中考二次函数压轴题—解题法归类总结
二次函数压轴题---动点问题解答方法技巧总结(含例解答案)
⼆次函数压轴题---动点问题解答⽅法技巧总结(含例解答案)⼆次函数压轴题---动点问题解答⽅法技巧总结⑴求⼆次函数的图象与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图象的位置判断⼆次函数ax 2+bx+c=0中a,b,c 的符号,或由⼆次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图象关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标. ⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式ax 2+bx+c ﹙a ≠0﹚本⾝就是所含字母x 的⼆次函数;下⾯以a >0时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:动点问题题型⽅法归纳总结动态⼏何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好⼀般与特殊的关系;分析过程中,特别要关注图形的特性(特殊⾓、特殊图形的性质、图形的特殊位置。
)动点问题⼀直是中考热点,近⼏年考查探究运动中的特殊性:等腰三⾓形、直⾓三⾓形、相似三⾓形、平⾏四边形、梯形、特殊⾓或其三⾓函数、线段或⾯积的最值。
下⾯就此问题的常见题型作简单介绍,解题⽅法、关键给以点拨。
⼆、抛物线上动点5、(湖北⼗堰市)如图①,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1)求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三⾓形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第⼆象限抛物线上⼀动点,连接BE、CE,求四边形BOCE⾯积的最⼤值,并求此时E点的坐标.注意:第(2)问按等腰三⾓形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆⼼CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆⼼MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P。
中学数学二次函数压轴题解题技巧
中学数学二次函数压轴题解题技巧二次函数是中学数学中重要的概念之一。
在解题过程中,掌握一些解题技巧能够帮助我们更轻松地解决二次函数的压轴题。
以下是一些解题技巧的总结:1. 定义二次函数首先,我们需要清楚二次函数的定义和一般形式。
二次函数的一般形式是:$$f(x) = ax^2 + bx + c$$,其中a、b、c为常数,且$a \neq 0$。
了解二次函数的定义和形式,有助于我们在解题过程中准确理解题目和相关知识。
2. 寻找顶点二次函数的图像是一个抛物线,其中的最高点或最低点被称为顶点。
寻找顶点是解题过程中的关键步骤之一。
顶点的横坐标为$x = -\frac{b}{2a}$,纵坐标为$f\left(-\frac{b}{2a}\right)$。
通过计算这两个值,我们能够确定抛物线的位置和形状。
3. 判断开口方向通过观察二次函数的二次项系数a的正负,我们可以判断抛物线的开口方向。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
这一点在解题中很重要,因为它影响到抛物线与坐标轴的交点和极值。
4. 求解零点解题时,我们通常需要求二次函数的零点,即$f(x) = 0$的解。
求解零点的方法有两种:因式分解和配方法。
对于简单的二次函数问题,我们可以利用因式分解直接求解零点;对于复杂的问题,可以使用配方法。
5. 判断函数值的变化通过计算二次函数的值$f(x)$,我们可以判断函数在不同区间内的变化趋势。
当a大于0时,二次函数在顶点处取得最小值,且随着x增大或减小,函数值逐渐变大;当a小于0时,二次函数在顶点处取得最大值,且随着x增大或减小,函数值逐渐变小。
6. 利用对称性二次函数具有对称性,即关于顶点对称。
这一点在解题中经常用到。
通过利用对称性,我们可以快速求得函数的某些值,或者根据已知的函数值推导出其他函数值。
7. 注意特殊情况解题过程中,我们应该注意特殊情况的处理。
例如,当a等于零时,二次函数变为一次函数;当顶点坐标为整数时,我们可以在图像上快速标出顶点和其他点。
中考二次函数压轴题题型总结(一)
中考二次函数压轴题题型总结(一)中考二次函数压轴题题型总结前言二次函数作为中考数学的重要内容之一,经常作为压轴题出现。
对于考生来说,熟练掌握二次函数的基本知识和解题方法是非常重要的。
本文将对中考二次函数压轴题题型进行总结,帮助考生更好地备考。
一、基本概念回顾1.二次函数的标准形式:y=ax2+bx+c2.二次函数的图像特征:–开口方向(参数a的正负)–顶点坐标(x=−b2a ,y=−D4a)–对称轴方程(x=−b2a)–判别式(D=b2−4ac)二、题型分析与解题技巧1. 求解二次函数的解•求解二次函数的零点:–根据方程y=0,列出二次方程并求解;–利用零点和对称轴的关系求解。
2. 求解二次函数图像的特征•开口方向:–根据参数a的正负判断开口方向;–利用顶点和对称轴的关系判断开口方向。
•顶点坐标:求解。
–利用x=−b2a•对称轴方程:求解。
–利用x=−b2a3. 利用图像解题•区间范围:–根据图像的开口方向确定y的取值范围。
•最值问题:–利用顶点坐标求解函数的最值。
通过以上总结,我们可以看出,二次函数压轴题在中考中占据了重要的位置。
对于考生来说,熟练掌握二次函数的基本概念和解题技巧是提高数学成绩的关键。
