九年级数学上册第21章一元二次方程21.3实际问题与一元二次方程(1)学案(无答案)(新版)新人教版
21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】
21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
人教版九年级数学上册作业设计 21.3 实际问题与一元二次方程 第1课时 用一元二次方程解决传播问题
4.某种植物的主干长出若干数目的支干,每个支干又长出同样 数目的小分支,主干、支干、小分支的总数是111,求每个支干长 出多少个小分支.
解:设每个支干长出x个小分支,根据题意,得1+x+x2=111. 解得x1=10,x2=-11(舍去).答:每个支干长出10个小分支
知识点 2:握手问题和数字问题 5.在某次聚会上,每两人都握了一次手,所有人共握手 210
14.一个两位数,十位上的数字比个位上的数字的平方小2,如 果把这个数的个位数字与十位数字交换,那么所得到的两位数比原 来的数小36,求原来的两位数.
解:设原来两位数的个位数字是x,则[10(x2-2)+x]-(10x+ x2-2)=36,解得x1=3,x2=-2(不合题意,舍去),x2-2=7.所以 原来的两位数为73
练习2:一个两位数等于它个位数的平方,且个位数比十位数大 3,则这个两位数是( C )
A.25 B.36 C.25或36 D.-25或-36
知识点 1:倍数传播问题 1.(2017·安定月考)某班同学毕业时都将自己的照片向全班其 他同学各送一张表示留念,全班共送 1 980 张照片,如果全班有 x 名同学,根据题意,列出方程为( B ) A.x(x+1)=1 980 B.x(x-1)=1 980 C.12x(x+1)=1 980 D.12x(x-1)=1 980
9.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条 航线,一共开辟了15条航线,则这个航空公司共有飞机场( C )
A.4个 B.5个 C.6个 D.7个
10.如图是某月的日历表,在此日历表上可以用一个矩形圈出 3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21, 22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的 和为( D )
人教版九年级数学上册21.3 实际问题与一元二次方程公开课 精品教案1
2、出示学习目标
能根据传播问题中的数量关系列出一元二次方程并求解,能根据具 体问题的实际意义,检验结果是 否合理
明确目标
出示自学提纲
⑴阅读教材19页探究1完成下列问题:
⑵开始有一人患了流感,第一轮设他传染了x个人,则第一轮后,共有_______个人患了流感.
⑶在第二轮中,这些人中的每个人又传染了x个人,则第二轮中总共传染了个人.
1、对于传播问题中的数量关系的解释,例如开 始有1人患流感,第一轮中传给3个人,这时就有(1+3)个人患流感。第二轮中这(1+3)个人每人又传染给3个人,这一轮的新患感冒人数为3×(1+3)。所以第二轮后患流感者总人数为(1+3)+3×(1+3)=16
2、握手问题x(x+1)÷2=780
3、发短信问题x(x+1)=182
重复时除以2,不重复时不除。
聆听、思考、回答
四、总结提高
1、出示精选习题
教材22页4、6题
根据所学内容解答习题
2、总结归纳
谈谈本节课的收获?
