2017-2018学年人教A版必修3 2.1.1简单随机抽样 课时作业

合集下载

高中数学 课时作业8 第二章 统计 2.1.1 简单随机抽样 新人教A版必修3

高中数学 课时作业8 第二章 统计 2.1.1 简单随机抽样 新人教A版必修3

课时作业8简单随机抽样|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验解析:对每个选项逐条落实简单随机抽样的特点.A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.答案:D2.在简单随机抽样中,某一个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定解析:在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.答案:B3.(东营月考)从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量解析:由题可知在此简单随机抽样中,总体是500名学生的体重,A错误,个体是每个学生的体重,B错;样本容量为60,D错.故选C.答案:C4.(惠州高一检测)总体由编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07C.02 D.01解析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为02,14,07,01,故第5个数为01.答案:D5.(湖北高考)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A.07 B.44C.15 D.51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B12.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有________(请把你认为正确的所有序号都写上).解析:由随机抽样的特征可判断.答案:①②③④13.为迎接2016年里约热内卢奥运会,奥委会现从报名的某高校20名志愿者中选取5人组成奥运志愿小组,请用抽签法设计抽样方案.解析:(1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.14.(临沂月考)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解析:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一个号签,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。

2017-2018学年高中数学人教A版必修三教学案:第二章

2017-2018学年高中数学人教A版必修三教学案:第二章

第2课时 系统抽样[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 58~P 59,回答下列问题.(1)在教材P 58的“探究”中,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?提示:可以用系统抽样的方法获取样本.(2)系统抽样与简单随机抽样有什么差别?提示:①系统抽样比简单随机抽样更容易实施,可以节约成本;②系统抽样比简单随机抽样的应用范围更广泛.2.归纳总结,核心必记(1)系统抽样先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.(2)系统抽样的步骤及规则①系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(ⅰ)编号:先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(ⅱ)分段:确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (ⅲ)确定初始编号:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(ⅳ)抽取样本:按照一定的规则抽取样本.②抽取样本的规则通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[问题思考](1)系统抽样如何提高样本的代表性?提示:系统抽样所得样本的代表性和具体的分段有关,因此在系统抽样中就要提高分段的质量.例如,不要让分段呈现周期性.(2)从1 003名学生成绩中,按系统抽样抽取50名学生的成绩时,需先剔除3个个体,这样每个个体被抽取的可能性就不相等了,你认为正确吗?提示:不正确.因为总体个体数不能被50整除,需剔除3个个体,按照简单随机抽样的方法,在总体中的每个个体被剔除的概率是相等的,都是31 003,每个个体不被剔除的概率也是相等的,都是1 0001 003;在剩余的1 000个个体中,采用系统抽样时每个个体被抽取的概率都是501 000;所以在整个抽样过程中每个个体被抽取的概率仍相等,都是1 0001 003×501 000=501 003.所以系统抽样是公平的、均等的.[课前反思]通过以上预习,必须掌握的几个知识点:(1)什么是系统抽样?;(2)系统抽样的步骤: .为了解高一1 500名学生对食堂饭菜的满意情况,打算从中抽取一个容量为50的样本.[思考1] 上述抽样方法能否用系统抽样?提示:因为总体容量较大,因此可以用系统抽样方法抽取样本.[思考2] 系统抽样有什么特征?与简单随机抽样有什么区别?名师指津:(1)系统抽样的主要特征有三个:①总体已知且数量较大;②抽样必须等距;③每个个体入样的机会均等.不满足任何一条就不是系统抽样.(2)系统抽样有别于简单随机抽样的一个显著特点是总体中的个体的数量,一般来说,简单随机抽样,总体中个体较少;系统抽样,总体中个体较多.讲一讲1.(1)下列问题中,最适合用系统抽样法抽样的是( )A .从某厂生产的30个零件中随机抽取6个入样B .一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家.为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C .从参加竞赛的1 500名初中生中随机抽取100人分析试题作答情况D .从参加期末考试的2 400名高中生中随机抽取10人了解某些情况(2)分段为000 001~100 000的体育彩票,凡彩票号码最后三位数为345的中一等奖,这种抽奖过程是系统抽样吗?为什么?[尝试解答] (1)A 总体容量较小,样本容量也较小,可采用抽签法;B 总体中的个体有明显的层次,不适宜用系统抽样法;C 总体容量较大,样本容量也较大,可用系统抽样法;D 总体容量较大,样本容量较小,可用随机数表法.故选C.(2)中奖号码的获得方法可以看做分段间隔为1 000,把总体分为100 0001 000=100段,在第1段中抽取000 345,在第2段中抽取001 345,…,在第100段中抽取099 345,组成样本.显然该抽样方法符合系统抽样的特点,因此采用的是系统抽样.答案:(1)C系统抽样的适用条件及判断方法适用条件:系统抽样适用于个体数较多的总体.判断方法:判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样.练一练1.下列抽样方法不是系统抽样的是( )A .从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i 0,以后选i 0+5,i 0+10(超过15则从1再数起)号入选B .工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C .做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈解析:选C A 分段间隔相同,B 时间间隔相同.D 相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C 项无明显的系统抽样的特征.讲一讲2.某单位在职职工共624人,为了调查职工用于上班途中的时间,决定抽取10%的职工进行调查,试采用系统抽样方法抽取所需的样本.[思路点拨] 624×10%=62.4.需从总体中剔除4人,再重新分段用系统抽样抽取62人.[尝试解答] (1)将624名职工分段,从001至624.(2)从总体中用随机数法剔除4人,将剩下的620名职工重新分段,从000至619.(3)分段,取间隔k =62062=10,将总体均分为62组,每组含10名职工. (4)在第一段000到009这十个分段中用简单随机抽样确定起始号码l .(5)将为l ,l +10,l +20,…,l +610的个体抽出,组成样本.系统抽样设计中的注意点(1)当总体容量不能被样本容量整除时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.(2)被剔除的部分个体可采用简单随机抽样法抽取.(3)剔除部分个体后应重新分段.(4)每个个体被抽到的机会均等,被剔除的机会也均等.练一练2.某校高中三年级的295名学生已经分段为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.解:按照1∶5的比例抽取样本,则样本容量为15×295=59. 抽样步骤是:(1)分段:按现有的号码.(2)确定分段间隔k =5,把295名同学分成59组,每组5人;第1段是分段为1~5的5名学生,第2段是分段为6~10的5名学生,依次下去,第59段是分段为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设分段为l (1≤l ≤5).(4)那么抽取的学生分段为l +5k (k =0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本分段为3,8,13,…,288,293.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是记住系统抽样的方法和步骤,难点是会用系统抽样从总体中抽取样本.2.本节课要理解并记住系统抽样的三个特征:①总体已知且数量较大;②抽样必须等距;③每个个体入样的机会均等.见讲1.3.本节课要掌握设计系统抽样的四个步骤:分段→分段→确定初始分段→抽取样本,见讲2.4.本节课的易错点有:(1)概念理解错误致错,如讲1;(2)忽视每个个体被抽到的机会相等而致误,如讲2.课下能力提升(十)[学业水平达标练]题组1系统抽样的概念1.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25 C.26 D.28解析:选B 5 008除以200的整数商为25,∴选B.2.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样解析:选C A项中总体有明显层次,不适宜用系统抽样法;B项中样本容量很小,适宜用随机数法;D项中总体容量很小,适宜用抽签法.故选C.3.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往后将65号,115号,165号,……发票上的销售金额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数表法C.系统抽样法D.其他的抽样法解析:选C上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,即各组抽15+50n(n为自然数)号,符合系统抽样的特点.4.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2 B.3 C.4 D.5解析:选A因为1 252=50×25+2,所以应随机剔除2个个体.5.(2014·广东高考)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20解析:选C 由1 00040=25,可得分段的间隔为25.故选C. 题组2 系统抽样设计6.“五一”国际劳动节期间,某超市举办了一次有奖购物促销活动.期间准备了一些有机会中奖的号码(分段为001~999),在公证部门的监督下按照随机抽样方法进行抽取,确定后两位为88的号码为本次的中奖号码.则这些中奖号码为:________.解析:根据该问题提供的数据信息,可以发现本次活动的中奖号码是每隔一定的距离出现的,根据系统抽样的有关概念,可知该问题中是运用系统抽样法确定中奖号码的,其间隔数为100.所以,中奖号码依次为088,188,288,388,488,588,688,788,888,988.答案:088,188,288,388,488,588,688,788,888,9887.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160分段,按分段顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,求第一组中用抽签方法确定的号码.解:S +15×8=126,得S =6.8.为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解:(1)对全体学生的数学成绩进行分段:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样,抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.9.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施. 解:(1)将每个人随机编一个号由 0 001 至 2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机分段 0 001 至 2 000;(4)分段,取间隔k =2 00020=100,将总体平均分为20段,每段含100个学生; (5)从第一段即0 001号到0 100号中随机抽取一个号l ;(6)按分段将l,100+l,200+l ,…,1 900+l 共20个号码选出,这20个号码所对应的学生组成样本.[能力提升综合练]1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A .①是系统抽样,②是简单随机抽样B .①是简单随机抽样,②是简单随机抽样C .①是简单随机抽样,②是系统抽样D .①是系统抽样,②是系统抽样解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体容量小,样本容量也小,故②为简单随机抽样.2.(2016·衡阳高一检测)将参加夏令营的600名学生分段为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9解析:选B 由题意知间隔为60050=12,故抽到的号码为12k +3(k =0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.3.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机分段,则抽取的42人中,分段落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:选B 由系统抽样定义可知,所分组距为84042=20,每组抽取一个,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.4.某学校从高三全体500名学生中抽50名学生做学习状况问卷调查,现将500名学生从1到500进行分段,求得间隔数k =50050=10,即每10人抽取一个人,在1~10中随机抽取一个数,如果抽到的是6,则从125~140中应取的数是( )A .126B .136C .126或136D .126和136解析:选D 根据系统抽样的定义和方法,所抽取的样本的分段都是“等距”的,由于在1~10中随机抽取的数是6,故从125~140中应取的数是126和136,应选D.5.人们打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌,这时,开始按次序搬牌,对每一家来说,都是从52张总体中抽取一个13张的样本.则这种抽样方法是________.解析:简单随机抽样的实质是逐个地从总体中随机抽取.而这里只是随机确定了起始张,这时其他各张虽然是逐张起牌的,其实各张在谁手里已被确定.所以不是简单随机抽样,据其等距起牌的特点应将其定位为系统抽样.答案:系统抽样6.一个总体中有100个个体,随机分段为00,01,02,…,99,依分段顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.解析:由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.答案:637.下面给出某村委会调查本村各户收入情况作的抽样,阅读并回答问题.本村人口: 1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 200/30=40;确定随机数字:取一张人民币,其分段后两位数为12;确定第一样本户:分段12的住户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改;(3)何处用了简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔应为300/30=10,其他步骤相应改为确定随机数字:取一张人民币,其分段末位数为2.(假设)确定第一样本户:分段02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户……(3)确定随机数字:取一张人民币,取其末位数2.8.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?解:(1)将1 001名普通工人用随机方式分段.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名职工重新分段(分别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含1 00040=25个个体. (3)在第一段 0 001,0 002,…,0 025 这25个分段中用简单随机抽样法抽出一个(如 0 003)作为起始号码.(4)将分段为 0 003,0 028,0 053,…,0 978 的个体抽出.(5)将20名高级工程师用随机方式分段为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的分段.(9)从总体中将与所抽号签的分段相一致的个体取出.以上得到的个体便是代表队成员.。

