2018年秋华师大版八年级上册数学习题课件:13.4 尺规作图(第二课时)
华师大版数学八年级上册13.4《尺规作图》说课稿
华师大版数学八年级上册13.4《尺规作图》说课稿一. 教材分析华师大版数学八年级上册13.4《尺规作图》这一节的内容是在学生已经掌握了直线、圆、三角形等基本几何图形的基础上进行讲解的。
本节课主要让学生了解尺规作图的基本方法和步骤,通过实例让学生学会使用尺规作图解决一些简单的问题。
教材从实际问题出发,引导学生用尺规作图的方法去解决问题,培养了学生的动手操作能力和解决问题的能力。
二. 学情分析学生在学习这一节之前,已经掌握了基本的几何图形和一些基本的作图方法。
但是,对于尺规作图这一概念,学生可能还比较陌生,需要通过实例和练习让学生理解和掌握。
此外,学生在这一阶段的学习中,可能对数学的学习兴趣有所下降,因此,在教学过程中,需要注重激发学生的学习兴趣,提高学生的学习积极性。
三. 说教学目标1.知识与技能目标:让学生了解尺规作图的基本方法和步骤,能运用尺规作图解决一些简单的问题。
2.过程与方法目标:通过实例讲解和动手操作,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,提高学生对数学的认识和理解。
四. 说教学重难点1.教学重点:尺规作图的基本方法和步骤。
2.教学难点:如何引导学生运用尺规作图解决实际问题。
五. 说教学方法与手段1.教学方法:采用实例讲解法、问题驱动法、动手操作法等。
2.教学手段:多媒体课件、黑板、尺规等。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何用尺规作图解决问题,激发学生的学习兴趣。
2.新课讲解:讲解尺规作图的基本方法和步骤,通过实例让学生理解和掌握。
3.动手操作:让学生分组进行尺规作图的练习,教师巡回指导。
4.问题解决:让学生运用尺规作图解决一些实际问题,培养学生的解决问题的能力。
5.总结与拓展:总结本节课所学内容,提出一些拓展问题,激发学生的学习兴趣。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
可以设计如下板书:1.基本方法:–确定作图工具–解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。
华东师大版八年级上册数学教学设计《13.4尺规作图(2)》
华东师大版八年级上册数学教学设计《13.4尺规作图(2)》一. 教材分析华东师大版八年级上册数学《13.4尺规作图(2)》这一节,是在学生已经掌握了尺规作图的基本方法和思想之后进行的一节课程。
在本节课中,学生需要进一步学习如何利用尺规作图来解决一些实际问题,如作一条线段等于已知线段,作一个角等于已知角等。
本节课的内容在数学几何学习中占有重要的地位,不仅可以帮助学生巩固尺规作图的基本技能,还可以培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节课之前,已经掌握了尺规作图的基本方法和步骤,对尺规作图有一定的了解和认识。
但是,学生在实际操作中,可能对一些细节问题把握不好,如作图的精确度、作图过程中的注意事项等。
此外,学生在解决实际问题时,可能缺乏思路和方法,需要老师在教学中进行引导和启发。
三. 教学目标1.知识与技能目标:使学生掌握尺规作图的基本方法和步骤,能够独立完成尺规作图的任务。
2.过程与方法目标:通过尺规作图的实际操作,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,增强学生学习数学的自信心和积极性。
四. 教学重难点1.教学重点:尺规作图的基本方法和步骤。
2.教学难点:如何利用尺规作图解决实际问题。
五. 教学方法采用问题驱动法、启发式教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。
同时,通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具准备:尺规作图的工具,如直尺、圆规等。
2.教学素材:一些关于尺规作图的实际问题,用于引导学生进行思考和操作。
七. 教学过程1.导入(5分钟)教师通过提出一个问题,如“如何用尺规作图作出一条线段等于已知线段?”来引导学生进入本节课的学习主题。
2.呈现(10分钟)教师通过讲解和示范,向学生讲解尺规作图的基本方法和步骤,如如何用尺规作图作出一条线段等于已知线段,如何用尺规作图作出一个角等于已知角等。
华师大八年级数学上册《尺规作图》课件
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
谢谢观赏
You made my day!
我们,还在路上……
[归纳总结] 步骤: (1)先画一条射线; (2)在射线上用圆规截取相应的线段,求和时顺次截取叠 加,求差时从线段中截取; (3)指明所作的线段是哪一段,并用字母表示. 注意:画射线用直尺,截取线段用圆规,作图时要正确 使用作图工具,尽量减小误差,用铅笔作图,保留作图痕迹.