希望本文能对考生复习备考有所帮助。
4. 利用判别式解二次函数的性质•判别式D=b2−4ac可以判断二次函数的根的情况:–当D>0时,方程有两个不相等的实根;–当D=0时,方程有两个相等的实根;–当D<0时,方程没有实根。
•利用判别式的性质解题:–求解满足条件的参数;–求解满足条件的x的取值范围。
5. 利用二次函数的性质解实际问题•利用二次函数的最值性质解实际问题:–求解物体的最高点、最低点等位置;–求解时间、速度、距离等相关问题。
通过本文的总结,我们可以看出,在中考二次函数压轴题中,考察的内容主要包括基本概念、解题技巧、图像特征、判别式和实际问题的应用。
考生在备考时应该注重理解二次函数的概念和性质,掌握解题的方法和技巧,加强对图像特征和判别式的理解和应用,同时培养解实际问题的能力。
二次函数压轴题题型
二次函数压轴题题型二次函数压轴题常见的题型有以下几种:1. 求解二次函数的零点或交点问题。
给定一个二次函数,通过解方程或求导后令其等于0,求解其零点或交点的x和y值。
举例:已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点或交点坐标。
解法:将函数$f(x)$令为0,得到$2x^2-3x+1=0$,解得$x=1/2$和$x=1$。
将两个x值代入$f(x)$,得到相应的y值,即$f(1/2)=1/2$,$f(1)=0$。
因此,函数$f(x)$的零点或交点坐标为$(1/2, 0)$和$(1/2, 1)$。
2. 求二次函数的顶点坐标问题。
给定一个二次函数,通过完成平方的形式转化,求得函数的顶点坐标。
举例:已知函数$f(x)=3x^2+6x+1$,求函数$f(x)$的顶点坐标。
解法:将$f(x)$完成平方的形式转化,得到$f(x)=3(x+1)^2-2$。
因为$(x+1)^2$的最小值为0,所以$f(x)$的最小值为-2,当$x=-1$时取得。
因此,函数$f(x)$的顶点坐标为$(-1,-2)$。
3. 求二次函数的对称轴问题。
给定一个二次函数,通过求出对称轴的方程,求得函数的对称轴位置。
举例:已知函数$f(x)=x^2-2x+5$,求函数$f(x)$的对称轴方程。
解法:由于二次函数的对称轴是其顶点所在的直线,因此首先需要求出函数$f(x)$的顶点坐标。
将$f(x)$完成平方的形式转化,得到$f(x)=(x-1)^2+4$,因此顶点坐标为$(1,4)$。
因为对称轴过顶点且垂直于x轴,所以对称轴的方程为$x=1$。
因此,函数$f(x)$的对称轴位置为$x=1$。
4. 求二次函数的最值问题。
给定一个二次函数,通过求出函数的最值,求得函数的极值。
举例:已知函数$f(x)=-x^2+2x+3$,求函数$f(x)$的最大值和最小值。
解法:由于二次函数的图像是一个开口朝下的抛物线,因此最大值就是函数的顶点值,最小值在顶点值下方。
中考数学压轴题之二次函数(中考题型整理,突破提升)附详细答案
一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N (4e+3,3e+3), 解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P ,M ,N 为顶点的三角形为等腰直角三角形,t 的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(3)32. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG∵∠MAG =60°,∠AGM =90°,∴AM =2AG =4233k +-=2323k k --,∴11AM AN +=323231k k k k -+-- =33232k k --=3(31)2(31)k k -- =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s 时,足球离地面最高,最大高度是4.5m ;(2)能. 【解析】试题分析:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t 2+5t+,当t=时,y 最大=4.5;(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at 2+5t+c 的图象经过(0,0.5)(0.8,3.5), ∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.4.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t 的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92,∴C(2,92),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,92﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,92﹣t),把P(2+t,92﹣t)代入y=﹣12x2+2x+52得﹣12(2+t)2+2(2+t)+52=92﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,92),D点坐标为(2,52),∵抛物线平移,使其顶点C(2,92)移到原点O的位置,∴抛物线向左平移2个单位,向下平移92个单位,而P点(4,92)向左平移2个单位,向下平移92个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,12•(m+52+2)•2=8,解得m=72,此时M点坐标为(0,72);当m<0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M点坐标为(0,﹣72);综上所述,M点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.6.