2017-2018学年人教A版必修三 2.1简单随机抽样2系统抽样 课时作业

2017-2018学年人教A版必修三     2.1简单随机抽样2系统抽样  课时作业

2.1.2系统抽样课后篇巩固探究1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额.采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样解析:本抽样中,“相邻”两个样本的号码都相差50,是等距抽样,即系统抽样.答案:C2.(2017辽宁锦州期末)学校为了了解高二年级1 203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔k为()A.40B.30.1C.30D.12解析:∵1 203除以40不是整数,∴先随机地去掉3人,再除以40,得到每一段有30人,则分段间隔k为30.故选C.答案:C3.在120个零件中,用系统抽样法从中抽取容量为20的样本,则每个个体被抽取的可能性为()A. B. C. D.解析:由系统抽样的概念可知,总体中的每个个体被抽取的可能性都相等,都等于.答案:D4.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号,按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是()A.7B.5C.4D.3解析:由系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5.答案:B5.某学校高一年级共有480名学生,为了调查高一学生的数学成绩,计划用系统抽样的方法抽取30名学生作为调查对象.将480名学生随机从1~480编号,按编号顺序平均分成30组(1~16号,17~32号,…,465~480号),若从第1组中用抽签法确定的号码为5,则第8组中被抽中学生的号码是()A.25B.133C.117D.88解析:根据系统抽样样本编号的确定方法进行求解.因为第1组抽出的号码为5,所以第8组应抽出的号码是(8-1)×16+5=117,故选C.答案:C6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的32人中,做问卷B的人数为()A.7B.9C.10D.15解析:由系统抽样的特点知,抽取号码的间隔为=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,一共有10个号.所以做问卷B的有10人.答案:C7.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从1到800进行编号,求得间隔k==16,即每16人抽取一人,在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是.解析:因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7, 所以在第k组抽到的是7+16(k-1),所以从33~48这16个数中应取的数是7+16×2=39.答案:398.某班有学生52人,编号为1,2,…,52,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号同学在样本中,那么样本中还有一个同学的编号是.解析:样本间隔为=13.因为第一组取到3号,29=2×13+3,42=3×13+3,所以还有一个同学的编号为1×13+3=16.答案:169.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是.解析:由题设可知,第7组的编号为60,61,62,63,…,69,而第7组中抽取的号码的个位数字与6+7=13的个位数字相同,故第七组抽取的号码是63.答案:6310.导学号38094023某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检验其质量情况.请你设计一个抽样方案.解:第一步,将这些图书分成40组,由于的商是9,余数是2,所以每个小组有9册图书,还剩2册图书,这时抽样间隔就是9;第二步,先用简单随机抽样的方法从这些书中抽取2册,不进行检验;第三步,将剩下的书进行编号,编号分别为0,1,2, (359)第四步,从第一组(编号为0,1,…,8)书中用简单随机抽样的方法抽取1册书,比如说,其编号为K.第五步,将编号分别为K,K+9,K+18,K+27,…,K+39×9的图书抽出,这样就抽取到了样本.11.一个总体中的 1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.解:(1)当x=24时,按规则可知所抽取样本的10个号码依次为:24,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为0,33,66,99,132,165,198,231,264,297.又抽取样本的10个号码中有一个的后两位数是87,从而x可以为87,54,21,88,55,22,89,56,23,90.所以x的取值范围是{21,22,23,54,55,56,87,88,89,90}.。