13.4.1 作一条线段等于已知线段 13.4.2 作一个角等于已知角
图 13-4-1
13.4.1 作一条线段等于已知线段 13.4.2 作一个角等于已知角
► 知识点四 作一个角等于已知角 作法如下: 已知:∠AOB,如图 13-4-2①所示. 求作:∠A′O′B′,使∠A′O′B′=∠AOB. 作法:(1)作射线 O′A′; (2)以__O__为圆心,以_适__当_长为半径画弧,交_O_A_于点 C,交 _O__B_于点 D; (3)以_O_′_为圆心,以_O_C__长为半径画弧交__O′A′ _于点 C′; (4)以_C__′ _为圆心,以_C_D__的长为半径画弧,交_前__一条 _弧 于点 D′; (5)过点_D_′__作射线 O′B′. ∠A′O′B′就是所求作的角,如图②所示.
华师大版八年级数学上册《尺规作图4.经过一已知点作已知直线的垂线》课件
图 13-4-18
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
解:(1)作线段 AB 的垂直平分线 EF; (2)作线段 CD 的垂直平分线 MN,MN 交 EF 于点 P. 则点 P 就是所求作的点,如图 13-4-48.
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
重难互动探究
探究问题一 经过已知点作已知直线的垂线及其运用 例 1 [课本练习第 1 题变式题] 如图 13-4-16 所示,
过点 P 作∠A 两边的垂线.
图 13-4-16
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
[解析] 此题即为过直线外一点作直线的垂线. 解:如图所示,PM,PN 即为所求作的直线.
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
[归纳总结] (1)过直线上一点作垂线即作出平角的平分线. (2)过直线外一点作垂线,利用等腰三角形“三线合一”的性 质. (3)作“高”即过直线外一点作已知直线的垂线,垂线段即为 高.
有古
一人
个云
在:
路“
上读。万Leabharlann ”卷从书古,
至行
今万
,里
学路
习。
和”
旅今
行人
都说
是:
图 13-4-11
图 13-4-12
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
(2)如图 13-4-12,点 P 是直线 AB 外一点,在直线 AB 上取两点 C 和 D,使得 PC=PD.作∠CPD 的平分线 PN, 则直线 PN 与直线 AB 的关系是 PN⊥AB .
尺规作图PPT课件(华师大版)
证明:连接CM、CN
A
在△OMC和△ONC中
M
OM=ON(相同半径)
C
MC=NC(相同半径)
OC=OC(公共边)
∴ △OMC≌△ONC(SSS) B
N
O
∴ ∠AOC= ∠BOC
练习:P88页1小题
思考:你能否把这个角四等分?
已知:∠ AOB
求作:射线OC,使∠AOC= 1∠BOC
4
B
O
A
探索:利用尺规作图,作一个直角
问题1.点与直线的位置关系有哪几种? 【答案】点在直线上和点在直线外。
问题2. 经过已知直线上一点如何作已知直线的垂线?
已知:直线 l 和其上一点C。
求作: l 的垂线,使它经过点C。
作法:B两点; 2.作平角ACB的平分线CM; 3.反向延长射线CM; 所以直线CM就是所求的垂线。
一.用尺规作角的平分线
例.已知:∠ AOB 求作:射线OC,使∠AOC= ∠ BOC
画法:
A
1.以O为圆心,适当长 为半径作弧,交OA于点M,
M
交OB于点N。
C
2.分别以M,N为圆
心,大于 1/2 MN的长为
半径作弧,两弧在∠AO
B的内部交于C。
B
N
O
3.作射线OC,
射线OC即为所求。
思考:有什么理由说射线OC使∠AOC=∠BOC?
思考:利用尺规作图能否作一个45度的角?
练习:P88页2小题
例:作任意三角形三条角平分线
问:有什么发现?
归纳:
1.三角形的三条角平线线交于一点且交点在三角形内; 2.交点到三角形三边的距离相等; 3.到三角形三边距离相等的点只有1个,到三边所在直线 的距离相等的点有4个。
【数学课件】2018年八年级数学上13.4尺规作图3作已知角的平分线导学新版华东师大版
13.4 尺规作图
目标突破
目标一 会作已知角的平分线
例 1 教材补充例题 如图 13-4-5 所示, 作出△ABC 三个内 角的平分线,并观察你作出的图形,有什么新的发条内角平分线相交于同一点.
13.4 尺规作图
【归纳总结】(1)作已知角的平分线是根据“三边对应相等的两个三
图 13-4-6
13.4 尺规作图
【解析】 先作∠A的平分线AE,以B为顶点作∠ABD=∠EAB,则 ∠ABD即为所求.
解:如图所示,∠ABD 即为所求.
13.4 尺规作图
【归纳总结】 作一个角等于已知角属于定量作图,而作角的平
分线则属于定位作图.在综合作图题中,有时既需要定量,又需
要定位,需认真分析,找到解决办法.
