不等式恒成立的八种解法探析
八招破解不等式恒成立问题
1 1 a 2 2 ax x 1 1 x x ,分离参数可得 ,令 t , x (0,1] , ② 当 x 0 时, ax 2 x 1 ,即 2 x a ( 1 1 ) ax x 1 2 x x 2 a t t t (1, ] , (t 2 t ) min 0,[ (t 2 t )]max 2 , 即当 t (1, ] 时恒有 , 当 t (1, ] 时, 2 a (t t )
第3页 共7页
函数在此区间上的最值问题。 三、变量分离法(变量分离巧转化) 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且 容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值 问题求解。 x2 2 x a 【例6】已知函数 f ( x) , x [1, ) , 若对任意 x [1, ), f ( x) 0 恒成立, 试求实数 a 的 x 取值范围。 【分析】此题可经过等价转化为在区间 [1, ) 上 x 2 2 x a 0 恒成立,再将转化后的不等式分离参 数得 g (a ) h( x) 恒成立,再求得 h( x) 得最大值 hmax ( x) ,由 g (a ) h( x) max 可得实数 a 的取值范围。 【解析】在区间 [1, ) 上, f ( x) 0 恒成立 x 2 2 x a 0 在区间 [1, ) 上恒成立,要使
m 2 2m 1 0,1 2 m 1 2 ,又 m 0,1 , 0 m 1 ;
③当 t m 1 时, 函数 y g (t ) 在 t (0,1) 上单调递增,g (t ) min g (1) 1 2m 2m 1 2 0 恒成立, m 1 。 1 综上所述,实数 m 的取值范围为 m 。 2 【点评】此题属于含参数二次函数的轴动区间定的问题,对轴与区间的位置进行分类讨论。对于二 次函数在 R 上恒成立问题常采用判别式法,而对于二次函数在某一区间上恒成立问题往往转化为求
恒成立问题题型大全(详解详析)
不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f (1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
不等式恒成立问题的大全
不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。
例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值围为)1,3[-。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。
不等恒成立解法总结及例题
不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处置方式一、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例一、设f(x)=x 2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例二、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫ ⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.二、主参换位法例五、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围例六、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围3、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。
适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。
例八、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .4、数形结合例10 、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________例1一、当x ∈(1,2)时,不等式2(1)x -<log a x 恒成立,求a 的取值范围。
不等式 恒成立问题
由题意得,对于 恒成立 对于 恒成立,令 ,设 ,则 ,
, , k的取值范围是k> .
解:令 , 所以原不等式可化为: ,
要使上式在 上恒成立,只须求出 在 上的最小值即可。
注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。
四、变换主元法
处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量实行“换位”思考,往往会使问题降次、简化。
例4.对任意 ,不等式 恒成立,求 的取值范围。