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.7.如图,已知抛物线2y ax bx c=++的顶点为()4,3A,与y轴相交于点()0,5B-,对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【答案】(1)21452=-+-y x x;(2)()2,1-M,25y x=-;(3)点P、Q的坐标分别为()6,1或()2,1、()4,3-或()4,1.【解析】【分析】(1)函数表达式为:()243y a x ==+,将点B 坐标代入上式,即可求解; (2)()4,3A 、()0,5B -,则点()2,1-M ,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)函数表达式为:()243y a x ==+, 将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1-M , 设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =, 故直线AB 的表达式为:25y x =-; (3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到M ,同样点21,452P m m m ⎛⎫-+-⎪⎝⎭向左平移2个单位、向下平移4个单位得到()4,Q s , 即:24m -=,214542m m s -+--=, 解得:6m =,3s =-,故点P 、Q 的坐标分别为()6,1、()4,3-; ②当AM 是平行四边形的对角线时, 由中点定理得:424m +=+,2131452m m s -=-+-+, 解得:2m =,1s =,故点P 、Q 的坐标分别为()2,1、()4,1;故点P 、Q 的坐标分别为()6,1,()4,3-或()2,1、()4,3-,()2,1或()4,1. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.8.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.9.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【答案】(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m22,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==,这个二次函数的表达式是y=x 2-4x+3; (2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得30k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3, 过点P 作PE ∥y 轴,交直线BC 于点E (t ,-t+3), PE=-t+3-(t 2-4t+3)=-t 2+3t , ∴S △BCP =S △BPE +S CPE =12(-t 2+3t )×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S △BCP 最大=278. (3)M (m ,-m+3),N (m ,m 2-4m+3) MN=m 2-3m ,2|m-3|,当MN=BM 时,①m 22(m-3),解得2, ②m 22m-3),解得2 当BN=MN 时,∠NBM=∠BMN=45°, m 2-4m+3=0,解得m=1或m=3(舍) 当BM=BN 时,∠BMN=∠BNM=45°,-(m 2-4m+3)=-m+3,解得m=2或m=3(舍), 当△BMN 是等腰三角形时,m 的值为2,-2,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m 的方程,要分类讨论,以防遗漏.10.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.(1)证明四边形ABCD 是菱形,并求点D 的坐标; (2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由. 【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析 【解析】 【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标: 设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭,当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8), ∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形. ∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8).(2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10ax 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩.∴直线BC 的解析式为y=﹣2x+8.∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2. ∴M (5,,-2).又∵抛物线y=ax 2﹣10ax+c 经过点C 和M ,∴25a 50a c 2c 8-+=-⎧⎨=⎩,解得2a 5c 8⎧=⎪⎨⎪=⎩.∴抛物线的函数表达式为22y x 4x 85=-+. (3)存在.点P 的坐标为P 1(529,48),P 2(﹣5,38)。
