181818⎛⎫=-⨯+- ⎝⎭7918=-⨯72=-(3)331122⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭1188⎛⎫=-+ ⎪⎝⎭0=(4)()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭()113292=--÷⨯-()11372=--÷⨯-()111723=--⨯⨯-761=-+16=【点睛】本题考查有理数的加、减、乘、除、乘方运算,熟练掌握运算顺序和运算法则是解决本题的关键.18.b ﹣a【解析】【分析】先根据a 、b 两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.【详解】∵由数轴上a 、b 两点的位置可知,﹣1<a <0,b >1,∴a+b >0,b ﹣a >0,∴原式=﹣a ﹣b+a+b+b ﹣a=b ﹣a .【点睛】本题考查了绝对值与数轴的知识点,解题的关键是根据数轴确定取值范围去绝对值.19.1或3【解析】【分析】根据题意可知:b=0,所以|a|=1,又因为cd=1,分别代入原式即可求出答案.【详解】解:由题意可知:cd =1,b =0,∴|a|=2b+1=1,∴a =±1,当a =1时,∴原式=2+1+0=3,当a =-1时,∴原式=2-1=1【点睛】本题考查代数式求值,涉及绝对值,相反数与倒数的性质.20.(1)0.06a kg -0.075a kg(2)2.1kg -2.625kg【解析】【分析】(1)根据人体血液的质量占人体体重的6%-7.5%,再根据人体体重a kg ,分别相乘即可.(2)根据人体血液的质量占人体体重的6%-7.5%,再根据亮亮体重35kg ,分别相乘求解即可.(1)解:6%0.06a a ⨯=,7.5%0.075a a⨯=答:血液质量大约在0.06a kg -0.075a kg 范围.(2)解:356% 2.1kg ⨯=,357.5% 2.625kg⨯=答:血液质量大约在2.1kg -2.625kg 范围.【点睛】本题主要考查列代数式的问题,解题关键是找出所求量的等量关系.21.(1)(38a+26b )元;(2)336元.【解析】【分析】(1)根据“销售总金额=销售甲种书包的金额+销售乙种书包的金额”列代数式即可;(2)将a,b的值代入(1)中代数式求解即可.【详解】解:(1)根据题意得,销售这两种书包的总金额为:(38a+26b)元;(2)将a=2,b=10代入38a+26b得,38a+26b=38×2+26×10=336.答:销售总金额为336元.【点睛】本题主要考查列代数式以及求代数式的值,解题关键是根据题意正确列出代数式.22.(1)3.5mn;(2)168.【解析】【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【详解】(1)S=2m×2n–m(2n–n–0.5n)=4mn–0.5mn=3.5mn;(2)由题意得m–6=0,n–8=0,∴m=6,n=8,∴原式=3.5×6×8=168.【点睛】此题考查了整式的加减-化简求值,非负数的性质,不规则图形的面积等知识,解本题的关键是学会利用分割法求不规则图形的面积.23.(1)见解析(2)7千米(3)3.4【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)可直接进行求解;(3)先求出货车总的路程,然后再进行求解即可.(1)解:如图所示:(2)解:由(1)数轴可知:小明家与小刚家相距:4-(-3)=7(千米);答:小明家与小刚家相距7千米(3)解:这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.2=3.4(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油3.4升.【点睛】本题主要考查数轴及有理数混合运算的应用,熟练掌握数轴上数的表示及有理数的运算是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.(1)415吨(2)840元【解析】【分析】(1)首先计算出表格中的数据的和,再利用465加上表格中的数据的和即可;(2)首先计算出表格中数据绝对值的和,再乘以5元即可.(1)22-29-15+37-25-21-19=-50(吨),465-50=415(吨).答:星期六结束时仓库内还有货物415吨;(2)5×(22+|-29|+|-15|+37+|-25|+|-21|+|-19|)=840(元).答:这一周内共需付840元装卸费.【点睛】此题主要考查了正负数,关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(1)18,1-(2)103t-+;8-2t(3)2.8秒或4.4秒【解析】【分析】(1)根据数轴两点距离求AB的距离,利用数轴中点坐标公式计算即可;(2)先求距离,再利用起点表示的数加或减距离即可求解;(3)根据相遇前与相遇后的等量关系分类讨论列一元一次方程,解方程即可.(1)解:S=|-10-8|=18∵1081 2-+=-∴M表示的数是:-1;(2)解:AC=3t,BD=2t,C表示的数:-10+3t,D表示的数:8-2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时∶依题意列式,得3t+2t=18-4,解得t=2.8;当点A在点B右侧时∶3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.【点睛】本题考查数轴上点数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程,数轴上点表示数,数轴上两点间距离,中点表示的数,用代数式表示线段的长,一元一次方程是解题关键.27.(1)164;(2)6364.【解析】【分析】(1)根据题意可以写出前几部分的面积,从而可以发现各部分面积的变化规律,再根据图形可知阴影部分的面积和部分⑥的面积相等,从而可以解答本题;(2)根据(1)中发现的规律和题目中的式子,可以计算出相应的结果.【详解】解:(1)由题意可知,部分①面积是1 2,部分②面积是(12)2,部分③面积是(12)3,…,则阴影部分的面积是(12)6=164,阴影部分的面积是1 64;(2)原式=12+23456611111163122222264 ++++=-=.。
北师大版七年级上册数学期中考试试卷带答案
北师大版七年级上册数学期中考试试题2022年一、单选题1.2020年初,新冠肺炎疫情袭卷全球,截至今日,据不完全统计,全球累计确诊人数约为23000000人,23000000用科学记数法表示为()A .0.23×108B .2.3×107C .23×106D .2.3×1062.下列不是三棱柱展开图的是()A .B .C .D .3.0.2-的倒数是()A .2-B .5-C .15-D .12-4.下列运算正确的是()A .23=5-+B .2(3)6-⨯-=-C .224()36-=D .22(3)3÷-=-5.当x+y =3时,5﹣x ﹣y 等于()A .6B .4C .2D .36.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b>0B .a b ->0C .a<b -D .|a|<|b|7.如图,下列图形全部属于柱体的是()A .B .C .D .8.-a 表示的数一定是()A .负数B .正数C .正数或负数D .a 的相反数9.下列说法:①最大的负数是-1;②数轴上表示5的点和表示-5的点到原点的距离相等;③当0a ≤时,a a =-成立;④a 的倒数是1a;⑤2(3)-和23-相等,其中正确的个数有()A .2个B .3个C .4个D .5个10.