1) 函数 图象恒在函数 图象上方;
2) 函数 图象恒在函数 图象下上方。
例5:已知 ,求实数a的取值范围。
解析:由 ,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由 得到a分别等于2和0.5,并作出函数 的图象,所以,要想使函数 在区间 中恒成立,只须 在区间 对应的图象在 在区间 对应图象的上面即可。当 才能保证,而 才能够,所以 。
3.设 ,当 时, 恒成立,求实数 的取值范围。
解:设 ,则当 时, 恒成立
当 时, 显然成立;
当 时,如图, 恒成立的充要条件为:
解得 。
综上可得实数 的取值范围为 。
4:在 ABC中,已知 恒成立,求实数m的范围。
解析:由
, , 恒成立, ,即 恒成立,
5、若不等式 对满足 的所有 都成立,求 的取值范围。
解:设 ,对满足 的 , 恒成立,
解得:
6、若不等式 在 内恒成立,求实数 的取值范围。
解:由题意知: 在 内恒成立,
在同一坐标系内,分别作出函数 和
观察两函数图象,当 时,若 函数 的图象显然在函数 图象的下方,所以不成立;
谈不等式恒成立问题的基本类型和常见解法
2013.NO19 2学,都很有兴趣地、积极地、独立地、较好地去完成;通过对作业的完成,他们都能清楚地把握当前身边的——些个体商贩盈利或亏损的原因,并且在讲评课上,他们都能有理有据地说出自己设计的经营方案盈利的可能性。
这—方面利于学生掌握数学知识,同时对他们对生活认识的加深、数学学习兴趣的增强、自信心的养成等等的作用都是不言而喻的。
三、改变数学课外作业的评价方式,发展学生的情感态度和个性品质学生是发展的人,是教育活动的主体,其身心发展具有巨大的发展潜能。
如何去开发学生数学学习的潜能,培养学生积极的态度和情感是一项复杂的工程。
前面所述的各种形式的数学课外作业都能有效地培养学生的态度和情感,但老师对数学课外作业的评价对学生态度、情感的培养,乃至个性品质的形成更为重要。
因为,评价是学生认识自我,建立自信心的最主要的因素。
斯金纳的教学理论就指出“要充分运用积极有效的强化手段,要及时总结,及时讲评,使学生及时知道自己的学习效果,强化正确的学习行为。
传统的数学课外作业的评价方式是采用分数或等级来甄别学生学习的优劣,这种简单的方式不能达到有效强化的目的,容易使那些原来充满学习热情的学生开始怀疑起自己的能力,变得越来越不自信。
长此以往,容易造成部分学生原有的学习热情和愿望一点点消失。
因此,必须改变评价方式。
在对学生数学课外作业的评价时,我不仅仅关注某次学生作业的结果或作品的优劣,更关注他们在整个学习过程中表现出来的情感和态度,努力去发现他们的“好”的方面,通过变化多样的教师个性评语;教师评价与学生自评、互评相结合;书面材料与对学生口头报告、活动、展示的评价相结合;定性评价与定量评价相结合;以定性评价为主等形式加以鼓励、表扬和肯定,让学生看到自己的长处和进步,帮助学生认识自我,建立自信,使学生认识到数学有趣,使他们在数学学习的过程中逐步对数学产生积极的情感和态度,并从中悟出一些对做人和生活有帮助的道理,进而形成良好的个性品质。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
八种解法解决不等式恒成立问题
八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
“恒成立”的几种常用的解法
“恒成立”的几种常用的解法已知不等式恒成立,求参数范围的问题,涉及函数、方程、不等式,综合性强,在高考中常常涉及,许多学生对此类问题不知从何着手,本文结合实例,谈谈这类问题常见的几种方法。
一.判别式法此方法适用于二次函数的情况,利用)0(02>>++a c bx ax的解集是R 0<∆⇔;)0(02<<++a c bx ax的解集是R 0<∆⇔,这类问题的特点是二次函数在R 上恒成立。
例1.已知函数3)(2++=ax x x f ,当时,a x f ≥)(恒成立,求a 的取值范围。
解:要使03x)(2≥-++≥a ax a x f 恒成立,即恒成立,必须且只需26,0124a 0)3(4a 22≤≤-∴≤-+≤--∆a a a 即=二.图象法此方法主要用于二次函数,指数对数函数,三角函数等,由其函数图象确定值域,进而解之。
类型1:作一个函数的图像:例2.已知函数3)(2++=ax x x f ,若]2,2[-∈x 时,a x f ≥)(恒成立,求a 的取值范围。
解:43)2(3)(222aa x ax x x f -++=++=(1) 当7,-2a f(-2)f(x)4a ,22min+==>-<-时,即a由Φ∈∴≤≥+a ,37a a 72a 得-(2) 当,4a-3f(x )4a 4,2222min=≤-≤≤-≤-时,即a由24,2a 6a 4a-32≤≤-∴≤-≤≥a 得(3) 当7,2a f(2)f(x)4a ,22min+==-<>-时,即a由47,7a a 72a -<≤-∴-≥≥+a 得 综上得]2,7[-∈a类型2:作两个函数的图像: 1.当时10≤≤x ,不等式kx x≥2sin π恒成立,则实数k 的取值范围是_______________.【答案】k ≤1【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k≤1。