初三二次函数压轴题题型归纳及方法
初三二次函数压轴题题型归纳及方法一、题型归纳初三二次函数压轴题主要包括以下几种题型:1. 解二次方程:给出一个二次方程,要求求出其解。
2. 求顶点坐标:给出一个二次函数,要求求出其顶点坐标。
3. 求零点:给出一个二次函数,要求求出其零点。
4. 求最值:给出一个二次函数,要求求出其最大值或最小值。
5. 综合应用:将上述各种题型结合起来进行综合应用。
二、方法1. 解二次方程(1)将方程化为标准形式ax²+bx+c=0;(2)判断Δ=b²-4ac的正负性:如果Δ>0,则有两个不相等的实数根;如果Δ=0,则有两个相等的实数根;如果Δ<0,则无实数根,但可以得到一对共轭复数根;(3)根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求得解。
2. 求顶点坐标(1)将二次函数化为标准形式y=ax²+bx+c;(2)利用公式x=-b/2a求得顶点的横坐标;(3)将横坐标代入原函数中求得顶点的纵坐标。
3. 求零点(1)将二次函数化为标准形式y=ax²+bx+c;(2)令y=0,解出方程ax²+bx+c=0;(3)根据解出的方程,用上述方法求出零点。
4. 求最值(1)将二次函数化为标准形式y=ax²+bx+c;(2)如果a>0,则函数有最小值,最小值为y0=c-b²/4a,顶点坐标为(-b/2a,y0);如果a<0,则函数有最大值,最大值为y0=c-b²/4a,顶点坐标为(-b/2a,y0)。
5. 综合应用综合应用题目一般会给出一个实际问题,并要求利用二次函数进行建模和求解。
解决这类题目需要结合实际情况进行分析,并运用上述各种方法进行计算和推导。
三、注意事项1. 在解二次方程时,需要注意判别式Δ的正负性,以确定是否有实数根。
2. 在求顶点坐标时,需要注意顶点横坐标的符号和范围。
3. 在求零点时,需要注意解方程的过程和方法,并判断是否存在实数根。
中考二次函数压轴题———解题法归类总结
中考二次函数压轴题———解题法归类总结解决二次函数压轴题的通法,供大家参考。
几个自定义概念:①三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。
②动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。
如:动点P在y=2x+1上,就可设 P(t, 2t+1).若动点P在y=2-+,则可x x321设为P(t,2-+)当然若动点M 在X轴上,则设为(t, 0).若动点M t t321在Y轴上,设为(0,t).③动三角形:至少有一边的长度是不确定的,是运动变化的。
或至少有一个顶点是运动,变化的三角形称为动三角形。
④动线段:其长度是运动,变化,不确定的线段称为动线段。
⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。
⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。
如:y=3x-6。
⑦X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x标,纵坐标称为y标。
⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。
动点坐标“一母示”是针对直接动点坐标而言的。
1.求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。
2、“平行于y轴的动线段长度的最大值”的问题:由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式-y y下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
二次函数压轴题类型方法总结
二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。
) 已知、 y=322--x x (以下几种分类的函数解析式就是这个)1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。
2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ∆面积最大,求出P 坐标解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。
】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。
在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。
4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。
5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。
6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。
二次函数压轴题基本方法和结构