3、作业:课堂
必做:教材第22页4、6题
选做:教材25页第7题
家庭
同步轻松练习
板书设计
21.3实际问题与一元二次方程
实际问题转化成一元二次方程练习
单
循环问题
双
教后记
实际问题与一元二次方程
教学目标
知识与技能
能根据传播问题中的数量关系列出一元二次方程并求解,能根据具体问题的实际意义,检验结果是否合理
过程与方法
通过解决传播问题,学会将实际用用问题转化为数学问题
情感态度与价值观
体验解决问题策略的多样性,发展实践应用意识,进一步培养分析问题、解决问题的意识和能力
人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计
人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计一. 教材分析人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时,主要介绍了如何将实际问题转化为一元二次方程,并通过求解方程得到实际问题的解答。
本节课的内容是学生对一元二次方程知识的进一步拓展和应用,有助于提高学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念、解法和应用。
但实际问题与一元二次方程的结合,对学生而言是一个新的挑战。
因此,在教学过程中,教师需要关注学生对实际问题转化为数学问题的能力的培养,引导学生学会用数学的眼光看待实际问题。
三. 教学目标1.理解实际问题与一元二次方程之间的关系,学会将实际问题转化为一元二次方程。
2.掌握一元二次方程的解法,并能应用于实际问题的解答。
3.培养学生的数学思维能力,提高学生的数学应用能力。
四. 教学重难点1.教学重点:实际问题转化为一元二次方程的方法。
2.教学难点:如何引导学生发现实际问题与一元二次方程之间的联系。
五. 教学方法1.案例分析法:通过分析具体案例,引导学生发现实际问题与一元二次方程之间的关系。
2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。
3.合作交流法:鼓励学生之间相互讨论、分享心得,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示实际问题与一元二次方程之间的关系。
2.案例素材:准备一些实际问题,作为教学案例。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考实际问题与数学问题之间的关系,激发学生的学习兴趣。
2.呈现(10分钟)教师展示几个实际问题,让学生尝试将其转化为一元二次方程。
学生在课堂上进行讨论,分享自己的思路。
教师引导学生总结实际问题转化为一元二次方程的方法。
3.操练(10分钟)教师给出一些实际问题,学生独立将其转化为一元二次方程,并求解。
21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册
21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册【学情分析】一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点.它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型.【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程并求解,体会一元二次方程是刻画现实世界某些问题的一个有效的数学模型.2.熟练掌握“增长率”型问题的解题规律,会检验所得结果是否合理,培养分析问题、解决问题的能力.【重点难点】重点:列一元二次方程解决实际应用问题.难点:寻找问题中的等量关系.【新课导入】问题:谚语“一传十、十传百、百传千千万”的意思是什么?学生自主思考后,小组内讨论交流,形成思维上的模型.问题:若A同学患了流感,每轮传染中能传染6个人,且受感染的其他同学每轮也以相同的速度传染其他人,则第一轮传染过后共有多少人患了流感?第二轮传染过后共有多少人患了流感呢?师生共同讨论,运用表格或图形的方式给予表示,从表格中得到问题的答案.【新课讲解】【课堂小结】1.本节课我们学习了哪种类型的应用题?2.请把本节课的涉及增长率和利润的关系式总结并阐述它们的意义?【布置作业】1.某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%2.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月增长率是x,列方程( )A.500(1+2x)=720B.500(1+x)2=720C.500 (1+x2)=720D.720(1+x)2=5003.为提高经济效益,某公司决定对一种电子产品进行降价促销.根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低2元,每天可多售出4个.已知每个电子产品的固定成本为100元,如果降价后公司每天获利30000元,那么这种电子产品降价后的销售单价为多少元?设这种电子产品降价后的销售单价为x元,则所列方程为()A.(x﹣100)[300+4(200﹣x)]=30000B.(x﹣200)[300+2(100﹣x)]=30000C.(x﹣100)[300+2(200﹣x)]=30000D.(x﹣200)[300+4(100﹣x)]=300004.小强为活动小组购买统一服装,经理给予如下优惠:如果一次性购买不超过10件,单价为80元,如果一次性购买超过10件,那么每多买一件,购买的所有服装的单价降低2元,但单价最终不低于50元.小强一次性购买这种服装花费1200元,则他购买了这种服装的件数是()A.20件B.24件C.20件或30件D.30件5.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使设每盆多植x 株,则一株的盈利为元.6.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为__________________。