不等式“恒成立”问题的解法
不等式“恒成立”问题的解法对于不等式问题,“恒成立”是一个重要的概念。
如果一个不等式对于所有的变量的取值都成立,那么我们就说这个不等式“恒成立”。
在本文中,我们将介绍几种方法,解决不等式“恒成立”问题。
寻找不等式“恒成立”的方法1. 数学归纳法数学归纳法是一种证明方法,它可以证明一个结论对于所有自然数都成立。
我们可以借助数学归纳法来证明一个不等式对于所有变量取值都成立。
首先,我们要确定一个起点。
假设我们要证明不等式P(n)对于所有 $n \\in \\mathbb{N}$ 都成立,我们需要找到一个n0,使得不等式P(n0)是成立的。
通常情况下,我们选择n0=1。
接下来,我们需要证明不等式P(n)成立时,不等式P(n+1)也成立。
也就是说,我们需要证明P(n+1)与P(n)之间的关系。
如果我们能证明 $P(n)\\Rightarrow P(n+1)$,那么就可以使用数学归纳法证明不等式P(n)对于所有 $n \\geq n_0$ 都是成立的。
2. 分析不等式的性质在一些特定的不等式中,我们可以利用它们的性质来证明恒成立的情况。
例如,对于任何一组实数a1,a2,...,a n,我们都有:$$ (a_1 - a_2)^2 + (a_2 - a_3)^2 + ... + (a_{n-1} - a_n)^2 \\geq 0 $$不等式左侧是一组非负实数的和,因此它一定大于等于零。
所以,上面的不等式对于所有实数a1,a2,...,a n都是恒成立的。
3. 利用代数等式有时,我们可以通过将一个不等式转化为代数等式来解决恒成立的问题。
例如,假设我们要证明不等式 $x^2 + y^2 \\geq 2xy$ 对于所有实数x和y都成立。
我们可以将这个不等式变成以下代数等式:$$ (x - y)^2 \\geq 0 $$根据平方数的非负性,不等式左侧一定大于等于零,所以原来的不等式对于所有实数x和y都是成立的。
实例分析接下来,我们将通过几个实例来演示如何使用上述方法解决不等式“恒成立”的问题。
不等式中恒成立问题总结
不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f ],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立一.利用一元二次函数的判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例1:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
不等式恒成立问题的基本类型及常用解法
不等式恒成立问题基本类型及常用解法类型1:设f(x)=ax+bf(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m ff(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。
解:设f(t)=y=(log 2x-1)t+(log 2x)2-2log 2x+1, t ∈[-2,2]问题转化为:f(t)>0对t ∈[-2,2]恒成立⇔⎩⎨⎧-0)2(0)2( f f ⇔⎪⎩⎪⎨⎧-=-01)(log 03log 4)(log 22222 x x x ⇒0<x <21或x >8。
故实数x 的取值范围是(0,21)∪(8,+∞)。
例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(21)12-+a x 恒成立的x 的取值范围。
解:原不等式等价于x 2+ax<2x+a-1在a ∈[-1,1]上恒成立.设f(a)=(x-1)a+x 2-2x+1,则f(a)是a 的一次函数或常数函数,要使f(a)>0在a ∈[-1,1]上恒成立,则须满足⎩⎨⎧-0)1(0)1( f f ⇔⎪⎩⎪⎨⎧+--023022 x x x x ⇒x>2或x<0 故实数的取值范围是(-∞,0)∪(2,+∞).类型2:设f(x)=ax 2+bx+c (a ≠0)f(x) >0在x ∈R 上恒成立⇔a >0 且△<0;f(x) <0在x ∈R 上恒成立⇔a <0 且△<0.说明:①.只适用于一元二次不等式②.若未指明二次项系数不等于0,注意分类讨论.例3.不等式3642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。
解:由4x 2+6x+3=(2x+23)2+43>0,对一切实数x 恒成立,从而,原不等式等价于 2x 2+2mx+m <4x 2+6x+3, (x ∈R)即:2x 2+(6-2m)x+(3-m)>0对一切实数x 恒成立。
【02】专题讲座1:不等式恒成立问题
a 的取值范围.