2018学年高一数学人教A版必修3课时2.1.1 简单随机抽样

2018学年高一数学人教A版必修3课时2.1.1 简单随机抽样

绝密★启用前人教版必修3 课时2.1.1简单随机抽样2.1.2系统抽样一、选择题1.【题文】从某地参加计算机水平测试的5000名学生的成绩中抽取200名学生的成绩进行统计分析,在这个问题中,200名学生的成绩是()A.总体B.个体C.从总体中所取的一个样本D.总体的容量2.【题文】从N个号码中抽n个号码作为样本,考虑用系统抽样法,抽样间距为()A.Nn⎡⎤⎢⎥⎣⎦B.NnC.D.1Nn⎡⎤+⎢⎥⎣⎦3.【题文】下列问题中,最适合用简单随机方法抽样的是()A.某学校有学生1320人,卫生部门为了了解学生身体发育情况,准备从中抽取一个容量为300的样本B.为了准备省政协会议,某政协委员计划从1 135个村庄中抽取50个进行收入调查C.从全班30名学生中,任意选取5名进行家访D.为了解某地区癌症的发病情况,从该地区的5 000人中抽取200人进行统计4.【题文】某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.mNMB.mMNC.MNmD.N5.【题文】某学校高一年级共有480名学生,为了调查高一学生的数学成绩,计划用系统抽样的方法抽取30名学生作为调查对象:将480名学生随机从1~480编号,按编号顺序平均分成30组(1~16号,17~32号,…,465~480号),若从第1组中用抽签法确定的号码为5,则第8组中被抽中学生的号码是()A.25 B.133 C.117 D.886.【题文】总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.087.【题文】为了解1202名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40 B.30 C.20 D.128.【题文】将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从495到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8 C.25,16,9 D.24,17,9二、填空题9.【题文】从10个“奥运福娃”玩具中任取一个检验其质量,则应采用的抽样方法为________.10.【题文】一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是________.11.【题文】现有30个零件,从中抽取10个进行检查,用随机数表法进行抽样,方法步骤如下:第一步,将30个零件编号00,01,02, (29)第二步,在下面的随机数表中,从第3行第3列数开始向右读,得到抽取的样本号码依次是________.第三步,所得号码对应的10件产品就是所需抽取的对象.16 12 77 94 3949 54 43 54 8217 37 93 23 7884 42 17 53 3157 24 55 06 8877 04 74 47 6763 01 63 78 5916 95 55 67 1998 10 50 71 7533 21 12 34 2978 64 56 07 8252 42 07 44 3857 60 86 32 4409 47 27 96 5449 17 46 09 62三、解答题12.【题文】为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?13.【题文】下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口1 200人,户数300,每户平均人口数4人,应抽户数30户,抽样间隔:1 20030=40,确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.14.【题文】某位同学利用暑假期间准备搞一个社会实践调查,他打算从某小区内的120户居民中选出7户,他使用系统抽样的过程如下:①编号:将120户居民从“1”到“120”随机地编号;②决定间隔:因120被7除余1,故可先从总体中随机地剔除1个个体,再将余下的119个个体重新随机地编号为1到119号,最后设定间隔为17;③随意使用一个起点,如38,然后推算出如下编号的居民为样本:38,55,72,89,106,123,140.由于123和140并不在实际编号内,故他准备重新选取第一个号码,但他爸爸却说没有问题,爸爸的说法有错误吗?需要重新选取号码吗?你帮他解释一下.人教版必修3 课时2.1.1简单随机抽样2.1.2系统抽样参考答案与解析一、选择题1.【答案】C【解析】总体是5000名学生的成绩,个体是每一名学牛的成绩,200名学生的成绩是从总体中所取的一个样本,总体的容量为5000.考点:样本的概念,简单随机抽样.【题型】选择题【难度】较易2.【答案】A【解析】当N能被n整除时,抽样间距为Nn;当N不能被n整除时,抽样间隔为Nn⎡⎤⎢⎥⎣⎦,故选A.考点:系统抽样.【题型】选择题【难度】较易3.【答案】C【解析】A中不同年级的学生身体发育情况差别较大,B、D的总体容量较大,C的总体容量小,适宜用简单随机抽样.考点:简单随机抽样.【题型】选择题【难度】较易4.【答案】A【解析】总体中带有标记的比例是NM,则抽取的m个个体中带有标记的个数估计为mNM.考点:简单随机抽样.【题型】选择题【难度】较易5.【题文】C【解析】由系统抽样样本编号的确定方法进行求解.因为第1组抽出的号码为5,所以第8组应抽出的号码是(8-1)×16+5=117,故选C.考点:系统抽样.【题型】选择题【难度】一般6.【答案】D【解析】由题意知选定的第一个数为65(第1行的第5列和第6列),按由左到右选取两位数(大于20的跳过、重复的不选取),前5个个体编号为08,02,14,07,01.故选出来的第5个个体的编号为01.考点:简单随机抽样.【题型】选择题【难度】一般7.【答案】A【解析】由于1202不能被30整除,所以应从总体中剔除2个个体,1200÷30=40,故选A.考点:系统抽样.【题型】选择题【难度】一般8.【答案】B【解析】依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,解得k≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,解得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17,从而第Ⅲ营区被抽中的人数是50-42=8. 考点:系统抽样.【题型】选择题【难度】一般二、填空题9.【答案】抽签法【解析】总体个数较少,易使用抽签法.考点:简单随机抽样.【题型】填空题【难度】较易10.【答案】6,17,28,39,40,51,62,73,84,95 【解析】在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6,17,28,39,40,51,62,73,84,95.考点:系统抽样.【题型】填空题【难度】一般11.【答案】01,16,19,10,21,12,29,07,09,27【解析】第三步,从0开始向右读,读到01<29,将它取出;继续向右读,得到16,19,10,21,12,29,07.将它们取出;继续下去,随后的两位数号码是07.由于它前面已取出,将它去掉;再继续下去,又得到09,27.至此,10个样本的号码已取得.于是所要抽取的样本号码是:01,16,19,10,21,12,29,07,09,27.考点:简单随机抽样.【题型】填空题【难度】一般三、解答题12.【答案】见解析【解析】A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.考点:简单随机抽样.【题型】解答题【难度】较易13.【答案】见解析【解析】(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为30030=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个);确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样,取一张人民币,编码的后两位数为02.考点:系统抽样.【题型】解答题【难度】一般14.【答案】见解析【解析】所谓系统抽样的第一个号码,一般是在第一组内用简单随机抽样的方法选取的一个号码,然后等距离地抽取,这样就保证了后面所有的号码都在已知的编号内.但在实际应用时却不一定是这样来确定第一个号码的,而是随机确定第一个号码的,如这个学生确定的38,如果这时再等距离地确定后续号码就会使号码超出已编号码,这个时候只要将超过的部分减去若干个间隔,然后再将之放到样本编号之中就可以了.例如,因123-17×7=4,140-17×7=21.故抽取的号码如下:4,21,38,55,72,89.106.因此这个学生的爸爸的说法并没有错.考点:系统抽样.【题型】解答题【难度】一般。

人教版高中数学高一人教A版必修3习题 简单随机抽样

人教版高中数学高一人教A版必修3习题 简单随机抽样

第二章统计2.1 随机抽样2.1.1 简单随机抽样A级基础巩固一、选择题1.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)解析:A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.答案:D2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是()A.总体是240名B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40.答案:D3.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为( )A .0.4B .0.5C .0.6 D.23解析:在简单随机抽样中每个个体被抽到的机会相等,故可能性为2050=0.4. 答案:A4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相等,均为110. 答案:A5.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A .①②B .①③C .②③D .③解析:根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.答案:C二、填空题6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.解析:由抽签法的步骤知,正确顺序为④①③②⑤.答案:④①③②⑤7.用简单随机抽样的方法从含n 个个体的总体中,逐个抽取一个容量为3的样本,对其中个体a 在第一次就被抽取的机率为18,那么n =________.解析:在第一次抽样中,每个个体被抽到的可能性均为1n =18,所以n =8.答案:88.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是___________________________________________________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 3281 76 80 26 92 82 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,39三、解答题9.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.解:第一步,将32名男生从00到31进行编号;第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号;第三步,将写好的号签放在一个容器内摇匀,不放回地逐个从中抽出10个号签;第四步,相应编号的男生参加合唱;第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012, (099)100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.B 级 能力提升1.(2015·湖北卷)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石.答案:B2.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N =________.解析:依题意有30N=25%,解得N =120. 答案:1203.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从01~30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1~20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。