21.3实际问题与一元二次方程教案
21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
人教版九年级数学上册21.3 实际问题与一元二次方程-解决代数问题(第1课时)公开课优质教案
21.3实际问题与一元二次方程第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题,百分率问题中的数量关系列一元二次方程并求解,熟悉解题解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系;在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情境态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点利用一元二次方程解决传播问题、百分率问题.难点如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题、百分率问题中的数量关系.教学设计活动1 创设情境一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?分析:设这个小组x人,那么每个人要送给除了他自己以外的人,共送张贺卡,由此可列方程: .提出问题:列一元二次方程解决实际问题的步骤有哪些?总结:(1)审:认真审题,分清题意,弄清已知量和未知量,寻找相等关系;(2)设:就是设未知数,分直接设未知数和间接设未知数,到底选择何种方式设未知数,要以有利于列出方程为准则;(3)列:就是根据题目中的已知量和未知量之间的关系列出方程;(4)解:就是求出所列方程的解;(5) 就是检验方程的解.首先检验计算是否正确,然后检验每个解是否复合问题的实际意义,再正确取舍;(6)答:就是对实际问题进行回答.提出问题:列一元二次方程解决实际问题的步骤与列一元一次方程解决实际问题的一般步骤有哪些相同点和不同点?活动2 探究新知例1 教材第19页探究2变化率问题.提出问题:(1)如何比较哪种药品成本的年平均下降率较大?(2)本题中应该如何设未知数?如何列方程?(3)讨论:在本题解方程的过程中,方程有两个解应该怎么办?(4)哪种药品成本的年平均下降率较大?哪种药品成本的年平均下降额较大?(5)讨论:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?总结:变化率问题的公式若平均增长(或降低)的百分率为x ,增长(或降低)前的量是a ,增长(或降低)n 次后的量是b ,则它们的数量关系可表示为b x a n=±)1((其中增长取+,降低取-).例2 教材第19页探究1传播问题.提出问题:(1)本题中的已知量未知量分别是什么?(2)本题中我们设直接未知数还是间接未知数?(3)本题中的数量关系是什么?设每轮传染中平均一个人传染x 个人,那么①患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感.②在第二轮传染中传染源是 人,这些人中每一个人有传染了 人,第二轮传染后,共有 人患流感.(4)怎么列方程?(5)方程的解是多少?10和-12都是这个实际问题的解吗?(6)如果按这样的传染速度,三轮传染后有多少人患了流感?(7)请观察式子)1(1x x x +++与[])1(1)1(1x x x x x x x +++++++能不能化简?请在课后写出表示四轮传染、五轮传染后的患病人数的代数式,并猜测n 轮传染后的患病人数.活动3 练习巩固1.参加篮球联赛的每两队之间都进行了两次比赛(双双循环比赛),共要比赛90场,共有多少个队参加了比赛?2.某商场2014年的经营中,一月份的营业额为200万元.一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求平均每月营业额的增长率.3.某种细菌,一个细菌经过两轮繁殖后共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌? 活动4 课堂小结与作业布置课堂小结1. 列一元二次方程解决实际问题的一般步骤是哪些?2.列一元二次方程解决实际问题中,最关键是那一步?检验应该要注意什么?3.变化率问题和传播问题有什么规律?布置作业教材21-22页习题21.3第2—7题.。
21.3 实际问题与一元二次方程(第1课时)
六、教学方法
自主、合作、探究
七、教具
多媒体
八、教学过程
教师活动
学生活动
设计意图
激情导入
有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个
人?
此问让学生直观感性地认识到传播是以几何级数递增,速度非常快,从而让学生明白预防传染病的重要性,这样增加了数学课堂的人文教育,让学生不但学到知识,更能明白知识对生活的指导作用。
甲型H1N1流感病毒的传染性极强,某地因3人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有27人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过2天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
主要利用计算机多媒体辅助教学,使学生在寻找实际问题中的等量关系时,更加生动、形象和直观,提高教学效率。
小组评价与总结
这节课你有什ห้องสมุดไป่ตู้收获?
你能说说本节课所研究的“传播问题”的基本特征吗?解决此类问题的关键步骤是什么?
“传播问题”的基本特征是:以相同速度逐轮传播. 解决此类问题的关键步骤是:明确每轮传播中的传
染源个数,以及这一轮被传染的总数.