二次函数压轴基本结构和解题方法一、线1、线段与距离 (1)改“斜”归正已知:A(x 1,y 1),B(x 2,y 2),直线AB :y =kx +b ,AB ⊥BC 水平线段:AC =|x 1−x 2| 铅垂线段:AC =|y 1−y 2|斜线段: AB =√(x 1−x 2)2+(y 1−y 2)2=√k 2+1|x 1−x 2|(2)点到直线距离公式:d =PH =|km +b −n|√k 2+1(3)于涵定理 一般位置:条件:直线AB 交抛物线(二次项系数为a )于AB 两点,铅垂线PQ 交抛物线于P ,交直线AB 于P ,AE ⊥PQ ,BF ⊥PQ 结论:①PQ =|a|∙AE ∙BF ;S △PAB =12PQ ∙(AE +BF )=12|a |∙AE ∙BF ∙(AE +BF )=12|a (x A −x P )(x P −x B )(x A −x B )|特殊位置① 若AB 为水平直线: PQ =|a|∙AQ ∙BQ ② 若AB 为水平直线,且AP ⊥BP : PQ =1|a|(PQ =|a|∙AQ ∙BQ ,且PQ 2=AQ ∙BQ )③ 若AB 为水平直线,且P 为抛物线顶点(类似于圆中的垂径结构)AB =√4PQ|a|④ 若AB 为x 轴,且P 为抛物线顶点:AB =√∆|a|(4)焦点准线焦点准线的定义:将抛物线的顶点向上/下平移14|a|个单位,就得到焦点和准线的位置。
焦点:F(−b2a ,14a);准线:直线y=−14a条件:点P是抛物线上任意一点,过P点的直线(非铅垂线)与抛物线有位移公共点(“切线”),与对称轴交于S,与过顶点的水平线交于A,PM⊥准线于M;PQ过焦点F,过P、Q 的切线交于T结论:①PF=PM,DE=DF②PF=FS③FA⊥PS,PA=SA④当直线PQ绕焦点F转动时候,T点在准线上移动(阿基米德三角形特殊情况)⑤TP⊥TQ,TM=TN⑥以MN为直径的圆切PQ于F,以PQ为直径的圆切MN于T准线2、平行“弦”条件:AB//CD//l P结论:x A+x B=x C+x D=2x P变式一:若CE和DF为铅垂线,则AE=BF变式二:若将抛物线向下平移交直线AB于E、F,则AE=BF变式三:将抛物线沿着PQ方向平移,若AB//PQ,则AB=EF,AE=BF3、线段相等和比值(1)左右对称(纵向角平分线)特殊情况:条件:P为抛物线(顶点为M)对称轴上一点,过P点的直线PA交抛物线于C,过C作水平直线BC交抛物线于B点,连接AB交对称轴于Q,连接PB交抛物线于D;结论:①k PA+k PB=0;②PM=QM一般情况:条件:过抛物线内一点T作铅垂、水平直线,交抛物线于M、B、C,在铅垂线上取一点P,连接PC交抛物线于A,连接AB交铅垂线于Q结论:TBTC =QMPM(2)上下对称条件:水平直线与抛物线交于P、Q两点,直线PA、PB分别交抛物线于A、B,且∠APQ=∠BPQ,连接AB,过Q点的直线作抛物线的切线。
最新中考数学总复习二次函数压轴题题型归纳与方法总结【提分秘籍】
压轴题解决策略:第一步:作出题中要求的图形;第二步:通过图形“性质”表示所求坐标:必须用“一个字母”表示;第三步:代入二次函数解析式字母,从而求坐标。
例题1.已知抛物线顶点)4,1(C ,过点)0,1(-A (1).求抛物线解析式解:设抛物线解析式())0(2≠+-=a k h x a y ,则()()()()32,41,1,4)01(0,0,1414,1;4,12222++-=+--=∴-=∴+--=∴-+-=∴==∴x x y x y a a A x a y k h C 即过点又点的坐标(2)E 在x 轴上,F 在抛物线上,以点A 、D 、E 、F 为顶点的四边形为平行四边形,求E 点坐标. 分两类解决:分析:①利用平行四边形所分两个三角形面积相等。
“对角线为同底高必定相等”,得全等三角形推F 点坐标。
利用得中点G 的坐标和E 点坐标来求F 的坐标:中点坐标公式;方法二:利用三角形全等直接表示F 点坐标. 解:()0,a E ,则()()()()()()3,1;3,13,1,3,1,3,1,0,123,1321+-∴-++-∴-a F a F a F a F a F A()()()()(),72;0,7272,33121323,131223,1+-∴±==+-+--++-=-∴E E a a a x x y a F 即,得代入将()()()()()011,33121323,12222,,舍负即,得代入再将E a a a x x y a F ∴±==++++-++-=+()0,b E 法一:如图右,由题知A(-1,0),D(0,3),G 为AD 、44F E 中点()3,1,23,214b F G --∴⎪⎭⎫⎝⎛-∴ 法二:如图右, 易证44AMF OD E ∆≅∆,()()b AE OM A b E --==∴-1,0,1,0,44()3,14b F --∴∴将此点代入322++-=x x y ,得 ()()()0,33)(13312142-∴-=-==+--+---E b b b b 或舍去,即∴综上,()()()()0,3,0,1,0,72;0,724231-+-E E E E(3)、M 在对称轴上,N 为平面内一点,以B 、D 、M 、N 为顶点的四边形为矩形,求M 的坐标. 解:方法一:利用“两直线垂直 121-=k k ” 如图右, 由题知D(0,3),B(3,0);设M(1,t),则 1.,11-=∴⊥BD DM k k BD DM ()4,1,4,10330.3101M t t ∴=-=----∴即 1.,22-=∴⊥BD BM k k BD BM 又()2,1,2,10330.0132-∴-=-=----∴M t t 即 方法二:利用“两直线垂直 121-=k k ”从而推出未知直线解析式,求直线与对称轴交点即可。
二次函数的实际应用六大压轴题型归纳总结(含答案)
二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.。
(完整版)中考数学二次函数压轴题题型归纳
中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。