如果四个互不相同的正整数m 、n 、p 、q 满足(4)(4)(4)(4)9m n p q ----=,那么m n p q +++的值是()A .14B .15C .16D .17二、填空题11.单项式23x y -的系数是_______,次数是_______.12.比较大小:①12-___23-;②若0a <,则a _____10a 13.15-xa -1y 与-3x 2yb +3是同类项,则a +3b =__________.14.规定了一种新运算*:若a 、b 是有理数,则*32a b a b =-,请你计算()2*5-=______.15.在直线上截取线段AB 和BC ,使AB =8cm ,BC =3cm 则线段AC 的长为__________cm 16.某个数值转换器原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2021次输出的结果是_______三、解答题17.计算:25(1)|3|(5)3⎛⎫---+-÷- ⎪⎝⎭.18.把下列各数分别填在相应的方框里:2021-,3.5, 1.2+,0,56,113-,102, 3.14-,18%,2.7 整数负分数非负数19.先化简,再求值:3x2﹣3(x2+2y)+2(x2﹣y),其中,11,2 x y=-=.20.化简:(1)-3m+2m-5m;(2)(2a2-1+2a)-(a-1+a2).21.如图,已知线段AB,请用尺规按下列要求作图(不写作法,保留作图痕迹):(1)延长线段AB到C,使BC=AB;(2)延长线段BA到D,使AD=AC.(3)如果AB=2cm,那么BD=cm,CD=cm.22.一位出租车司机某日中午的营运全在市区的环城公路上进行.如果规定:顺时针方向为正,逆时针方向为负,那天中午他拉了五位乘客所行车的里程如下:(单位:千米)+10,﹣7,+4,﹣9,+2.(1)将最后一名乘客送到目的地时,这位司机距离出车地点的位置如何?(2)若汽车耗油为a升/千米,那么这天中午这辆出租车的油耗多少升?(3)如果出租车的收费标准是:起步价10元,3千米后每千米2元,问:这个司机这天中午的收入是多少?23.某商场销售一种西装和领带,西装每套定价400元,领带每条定价80元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款多少元(用含x的式子表示)?若该客户按方案二购买,需付款多少元(用含x的式子表示)?(2)若x=30,通过计算说明此时按哪种方案购买较为合算.(3)当x=30时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和并求出所需费用.24.如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.(1)点A,B对应的数分别为:__________、__________。
陕西榆林榆阳区2023-2024学年七年级上册数学期中试卷及答案北师大版
陕西榆林榆阳区2023-2024学年七年级上册数学期中试卷及答案北师大版注意事项:1.本试卷分为第一部分(选择题)和第二郁分(非选择题).全卷共6页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号.3.请在答题卡上各题的指定区城内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 实数5-的相反数是( )A. 5B. 5-C. 15D. 15-【答案】A【解析】【分析】本题主要考查了相反数的判断,根据相反数的定义解答即可.【详解】5-的相反数是5.故选:A .2. 当2x =时,代数式32x -的值是( )A. 4- B. 0 C. 2 D. 4【答案】D【解析】【分析】把2x =代入32x -计算即可.【详解】把2x =代入32x -得,323224x -=´-=.故选D .【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.3.长沙市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2023年中秋国庆假期八天累计接待游客263万人次.将263万用科学记数法表示为( ).A. 62.6310´B. 72.6310´C. 70.26310´D. 526.310´【答案】A【解析】【分析】根据科学记数法定义即可得.【详解】解:263万62630000 2.6310==´,故选A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ´的形式,其中110a £<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4. 下列单项式中,与32mn -是同类项的是( )A. 2mn- B. 312mn C. 33m n - D. 2mn 【答案】B【解析】【分析】本题考查同类项,利用同类项的定义:具有相同种类的字母,并且相同字母的指数相同,进行判断即可.【详解】解:32mn -的同类项字母只含m 和n ,且m 的次数为1,n 的次数为3,选项中只有312mn 符合,的5. 下列图形中不能围成正方体的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查正方体的展开图,要记牢能组成正方体的基本形态:“一四一”“三三”“二二二”“一三二”;根据正方体展开图的特征,逐一进行分析即可得出答案.【详解】解:正方体的展开图有“一四一”“三三”“二二二”“一三二”类型,由分析可知不能折叠成正方体的是C ,故选:C .6. 某食品包装袋上标有净含量“250克±5克”,有4袋食品重量如下,其中不合格的是( ).A. 256B. 248C. 253D. 249【答案】A【解析】【分析】根据正负数的意义:题中以250克为标准,记为0,超过部分为正,不足的部分为负,由此即可得到答案.【详解】解:∵2505245-=(克)2505255+=(克)∴合格的范围为:245克---255克故选:A【点睛】本题主要考查了正负数的意义,解题的关键在于能够熟练掌握正负数的意义.7. 现定义一种新运算“*”,规定*mn m n m n =--,则()3*3-的值等于( )A. 9- B. 32 C. 23- D. 32-【答案】B 的【分析】根据题目所给的定义代值计算即可.【详解】解:∵*mn m n m n =--,∴()()()339933*3333362´---=-=-==--+,故选B .【点睛】本题主要考查了有理数的四则混合计算,正确理解新定义是解题的关键.8. 观察下列等式:122=,224=,328=,4216=,5232=,6264=,…,则20232的个位数字是( )A. 2B. 4C. 6D. 8【答案】D【解析】【分析】本题考查数字类规律探索,根据观察可得,2的乘方个位数字以“2、4、8、6”循环,据此求解即可.【详解】解:根据观察可得,2的乘方个位数字以“2、4、8、6”循环,202345053¸=LL ,20232的个位数字与32的个位数字相同是8.故选:D .第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 单项式2457x y -的系数是______.【答案】57-【解析】【分析】本题考查了单项式系数的概念;根据单项式中的数字因数叫做单项式的系数,即可得出答案.【详解】解:单项式2457x y -的系数是57-,故答案为:57-.10.用一个平面分别去截长方体,圆锥,三棱柱这三种几何体,所得的截面形状可能是长方形的几何体有______个.【答案】2【解析】【分析】本题考查了几何体的截面;根据几何体的形状,截面的角度和方向进行判断即可.