九、作业:教科书复习题21第7题.
十、课后反思
知识与技能目标:使学生会用列一元二次方程的方法解决有关增长率问题.
过程与方法目标:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
情感与态度目标:进一步使学生深刻体会转化及设未知数列方程的思想方法.
四、教学重点
学会用列方程的方法解决有关增长率问题.
五、教学难点
5)如果按照这样的传染速度,三轮传染后有多少个人患流感?
人教版九年级数学上册第21章《 21.3 实际问题与一元二次方程》(1)
21.3 实际问题与 一元二次方程(1)
随着社会的不断发展,营销问题在我们的生活 中越来越重要,今天我们就来学习一下利用一元二 次方程解决与营销有关的问题.
第二十一章 一元二次方程
【例1】两年前生产1 t甲种药品的成本是5 000元,生 产1 t乙种药品的成本是6 000元.随着生产技术的进步, 现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品 的成本是3 600元.哪种药品成本的年平均下降率较大?
第二十一章 一元二次方程
1. 平均变化率问题常列方程:a(1±x)n=b.
其中a为基数,x为平均增长(降低)率,
n为增长(降低)次数,b为增长(降低)后的量.
2. 解决利润问题常用的关系有:
(1)利润=售价-进价.
(2)利润率=
利润 进价
×100% =售价进-价进价
×100%.
(3)售价=进价(1+利润率).
第二十一章 一元二次方程
2.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植 3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利 减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株? 设每盆多植x株,则可以列出的方程是( A ) A.(3+x)(4-0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3-0.5x)=15 D.(x+1)(4-0.5x)=15
药品成本为5 000(1-x)元,两年后甲种药品成本为 5 000(1-x)2元,于是有 5 000(1-x)2=3 000. 解方程,得 x1≈0.225,x2≈1.775.
根据问题的实际意义,甲种药品成本的年平均 下降率约为22.5%.
第二十一章 一元二次方程
人教版九年级数学上册21.3 实际问题与一元二次方程(第1课时)公开课 精品教案
21.3 实际问题与一元二次方程教学时间课题21.3实际问题与一元二次方程(1)课型新授教学媒体多媒体教学目标知识技能1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.过程方法1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.3.经历观察,归纳列一元二次方程的一般步骤情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支点题,板书课题.教师指导学生进行阅读,找关键词,题中数据,联系所要求的量,明确量与量的关系,设直接未知数,表示相关量,找等量关系尝试列方程,求根,根据实际问题要求,对根进行取舍.学生独立解答问题1,2,然后交流,讨论,达到共识.学生尝试叙述,然后师联系曾经学习过的方程应用衔接本节内容,明确本节课任务淡化解方程,重点突出列方程弄清问题背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:生归纳师引导生对照上题,分析找出两题的异同点让学生体会建立数学模型思想,分析、解决实际问题.学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.让学生更加熟练地列方程解应用题,并强化运用.把握百分率问题的解题技巧通过类比,联系新旧知识,明确共性.使学生巩固提高,了解学生掌握情况纳入知识系统,总结本节课内容,把握利用列一元二次方程解常见实际问题的题的技巧○1.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元 ○2.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p + B .p C .1001000p p- D .100100p p +○3. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250 B .100(1+x )+100(1+x )2=250C .100(1-x )2=250 D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题 五、作业设计 必做:P18:1、2、3 选做:P19:9 补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大? 教 学 反 思。