解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。
二次函数压轴题题型总结(有答案)
二次函数压轴题解题思路一、基本知识1会求解析式以及一些关键点的坐标(如函数图像与坐标轴的交点、两函数图像的交点等)。
2.会利用函数性质和图像3.相关知识:如一次函数、反比例函数、点的坐标、方程。
图形中的三角形、四边形、圆及平行线、垂直。
一些方法:如相似、三角函数、解方程。
一些转换:如轴对称、平移、旋转。
二、典型例题:(一)、求解析式可参考一下部分试题的第一问。
(二)、二次函数的相关应用第一类:面积问题例题. (2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.)(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;练习:1. (2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.第二类:.构造问题(1)构造线段(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.(2)构造相似三角形(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.(3)构造平行四边形(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D 两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.造等腰三角形(2013•泰安)如图,抛物线y=12x2+bx+c与y轴交于点C(0,-4),(4)构与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(5)构造直角三角形(2014•四川内江)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.(6)构造角相等(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.(7)构造菱形(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.(8)构造对称点(11莱芜)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.AOByx(9)构造平行线:(2014•山东烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,△ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED△AC的理由.(10)构造垂直:(2014宜宾市)如图,已知抛物线y= x2+bx+c的顶点坐标为M(0,–1),与x轴交于A、B两点. (1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连结MC、MD,试判断MC、MD是否垂直,并说明理由.(11)构造圆(2014年淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使△APB=30°的点P有个;(2)若点P在y轴上,且△APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,△APB是否有最大值?若有,求点P的坐标,并说明此时△APB最大的理由;若没有,也请说明理由.参考答案:(一)、求解析式(二)、二次函数的相关应用第一类:面积问题(2012•莱芜)解:(1)y=(x﹣2)2﹣1=x2﹣4x+3.yxOMDCBA第24题图(2)S△ACD=AD•CD=××2=2.(3)(2+,1﹣)、(2﹣,1+)、(1,2)或(4,﹣1).(2014兰州)解(1)y=﹣x2+x+2;(2)y=﹣(x﹣)2+,P1(,4),P2(,),P3(,﹣);(3)S四边形CDBF=S△BCD+S△CEF+S△BEF=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1)9.第二类:.构造问题(1)构造线段(2014枣庄)(1)△OBC为等腰直角三角形∠OBC=45°.(2)P(2,﹣3).(3)线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),当x P=时,线段PF长度最大为.(2)构造相似三角形(2013•莱芜)(1)y=.(2)DF的最大值为.此时D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3NM,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MN上,∴只能PN=3NM,P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,此时点P的坐标为(2,﹣).若PN=3NA,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).(3)构造平行四边形(2014•莱芜)解:(1)y=﹣x2+x.(2)存在.或或.(3)△S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG=(1+t)(+t)﹣•t•t=﹣(t﹣1)2+当t=1时,S有最大值为.△S的最大值为.(4)构造等腰三角形PBE ABCS S=PBE S 12==-13x 2-232(5)构造直角三角形(2014•四川内江) (1)y=﹣x 2+x+4.(2)当t=1时,PQ 取到最大值,最大值为. (3)①当∠BAM=90°时,MH=11.M (,﹣11). ②当∠ABM=90°时,M (,9).