【详解】解:用一个平面去截长方体和三棱柱,所得的截面形状可能是长方形,圆锥的截面形状不可能是长方形,所以,所得的截面形状可能是长方形的几何体有2个,故答案为:2.11.某工地上有一些水泥,平均每天用去5吨,用了h 天,还剩下30吨,则这个工地上原来有_______吨水泥.(用含h 代数式表示)【答案】()530h +##()305h +【解析】【分析】根据用去5h 的加上剩下的30,列出代数式即可求解.【详解】解:依题意,这个工地上原来有()530h +吨水泥.故答案为:()530h +.【点睛】本题考查了列代数式,理解题意是解题的关键.12. 若()2120x y -++=,则xy 的值为______.【答案】2-【解析】【分析】本题考查了绝对值和偶次方的非负性,代数式求值;根据非负数的性质列式求出x 、y ,然后代入代数式计算即可.【详解】解:∵()2120x y -++=,∴10x -=,20y +=,的∴1x =,=2y -,∴()122xy =´-=-,故答案为:2-.13. 有理数,,a b c 在数轴上的位置如图所示,则a c c b b a ++---=______.【答案】2c【解析】【分析】本题考查了数轴,绝对值,有理数的加减;根据数轴可得0b c a <<<,且a c >,然后利用有理数加减的运算法则判断出绝对值内式子的正负,再根据绝对值的性质化简,然后合并即可.【详解】解:由数轴得:0b c a <<<,且a c >,∴0a c +>,0c b ->,0b a -<,∴()2a c c b b a a c c b a b a c c b a b c ++---=++---=++--+=,故答案为:2c .三、解答题(共13小题,计81分.解答应写出过程)14. 计算:()()193852æö-¸-´-+-ç÷èø.【答案】4-【解析】【分析】本题考查有理数的混合运算,先计算乘除,后计算加减,即可求解.【详解】解:原式345=-+-4=-15. 先化简,再求值:()()2222x y xy x y xy ---的值,其中1x =-,2y =.【答案】2x y ;2【解析】【分析】先根据整式加减运算法则进行化简,然后再代入数据求值即可.【详解】解:()()2222x y xy x y xy ---22222x y xy x y xy--+=2x y =,把1x =-,2y =代入得:原式()2122=-´=.【点睛】本题主要考查了整式化简求值,解题的关键是熟练掌握整式加减运算法则,准确计算.16. 在数轴上把下列各数表示出来,并用“<”将它们连接起来.2-,22-,3.5,()1--【答案】见解析,()212 3.52<--<-<-【解析】【分析】本题考查了利用数轴比较有理数的大小,绝对值,相反数,有理数的乘方;先利用绝对值,相反数,有理数的乘方法则化简各数,再把各数表示在数轴上,然后根据数轴上右边的点表示的数总比左边的大用“<”将它们连接起来.【详解】解:22-=,242-=-,()11--=,把各数表示在数轴上如图:由数轴得:()2212 3.5-<--<-<.17.如图是用6个完全相同的小正方体搭成的几何体.请分别画出从正面、上面和左面看得到的形状图.【答案】见解析【解析】【分析】分别画出从正面,上面和左面看到的图形即可.【详解】解:如图所示.【点睛】本题考查从不同方向看几何体,熟练掌握从不同方向看到的图形的画法是解题的关键.18.已知x 的相反数是-3,y 的倒数是14-,z 是多项式272x x +-的次数,求2x y z +的值.【答案】21x y z +=【解析】【分析】根据题意求出x ,y ,z 的值,再代入计算即可解答.【详解】因为x 的相反数是-3,y 的倒数是14-,z 是多项式272x x +-的次数,所以3x =,4y =-,2z =,所以()234212x y z ´+-+==.【点睛】本题考查了相反数、倒数、多项式的次数的概念.19.已知酒精冻结的温度是117C -°,现有一杯酒精的温度是11C °放在一个制冷的装置里,每分钟温度可降低1.6C °,要使这杯酒精冻结需要几分钟?【答案】80分钟【解析】【分析】先求解温度差,再利用这个温差除以下降的速度即可.【详解】解:()11117128C --=°,128 1.680¸=(分).【点睛】本题考查的是有理数的减法的实际应用,除法的实际应用,理解题意,列出正确的运算式是解本题的关键.20.某服装店新开张,第一天销售服装x 件,第二天的销售量比第一天的2倍还多5件,第三天的销售量比第二天的3倍少8件,请用含x 的代数式表示这三天一共销售的服装件数.【答案】912x +【解析】【分析】本题考查了列代数式和整式加减的应用,先用代数式表示出第二天的销售量,再利用题干中的数量关系表示出第三天的销售量,把三天的销售量相加化简即可得出结论.【详解】解:因为第一天销售服装x 件,第二天比第一天的2倍还多5件,所以第二天销售了()25x +件.因为第三天销售量比第二天的3倍少8件,所以第三天销售的服装件数为()325867x x +-=+,三天的销售总量为:()()()2567912x x x x ++++=+件.【点睛】21.如图是一张长方形纸片,长方形的长为6cm ,宽为4cm ,若将此长方形纸片绕它的一边所在直线旋转一周,得到一个几何体.(1)这个几何体的名称是 ,这个现象用数学知识解释为 ;(2)求得到的这个几何体的体积(结果保留π)【答案】(1)圆柱,面动成体;(2)得到的几何体的体积为2144cm p 或296cm p 【解析】【分析】本题考查几何体的体积以及面动成体;(1)根据面动成体可知,将长方形纸片绕它的一边所在直线旋转一周,得到的几何体是圆柱;(2)分两种情况确定出圆柱的底面半径和高,再根据圆柱的体积公式计算即可求解.的【小问1详解】解:将长方形纸片绕它的一边所在直线旋转一周,得到的几何体是圆柱,这个现象用数学知识解释为面动成体,故答案为:圆柱,面动成体;【小问2详解】①若绕4cm 的边所在直线旋转一周,得到的是底面半径为6cm ,高为4cm 的圆柱,它的体积为:2264144cm p p ´´=;②若绕6cm 的边所在直线旋转一周,得到的是底面半径为4cm ,高为6cm 的圆柱,它的体积为:224696cm p p ´´=;综上:得到的几何体的体积为2144cm p 或296cm p .22. 已知223M x ax =++,232N x x =-+-,其中a 是一个有理数.(1)若M N +的结果中不含x 的一次项,求a 的值;(2)当1a =-时,求2M N -.【答案】(1)3a =-(2)2477x x -+【解析】【分析】本题考查了整式的加减;(1)计算M N +,根据结果中不含x 的一次项,令x 的系数为0,即可求出a 的值;(2)把1a =-代入,列出算式,然后去括号、合并同类项即可.【小问1详解】解:()222233231M N x ax x x x a x +=++-+-=+++,∵M N +的结果中不含x 的一次项,∴30a +=,∴3a =-;【小问2详解】当1a =-时,()22223232M N x x x x -=-+--+-2223264x x x x -++-+=2747x x -+=.23.出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,如果规定向东为正,向西为负,他这天上午的行程记录如下(单位:千米):15+,3-,16+,11-,10+,12-,4+,15-,16+,18-.(1)将最后一名乘客送达目的地时,小张在上午出发点的东边还是西边?距离出发点多少千米?(2)若出租车耗油量为0.6升/千米,出车时,油箱里有汽油76.2升,小张这天上午从营运开始到送完最后一名乘客,途中是否需要加油?请说明理由.【答案】(1)将最后一名乘客送达目的地时,小张在上午出发点的东边,距离出发点2千米.(2)小张这天上午从营运开始到送完最后一名乘客,途中不需要加油,理由见解析.