高中数学 2.1.1简单随机抽样练习 新人教A版必修3

高中数学 2.1.1简单随机抽样练习 新人教A版必修3

2.1.1简单随机抽样(练)一、选择题1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,用随机抽取的方式确定号码的后四位为270 9的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验[答案] D2.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( ) A.40 B.50C.120 D.150[答案] C3.关于简单随机抽样的特点,有以下几种说法,其中不正确的是( )A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关[答案] D[解析]简单随机抽样,除具有A、B、C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.4.简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定[答案] B[解析]据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,∴选B.5.某工厂的质检人员对生产的10件产品,采用随机数表法抽取3件检查,对10件产品采用下面的编号方法:①1,2,3,…,10;②01,02,…,10;③00,01,02,…,09;④001,002,…,009,10.其中正确的是( )A.②③④B.③④C.②③D.①②[答案] C[解析]根据随机数表法的步骤可知,①④编号位数不统一.6.下列抽样方法是简单随机抽样的是( )A.某工厂按老年、中年、青年职工的比例选取职工代表B.用抽签的方法产生随机数表C.福利彩票用摇奖机摇奖D.规定凡买到明信片最后的几位号码是“6637\”的人获三等奖[答案] C[解析]简单随机抽样要求总体个数有限,从总体中逐个不放回地进行抽样,每个个体有相等的机会被抽到.故选C.7.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格品有36个,则这批产品的合格率为( )A.36% B.72%C.90% D.25%[答案] C[解析]3640=0.9,故选C.8.采用不重复抽取样本的方法,从一个含有5个个体的总体中抽取一个容量为2的样本,可能的样本共有( )A.10个B.7个C.9个D.20个[答案] A[解析]假设5个个体分别记为a,b,c,d,e,容量为2的样本分别为a,b;a,c;a,d;a,e;b,c;b,d;b,e;c,d;c,e;d,e,共10个.故选A.二、填空题9.采用简单随机抽样时,常用的方法有________、________.[答案]抽签法随机数法10.下列调查方式正确的是________.①为了了解炮弹的杀伤力,采用普查的方式②为了了解全国中学生的睡眠状况,采用普查的方式③为了了解人们保护水资源的意识,采用抽样调查的方式④对载人航天器“神舟飞船”零部件的检查,采用抽样调查的方式[答案]③[解析]由于①中的调查具有破坏性,则①不正确;由于全国中学生太多,则②不正确;③正确;④中考虑到安全性,④不正确.11.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步____________________________________________;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为____________________________________.[答案]从袋子中依次抽出6个号签,记录下上面的编号.12.2010年3月,山西曝出问题疫苗事件,山西药监局对某批次疫苗进行检验,现将从800支疫苗中抽取60支,在利用随机数表抽取样本时,将800支疫苗按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检验的5支疫苗的编号是________(下面摘取了随机数表的第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 217633 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 8673 58 07 44 39 52 38 7933 2112 34 29 78 64 56 07 82 52 42 07 44 38 15 5100 13 42 99 66 02 79 54[答案]785,567,199,507,175[解析]从第8行第7列的数7开始向右读数,得到一个三位数785,因为785<799,所以将785取出,再向右读数,得到一个三位数916.因为916>799,所以将它去掉,再向右读数,得到一个三位数95 5.因为955>799,所以将它去掉,再向右读数,得到一个三位数567.因为567<799,所以将567取出.按照这种方法再向右读数,又取出199,507,175,这就找出最先检验的5支疫苗的编号,即785,567,199,507,175.三、解答题13.(2012~2013.上海高一检测)2011年5月,西部志愿者计划开始报名,上海市闸北区共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[解析]第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,一次取出1个号签,连取6次,并记录其编号.第五步,将对应编号的志愿者选出即可.14.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?[分析] 重新编号,使每个号码的位数相同.[解析]第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.15.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?[解析]选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为1 40 .16.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学、两所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?[分析] 根据每种调查方案所提供的资料逐一分析,看哪一种调查方案合理.[解析]A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.。

高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】

高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】

第九章统计9.1随机抽样9.1.1简单随机抽样课后篇巩固提升必备知识基础练1.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是()A.放回简单随机抽样B.抽签法C.随机数法D.以上都不对(包括总体个数),因此不属于简单随机抽样.2.高三某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左向右依次选取两个数字,则选出来的第4个志愿者的座号为()495443548217379323788735209643842634916457245506887704744767217633502583921206A.23B.09C.16D.02,依次抽取的样本数据为:21,32,09,16,17,所以第4个数据是16.3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A.08B.07C.02D.01,选出的5个个体的编号为:08,02,14,07,01,故第5个个体的编号是01.4.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD.N总体中带有标记的比例是N M ,则抽取的m 个个体中带有标记的个数估计为mN M .5.“XX 彩票”的中奖号码是从分别标有01,02,…,30的30个小球中逐个不放回地选出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是 .个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.6.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是 ,某女学生被抽到的可能性是 ..2 0.220,总体数量为100,所以总体中每个个体被抽到的可能性都为20100=0.2.7.已知数据x 1,x 2,…,x n 的平均数为x =4,则数据3x 1+7,3x 2+7,…,3x n +7的平均数为 .数据x 1,x 2,…,x n 的平均数为x =4,即数据(x 1+x 2+…+x n )=4n ,则数据3x 1+7,3x 2+7,…,3x n +7的平均数3(x 1+x 2+…+x n )+7nn =3×4n+7n n=19. 8.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱节目的同学.,将32名男生从00到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.关键能力提升练9.(2021江西南昌二模)从编号依次为01,02,…,20的20人中选取5人,现从随机数表的第一行第3列和第4列数字开始,由左向右依次选取两个数字,则第五个编号为( ) 5308 3395 5502 6215 2702 4369 3218 1826 099478465887 3522 2468 3748 1685 9527 1413 8727 14955656A.09B.02C.15D.183列和第4列数字开始,依次读取:08,33(舍),95(舍),55(舍),02,62(舍),15,27(舍),02(舍),43(舍),69(舍),32(舍),18,18(舍),26(舍),09,则第五个编号为09.故选A.10.用放回简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A.110,110B.310,15C.1 5,310D.310,310,个体a每次被抽中的概率是相等的,因为总体容量为10,故个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.故选A.11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knmB.k+m-nC.kmnD.不能估计x人,则kx =nm,解得x=kmn.12.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查某快餐店中8位店员的生活质量情况B中要对所有小朋友进行检查,所以用普查的方式;D中共8名店员,可采用普查的方式;A,C 中总体容量大,难以做到普查,故采用抽样调查的方式.13.(多选题)下列抽样方法是简单随机抽样的是()A.从50个零件中随机抽取5个做质量检验B.从50个零件中每次抽取一个有放回地共抽取5次做质量检验C.从整数集中随机抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道不是,因为整数集是无限集.14.(多选题)下列抽取样本的方式,不是简单随机抽样的是()A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中逐个不放回地选出5个零件进行质量检验C.从80件玩具中一次性随机抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛不是简单随机抽样,原因是简单随机抽样中总体的个数是有限的,而题中是无限的;B,C是简单随机抽样;D不是简单随机抽样,原因是指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.15.假设要抽查某种品牌的900颗种子的发芽率,抽取60粒进行实验.利用随机数法抽取种子时,先将900颗种子按001,002,…,900进行编号,如果从随机数表第8行第7列的数字7开始向右读,请你依次写出最先检测的3颗种子的编号.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 548行第7列的数字7开始向右读,第一个符合条件的是785,916要舍去,955要舍去,第二个符合条件是567,第三个符合条件是199,故最先检测的3颗种子的编号为785,567,199.16.某工厂抽取50个机械零件检验其直径大小,得到如下数据:估计这个工厂生产的零件的平均直径大约为..84 cm y=12×12+13×34+14×4=12.84(cm).50学科素养创新练17.选择合适的抽样方法抽样,并写出抽样过程.(1)现有一批电子元件600个,从中抽取6个进行质量检测;(2)现有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.总体中个体数较大,用随机数法.第一步,给元件编号为001,002,003,...,099,100, (600)第二步,用随机数工具产生1~600范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的电子元件进入样本;第三步,依次操作,如果生成的随机数有重复,则剔除并重新产生随机数,直到样本量达到6;第四步,以上这6个号码对应的元件就是要抽取的对象.(2)总体中个体数较小,用抽签法.第一步,将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,制成号签; 第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出和所得号码对应的篮球.。

2017-2018学年高中数学人教A版必修三课时作业:第2章 统计 2-1 习题课 含答案 精品

2017-2018学年高中数学人教A版必修三课时作业:第2章 统计 2-1 习题课 含答案 精品
答案:1 211
解析:分段间隔是 =20,由于第一组抽出号码为11,则第61组抽出号码为11+(61-1)×20=1 211.
9.为了了解某地区癌症的发病情况,从该地区的5 000人中抽取200人进行统计分析,在这个问题中5 000人是指________.
答案:总体
解析:5 000人是总体,5 000是总体容量要注意区别,200人是样本,200是样本容量.
第三步:从选定的数4开始向右读,得到一个三位数438,由于438<799,说明号码438在总体中,将它取出;继续向右读,得到548,246,223,162,430,990,由于990>799,将它去掉,按照这种方法继续向右读,又取出061,325,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.
习题课 随机抽样的综合应用
课时目标
掌握三种抽样方法的区别与联系,能熟练地应用三种抽样方法进行抽样.
课时作业
一、选择题
1.用随机数法进行抽样有以下几个步骤:
①将总体中的个体编号②获取样本号码③选定开始的数字④选定读数的方向
这些步骤的先后顺序应为()
A.①②③④ B.①③④②
C.③②①④ D.④③①②
答案:B
二、填空题
7.某学生高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
答案:15
解析:高二年级学生人数占总数的 = .样本容量为50,则高二年级抽取:50× =15(名)学生.
8.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.