综上所述:符合要求的点M 的坐标为(,9)和(,﹣11).(6)构造角相等(2014•娄底)解(1)依题意:x 1+x 2=﹣m ,x 1x 2=m ﹣1,∵x 1+x 2+x 1x 2=7,∴(x 1+x 2)2﹣x 1x 2=7,∴(﹣m )2﹣(m ﹣1)=7,即m 2﹣m ﹣6=0,解得m 1=﹣2,m 2=3,∵c=m ﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x 2﹣2x ﹣3; (2)能如图,设p是抛物线上的一点,连接PO ,PC ,过点P 作y 轴的垂线,垂足为D .若∠POC=∠PCO 则PD 应是线段OC 的垂直平分线∵C 的坐标为(0,﹣3)∴D 的坐标为(0,﹣)∴P 的纵坐标应是﹣令x 2﹣2x ﹣3=,解得,x 1=,x 2=因此所求点P 的坐标是(,﹣),(,﹣)(7)构造菱形(2013•枣庄) 解:(1).(2)此时P 点的坐标为(,). (3) S 四边形ABPC =++==.易知,当x=时,四边形ABPC 的面积最大.此时P 点坐标为(,),四边形ABPC 的最大面积为.(8)构造对称点(11莱芜)(1)212y x x =-+。
中考数学二次函数压轴题题型归纳
中考数学二次函数压轴题题型归纳二次函数是中考数学考试中的重点内容之一,也是考生们常常遇到的难点。
在数学考试中,经常会有一道或多道关于二次函数的压轴题,对于考生来说,熟悉并掌握不同类型的压轴题型是非常重要的。
本文将对中考数学中常见的二次函数压轴题型进行归纳总结,以帮助考生们更好地备考。
一、基础型压轴题这类题型主要考察对二次函数一般式方程y=ax^2+bx+c 的掌握程度,常常是一些基础知识的运用。
例题:已知二次函数 y=2x^2-4x+3 ,求当 x=2 时的函数值。
解析:将 x=2 带入函数方程,得到 y=2(2)^2-4(2)+3=4-8+3=-1 ,因此当 x=2 时的函数值为 -1 。
二、求解二次函数解的压轴题这类题型主要考察对二次函数解的求解方法的掌握程度,常常需要运用因式分解、配方法或求根公式等知识。
例题:已知二次函数 y=3x^2+7x+2 的零点是 x1=-1 ,求其另一个零点。
解析:已知 x1=-1 是该二次函数的一个零点,代入函数方程得到0=3(-1)^2+7(-1)+2 ,化简得到 0=3-7+2 ,即 0=-2 ,因此另一个零点为 -2 。
三、确定二次函数性质的压轴题这类题型主要考察对二次函数的性质及相关知识的掌握程度,如顶点坐标、对称轴、开口方向等。
例题:已知二次函数 y=ax^2+bx+c 的对称轴与 x 轴重合,且开口向上,若顶点坐标为 (2,4) ,求函数的解析式。
解析:已知对称轴与 x 轴重合,说明二次函数的形式为 y=a(x-h)^2 ,而开口向上说明 a>0 。
根据顶点坐标 (2,4) ,可得到方程 4=a(2-h)^2 ,代入 h=2 得到 4=a(2-2)^2 ,即 4=a(0)^2 ,则 a 为任意实数,因此函数的解析式为 y=a(x-2)^2 。
四、应用题这类题型主要考察对二次函数知识的应用能力,常常结合实际问题进行分析和解答。
例题:一枚炮弹以二次函数的形式进行运动,其高度随时间变化服从函数 y=-2t^2+10t ,求炮弹的最大高度以及达到最大高度的时间。
初中二次函数压轴题题型归纳及方法
初中二次函数压轴题题型归纳及方法一、题型归纳初中二次函数压轴题主要包括以下几种类型:1. 求解二次方程,确定函数的零点2. 求解顶点坐标、对称轴及最值3. 判断函数的单调性和定义域、值域4. 与其他函数进行比较,确定大小关系5. 给定函数图像或部分信息,确定函数的表达式二、方法详解1. 求解二次方程,确定函数的零点求解二次方程可以使用因式分解法、配方法和公式法。
其中,因式分解法适用于形如x^2+bx+c=0的方程;配方法适用于形如ax^2+bx+c=0且a≠0的方程;公式法适用于所有形如ax^2+bx+c=0的方程。
求得二次方程的根后,即可得到函数的零点。
若根为实数,则该实数即为零点;若根为复数,则该函数无实零点。
2. 求解顶点坐标、对称轴及最值对于一般形如y=ax^2+bx+c(a≠0)的二次函数,其顶点坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
对称轴为x=-b/2a,最值为f(-b/2a)。
若函数为y=a(x-h)^2+k的形式,则顶点坐标为(h,k),对称轴为x=h,最值为k。
3. 判断函数的单调性和定义域、值域对于一般形如y=ax^2+bx+c(a≠0)的二次函数,当a>0时,函数在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,函数在顶点左侧单调递增,在顶点右侧单调递减。
定义域为实数集R,值域取决于a的符号。
4. 与其他函数进行比较,确定大小关系与线性函数比较:当x趋近正无穷时,二次函数增长速度大于线性函数;当x趋近负无穷时,二次函数增长速度小于线性函数。
因此,在x 轴正半轴上,二次函数与线性函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。
与指数函数比较:当x趋近正无穷时,指数函数增长速度大于二次函数;当x趋近负无穷时,指数函数增长速度小于二次函数。
因此,在x 轴正半轴上,指数函数与二次函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。
2024年中考数学二次函数压轴题归类(30个)
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题18:抛物线上找一点P, 作x轴, 交线段AC于点N, 使AC分∆ 的面积为2:1两
部分?