【解析】【分析】(1)本题考查有理数的加法运算和正负数的意义,根据题意列式并掌握运算法则即可解题.(2)本题考查了绝对值的意义,利用绝对值算出总路程,结合耗油量为0.6升/千米,算出总油耗,再与油箱里的汽油进行比较,即可解题.【小问1详解】解:由题知,1531611101241516182-+-+-+-+-=(千米),答:将最后一名乘客送达目的地时,小张在上午出发点的东边,距离出发点2千米.【小问2详解】解:由题知,()1531611101241516180.672+-++-++-++-++-´=(升),76.272 4.2-=(升),答:小张这天上午从营运开始到送完最后一名乘客,途中不需要加油.24.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是b 米的小路,余下的部分设计成花圃(阴影部分)进行美化,并用篱笆将花圃不靠墙的三边围起来.(1)用含,a b 的代数式表示所用篱笆的总长度;(2)若30a =,5b =,篱笆的造价为60元/米,请计算全部篱笆的造价.【答案】(1)()441a b --米(2)5940元【解析】【分析】本题主要考查整式的加减的实际应用,从生活实际中出发,以数学知识解决生活实际中的问题,同时也考查了长方形周长的计算.(1)先根据所给的图形,得出花圃的长和宽,然后根据长方形周长公式求出篱笆总长度;(2)直接将a 和b 代入第(1)问所求的面积式子中,再乘以60,得出结果.【小问1详解】解:由图可得:花圃的长为()212a b --米,宽为()a b -米;所以篱笆的总长度为()()2122a b a b --+-21222a b a b=--+-()441a b =--米;【小问2详解】解:当30a =,5b =时,441a b --430451=´-´-99=(米),全部篱笆的造价为99605940´=(元),答:全部篱篱笆的造价是5940元.25. 用正方形和圆按照一定规律摆出下列一组图形:(1)按照这样的规律摆下去,第4个图形中有 个正方形, 个圆;(2)按照这样的规律摆下去,第n 个图形中有 个正方形, 个圆;(用含n 的代数式表示)(3)若第n 个图形中有100个圆,求第n 个图形中有多少个正方形?【答案】(1)4,13(2)n ,()31n +(3)有33个正方形【解析】【分析】本题考查了图形类规律探索;(1)观察图形可知,依次增加1个正方形,3个圆,然后可得答案;(2)根据(1)中分析,可得第n 个图形中有n 个正方形,()31n +个圆;(3)根据(2)中规律列式求出n 的值,进而可得答案.【小问1详解】解:∵第1个图形中有1个正方形,4个圆;第2个图形中有2个正方形,7个圆;第3个图形中有3个正方形,10个圆;∴依次增加1个正方形,3个圆,∴第4个图形中有4个正方形,13个圆,故答案为:4,13;【小问2详解】由(1)可知,第n 个图形中有n 个正方形,()31n +个圆,故答案为:n ,()31n +;【小问3详解】∵第n 个图形中有100个圆,的n+=,∴31100n=,∴33∴有33个正方形.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧的一点,且点A、B之间的距离为20,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同t t>秒.时出发,设运动时间为()0①经过多长时间,P、Q两点相遇;②经过多长时间,P、Q两点相距4个单位长度?-【答案】(1)12-,85t(2)①经过10s,P、Q两点相遇;②经过8s或12s,P、Q两点相距4个单位长度【解析】【分析】本题考查了数轴上两点间的距离,列代数式,一元一次方程的应用;(1)根据数轴上两点间的距离求出点B表示的数,根据点P运动的速度和方向列代数式可得点P表示的数;--,然后根据P、Q两点相遇时表示的数相同(2)①求出t秒后点Q表示的数为123t,列方程求出t的值即可;②分点Q在点P左侧和点Q在点P右侧两种情况,分别根据P、Q两点相距4个单位长度列方程求解即可.【小问1详解】解:∵点A表示的数为8,点B在点A左侧,点A、B之间的距离为20,-=-,∴点B表示的数是82012∵点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,-,∴点P表示的数是85t故答案为:12-,85t -;【小问2详解】①由题意得,t 秒后点Q 表示的数为123t --,当P 、Q 两点相遇时,可得85123t t -=--,解得:10t =,即经过10s ,P 、Q 两点相遇;②当点Q 在点P 左侧时,由题意得:()851234t t ----=,解得:8t =;当点Q 在点P 右侧时,由题意得:()123854t t ----=,解得:12t =;综上,经过8s 或12s ,P 、Q 两点相距4个单位长度.。
北师大版七年级上学期期中考试数学试卷带答案
北师大版七年级上学期期中考试数学试卷带答案一、单选题(本大题共10小题)1.x 是2的相反数︱y ︱=3,则x -y 的值是( )A .5-B .1C .1-或5D .1或5-2.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b ﹣1)(a +1)>0D .(b ﹣1)(a ﹣1)>03.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数用科学记数法表示正确的是( )A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元 4.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D .5.用一个平面去截正方体,截面不可能是( )A .长方形B .五边形C .六边形D .七边形6.代数式222515,1,32,π,,1x x x x x x +--+++中,整式有( ) A .3个 B .4个 C .5个 D .6个7.多项式2112x x ---的各项分别是( ) A .21,,12x x - B .21,,12x x ---C .21,,12x xD .21,,12x x -- 8.一个多项式减去x 2﹣2x +1得多项式3x ﹣2,则这个多项式为( )A .x 2﹣5x +3B .x 2+x ﹣1C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣13 9.当1<a <2时,代数式|a -2|+|1-a |的值是( )A .-1B .1C .3D .-310.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是( )A .主视图的面积为4B .左视图的面积为2C .俯视图的面积为5D .搭成的几何体的表面积是20 二、填空题(本大题共7小题)11.已知210ab a -+-=,则111(1)(1)(2016)(2016)ab a b a b +++=++++ . 12.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是 .13.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了 . 14.多项式3233525xy x y x y -+-+的次数是 ,最高次项的系数是 ,常数项是 .15.列式表示:x 的3倍与x 的二分之一的差为 .16.若2|2|(1)0m n n -++=,则2m n -+= .17.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是 .三、解答题(本大题共8小题)18.