人教版数学高一A版必修3作业 简单随机抽样

人教版数学高一A版必修3作业  简单随机抽样

课时提升作业九简单随机抽样(25分钟 60分)一、选择题(每小题5分,共25分)1.(2018·周口高一检测)为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100【解析】选D.总体是1 000名运动员的年龄,所以A项不正确;个体是每一名运动员的年龄,所以B项不正确;样本是100名运动员的年龄,所以C项不正确;很明显样本容量是100.2.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709为三等奖B.某车间包装一种产品,在自动的传送带上,每隔5分钟抽一包产品,称其重量是否合格C.某校分别从行政、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验【解析】选D.总体和样本容量都不大,采用随机抽样.3.用随机数法进行抽样有以下几个步骤:①将总体中的个体编号②获取样本号码③选定开始的数字④选定读数的方向⑤抽取样本.这些步骤的先后顺序应为( )A.①②③④⑤B.①③④②⑤C.③②⑤①④D.⑤④③①②【解析】选B.由随机数表法的抽样过程知B正确.4.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03, (100)②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A.①②B.①③C.②③D.③【解析】选C.根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样.5.(2018·临沂高一检测)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 7512 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 54.A.07 B.44 C.15 D.51【解析】选B.找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.二、填空题(每小题5分,共15分)6.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是_______位.【解析】由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位,从0000到1000,或者是从0001到1001等. 答案:四7.用简单随机抽样的方法从含n个个体的总体中,逐个抽取一个容量为3的样本,若其中个体a在第一次就被抽取的机率为18,那么n=________.【解析】在第一次抽样中,每个个体被抽到的可能性均为1n =18,所以n=8.答案:88.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行试验,利用随机数表抽取种子时,先将850颗种子按001,002, (850)行编号,如果从随机数表第9行第8列的数4开始向右读,则最先检测的4颗种子的编号依次分别是429,786,_______,078.(在横线上填上所缺的种子编号)(下面摘取了随机数表第9行)33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.【解析】找到第9行第8列的数开始向右读,第一个符合条件的是429,第二个数是786,第三个数是456,第四个数是078.答案:456三、解答题(每小题10分,共20分)9.省环保局收到各县市报送的环保案例28件,为了了解全省环保工作的情况,要从这28件案例中抽取7件作为样本研究.试确定抽取方法并写出操作步骤.【解析】总体容量小,样本容量也小,可用抽签法.步骤如下:(1)将28件环保案例用随机方式编号,号码是01,02,03, (28)(2)将以上28个号码分别写在28张相同的小纸条上,制成形状、大小均相同的号签.(3)把号签放入一个不透明的容器中,充分搅拌均匀.(4)从容器中无放回地逐个抽取7个号签,并记录上面的号码.(5)找出和所得号码对应的7件案例,组成样本.10.为了了解高一(10)班53名同学的牙齿健康状况,需从中抽取10名做医学检验,现已对53名同学编号00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241【解析】从数5开始从左向右读下去,两位两位地读,在00~52范围内前面没有出现过的记下,否则跳过,直到取满10个为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.【拓展延伸】利用随机数法抽取个体时的注意事项(1)定起点:事先应确定以表中的哪个数(哪行哪列)作为起点. (2)定方向:读数的方向(向左、向右、向上或向下都可以). (3)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,如果出现重复则跳过,直到取满所需的样本个体数.(20分钟 40分)一、选择题(每小题5分,共10分)1.从一群做游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为 ( )B.k+m-nA.knmC.kmD.不能估计n【解析】选C.设参加游戏的小孩有x人,则k n=,x m.因此x=kmn2.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是( )18 18 07 92 45 44 17 16 58 09 78 83 86 19 6206 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 2420 14 85 88 45 10 93 72 88 7123 42 40 64 74 82 97 77 77 81 07 45 32 14 0832 98 94 07 72 93 85 79 10 7552 36 28 19 95 50 92 26 11 97 00 56 76 31 3880 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 8854 42 06 87 98 35 85 29 48 39A.841B.114C.014D.146【解析】选B.最先读到的1个的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一数是114.读出的第3个数是114.二、填空题(每小题5分,共10分)3.采用简单随机抽样,从6个标有序号A,B,C,D,E,F的球中抽取1个球,则每个球被抽到的可能性是________.【解析】每个个体被抽到的可能性是一样的,都是1.6答案:164.一个袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是_______.【解题指南】整个抽样过程中,每个个体入样的可能性相同,每次抽取时每个个体被抽到的可能性相同.,【解析】因为简单随机抽样过程中每个个体被抽到的可能性均为nN.所以第一个空填310因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为1.10第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19.第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.答案:3101 8三、解答题(每小题10分,共20分)5.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?【解析】第一步,将元件的编号调整为010,011,012, (099)100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的对象. 6.(2018·襄阳高一检测)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解析】第一步:先确定艺人:(1)将30名内地艺人从1到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明的箱子中摇匀,从中抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。

高中数学人教A版必修三 第二章《统计》 2.1.1 随机抽样 简单随机抽样

高中数学人教A版必修三 第二章《统计》 2.1.1 随机抽样 简单随机抽样

第二章 2.1 随机抽样2.1.1简单随机抽样1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.知识梳理自主学习题型探究重点突破当堂检测自查自纠知识梳理自主学习知识点一统计的相关概念名称定义总体所要考察对象的全体叫做总体样本从总体中抽取出的若干个个体组成的集合叫做总体的一个样本个体总体中的每一个考察对象叫做个体样本容量样本中个体的数目叫做样本容量思考样本与样本容量有什么区别?答样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.答案知识点二简单随机抽样1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的特点特点说明个体数有限要求总体的个体数有限,这样便于通过随机抽取的样本对总体进行分析逐个抽取从总体中逐个进行抽取,这样便于在抽取过程中进行操作不放回抽样由于抽样试验中多采用不放回抽样,使其具有广泛的应用性,而且所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算等可能抽样在整个抽样过程中,各个个体被抽取的机会都相等,从而保证了这种抽样方法的公平性知识点三最常用的简单随机抽样的方法1.抽签法(1)抽签法(抓阄法):抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)抽签法的步骤:①编号:对总体中的N个个体进行编号(号码可以是1~N,也可以使用已知的号码);②制签:将1~N这N个编号写在大小、形状都相同的号签上(号签可以是纸条、卡片或小球等);③均匀搅拌:将写好的号签放入一个不透明的容器中,搅拌均匀;④抽签:从容器中每次不放回地抽取一个号签,连续抽取n次,并记录其编号;⑤确定样本:从总体中找出与号签上的号码所对应的个体,组成样本.2.随机数法(1)随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样.(2)随机数表法的一般步骤:①编号:将总体中的每个个体进行编号;②选定初始值(数);为保证所选数字的随机性,在面对随机数表之前就指出开始数字的位置;③选号:从选定的数字开始按照一定的方向读下去,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止;④确定样本:从总体中找出按步骤③选出的号码所对应的个体,组成样本.3.抽签法与随机数法的异同点抽签法随机数表法不同点①抽签法比随机数法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数法要求编号的位数相同;②随机数法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取思考(1)简单随机抽样是不放回抽样,对于放回的抽样可以是简单随机抽样吗?答不可以.简单随机抽样是从总体逐个抽取的,是一种不放回抽样,也就是每次从总体中取出元素后不放回总体,若放回,则一定不是简单随机抽样.(2)采用抽签法抽取样本时,为什么将编号写在形状、大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀?答为了使每个号签被抽取的可能性相等,保证抽样的公平性.题型探究重点突破题型一简单随机抽样的判断例1下列5个抽样中,简单随机抽样的个数是()①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.⑤箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0B.1C.2D.3跟踪训练1在简单随机抽样中,某一个体被抽到的可能性()BA.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定解析在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.题型二抽签法的应用例2为迎接2016年里约热内卢奥运会,奥委会现从报名的某高校20名志愿者中选取5人组成奥运志愿小组,请用抽签法设计抽样方案.解(1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.跟踪训练2从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要抽取的对象.题型三随机数法例3为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.解第一步,将120名服药者重新进行编号,分别为001,002,003, (120)第二步,在随机数表(教材P)中任选一数作为初始数,如选第9行第7103列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.跟踪训练3总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01编号不一致致错易错点例4某工厂的质检人员对生产的100件产品,采用随机数法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3, (100)②001,002,003,…,100;③00,01,02,03,…,99.其中最恰当的序号是________.当堂检测 1 2 3 4 5 1.某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()DA.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100解析据题意,总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100,故只有D正确.B2.抽签法确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.3.对于简单随机抽样,下列说法正确的是()D①它要求总体中的个体数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的机会相等,而且在整个抽样过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④解析由简单随机抽样的概念,知①②③④都正确.4.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( )A.36%B.72%C.90%D.25% 解析 ×100%=90%. 3640C5.某总体共有60个个体,并且编号为00,01,…,59. 现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60课堂小结1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽样、等可能抽取.2.一个抽样试验能否用抽签法,关键看两点:一是制作号签是否方便,二是号签是否容易被搅拌均匀.一般地,当总体容量和样本容量都较少时可用抽签法.3.利用随机数法抽取个体时,关键是先确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.需注意读数时结合编号特点进行读取,编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.本课结束。