人教版数学九年级上册21.3实际问题与一元二次方程优秀教学案例
4.教师巡回指导,给予学生必要的帮助和提示。
(四)总结归纳
1.让学生汇报各自小组的讨论成果,总结一元二次方程解决实际问题的方法;
2.教师引导学生归纳一元二次方程的解法及其应用,强调重点和难点;
3.结合学生的讨论,总结解决实际问题的策略和技巧;
4.培养学生自主探究、动手实践的能力,使其能在实际问题中灵活运用一元二次方程的解法。
(三)情感态度与价值观
1.让学生体验数学与生活的紧密联系,增强学生学习数学的兴趣和信心;
2.通过解决实际问题,让学生感受到数学在生活中的重要性,提高学生的数学应用意识;
3.培养学生勇于探索、积极动脑思考的良好学习习惯,增强学生的自主学习能力;
3.通过设置悬念,引发学生的好奇心,激发学生积极探索的欲望;
4.结合学生的认知水平,创设适宜难度的情境,使学生能顺利地进入学习状态。
(二)问题导向
1.引导学生分析问题,明确已知条件和所求目标,培养学生的问题解决能力;
2.鼓励学生提出假设,引导学生运用一元二次方程进行验证,培养学生的推理能力;
3.设计具有挑战性的问题,激发学生的思维,使学生在解决问题的过程中不断提高;
3.小组合作的学习方式:通过小组合作,学生能够相互交流、分享解题思路,培养团队合作精神和沟通能力。这种学习方式不仅提高了学生的学习效果,还使他们能够从同伴那里获得不同的观点和解决问题的方法。
五、案例亮点
1.生活情境的创设:本案例以购物场景为背景,让学生在熟悉的环境中感受数学与生活的紧密联系。这样的设计不仅激发了学生的学习兴趣,还使他们能够更容易地理解一元二次方程在实际问题中的应用,从而提高了教学的实效性。
人教版九年级上册数学全册教案21.3 实际问题与一元二次方程
6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.作业布置教材第21-22页习题21.3第2-7题.课堂总结.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际..传播问题解决的关键是传播源的确定和等量关系的建立..若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2)..成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小..利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系..根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
秋九年级数学上册 第二十一章 一元二次方程 21.3 实际问题与一元二次方程 第1课时 传播问题与一
第二十一章 一元二次方程21.3实际问题与一元二次方程第1课时 传播问题与一元二次方程学习目标:1.会分析实际问题(传播问题)中的数量关系并会列一元二次方程.2.正确分析问题(传播问题)中的数量关系.3.会找出实际问题(传播问题)中的相等关系并建模解决问题.重点:分析实际问题(传播问题)中的数量关系并会列一元二次方程来解决问题.难点:正确分析问题(传播问题)中的数量关系.一、知识1.解一元二次方程的四种解法是什么?2.列方程解应用题的一般步骤是什么?二、要点探究探究点1:传播问题与一元二次方程探究1有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?想一想如果按照这样的传染速度,三轮传染后有多少人患流感?例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是133,每个支干长出多少小分支?讨论1在分析探究1和例1中的数量关系时它们有何区别?讨论2解决这类传播问题有什么经验和方法?方法归纳:运用一元二次方程模型解决实际问题的步骤有哪些?(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.(2)“设”是指设未知数;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程;(4)“解”就是求出所列方程的解;(5)“验”就是对所得的解进行检验,得到实际问题的解.例2某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?练一练某中学组织了一次联欢会,参会的每两个人都握了一次手,所有人共握了10次手,有多少人参加聚会?方法总结:握手问题及球赛单循环问题要注意重复进行了一次,所以要在总数的基础上除以2.【变式题】某中学组织初三学生足球比赛,以班为单位,采用主客场赛制(即每两个班之间都进行两场比赛),计划安排72场比赛,则共有多少个班级参赛?方法总结:关键是抓住主客场赛制,即每两个班之间都进行两场比赛,就可以根据班级数乘每个班级要进行的场数等于总场数列等量关系.