计算:(1)211(78) 1336⎛⎫-+⨯-⎪⎝⎭;(2)2 4412(1)|12|2⎡⎤⎛⎫-⨯---÷-⎢⎥⎪⎝⎭⎢⎥⎣⎦;(3)32118(3)5(15)52⎛⎫-÷-+⨯---÷⎪⎝⎭.19.某检修小组乘汽车检修供电线路,向南记为正,向北记为负.某天自A地出发,所走路程(单位:千米)为:+22,-3,+4,-2,-8,+17,-2,+12,+7,-5.问:(1)最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?(2)若每千米耗油0.06升,则今天共耗油多少升?20.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中B→C(,)C→D(,)(2)若甲虫从A 到P 的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P 的位置;(3)若甲虫的行走路线为A →(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程S .21.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,请写出x 、y 、z 的值.22.如图所示的五棱柱的底面边长都是5cm ,侧棱长12cm ,它有多少个面?它的所有侧面的面积之和是多少?23.已知:a b ,互为相反数,c d ,互为倒数,且a 不等于零.求20172016()100a b a c d a b +⎛⎫+-⨯ ⎪⎝⎭的值.24.已知某轮船顺水航行3小时,逆水航行2小时(1)设轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)当轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?25.张华在一次测验中计算一个多项式加上532xy yz xz -+时,误认为减去此式,计算出错误结果为26xy yz xz -+,试求出正确答案.参考答案1,D2,C3,B4,B5,D6,B7,B8,B9,B10,A 11.2017201812.2或-613.点动成线14. 5 -2 +5 15.132x x -16.017.718.(1)1(2)32(3)3819.(1)他们没有回到出发点,在A 地的南方,距离A 地42千米;(2)4.92升 20.(1)+2,0,+1,﹣2.(2)若甲虫从A 到P 的行走路线依次为:A →E →F →P (3)甲虫走过的总路程为16.21.x =12 y =13z =1.22.这个五棱柱共7个面,侧面的面积之和是300cm 2.23.-224.()5m a +千米;403千米25.12125xy yz xz -+。
北师大版七年级上册数学期中考试试卷及答案
北师大版七年级上册数学期中考试试题一、单选题1.用一个平面去截下列几何体:长方体、圆柱、圆锥、正方体、五棱柱,截面形状可能是三角形的有()A.2个B.3个C.4个D.5个2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.3.多项式2x2﹣5xy+y2与x2﹣axy+5y2的差中不含xy项,则a的值为()A.5 B.﹣5 C.4 D.﹣44.如图是一个正方体的平面展开图,标注了字母m的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m的值为()A.3 B.﹣3 C.2 D.﹣25.若x+y=4,xy=1,则代数式4xy﹣3x﹣3y的值为()A.﹣4 B.﹣8 C.6 D.﹣66.一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个7.若a,b互为相反数,c,d互为倒数,x是数轴上到原点的距离为3的数,则(a+b+cd)x+(﹣cd)3的值为()A.2 B.2或﹣4 C.3或﹣2 D.38.有理数a、b、c在数轴上的位置如图所示,则下列各式:①a+c>0;①abc>0;①c﹣a﹣b <0;①|b+a|=﹣b+a.正确的有()A .1个B .2个C .3个D .4个9.买一个足球需m 元,买一个篮球需n 元,则买4个足球和7个篮球共需( )元. A .11mn B .28mn C .74m n + D .47m n +10.如图,用一个平面去截正方体截面形状不可能...为下图中的( )A .B .C .D .二、填空题 11.夜晚的流星划过天空时留下一道明亮的光线,由此说明了________的数学事实. 12.某省实现旅游收入2683.8亿元,将2683.8亿用科学记数法表示为 _____.13.如果代数式﹣3am +3b 2与abn ﹣1是同类项,那么mn =_____.14.一根1米长的绳子,若每次截掉一半,如此截下去,第5次截完之后剩下的绳子长为 _____米.15.当(m+1)2+|n ﹣2|=0时,mn+1的值为 _____.16.不超过332⎛⎫- ⎪⎝⎭的最大整数是_________.17.已知|x|=2,|y|=6,若x+y <0,则x ﹣y =_____.18.用小立方体搭一个几何体,分别从它的正面、上面看到的形状如图所示,这样的几何体最少需要 _____个小立方体;最多需要 _____个小立方体.三、解答题19.计算:(1)7113()66314÷-⨯;(2)2202115312||(1)24-+÷⨯--⨯-.20.先化简,再求值:﹣2(3a 2﹣5ab )﹣[8a 2﹣3(2a 2﹣2ab )],其中a =14,b =1.21.如图所示是一个长方形.(1)根据图中尺寸大小,用含x 的代数式表示阴影部分的面积S ;(2)若x =3,求S 的值;(3)直接写出当阴影部分面积为长方形面积的13时的x 值.22.一个几何体由大小相同的小立方块搭成,箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图.23.某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M 地出发到收工时所走路径依次为(单位:千米):+10,﹣4,+2,﹣5,﹣2,﹣8,+5. (1)该检修小组收工时在M 地的什么方向,距M 地多远?(2)直接写出检修小组距出发点M 最远时是多少千米?(3)若汽车行驶每千米耗油0.09升,则该汽车从M 地出发到收工时共耗油多少升?24.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①①①①四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若点A与点C距离4个单位长度,点B与点C距离2个单位长度,b=﹣1,求a;(3)若点C表示数5,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d 的值.25.如图是由小正方体搭成的一个几何体从上面看到的形状图,小正方形中的数字表示在该位置的小正方体的个数,请你画出它从正面和从左面看到的形状图.26.下列图形是用五角星摆成的,如果按照此规律继续摆下去:(1)第4个图形需要用个五角星;第5个图形需要用个五角星;(2)第n个图形需要用个五角星;(3)用6064个五角星摆出的图案应该是第个图形;(4)现有1059个五角星,能否摆成符合以上规律的图形(1059个五角星要求全部用上),请说明理由.27.某校为适应新的中考要求,决定添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每条定价30元.现有A、B 两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B 网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x条(x>60).