2017-2018学年高中数学人教A版数学必修3练习:2-1 随机抽样2-1-3 含答案 精品

2017-2018学年高中数学人教A版数学必修3练习:2-1 随机抽样2-1-3 含答案 精品

2.1.3分层抽样课后篇巩固探究1.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90B.100C.180D.300解析:因为抽样比为错误!未找到引用源。

,所以老年教师人数为900×错误!未找到引用源。

=180,故选C.答案:C2.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A型号产品有15件,那么样本容量n为()A.50B.60C.70D.80解析:由分层抽样方法得错误!未找到引用源。

×n=15.解得n=70.答案:C3.(2017四川雅安期末)要从165名学生中抽取15人进行视力检查,现采用分层抽样法进行抽取,若这165名同学中,高中生为66人,则高中生中被抽取参加视力检查的人数为()A.5B.6C.7D.8解析:由题意,从165名学生中抽取15人进行视力检查,抽样比为错误!未找到引用源。

,165名同学中,高中生为66人,则高中生中被抽取参加视力检查的人数为66×错误!未找到引用源。

=6.故选B.答案:B4.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.18C.16D.12解析:依题意可知,三年级学生人数为500,占总体学生人数比例为500∶2000=1∶4,故用分层抽样抽取三年级学生人数为64×错误!未找到引用源。

=16,故选C.答案:C5.某商场有四类食品,其中粮食类、植物油类、肉食品类、果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7解析:四类食品的比例为4∶1∶3∶2,则抽取的植物油类的种数为20×错误!未找到引用源。

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

新人教A版高中数学【必修3】 2.1.1简单随机抽样课时作业练习含答案解析

新人教A版高中数学【必修3】 2.1.1简单随机抽样课时作业练习含答案解析

第二章 统 计2.1.1 简单随机抽样 课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧ 抽签法随机数法 3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.一、选择题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )A .200个表示发芽天数的数值B .200个球根C .无数个球根发芽天数的数值集合D .无法确定答案 A2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A .40B .50C .120D .150答案 C解析 由于样本容量即样本的个数,抽取的样本的个数为40×3=120.3.抽签法中确保样本代表性的关键是( )A .制签B .搅拌均匀C .逐一抽取D .抽取不放回答案 B解析 由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B .4.下列抽样实验中,用抽签法方便的有( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验答案 B解析 A 总体容量较大,样本容量也较大不适宜用抽签法;B 总体容量较小,样本容量也较小可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100答案 D解析 此问题研究的是运动员的年龄情况,不是运动员,故A 、B 、C 错,故选D .6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310答案 A二、填空题7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.答案 简单随机抽样解析 由简单随机抽样的特点可知,该抽样方法是简单随机抽样.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案 抽签法9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案 ①③②三、解答题10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解(1)将元件的编号调整为010,011,012,…,099,100,…600;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.能力提升12.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.解方法一抽签法.(1)将50个轴进行编号01,02, (50)(2)把编号写在大小、形状相同的纸片上作为号签;(3)把纸片揉成团,放在箱子里,并搅拌均匀;(4)依次不放回抽取5个号签,并记下编号;(5)把号签对应的轴组成样本.方法二随机数法(1)将50个轴进行编号为00,01, (49)(2)在随机数表中任意选定一个数并按向右方向读取;(3)每次读两位,并记下在00~49之间的5个数,不能重复;(4)把与读数相对应的编号相同的5个轴取出组成样本1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性如果四个特征有一个不满足就不是简单随机抽样.2.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.3.在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.。

2017-2018学年高中数学人教A版必修三课时作业:第2章 统计 2.1.1

2017-2018学年高中数学人教A版必修三课时作业:第2章 统计 2.1.1

课时目标
识记强化
1.从总体中抽出的若干个个体组成的集合叫做总体的一个样本,样本中个体的数量叫
抽签法抓阄法
随机数表法
.简单随机抽样的优点及适用类型
3.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )
A.36% B.72%
C.90% D.25%
答案:C
36
解析:简单随机抽样中,总体中每个个体在某一次被抽到的可能性相等,所以应该填1 20 .
8.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3,…,100;②001,002,003,…,100;③00,01,02,…,99.其中最恰当的编号是________.
答案:③
A .N ·M
B .m ·N
C .N ·M m
D .N 答案:A
解析:设抽取的m 个个体中带有标记的个数为x ,则x m =N M ,即x =N ·m M
.由于m 个个体是随机抽取的,样本具有代表性,能够用来估计总体的情况.。

高中数学第二章统计2.1.1简单随机抽样课时提升作业2新人教A版必修3

高中数学第二章统计2.1.1简单随机抽样课时提升作业2新人教A版必修3

简单随机抽样一、选择题(每小题3分,共18分)1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是( )A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关【解析】选D.简单随机抽样除具有A,B,C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A.①②③B.③②①C.①③②D.③①②【解析】选C.根据随机数表法的特点容易判断.3.下列抽样中,用抽签法方便的是( )A.从某工厂生产的3000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验【解析】选B.A总体容量较大,样本容量也较大,不适宜用抽签法;B总体容量较小,样本容量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.4.下面的抽样适合用简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,用随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验【解析】选D.A,B总体容量较大,样本容量也较大,均不适宜用简单随机抽样.C学校机构中有明显的几部分差异,也不宜用简单随机抽样,而D中总体容量与样本容量均不大,适合用抽签法即简单随机抽样法抽取.5.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,…,800,利用随机数表法抽取样本,从第7行第1个数8开始,依次向右,再到下一行,继续从左到右,请问选出的第七袋牛奶的标号是( )(为了便于说明,下面摘取了随机数表的第6行至第10行)1622779439 4954435482 1737932378 8735209643 84263491648442175331 5724550688 7704744767 2176335025 83921206766301637859 1695556719 9810507175 1286735807 44395238793321123429 7864560782 5242074438 1551001342 99660279545760863244 0947279654 4917460962 9052847727 0802734328A.425B.506C.704D.744【解题指南】从第7行第1个数8开始向右读,依次为844,217,533,157,245,506,887,704,744,其中844,887不符合条件,故可得结论.【解析】选D.从第7行第1个数8开始向右读,第一个数为844,不符合条件,第二个数为217,符合条件,第三个数为533,符合条件,以下依次为:157,245,506,887,704,744,其中887不符合条件,故第七个数为744.6.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数x估计为( )A.N·B.m·C.N·D.N【解析】选A.根据等可能性知,样本在总体中的比例相等,即=,即x=.【变式训练】利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的可能性为,则在整个抽样过程中,每个个体被抽到的可能性为( )A. B. C. D.【解析】选B.由题意知=,所以n=28,所以P==.二、填空题(每小题4分,共12分)7.要检查一个工厂产品的合格率,从1000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为.【解析】由简单随机抽样的特点可知,该抽样方法是简单随机抽样.答案:简单随机抽样8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是.【解析】当总体中的个体数不多时制作号签比较方便,也利于“搅拌均匀”,所以采用抽签法进行抽样.答案:抽签法9.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是.【解题指南】在简单的随机抽样中,每个个体被抽到的可能性都是相等的,都是用样本容量比上总体容量.【解析】P==.答案:【误区警示】本题易因对简单随机抽样的含义理解不透而错填.三、解答题(每小题10分,共20分)10.西部志愿者计划开始报名,某市共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.【解析】第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在相同纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,一次取出1个号签,连取6次,并记录其编号.第五步,将对应编号的志愿者选出即可.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?【解题指南】先重新编号,使每个号码的位数相同,然后再使用随机数法进行抽取.【解析】第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.一、选择题(每小题4分,共16分)1.简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定【解析】选B.据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,所以选B.2.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽取”的可能性、“第二次被抽取”的可能性分别是( )A.,B.,C.,D.,【解析】选D.简单随机抽样中每个个体每次被抽到的机会均等.3.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下表,读出的第3个数是( ) 1818079245 4417165809 7983861962 0676500310 55236405052662389775 8416074499 8311463224 2014858845 10937288712342406474 8297777781 0745321408 3298940772 93857910755236281995 5092261197 0056763138 8022025353 86604204533785943512 8339500830 4234079688 5442068798 3585294839A.841B.114C.014D.146【解析】选 B.在随机数表中选取数字时,要做到不重不漏,不超范围,因此抽取的数字依次为389,449,114,…,因此第三个数为114.4.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为( )A.40%B.50%C.60%D.【解题指南】利用随机抽样的等可能性求解.【解析】选A.简单随机抽样中,每个个体被抽到的可能性是相等的,所以抽到一名女生的可能性为×100%=40%.二、填空题(每小题4分,共8分)5.下列调查方式正确的是.①为了了解炮弹的杀伤力,采用普查的方式②为了了解全国中学生的睡眠状况,采用普查的方式③为了了解人们保护水资源的意识,采用抽样调查的方式④对载人航天器“神舟飞船”零部件的检查,采用抽样调查的方式【解析】由于①中的调查具有破坏性,则①不正确;由于全国中学生太多,则②不正确;③符合抽样调查的特点,故可采用抽样调查的方式,因此③正确;④中考虑到安全性,需采用普查的方式,故④不正确.答案:③6.(2014·淮北高一检测)一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是(下表为随机数表的倒数第1行至第5行). 95339522001874720018387958693281768026928280842539 90846079802436598738820753893596352379180598900735 46406298805497205695157480083216467050806772164279 20318903433846826872321482997080604718976349302130 71597305500822237177910193204982965926946639679860【解析】按照顺序取值,做到不重,不漏,不超范围即可.答案:18,00,38,58,32,26,25,39【变式训练】一个总体中含有100个个体,以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则用抽签法抽样的编号一般为,用随机数表法抽样的编号一般为.【解析】根据两种方法的不同特点,编号是不同的,抽签法应由小到大即可,随机数表法位数应该相同.答案:0,1,...,99(或1,2, (100)00,01,...,99(或001,002, (100)三、解答题(每小题13分,共26分)7.现有一批零件,其编号为600,601,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查.若用随机数表法,怎样设计方案?【解析】第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如,选第7行第6个数“7”,向右读;第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916;第三步,以上号码对应的10个零件就是要抽取的对象.8.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一:将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二:将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何相同之处?【解题指南】根据抽签法的特点进行判断即可.【解析】选法一满足抽签法的特征,是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法的相同之处在于每名学生被选中的可能性都相等,均为.。