解:根据题意得: x +
a − 2 > 1 在 x ∈ [ 2, +∞ ) 上恒成立, x
即: a > − x 2 + 3x 在 x ∈ [ 2, +∞ ) 上恒成立,
(a ∈ R)
所以对任意 a ∈ (0, +∞) , g (a ) > 0 恒成立的充分必要条件是 g (0) ≥ 0 ,即
− x 2 − 2 x ≥ 0 ,∴ −2 ≤ x ≤ 0
于是 x 的取值范围是 { x | −2 ≤ x ≤ 0} 练习 1 、已知对于任意的 a∈[-1,1],函数 f(x)=ax2+(2a-4)x+3-a>0 恒成立,求 x 的取值范围. 解 令 g(a)=(x2+2x-1)a-4x+3 在 a∈[-1,1]时,g(a)>0 恒成立,则 得 − 3 − 13 < x < −3 + 13 . 点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换, 构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围. 2、化归二次函数法: 根据题目要求,构造二次函数,结合二次函数的最值、二次函数零点等相关 知识,求出参数取值范围.此法适用于二次型函数. 若所求问题可转化为二次不等式,则可考虑应用判别式法解 ①判别式策略: 题.一般地,对于二次函数 f ( x ) = ax 2 + bx + c ( a ≠ 0, x ∈ R ) ,有 a > 0 a < 0 ; 2) f ( x ) < 0 对 x ∈ R 恒成立 ⇔ 1) f ( x ) > 0 对 x ∈ R 恒成立 ⇔ . ∆ < 0 ∆ < 0 例 2、在 R 上定义运算 ⊗ :x ⊗ y=x(1-y) 实数 x 成立,则 若不等式(x-a) ⊗ (x+a)<1 对任意 ( ) 1 3 3 1 (A)-1<a<1 (B)0<a<2 (C) − < a < (D) − < a < 2 2 2 2 分析: 根据条件得出二次不等式对任意 x ∈ R 恒成立, 可借助二次方程的 ∆ 的 符号求解 解:由题意可知 (x-a)[1-(x+a)] <1 对任意 x 成立 2 2 即 x -x-a +a+1>0 对 x ∈ R 恒成立 记 f(x)=x2-x-a2+a+1 则应满足 ∆ = (-1)2 - 4(-a2 + a + 1) < 0 化简得 解得 4a2-4a-3<0 1 3 − <a< ,故选择 C. 2 2
巧用“三招”,破解不等式恒成立问题
解题宝典不等式恒成立问题在各类试题中比较常见.此类问题的综合性较强,常与函数、方程、导数、直线与圆等知识相结合,是一类难度系数较大的问题.解答此类问题的方法也有很多,如分离参数法、构造函数法、数形结合法、导数法等.本文重点谈一谈破解不等式恒成立问题的“三招”:分离参数法、构造函数法、数形结合法.一、分离参数法分离参数法就是将不等式中的参数和变量分离的方法.在解题时,我们可以将不等式变形为a ≤f ()x 或a ≥f ()x 的形式,只要求得f (x )的最值,使a ≤f min ()x 或a ≥f max ()x ,便可使不等式恒成立,求得问题的答案.例1.若对任意x ∈[1,+∞),x 2+2x +a x>0恒成立,求实数a 的取值范围.解:由x 2+2x +a x>0在x ∈[1,+∞)恒成立可得x 2+2x +a >0,∴a >-x 2-2x ,而y =-x 2-2x 的曲线开口向下,在x ∈[1,+∞)上单调递减,∴-x 2-2x 的最大值为g ()1=1,∴a >1,故实数a 的取值范围为(1,+∞).我们先将不等式化简并将参数分离,将问题转化为求a >-x 2-2x 恒成立时a 的取值范围,求得y =-x 2-2x 的最大值,便可确定a 的取值范围.二、构造函数法分离参数法虽然是破解函数恒成立问题的一个重要方法,但有时把参数和变量分离出来后,我们依旧无法求出问题的答案.此时,可考虑运用构造函数法来解题:根据不等式的特点,构造出适当的函数模型,借助函数的性质来破解难题.例2.已知f (x )=ax 2+x -a ,a ∈R.若不等式f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的实数x ∈[-1,1]恒成立,求实数a 的取值范围.解:原不等式等价于x 2-2ax +2a +1>0对任意的实数x ∈[-1,1]恒成立,设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1(x ∈[-1,1]),①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,解a >-12,所以a ∈∅;②当-1≤a ≤1时,g (x )min =g (a )=-a 2+2a +1>0,解1-<a ≤1;③当a >1时,g (x )min =g (1)=1-2a +2a +1>0,解a >1.综上,a 的取值范围为(1-2,+∞).我们将不等式进行变形,构造出二次函数g (x ),通过讨论g (x )的最小值,从而确定a 的取值范围.由于g (x )的解析式中含有参数a ,g (x )的最小值随着a 的变化而变化,因此需要根据对称轴的位置对a 进行分类讨论,借助二次函数的单调性求得a 的取值范围.三、数形结合法运用数形结合法解答恒成立问题的关键是,根据代数式的特点和结构画出对应的图形,借助图形来分析问题,找到使不等式恒成立的图形或者点的位置,建立新的不等式,从而使问题获解.例3.不等式3x 2-log a x <0在x ∈(0,13)内恒成立,求实数a 的取值范围.解:由3x 2-log a x <0可得3x 2<log a x ,在同一坐标系中画出y =3x 2与y =log a x 的图象,如图所示.当x ∈(0,13)时,y =log a x 的图象位于y =3x 2的上方,故当a >1时不成立,0<a <1.由图可知,y =log a x 的图象必过点(13,13),或在此点的上方,所以log a 13≥13,a ≥127,解得,127≤a <1.数形结合法常用于解答方便或者易于绘制图形的问题.对于形如f ()x -g ()x <(>)0的不等式恒成立问题,我们一般采用数形结合法来求解.只要在同一坐标中画出它们的图象,找出两个图象的临界位置或者点,便能快速找到问题的答案.不等式恒成立问题与函数、方程之间关系紧密,因此在解题时,我们要合理将不等式进行变形,根据其特点、结构合理构造函数、方程,学会借助函数的图象和性质、方程的性质来解题.同时,要灵活运用数形结合思想和转化思想来辅助解题.(作者单位:江苏省无锡市第三高级中学)”,40Copyright©博看网 . All Rights Reserved.。
不等式恒成立的八种解法探析
不等式恒成立的八种解法探析不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.〔I 〕试确定b a ,的值;〔II 〕讨论函数)(x f 的单调区间;〔III 〕假设对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥ 解:〔I 〕〔过程略〕3,12-==b a .〔II 〕〔过程略〕函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. 〔III 〕由〔II 〕可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥〔0>x 〕恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2别离参数法例2.函数xx x x f +-+=1)1(ln )(22〔I 〕求函数)(x f 的单调区间; 〔II 〕假设不等式e nan ≤++)11(对于任意*∈N n 都成立〔其中e 是自然对数的底数〕,求a 的最大值.分析:对于〔II 〕不等式e nan ≤++)11(中只有指数含有a ,故可以将函数进展别离考虑. 