(1)若在A网店购买,需付款元(用含x的代数式表示);若在B网店购买,需付款元(用含x的代数式表示)(2)当x=200时,通过计算说明此时在哪一家网店购买较为合算?(3)当x=200时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案1.C2.C3.A4.D5.B6.D7.B8.B9.D10.A11.点动成线【分析】根据点动成线进行回答.【详解】解:夜晚的流星划过天空时留下一道明亮的光线,由此说明了点动成线,故答案为:点动成线.【点睛】本题主要考查了点、线、面、体,解题的关键是掌握点动成线,线动成面,面动成体.12.2.6838×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:2683.8亿=268380000000=2.6838×1011,故答案为:2.6838×1011.13.-8【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的含义列简单方程,从而可得答案.【详解】解:①代数式﹣3am+3b2与abn﹣1是同类项,①m+3=1,n﹣1=2,解得m=﹣2,n=3,①mn=(﹣2)3=﹣8.故答案为:﹣8.【点睛】本题考查的是同类项的概念,求解代数式的值,掌握“利用同类项的概念求解字母参数的值”是解本题的关键.14.132或者(0.03125)【分析】由截一次剩下来的是原来的12,截第二次剩下:212米,从而可得第5次截完之后剩下的绳子长,从而可得答案.【详解】 解:截第一次剩下:12米. 截第二次剩下:2111=222⨯米. 截第三次后剩下:31111=2222⨯⨯米. 以此类推:截第5次后剩下:511=232米. 故答案为:132. 【点睛】 本题考查的是有理数的乘方的应用,理解截一次剩下来的是原来的12是解本题的关键. 15.2【解析】【分析】先根据非负数的性质分别求出m 、n 的值,再代入所求代数式即可求得答案.【详解】解:2(1)|2|0m n ++-=,10m ∴+=,20n -=,解得1m =-,2n =,2(1)112n m ∴=-+=+.故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.-4【分析】 首先求出332⎛⎫- ⎪⎝⎭的值,进而利用负数比较大小的方法得出最大整数.【详解】解:①332728⎛⎫-=- ⎪⎝⎭, ①不超过332⎛⎫- ⎪⎝⎭的最大整数是-4.故答案为:-4.【点睛】此题主要考查了有理数的比较大小以及有理数的乘方,正确进行乘方运算是解题关键. 17.8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:①|x|=2,|y|=6,①x =±2,y =±6,①x+y <0,①当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.18. 10 14【解析】【分析】从上面看中可以看出最底层小正方体的个数及形状,从前面看可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:①从上面看有7个正方形,①最底层有7个正方体,从前面看可得第2层最少有2个正方体;最多有5个正方体,第3层最少有1个正方体;最多有2个正方体,①该组合几何体最少有7+2+1=10个正方体,最多有7+5+2=14个正方体.故答案为:10,14.【点睛】此题主要考查了不同方向看几何体,关键是掌握口诀“上面看打地基,前面看疯狂盖,左面看拆违章”就很容易得到答案.19.(1)32-;(2)152-【解析】【分析】(1)根据有理数的四则运算,求解即可;(2)根据有理数的乘方以及四则运算求解即可.【详解】解:(1)原式713()6614=÷-⨯736614=-⨯⨯32=-;(2)原式1191225(1)4-⨯-⨯+-=⨯15944=-++152=-.【点睛】此题考查了有理数的乘方以及四则运算,解题的关键是掌握有理数的有关运算法则.20.4ab ﹣8a 2,12【解析】【分析】原式去括号,合并同类项进行化简,然后代入求值.【详解】解:原式222610(866)a ab a a ab =-+--+222610866a ab a a ab =-+-+-248ab a =-, 当14a =,1b =时, 原式211418()44=⨯⨯-⨯ 112=- 12=. 21.(1)3x+18;(2)27;(3)x 值为2【分析】(1)用大长方形面积的一半减去小空白部分三角形的面积即可;(2)将3x =代入计算即可;(3)根据题意列方程并求解即可.【详解】解:(1)由题意得,阴影部分的面积为:11126(6)(126)22S x =⨯⨯--- 36183x =-+318x =+;(2)当3x =时,3318S =⨯+918=+27=;(3)当阴影部分面积为长方形面积的13时,则 13186123x +=⨯⨯, 解得:2x =,∴当阴影部分面积为长方形面积的13时x 值为2. 【点睛】本题考查了列代数式解决图形问题的能力、一元一次方程,解题的关键是能根据图形准确列代数式并计算.22.见解析【分析】从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形.据此可画出图形.【详解】解:如图所示:23.(1)该检修小组收工时在M地的北边,距M地2千米;(2)检修小组距出发点M最远时是10千米;(3)汽车从M地出发到收工时共耗油3.24升.【分析】(1)先求解记录数据的代数和,根据和的结果可得答案;(2)分别求解每次与出发地的距离,从而可得答案;(3)先求解所记录的数据的绝对值之和,再乘以单位耗油量,从而可得答案.【详解】解:(1)(+10)+(﹣4)+(+2)+(﹣5)+(﹣2)+(﹣8)+(+5)=10﹣4+2﹣5﹣2﹣8+5=﹣2.答:该检修小组收工时在M地的北边,距M地2千米;(2)0+10=10,10﹣4=6,6+2=8,8﹣5=3,3﹣2=1,1﹣8=﹣7,﹣7+5=﹣2,①检修小组距出发点M最远时是10千米;(3)|+10|+|﹣4|+|+2|+|﹣5|+|﹣2|+|+8|+|+5|=36(千米),36×0.09=3.24(升).答:汽车从M地出发到收工时共耗油3.24升.【点睛】本题考查的是正负数的含义,绝对值的含义,有理数的加法的实际应用,有理数乘法的实际应用,列出正确的运算式是解本题的关键.24.(1)第①部分;(2)a==﹣3;(3)d=10或2.5或﹣5.【分析】bc可得,b c异号,从而可得原点的位置;(1)由0,(2)由点B与点C距离2个单位长度,b=﹣1,相当于把表示1 的点向右平移2个单位,从而可得C对应的数,同样的把表示1的点向左边平移4个单位,从而可得a的值;(3)分三种情况讨论,当点C是OD的中点时,当点D是OC的中点时,当点O是CD 的中点时,再分别求解d的值即可.【详解】解:(1)①bc<0,①b,c异号,①原点在B,C之间,即第①部分;(2)①点B与点C距离2个单位长度,b=﹣1,①C表示的数为﹣1+2=1,①AC=4,A点在点C的左边,①点A表示的数为:1﹣4=﹣3,①a=﹣3;(3)点C、原点、点D这三点中其中一点是另外两点的中点时,当点C是OD的中点时,OC=CD=5,①OD=10,得d=10;当点D是OC的中点时,OD=CD=2.5,得d=2.5;当点O是CD的中点时,OC=OD=5,得d=﹣5,综上所述:d=10或2.5或﹣5.【点睛】本题考查的是数轴的应用,数轴上两点之间的距离,有理数的加减法的应用,线段中点的含义,清晰的分类讨论是解本题的关键.25.见解析【分析】从正面看有3列,每列小正方形数目分别为3,2,2,从左面看有3列,每列小正方数形数目分别为2,3,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查了从不同方向看几何体,根据题目给出的平面图形还原原图形是解本题的关键.26.