2017-2018学年高中数学必修三教材用书:第二章 统计 2

2017-2018学年高中数学必修三教材用书:第二章 统计 2

2.1随机抽样2.1.1简单随机抽样[提出问题]继“地沟油”“瘦肉精”“镉大米”“皮革奶”及“毒生姜”等国内食品安全事件的不断曝光,食品安全问题越来越受到人们的关注,也得到各级政府部门的重视.问题1:某报告称,食品质量检测人员对某品牌牛奶的抽检合格率为99.9%,你知道这一数据是怎么得到的吗?提示:是抽取少量的牛奶来检测得到的.问题2:你认为质检人员是怎样抽取样本的?提示:在所有牛奶中,随机地逐个抽取得到样本.[导入新知]简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.[化解疑难]简单随机抽样的特点[提出问题]问题:在“知识点一”的事例中,质检人员在对某个体经商户所销售的牛奶进行抽检和对生产厂家所生产的牛奶进行抽检采取的方式一样吗?提示:个体经商户销售的牛奶数量较少,可用抽签法(抓阄法);而生产厂家生产的牛奶太多,可用计算机按生产批号进行抽取.[导入新知]1.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.2.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.[化解疑难]1.抽签法的一般步骤2.抽签法的特点(1)优点:简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.3.随机数表法的步骤4.随机数表法的特点(1)优点:操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的.(2)缺点:如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷.[例1](1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.[类题通法]简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.[活学活用]下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.[例2](1)A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验(2)某大学为了选拔世博会志愿者,现从报名的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解](1)选B A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.(2)第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.[类题通法]1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.[活学活用]1.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.2.现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.[例3](1)随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号________________________________________________________________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解](1)从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.(2)第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)[答案](1)227,665,650,267[类题通法]利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同,需先调整到一致再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.[活学活用]现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.(答案不唯一)3.概念不清致误[典例]为了了解参加第27届世界大学生运动会的2 000名运动员的身高情况,从中抽取100名运动员进行调查.就这个问题,下面说法中正确的是()①2 000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤B.①②③C.①②④⑤D.①②③④⑤[解析]抽样的目的是了解参加运动会的2 000名运动员的身高情况,故总体应该是2 000名运动员的身高,而不是这2 000名运动员,同理,个体应该是每个运动员的身高,样本应该是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案] A[易错防范]1.解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.2.解决此类问题,关键是明确考察的对象,根据有关的概念可得总体、个体与样本的考察对象是相同的.[成功破障]某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()A.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100解析:选D据题意总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100,故只有D正确.[随堂即时演练]1.下列抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位是2 709的为三等奖B.某车间包装一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格C.从8台电脑中逐个不放回地随机抽取2台,进行质量检验,假设8台电脑已编好号,对编号随机抽取D.从20个零件中一次性抽出3个进行质量检查解析:选C由简单随机抽样的特点可知选项C正确.2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为()A.①②③④B.①③④②C.③②①④D.④③①②解析:选B由随机数表法的步骤知选B.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步,编号,把43名运动员编号为1~43;第二步,制签,做好大小、形状相同的号签,分别写上这43个数;第三步,搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步,抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.[课时达标检测]一、选择题1.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次有关,第一次可能性最大B.与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案:D2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每名学生C.样本是40名学生D.样本容量是40答案:D3.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002, (100)③00,01,02,...,99;④01,02,03, (100)其中正确的序号是()A.②③④B.③④C.②③D.①②答案:C4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是()A.110,110B.310,15C.15,310D .310,310答案:A 5.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任选m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.kn mB .k +m -n C.km nD .不能估计答案:C二、填空题6.某种福利彩票是从1~36的号码中,选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.解析:符合抽签法的特点:①个体数较少;②样本容量小.答案:抽签法7.假设要检验某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先被检测的5袋牛奶的编号____________.(下面摘取的是随机数表第7行至第9行.)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916大于800,要舍去,第三个数955也要舍去,第四个数667符合题意,这样依次读出结果.答案:785,667,199,507,1758.从个体数为N 的总体中抽出一个样本容量是20的样本,每个个体被抽到的可能性是15,则N 的值是________.解析:从个体数为N 的总体中抽出一个样本容量是20的样本,∴每个个体被抽取的可能性是20N .∵每个个体被抽取的可能性是15,∴20N =15, ∴N =100.答案:100三、解答题9.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:利用抽签法:第一步,将30辆汽车编号,号码是1,2,…,30;第二步,将号码分别写在形状、大小相同的纸条上,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次不放回地抽取3个号签,并记录上面的号码;第五步,所得号码对应的3辆汽车就是要抽取的对象.10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,请用随机数表法抽选样本.附部分随机数表:85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 6826 91 62 77 8384 57 27 84 8339 82 06 14 5939 07 37 92 4220 37 22 10 48解:第一步:将95户居民编号,每一户一个编号,即01~95.第二步:两位一组的表中,随机确定抽样的起点和抽样的顺序.如假定从第6列和第7列这两列的第1行开始读取,读数顺序从左往右.(横的数列称为“行”,纵的数列称为“列”).第三步:依次抽出10个号码.可能有号码如96,98两个号码不在总体编号范围内,应排除在外,再补充两个号码.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.11.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名初中男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学和两所初级中学,在这六所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:方案C比较合理,理由如下:由于A中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果;B中,用外地学生的身高也不能准确地反映本地学生身高的实际情况;而C中的抽样方法符合简单随机抽样,因此用C方案比较合理.。

2017-2018学年高中数学人教A版必修3课件:2-1-1 简单

2017-2018学年高中数学人教A版必修3课件:2-1-1 简单

随机抽样
2.1.1
简单随机抽样
学 习 目 标 思 维 脉 络 1.理解 简单随机抽样的定义和 特点. 2.掌握 简单随机抽样的方法及 步骤. 3.运用 简单随机抽样方法解决 实际问题.
1.简单随机抽样
一般地,设一个总体含有 N 个个体 ,从中逐个不放回地抽取 n 定 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被 义 抽到的机会都相等 ,就把这种抽样方法叫做简单随机抽样 分 抽签法(抓阄法)和随机数法 类
探究一
探究二
探究三
思维辨析
探究二抽签法的应用 【例2】 要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试, 请选择合适的抽样方法,并写出抽样过程. 分析:总体中共有30个个体,样本容量为3,所以用抽签法抽取样 本. 解:应使用抽签法,步骤如下: (1)将30辆汽车编号,号码是1,2,3,…,30; (2)将1~30这30个号码写到大小、形状都相同的号签上; (3)将写好的号签放入一个不透明的容器中,搅拌均匀; (4)从容器中每次抽取一个号签,连续抽取3次,并记录上面的编号; (5)所得号码对应的3辆汽车就是要抽取的对象.
①将总体中的个体编号. ②在随机数表中任选一个数作为开始. ③规定一个方向作为从选定的数读取
数字的方向. ④开始读取数字,若不在编号中,则跳过, 若在编号中则取出 ,依次取下去 ,直到取 满为止(相同的号只计一次). ⑤根据选定的号码抽取样本
做一做2 (1)抽签法中确保样本代表性的关键是 ( ) A.制签 B.搅拌均匀 C.逐一抽取 D.抽取不放回 (2)一个总体有60个个体,其编号为00,01,02,…,59,从中抽取一个 容量为10的样本,请从随机数表的第8行,第15列的数字开始向右读, 到最后一列后,再从下一行的右边向左开始读,依次获取样本号码, 直到取满样本为止,则获得的样本号码 为 . 答案:(1)B (2)55,19,10,50,12,58,07,44,39,52