例3一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是多少?方法总结:解决这类问题关键要设数位上的数字,并能准确的表达出原数.三、课堂小结1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980X,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A. x2=1980B. x(x+1)=1980C. 12x(x-1)=1980 D. x(x-1)=19802.有一根月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73,设每个支干长出x个小分支,根据题意可列方程为()A. 1+x+x(1+x)=73B. 1+x+x2=73C. 1+x2=73D. (1+x)2=733.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()A. 10B. 9C. 8D. 74.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.5.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,则初三有几个班?6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?7.一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数.参考答案自主学习知识1.直接开平方法、配方法、公式法、因式分解法.2.设未知数,找等量关系,列方程,解方程,检验作答.课堂探究二、要点探究探究点1:传播问题与一元二次方程探究1 解:设每轮传染中平均一个人传染了x个人.根据题意,得(1+x)2=121.解方程,得x1=10, x2=-12(不符合题意,舍去). 答:平均一个人传染了10个人.想一想第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).例1 解:设每个支干长出x个小分支,则 1+x+x2=133,即x2+x-132=0.解得x1=11, x2=-12(不合题意,舍去).答:每个支干长出11个小分支.讨论1 每个支干只分裂一次,每名患者每轮都传染.讨论2 (1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.例2解:设共有x个班级参赛,则每个班级要进行(x-1)场比赛,共要进行x(x-1)场比赛,但每两班之间只比赛一场,故根据题意得(1)15,2x x解得x1=6, x2=-5(舍去).∴x=6, 答:共有6个班级参赛.练一练解:设共有x人参加聚会,则每个人要握手(x-1)次,共握手x(x-1)次,但每人都重复了一次,故根据题意得(1)10,2x x解得x1=5, x2=-4(舍去).∴x=5.答:共有5个人参加聚会.【变式题】解:设共有x个班级参赛,则每个班级要进行(x-1)场比赛,根据题意得(1)72,x x解得x 1=9, x2=-8(舍去).∴x=9.答:共有9个班级参赛.例3解:设这个两位数个位数字为x,则十位数字为(x-3),根据题意得x2=10(x-3)+x,解得x1=5, x2=6.∴x=5时,十位数字为2,x=6时,十位数字为3.答:这个两位数是25或36.当堂检测1.D2.B3.D4.105.解:初三有x个班,根据题意列方程,得1(1)6,2x x化简,得x2-x-12=0,解得x1=4, x2=-3(舍去).答:初三有4个班.6.解:(1)设每个有益菌一次分裂出x个有益菌,60+60x+60(1+x)x=24000,∴x1=19, x2=-21(舍去).∴每个有益菌一次分裂出19个有益菌.(2)三轮后有益菌总数为 24000×(1+19)=480000(个).7.解:设原来的两位数十位上的数字为x,则个位数的数字为(5-x),依题意得(10x+5-x)[10(5-x)+x]=736,解得x1=2, x2=x=2时,5-x=3;当x=3时,5-x=2.答:原来的两位数是23或32.。
人教版九年级数学上册:21.3实际问题与一元二次方程(教案)
四、教学流程
(一)导入新课
同学们,今天我们将要学习的是《实际问题与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积、速度或距离等与一元二次方程相关的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程在实际问题中的应用奥秘。
人教版九年级数学上册:21.3实际问题与一元二次方程(教案)
一、教学内容
人教版九年级数学上册:21.3实际问题与一元二次方程
1.实际问题中的一元二次方程:以生活中的例子导入,如面积、速度、时间等问题,引导学生理解一元二次方程的实际意义。