(1)13,16;(2)(3n+1);(3)2021;(4)不能,见解析【分析】(1)不难看出后一个图形比前一个图形多3个五角星,据此进行求解即可;(2)结合(1)进行分析即可得出结果;(3)(4)利用(2)中的结论进行求解即可.【详解】解:(1)由题意得:第1个图形需要用五角星的个数为:4,第2个图形需要用五角星的个数为:7=4+3=4+3×1,第3个图形需要用五角星的个数为:10=4+3+3=4+3×2,第4个图形需要用五角星的个数为:13=4+3+3+3=4+3×3,第5个图形需要用五角星的个数为:16=4+3+3+3+3=4+3×4,故答案为:13,16;(2)由(1)得:第n个图形需要用五角星的个数为:4+3(n-1)=3n+1,故答案为:(3n+1);(3)由题意得:3n+1=6064,解得:n=2021,故答案为:2021;(4)不能,理由如下:由题意得:3n+1=1059,解得:n=10583,不是整数, ①1059个五角星不能摆成符合以上规律的图形.【点睛】本题主要考查了图形的变化规律,解答的关键是由所求的图形总结出所存在的规律. 27.(1)(30x+6600);(27x+7560);(2)在A 网店购买较为合算.(3)有,先从A 网店购买60个足球,送60条跳绳,再从B 网店购买140条跳绳,购买更省钱.共计付款12180元.【解析】【分析】(1)由A 网店的优惠分式可得:付款等于60个足球的费用加上()30x -条跳绳的费用可得第一空的答案,由B 网店付款等于60个足球的费用加上x 条跳绳的费用之和的90%可得第二空的答案;(2)把200x =代入(1)中的代数式,再计算并进行比较即可得到答案;(3)先从A 店购买60个足球,送60条跳绳,再到B 店购买140条跳绳即可得到最省钱的方案.【详解】解:(1)若在A 网店购买,需付款:60×140+30(x ﹣60)=(30x+6600)元; 若在B 网店购买,需付款:(60×140+30x )×90%=(27x+7560)元.故答案为:(30x+6600);(27x+7560);(2)当x =200时,30x+6600=30×200+6600=12600(元),27x+7560=27×200+7560=12960(元),①12600<12960,①在A 网店购买较为合算.(3)当x =200时,先从A 网店购买60个足球,送60条跳绳,再从B 网店购买140条跳绳,共计付费:60×140+140×30×90%=8400+3780=12180(元).而121801260012960,①当x=200时,先从A网店购买60个足球,送60条跳绳,再从B网店购买140条跳绳,这样购买更省钱.共计付款12180元.。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
_2024-2025学年北师大版七年级上册数学期中考试模拟试卷(含简单答案)
北师大版2024—2025学年七年级上学期数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、8的相反数是( )A .B .C .﹣8D .82、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作( )A .﹣50元B .﹣70元C .+50元D .+70元3、某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是( )A .5℃B .﹣5℃C .﹣3℃D .﹣9℃4、开州区大约有1680000人口,1680000用科学记数法表示,正确的是( )A .168×104B .16.8×105C .1.68×104D .1.68×1065、下列运算正确的是( )A .3a +2a =5a 2B .3a +3b =3abC .2a 2bc ﹣a 2bc =a 2bcD .a 5﹣a 2=a 36、下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .7、下列各式中,不相等的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|8、下列说法正确的是( )A .﹣15ab 的系数是15B .的系数是C.4a2b2的次数是4D.a4﹣2a3b2+b2的次数是49、当x=1时,整式ax3+bx﹣1的值等于10,那么当x=﹣1时,整式ax3+bx﹣1的值为( )A.﹣10B.10C.﹣12D.1210、用火柴按如图的方式搭六边形组成新的图形,图①搭1个六边形的图形需要6根火柴;图②搭2个六边形的图形需要11根火柴;图③搭3个六边形的图形需要16根火柴;…;按此规律,搭369个六边形的图形需要的火柴数是( )A.2214B.2213C.1848D.1846二、填空题(每小题3分,满分18分)11、如果单项式3x m y与﹣5x3y n﹣1是同类项,那么m n的值是 .12、比较大小: (填“>”或“<”)13、在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种生活现象可以反映的数学原理是 .14、在数轴上点P表示的数是﹣2,将点P沿数轴移动4个单位长度后所得的点A表示的数是 .15、已知a,b互为相反数,c,d互为倒数,|m﹣3|+|2n﹣4|=0,x的绝对值为2,则的值为 .16、已知a、b、c为实数,且abc>0,则+= .北师大版2024—2025学年七年级上学期数学期中考试模拟试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:32÷(﹣1)2+5×(﹣2)+|﹣4|.18、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=2,y=﹣3.19、如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,求2x﹣y+z的值.20、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部): ;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21、有理数a<0,b>0,c>0,且|b|<|a|<|c|.(1)在数轴上将a,b,c三个数填在相应的括号中;(2)化简:|2a﹣b|+|c﹣b|﹣2|a﹣c|.22、已知A=x3+ax,B=2bx3﹣4x﹣1.(1)若多项式2A﹣B的值与x的取值无关,求a,b的值;(2)当x=2时,多项式2A﹣B的值为21,求当x=﹣2时,多项式2A﹣B 的值.23、某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米收费1.3元;超过5千米,每千米收费2.4元.(不足1千米的按1千米计算)(1)若某人乘坐了2千米的路程,则他应支付的费用为 ,乘坐了4千米的路程,则他应支付的费用为 ,乘坐了8千米的路程,则他应支付的费用为 ;(2)若某人乘坐了x(x>5的整数)千米的路程,则他应支付的费用为多少?(3)若某人乘坐了14.2千米的路程,请聪明的你为他算一算需准备多少车费24、先阅读并填空,再解答问题:我们知道,,,那么:(1)用含有n的式子表示你发现的规律: ;(2)计算:;(请写出解题过程)(3)计算:.(请写出解题过程)25、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b﹣2|=0,A、B之间的距离记为|AB|=|a﹣b|或|b﹣a|,请回答问题:(1)直接写出a,b,|AB|的值,a= ,b= ,|AB|= .