解:〔I 〕〔过程略〕函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞〔II 〕不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n,知1)11ln()(≤++na n n na -+≤⇔)11ln(1;设xx x g 1)1ln(1)(-+=]1,0(∈x ,那么221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由〔I 〕知,01)1(ln 22≤+-+xx x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g .所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中别离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,那么实数a 的取值范围是___.一平面直角坐标系内作出函数)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在∈x 图象〔如右〕,从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或局部点重合,就必须满足12log ≥a ,即21≤<a . 故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,那么实数x 的取值范围是___.分析:假设审题不清,按习惯以x 为主元,那么求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,那么谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,那么原问题转化为0)(>a f 恒成立的问题.故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x .所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,假设能变更主元,转换思考问题的角度,不仅可以防止分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a 〔*∈N n 〕.〔I 〕证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-. 〔II 〕假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明. 解:〔I 〕递推式可以化归为31)3(32311+-=--n n n n a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-.〔II 〕假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n 〔*∈N k 〕时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=〔*∈N k 〕时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a .故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.2)(--=a x x x f ,假设当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:〔i 〕当0x =时,显然()f x <0成立,此时,a R ∈ 〔ii 〕当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x, 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x =-∈=+∈ 那么221)(x x g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==-221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h ==此时a 的范围是〔—1,3〕综合i 、ii 得:a 的范围是〔—1,3〕 .例7.假设不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围.解:〔只考虑与本案有关的一种方法〕解:对x 进展分段讨论, 当0=x 时,不等式恒成立,所以,此时R a ∈;当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ;当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ;由于对上面x 的三个范围要求同时满足,那么所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(-说明:这里对变量x 进展分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类〔分段〕讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.假设定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,假设不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,那么实数a 的取值范围是___. 解:设210x x <<,那么112>x x ,有0)(12<x xf .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x xf x f x f x x f x f x x x f x f x f ,那么)()(12x f x f <,函数)(x f 在),0(+∞为减函数.因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xya y x ≥+22xyy x a 22+≤⇔;而2222=≥+xyxy xyy x 〔当且仅当y x =时取等号〕,又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在一样区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,那么问题可以迎刃而解.8判别式法例9.假设不等式012>++ax ax 对于任意R x ∈恒成立.那么实数a 的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进展分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立;当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数别离的方法,然后对变量进展分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,xx x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,那么就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f 〔5=x 时取等号〕,即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学根本功.。
恒成立问题常见类型及解法.
的值不.可.能.等于(
)
A.4
B.6
C.8
D.12
【解析】选 B,把图象向左平移 个单位得 2
y
sin
x
2
s
in
x
2
,
又该函数图像与原函数图像重合,所以
s
in
x
2
sin
x
x
=
4
时,
loga 4
sin(2 4 ) 1 loga a
,
又 0 a 1 , 得
< a <1。 4
六、采用逆向思维,考虑使用反证法
【理论阐释】 恒成立问题有时候从正面很难入手,这时如果考虑
问题的反面,有时会有“柳暗花明又一村”的效果,所 谓“正难则反”就是这个道理。
解答过程中应注意的问题: (1)分离参数时应注意系数符号对不等号的影响. (2)应用函数方法求解时,所使用的函数一般为二次函 数. (3)应用数形结合法求解时,应注意图象最高点或最低 点处函数值的大小关系.