2.解一元二次方程的步骤:回顾一元二次方程的定义,总结求解一元二次方程的步骤,包括移项、合并同类项、因式分解等。
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的建立和解法这两个重点。对于难点部分,如判别式和根与系数的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体抛掷的高度,并利用一元二次方程计算最大高度。
3.应用一元二次方程解决实际问题:结合教材例题,让学生学会将实际问题转化为数学模型,进而求解一元二次方程。
4.一元二次方程的根的判别式:讲解判别式的概念,引导学生学会判断一元二次方程的根的情况。
5.一元二次方程的根与系数的关系:探讨一元二次方程的根与系数之间的关系,如韦达定理等。
人教版九年级数学上21.3《实际问题与一元二次方程》第一课时参考教案(
21.3实际问题与一元二次方程(1)一、教学目标1.会利用一元二次方程解决传播问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决传播问题.2.难点:根据传播问题列方程.三、教学过程(一)基本训练,巩固旧知1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.【(1)题答案为11,121,(2)题答案为1+x,1+x+x(x+1),先让生自己做,然后师进行讲解】(二)创设情境,导入新课师:和一元一次方程一样,利用一元二次方程可以解决实际问题,上节课我们做了一个例题,本节课我们再来看一个例题.(三)尝试指导,讲授新课(师出示下面的例题)例有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每一个人传染了几个人?师:大家把这个题目好好默读几遍.(生默读)师:谁能不看黑板说出题目的意思?生:……(让几名同学说)师:这个题目怎么设?生:设每轮传染中平均一个人传染了x个人.(师板书:解:设每轮传染中平均一个人传染了x个人)师:(在黑板的其它地方板书:第一轮后)设平均一个人传染了x个人,那么第一轮后,共有多少人得了流感?生:1+x.(多让几名同学回答,然后师板书:1+x)师:(在黑板的其它地方板书:第二轮后)那么第二轮后,共有多少人得了流感?(让生思考一会儿再叫学生)生:1+x+x(1+x).(多让几名同学回答,然后师板书:1+x+x(1+x))师:下面大家根据题目的意思列一列方程.(生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:1+x+x(1+x)=121(生答师板书:1+x+x(1+x)=121).师:(指方程)这是一个一元二次方程,怎么解这个方程?大家试着解一解.(生解方程)师:解出来的结果是什么?生:x1=10,x2=-12(生答师板书:x1=10,x2=-12).师:(指方程)解这个方程是有讲究的,很多同学用公式法解,发现数字比较大,解起来比较麻烦.实际上我们可以用直接开平方法来解.怎么用直接平方法来解?(稍停)师:(指准1+x+x(1+x)=121)1+x+x(1+x)有公因式1+x,我们把1+x提取出来,得到(1+x)(1+x)(边讲边在其它地方板书:(1+x)(1+x)),可见方程可以化成(1+x)2=121(边讲边在其它地方板书:(1+x)2=121),用直接开平方法解这个方程,容易求出x1=10,x2=-12.师:方程中的x表示每个人传染的人数,所以x2=-12不符合题目的意思,要舍去(板书:(不合题意,舍去)).师:最后还要答.(板书:答:每轮传染中平均每个人传染了10个人)师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决传播问题.俗话说:一传十,十传百.这一传十,十传百是怎么么传的?(指准方程)用方程来表示就是(1+x)2=121.如果传了三轮,就成了(1+x)3;如果传了十轮,就成了(1+x)10.(作业:P21习题1(3)(4)、4,4题中91改为81)四、板书设计(略)。
新人教版九年级上册 第21章 21.3实际问题与一元二次方程 教案
师生行为
点题,板书课 题.
教师提出问 题,并指导学 生进行阅读, 独立思考,学 生根据个人理 解,回答教师 提出的问题. 弄清题意,设 出未知数,并 表示相关量, 根据相等关系 尝试列方程, 求根.根据实 际问题要求, 对根进行选择 确定问题的 解.教师组织
二次备 课 .
1
○1 正中央的长方形与整个封面的长宽比例 相同,是什么含
学生合作交 流,达到共 识,
师生汇总生活 中常见的类似 问题,总结这 类题的做题技 巧.
教师提出问 题,让学生结 合画图独立理 解并解答问 题,培养学生 对几何图形的 分析能力,将 数学知识和实 际问题相结合 的 应用意识
教师总结,学 生体会
学生独立完 成,教师巡视 指导,了解学 生 掌握情况, 并集中订正
个面积为 8m2•的长方形花台,要使花坛四周的宽地宽度一
样,则这个宽度为多少?
四小结 归纳
谈一节课的收获和体会.