【人教A版】必修3《2.1.1简单随机抽样》课时提升作业含解析.doc

【人教A版】必修3《2.1.1简单随机抽样》课时提升作业含解析.doc

课时提升作业(九)简单随机抽样(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·鞍山高一检测)关于简单随机抽样的特点,有以下几种说法,其中不正确的是( )A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关【解析】选D.简单随机抽样,除具有A,B,C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.2.简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定【解析】选B.根据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,故选B .3.(2015·吉林高一检测)某校期末考试后,为了分析该校高一年级1 000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( )A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100【解析】选D.1 000名学生的成绩是统计中的总体,每个学生的成绩是个体,被抽取的100名学生的成绩是一个样本,其样本的容量为100.4.下列抽样实验中,用抽签法方便的是( )A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验【解析】选B.A选项中总体容量较大,样本容量也较大不适宜用抽签法;B选项总体容量较小,样本容量也较小可用抽签法;C选项中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D选项总体容量较大,不适宜用抽签法.5.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【解析】选D.由题意知选定的第一个数为65(第1行的第5列和第6列),按由左到右选取两位数(大于20的跳过、重复的不选取),前5个个体编号为08,02,14,07,01.故选出来的第5个个体的编号为01.二、填空题(每小题5分,共15分)6.(2015·潍坊高一检测)用简单随机抽样的方法从含n个个体的总体中,逐个抽取一个容量为3的样本,对其中个体a在第一次就被抽取的机率为,那么n= .【解析】在第一次抽样中,每个个体被抽到的可能性均为=,所以n=8.答案:8【补偿训练】某中学高一年级有700人,高二年级有600人,高三年级有500人,以每人被抽取的机会为0.03,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量n为.【解析】n=(700+600+500)×0.03=54(人).答案:547.(2015·淮阴高一检测)从10个篮球中任取一个,检查其质量,用随机数表法抽取样本,则编号应为.【解析】只有编号时数字位数相同,才能达到随机等可能抽样,所以为0,1,2,3,4,5,6,7,8,9或01,02,03, (10)答案:0,1,2,3,4,5,6,7,8,9或01,02,03,…,108.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为:.【解析】按照抽签法设计的步骤可知应为:从袋子中依次不放回地抽出6个号签,记录上面的编号.答案:从袋子中依次不放回地抽出6个号签,记录上面的编号三、解答题(每小题10分,共20分)9.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.【解析】第一步,将32名男生从00到31进行编号;第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号;第三步,将写好的号签放在一个容器内摇匀,不放回地逐个从中抽出10个号签;第四步,相应编号的男生参加合唱;第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?【解析】(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读.(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.(4)以上号码对应的6个元件就是要抽取的样本.(答案不唯一)(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·荆州高一检测)某总体容量为M,其中带有标记的有N个,现用简单随机抽样的方法从中抽取一个容量为m的样本,则抽取的m 个个体中带有标记的个数估计为( )A. B. C. D.N【解析】选A.总体中带有标记的比例是,则抽取的m个个体中带有标记的个数估计为.【补偿训练】从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A. B.k+m-n C. D.不能估计【解析】选C.设参加游戏的小孩有x人,则=,x=.2.用随机数表法从100名学生(男生25人)中抽选20人,某男学生被抽到的可能性是( )A. B. C. D.【解析】选C.从个体数为N=100的总体中抽取一个容量为n=20的样本,每个个体被抽到的可能性都是=,故选C.【补偿训练】从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( ) A.36% B.72% C.90% D.25%【解析】选C.×100%=90%.二、填空题(每小题5分,共10分)3.(2015·洛阳高一检测)一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如下表)第10列开始,向右读取,直到取足样本,则抽取样本的号码是.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39【解析】读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.答案:01,47,20,28,17,024.采用简单随机抽样,从6个标有序号A,B,C,D,E,F的球中抽取1个球,则每个球被抽到的可能性是.【解析】每个个体被抽到的可能性是一样的.答案:三、解答题(每小题10分,共20分)5.(2015·上饶高一检测)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解析】第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中不放回地抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.6.(2015·梅州高一检测)某合资企业有150名职工,要从中随机抽出20人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程. 【解析】(抽签法)先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数“0”.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130,125,033.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1 简单随机抽样
40分钟课时作业
一、选择题
1.为了抽查汽车排放尾气的合格率,某环保局在某一路口随机抽查,这种抽查是( )
A .简单随机抽样
B .系统抽样
C .分层抽样
D .有放回抽样
答案 A
解析 根据题意,知在某一路口随机抽查,符合简单随机抽样的特征,故选A.
2.对于简单随机抽样,每个个体被抽到的机会( )
A .不相等
B .相等
C .不确定
D .与抽样次序有关 答案 B
解析 简单随机抽样中每一个个体被抽到的机会相等.
3.从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )
A .500名学生是总体
B .每个学生是个体
C .抽取的60名学生的体重是一个样本
D .抽取的60名学生的体重是样本容量
答案 C
解析 由题意可知在此简单随机抽样中,总体是500名学生的体重,A 错;个体是每个学生的体重,B 错;样本容量为60,D 错.
4.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( ) A.kn m B .k +m -n C.km n
D .不能估计 答案 C
解析 设参加游戏的小孩有x 人,则k x =n m ,x =km n
. 5.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,
选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()
A.08 B.07 C.02 D.01
答案 D
解析从第1行的第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.
6.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则应编号为() A.1,2,3,4,5,6,7,8,9,10
B.-5,-4,-3,-2,-1,0,1,2,3,4
C.10,20,30,40,50,60,70,80,90,100
D.0,1,2,3,4,5,6,7,8,9
答案 D
7.采用不放回抽取样本的方法,从一个含有5个个体的总体中抽取一个容量为2的样本,可能得到的样本共有()
A.10种B.7种C.9种D.20种
答案 A
解析假设5个个体分别记为a,b,c,d,e,容量为2的样本分别为a,b;a,c;a,d;a,e;b,c;b,d;b,e;c,d;c,e;d,e,共10种.
8.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为()
A.36% B.72% C.90% D.25%
答案 C
解析36
40×100%=90%.
二、填空题
9.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.
答案0.2
解析因为样本容量为20,总体容量为100,所以总体中每个个体被抽到的可能性都为20
100=0.2.
10.关于简单随机抽样,有下列说法:
①它要求被抽取样本的总体的个数有限;
②它是从总体中逐个地进行抽取;
③这是一种不放回抽样;
④它是一种等可能抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.
其中正确的有________.(请把你认为正确的所有序号都写上)
答案①②③④
11.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________.(下面摘取了随机数表第7行至第9行)
84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 76
63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79
33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54
答案068
解析由随机数表可以看出前4个样本的个体的编号是331,572,455,068.于是第4个样本个体的编号是068.
12.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.
答案抽签法
解析三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.
三、解答题
13.为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.
解第一步,将120名服药者重新进行编号,分别为001,002,003, (120)
第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;
第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;
第四步,以上这10个号码所对应的服药者即是要抽取的对象.
14.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试分别用抽签法和随机数法确定选中的艺人.
解抽签法:
(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,揉成团,然后放入一个不透明小筒中摇匀,从中逐个不放回地抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
随机数法:
(1)将18名香港艺人编号为01,02, (18)
(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;
(3)每次读取两位,凡不在01~18中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到17,06,04,12,01,16;
(4)以上号码对应的6名香港艺人就是参加演出的人选.
利用类似的方法确定内地、台湾艺人人选.。

相关文档
最新文档