在高三复习中经常遇到不等式恒成立问题。这 类问题求解的基本思路是:根据已知条件将恒成立问题 向基本类型转化,正确选用函数法、最小值法、数形结 合法等解题方法求解。解题过程本身渗透着换元、化归、 数形结合、函数与方程等思想方法,另外不等式恒成立 问题大多要利用到一次函数、二次函数的图象和性质。
16
0
,
aa
二轮复习专题四:构造函数法证明不等式的八种方法
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合 中的一个难点,也是近几年高考的热点。
2、 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值, 从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数【例1】 已知函数f(x) ln(x 1) x ,求证:当x 1时,恒有11 ------- ln( x 1) xx 1分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数1 …—g(x) ln(x 1) —— 1,从其导数入手即可证明。
x 1 1 x【解】f (x) —— 1 ——x 1 x 1.••当1 x 0时,f (x) 0,即f (x)在x ( 1,0)上为增函数 当x 0时,f (x) 0,即f (x)在x (0,)上为减函数 故函数f (x)的单调递增区间为(1,0),单调递减区间(0,)当 x ( 1,0)时,g (x) 0;当x (0,)时,g (x) 0即g(x)在x ( 1,0) ±为减函数,在x (0,)上为增函数, 故函数g(x)在(1,)上的最小值为g(x)min g(0) 0,1 ,- •■-当 x 1 时,g(x) g(0) 0,即 ln(x 1) ----------------------- 1 0x 11 1••- ln(x 1) 1 ——,综上可知,当 x 1时,有—— 1 ln(x 1) xx 1 x 1【警示启迪】如果 f (a)是函数f(x)在区间上的最大(小)值,则有 f(x) f(a)(或f (x)那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数f (x) — x 2 ln x.求证:在区间(1,)上,函数f (x)的图象在函数g(x)2图象的下方;于是函数f (x)在(1,)上的最大值为f (x)max f (0) 0 ,因此,当x1时,f(x) f (0) 0,即 ln(x 1)x 0 ln(x 1) x (右面得证),现证左面,令g(x) ln(x 1)1,则g (x)1 (x 1)2x (x 1)2f(a)),2 3所 —x 的 3分析:函数f (x)的图象在函数g(x)的图象的下方 不等式f(x) g(x)问题,F (x)可导的前提下,只要证明 F '(x)0即可.【解】设 F(x) g(x) f(x),即 F (x) 2x 331 2-x 2 2 ln x ,则 F (x) 2x 21 x —x_(x 1)(2x 2 x 1)x当 x 1 时,F (x)1)(2x 2 x 1) x从而F(x)在(1, )上为增函数,F(x) F(1)- 6.••当 x 1 时 g(x) f(x)0 ,即 f (x) g(x),故在区间(1,)上,函数 f (x)的图象在函数g(x) 2—x3要证不等式转化变为:当 1 时,F(x) x【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数)并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式恒成立的八种解法探析不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2m in 2)(c x f -≥ 解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(m in ;a x f ≤)(恒成立a x f ≤⇔)(m ax .2分离参数法例2.已知函数xx x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间; (II )若不等式e nan ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e nan ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑.解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n,知1)11ln()(≤++na n n na -+≤⇔)11ln(1;设xx x g 1)1ln(1)(-+=]1,0(∈x ,则221)1(ln )1(1)(xx x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+xx x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g .所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a . 故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题.故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x .所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-nn a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-.(II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a .故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈ (ii )当(]0,1x ∈时,由()f x <0,可得2x x-<a <2+x x ,令 (](]22(),(0,1);()(0,1)g x x x h x x x x x =-∈=+∈ 则221)(x x g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==-221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h ==此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围.解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论, 当0=x 时,不等式恒成立,所以,此时R a ∈;当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ;当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ;由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(-说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___. 解:设210x x <<,则112>x x ,有0)(12<x xf .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x xf x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数.因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xya y x ≥+22xyy x a 22+≤⇔;而2222=≥+xyxy xyy x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意Rx ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立;当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax x x x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(xx x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。