五、作业设计
必做:P48:4-8
选做:P49:10
补充作业:
某林场•上口宽比渠深多 2m,渠底比渠深多 0.4m.
(1)渠道的上口宽与渠底宽各是多少?
教 学 目 标
教学重点 教学难点 教学过程设计
实际问题与一元二次方程
知识 技能
过程 方法 情感 态度
1.能根据○1 以流感为问题背景,按一定传播速度 逐步传播的问题;○2 以封面设计为问题背景,边衬 的宽度问题中的数量关系列出一元二次方程,体会 方程刻画现实世界的模型作用. 2.培养学生的阅读能力与分析能力. 3.能根据具体问题的实际意义,检 验结果是否合 理. 通过自主探究,独立思考与合作交流,使学生弄清 实际问题的背景,挖掘隐藏的数量关系,把有关数 量关系分析透彻,找出可以作为列方程依据的主要 相等关系,正确的建立一元二次方程. 在分析解决问题的过程中逐步深入地体会一元二 次方程的应用价值.
人教版九年级上册数学学案:21.3实际问题与一元二次方程 (传播问题)
21.3实际问题与一元二次方程(传播问题)学习目标1、会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题的实际意义,检验所得结果是否合理,进一步培养分析问题和解决问题的能力。
2、会运用方程模型解决传播问题。
3、全新投入,做最好的自己重点:一元二次方程在实际问题中的应用,列方程解应用题;难点:会用含未知数的代数式表示等量关系,能根据问题的实际意义,检验所得的结果是否合理。
学习过程:一、温故知新,自主预习:1、列方程解应用题的步骤是什么?2、完成课本探究1,并补充未完成的过程。
3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互了182件,如果全组有x名同学,那么根据题意列出的方程是()A.x(x+1)=182 B.x(x-1)=182C.2x(x+1)=182 D.x(1-x)=182二、学以致用1、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2、.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?3、.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有人.三、反馈检测:1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2.月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?3.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?4.某渔船出海捕鱼,2017年平均每次捕鱼量为10吨,2019年平均每次捕鱼量为8.1吨,求2017年~2019年每年平均每次捕鱼量的年平均下降率.5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.3 实际问题与一元二次方程(1)
一、温故知新
1.参加足球联赛的每两队之间只进行一
场比赛(单循环比赛),共要比15场,
则共有多少队参加了比赛?
二、设问导读
问题1:有一人患了流感,经过两轮传
染后,有121人患了流感,每轮传染中
平均一个人传染了几个人?
分析:
⑴开始有一人患了患流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示第一轮后,共有-人患了流感;
(2)第二轮传染中,这些人中每一个人又传染了x人,用代数式表示,第二轮后,共有 --------人患流感。
解:
根据等量关系列方程:追问:如果按照这样的速度传染,经过三轮传染后共有多少人患流感?
三、巩固训练
题组一
1.有一人利用手机发送短信,获得信息的人也按他的发送人数发送了该条短信息,经过两轮短信发送,共有90人的手
机上获得同一信息,则每轮平均一个人向多少人发送短信?
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少个小分支?
题组二
1.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )
A.4个 B.5个
C.6个 D.7个
2.参加足球联赛的每两队之间都进行了
两次比赛(双循环比赛),共要比赛90
场,则共有_____队参加了比赛.
3.参加足球联赛的每两队之间都进行
了一次比赛(单循环比赛),共要比赛45
场,则共有_______队参加了比赛.
4.生物兴趣小组的学生,将自己收集的
标本向本组其他成员各赠送一件,全组
共互赠了182件,如果全组有x名同学,
那么根据题意列出的方程是( )
A. x(x+1)=182
B. x(x-1)=182
C. 2x(x+1)=182
D. x(1-x)=182×2
三、拓展延伸
6.(1)n边形(n>3)其中一个顶点的对
角线有________条;
(2)一个凸多边形共有14条对角线,它
是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.
课堂小结。