形
顶点坐标(h, k)
原始三角
形;重视
四点围成
的三角形
(边、角
关系)
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题2:判断∆ 的形状,并说明理由
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
二次函数压轴题归类(30个)
题号
针对变式题目
形定问题
1-解析式、2-三角形形状
线段问题
3-线段相等、4-线段成比例
最值问题
5-线段最值1 (直)、6-线段最值2 (斜) 、7-和最小8-差最大 、9-两村一路
面积问题
10-定点求面积 、11-斜三角形求面积 、12--(定+动) 求面积、13-同底等高 (直) 、14同底等高(斜) 、 15-面积平分1、16-面积平分 2 、 17-面积平分3 、18-面积分割
时M点坐标
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题9:线段 MN=1,在对称轴上运动 (M点在N点上方),求四边形BMNC周长的最小值及此
时M点坐标
将军饮马解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,
对称。解题策略:对称、翻折→化同为异;化异为同;化折为直。
二次函数压轴题方法总结
二次函数压轴题方法总结一、前言二次函数压轴题是高中数学中的重要内容之一,也是考试中常见的题型。
本文将总结二次函数压轴题的解法方法,希望能够对广大学生有所帮助。
二、基础知识在开始讲解二次函数压轴题的解法方法之前,我们需要先了解一些基础知识:1. 二次函数:形如 $f(x)=ax^2+bx+c$ 的函数,其中 $a\neq 0$。
2. 抛物线:二次函数的图像称为抛物线。
当 $a>0$ 时,抛物线开口向上;当 $a<0$ 时,抛物线开口向下。
3. 平移:对于二次函数 $f(x)=ax^2+bx+c$,平移后得到的新函数为$f(x-a_1)+b_1$。
其中 $a_1$ 表示沿着 $x$ 轴平移的距离,正值表示向左平移,负值表示向右平移;$b_1$ 表示沿着 $y$ 轴平移的距离,正值表示向上平移,负值表示向下平移。
4. 压缩与拉伸:对于二次函数 $f(x)=ax^2+bx+c$,压缩后得到的新函数为 $af(\frac{x}{k})$,其中 $k>0$ 表示沿着 $x$ 轴压缩的倍数,$k<1$ 表示压缩,$k>1$ 表示拉伸;拉伸后得到的新函数为 $af(kx)$。
三、二次函数压轴题解法方法1. 压轴法压轴法是二次函数压轴题中最常用的解法方法之一。
其基本思想是通过平移和拉伸等变换将原二次函数转化为标准式$f(x)=a(x-h)^2+k$,从而求出抛物线的顶点坐标和开口方向。
具体步骤如下:(1)将原二次函数改写为 $f(x)=a(x-b)^2+c$ 的形式。
(2)确定抛物线的开口方向:当 $a>0$ 时,抛物线开口向上;当$a<0$ 时,抛物线开口向下。
(3)求出顶点坐标:由于 $(x-b)^2\geq 0$,因此当 $x=b$ 时,有$(x-b)^2=0$。
因此顶点坐标为 $(b,c)$。
(4)确定对称轴:对称轴即为顶点所在的直线。
当二次函数为标准式时,对称轴与 $y-$ 轴重合;否则需要进行平移变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二次函数压轴题———解题法归类总结解决二次函数压轴题的通法,供大家参考。
几个自定义概念:①三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。
②动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。
如:动点P在y=2x+1上,就可设 P(t, 2t+1).若动点P在y=2-+,则可x x321设为P(t,2-+)当然若动点M 在X轴上,则设为(t, 0).若动点M t t321在Y轴上,设为(0,t).③动三角形:至少有一边的长度是不确定的,是运动变化的。
或至少有一个顶点是运动,变化的三角形称为动三角形。
④动线段:其长度是运动,变化,不确定的线段称为动线段。
⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。
⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。
如:y=3x-6。
⑦X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x标,纵坐标称为y标。
⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。
动点坐标“一母示”是针对直接动点坐标而言的。
1.求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。
2、“平行于y轴的动线段长度的最大值”的问题:由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式-y y下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。
4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x的的一元二次方程,由题有△=2b-4ac=0(因为该直线与抛物线相切,只有一个交点,所以2b-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。
(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。
(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。
5.常数问题:(1)点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
(2)三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。
(3)几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线(或其它直线)的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可。
6.“在定直线(常为抛物线的对称轴,或x 轴或y 轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。
7.三角形周长的“最值(最大值或最小值)”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。
② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题(简称“三边均动的问题):在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解。
8.三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):(方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离。
最后利用三角形的面积公式12底·高。
即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。
(方法2)过动点向y轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到1(-)-x2S y y=•动三角形上(动)下(动)右(定)左(定)(x),转化为一个开口向下的二次函数问题来求出最大值。
②“三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):先把动三角形分割成两个基本模型的三角形(有一边在x轴或y轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。
利用相似三角形的性质(对应边的比等于对应高的比)可表示出分割后的一个三角形的高。
从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。
9.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。
10、“定四边形面积的求解”问题:有两种常见解决的方案:方案(一):连接一条对角线,分成两个三角形面积之和;方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)11.“两个三角形相似”的问题:两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例若成比例,则相似;否则不相似。
(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似。
一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来(一母示),然后把两个目标三角形(题中要相似的那两个三角形)中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例(要注意是否有两种情况),列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点。
(2)不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在。
简称“找特角,求(动)点标,再验证”。
或称为“一找角,二求标,三验证”。
12.、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点。
(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。
先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。
解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。
13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在。
②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在。
③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在。