(2)设点P在数轴上对应的数为x,若|x﹣3|=5,则x= .(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣1,动点P表示的数为x.①若点P在点M、N之间,则|x+1|+|x﹣4|= ;②若|x+1|+|x﹣4|=10,则x= ;③若点P表示的数是﹣5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?北师大版2024—2025学年七年级上学期数学期中考试模拟试卷参考答案一、选择题题号12345678910答案C A B D C A A C C D二、填空题11、9 12、> 13、点动成线 14、﹣6或2 15、21或﹣19 16、4或0三、解答题17、318、﹣2119、020、解:(1)答案为:26cm2;(2)根据三视图的画法,画出相应的图形如下:21、解:(a<0<b<c,如图,(2)﹣c.22、解:(1)a=﹣2,b=1 (2)﹣19.23、解:(1)10元,11.3元,19.8元;(2)(2.4x+0.6)元;(3)需准备36.6元车费.24、解:(1)(2);(3).25、解:(1)﹣3,2,5.(2)8或﹣2.(3)①、答案为:5;②、答案为:﹣3.5或6.5;③经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.。
七年级北师大期中数学试卷
一、选择题(每题3分,共30分)1. 下列数中,是负数的是()A. -5B. 0C. 3D. -3.52. 下列各数中,绝对值最小的是()A. -2B. -3C. 0D. 13. 如果a=2,那么a+1的值是()A. 3B. 4C. 2D. 14. 在数轴上,表示数-3的点在()A. 原点左侧B. 原点右侧C. 原点上方D. 原点下方5. 下列代数式中,含有字母的是()A. 5x + 2B. 2x - 3yC. 3x + 4D. 4y - 26. 若a=5,b=-3,则a-b的值是()A. 2B. -2C. 8D. -87. 下列各式中,是同类项的是()A. 2x + 3yB. 4xy + 5C. 6x^2 + 2xD. 3x^2 - 4y8. 下列各数中,能被3整除的是()A. 6B. 7C. 9D. 109. 若x=2,那么2x+3的值是()A. 7B. 8C. 9D. 1010. 下列各式中,能化为最简二次根式的是()A. √18B. √24C. √27D. √36二、填空题(每题4分,共40分)11. 若a=4,b=-2,则a+b的值是______。
12. 数轴上表示-5的点与原点的距离是______。
13. 若x=3,那么x^2的值是______。
14. 下列各数中,有理数是______。
15. 下列各数中,无理数是______。
16. 若a=5,b=2,则a^2+b^2的值是______。
17. 下列各数中,能被5整除的是______。
18. 下列各数中,能被7整除的是______。
19. 若x=2,那么2x^2+3x的值是______。
20. 下列各数中,是正数的是______。
三、解答题(每题10分,共30分)21. 计算下列各式的值:(1)5 - 2 + 3(2)-3 + 4 - 2(3)2x + 3x - 5x,其中x=222. 解下列方程:(1)2x - 3 = 7(2)5x + 2 = 923. 已知a=3,b=4,求a^2 + 2ab + b^2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学期中考试
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 收入8元,又支出5元,可用算式表示为()
A.(+8)+(+5)B.(+8)+(-5)
C.(-8)+(-5)D.(-8)+(+5)
2 . 用一个平面去截一个圆柱体,截面的形状不可能是()
A.长方形B.圆C.椭圆D.等腰梯形
3 . 已知|a|=5,b3=﹣27,且a>b,则a﹣b值为()
A.2B.﹣2或8C.8D.﹣2
4 . 如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为()
A.
B.C.D.
5 . 如图,是一个正方体的展开图,这个正方体可能是()
A.B.C.D.
6 . 已知(x+1)2+|y﹣2|=0,则(x+y)(x﹣y)的值是()
A.﹣3B.3C.﹣4D.﹣5
7 . 分别是数轴上三个整数对应的点,且,数对应的点在和之间,数对应的点在和之间,若且不小于,则三个点中,原点不可能是点()A.B.C.D.
8 . 、互为相反数,为最大的负整数,的倒数是它本身,则的值是()
A.1B.-1C.3D.-1或1
二、填空题
9 . 若、互为相反数,、互为倒数,则的值为___.
10 . 琦琦设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,若要将它补上,使其成为一个两面均有盖的正方体盒子,则共有填补的方式______种.
11 . _________的相反数是,__________的绝对值是2,___________的平方是9.
12 . 22ºC比-5ºC高____ºC,比5ºC低8ºC的温度是____ºC.
13 . 点A、B在数轴上,且两点间的距离为2.若点A表示的数是﹣3,则点B表示的数是_____.
14 . 小明把自家的冬枣放到网上销售,他原计划每天卖100斤冬枣,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):根据记录的数据可知小明这一周卖出________斤冬枣.
星期一二三四五六日
与计划量的差
+4-3-5+14-8+21-6
值
15 . M、N是数轴上的两个点,线段MN的长度为2,若点M表示的数为﹣1,则点N表示的数为____________,MN 中点P表示的数为____.
16 . 数轴上点表示的数是,将点向左平移个单位得到点,则点表示的数是__________.
17 . 到原点的距离不大于3的整数有________ 个
三、解答题
18 . 如图几何体是由块边长为的小正方体组成的,请画出它的俯视图.
19 . 阅读理解并回答问题.
(1)观察下列各式:
………
(2) 请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
=_________________________________.
(3)请利用上速规律计算:(要求写出计算过程)
(4)请利用上速规律,解方程
20 . 某矿井下有A、B、C三处的标高为A:-29.3米,B:-120.5米,C:-38.7米.哪处最高?哪处最低?最高处与最低处相差多少?
21 . 把下列物体和与其相似的几何体连接起来.
22 . 出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:
+8,+4,-10,-3,+6,-5,-2,-7,+4,+6,-9,-10
(1)将最后一名乘客送到目的地时,老王距上午出发点多远?
(2)若汽车耗油量为0.25L/km,这天上午老王的出租车耗油多少升?
23 . 计算:
24 . 如图所示是一个物体从正面、左面、上面看到的形状图,(每个长方体的长为1cm)试回答下列问题:
(1)该物体有几层高?
(2)该物体最长处为多少?
(3)该物体最高部分位于哪里? (把“从上面看”的图中最高部分用铅笔涂黑) 25 . 计算:
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
9、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、。