题的关键是作图,在正确作图的基础上进行相关的计算或证明.
13.4 尺规作图
总结反思
小结
知识点 作已知角的平分线
作法如下:
已知:∠AOB,如图13-4-8①所示.
求作:射线OC,使OC平分∠AOB. 图13-4-8
OD 作法:1.在射线OA,OB上,分别截取OD,OE,使________ = OE ________ ;
第13章 全等三角形
13. 4 尺规作图 3.作已知角的平分线
第13章 全等三角形
3. 作已知角的平分线
知识目标
目标突破
总结反思
13.4 尺规作图
知识目标
1.经过操作、思考、讨论,归纳总结用尺规作图作已知角的 平分线的方法及其依据. 2.在理解用尺规作已知角的平分线的基础上,能够解决一些 与角平分线有关的尺规作图问题.
角形全等”和“全等三角形的对应角相等”的原理来解决的. (2)在作图步骤的第二步一定要注意是以大于某条线段长度的为半 径作圆弧,否则两弧没有交点或两弧交点不明显. (3)通过作图了解三角形三个内角的平分线相交于一点.
华师大版八年级数学上册《尺规作图5.作已知线段的垂直平分线》课件
1.作线段PQ=BC;
2.作∠EDF=∠ABC ;
A
3.作射线AG平分∠ABC;
4.作线段AB的垂直平分线CD.
B
C
二、利用基本作图作出其他图形
例1 已知两边及其夹角,求作三角形.
α a
b
想一想
三、反思与提高
对尺规作图再认识的过程中,你有何 新的收获?
实际作图
几何作图
基本作图
想一想
体会.分享
说能出你这节课的心得和体会 让大家与你分享吗?
有古
一人
个云
在:
路“
上读
。万
”卷
从书
古,
至行
今万
,里
学路
习。
和”
旅今
行人
都说
是:
相“
辅要
相么
You made my day!
成读 的书
两,
件要
事么
。旅
。行
,
身
体
和
灵
魂
总
要
我们,还在路上……
ห้องสมุดไป่ตู้
八年级(上 册 )
华东师大版 §13.4
想一想
A
B
C
一、基本尺规作图
作一条线段等于已知线段; 作一个角等于已知角; 作已知线段的垂直平分线; 作已知角的平分线.
一、基本尺规作图
1.作一条线段等于已知线段.
a
一、基本尺规作图
2.作一个角等于已知角.
α
一、基本尺规作图
3.作已知线段的垂直平分线.
尺规作图课件华东师大版数学八年级上册
探究讨论
通过上面的作图,你还能发现什么?你会作任意一个三 角形的三条中线吗? 通过作图,知道直线 CD 与线段 AB 的交点就是 AB 的 中点,因此我们可以用这种方法作出线段 AB 的中点, 从而可以作出任意一个三角形的的三条中线。
例2 如图,A,B 是路边两个 新建小区,要在公路边增设一
个公共汽车站,使两个小区到
作一条线段等于已知线段
已知:线段 MN. 求作线段 AC,使 AC=MN.
1. 画射线 AB; 2. 用圆规量出线段 MN 的长,在 射线 AB 上截取 AC=MN. 线段 AC
就是所要画的线段.
图 24.4.2
作一个角等于已知角
B
已知:∠AOB.
求作:∠A'O'B',
O
A
使 ∠A'O'B' = ∠AOB.
A
C
B
2.经过已知直线外一点作已知直线
的垂线. 已知直线 AB 和 AB 外一点 C,
AD
试按下列步骤用直尺和圆规准确
地经过点 C 作出直线 AB 的垂线.
C
B E F
步骤: (1)以点 C 为圆心,作弧与直线 AB 相交于点 D、点 E; (2)作∠DCE 的平分线 CF. 直线 CF 就是所要求作的垂线.
2. 已知: ∠1, ∠2.求作:
1
(1) ∠3,使得∠3 = ∠2 -∠1; B
2
解:1. 作法:
D
(1) 作射线 OA;
O
A
(2) 以 OA 为边做∠AOB =∠2;
(3) 以 O 为顶点,以射线 OA 为边,在∠AOB 内部作
∠AOD =∠1.则∠BOD 即为所求的∠3.
华师版八年级数学 13.4 尺规作图(学习、上课课件)
图示
感悟新知
知2-讲
特别解读 作一条线段等于已知线段,也可以用度量方法截取,
但由于度量时会有误差,故选择尺规作图更精确.
感悟新知
知2-练
例 2 如图13.4-1,已知线段a,b(a>b),求作一条线段AB, 使AB=2(a-b).
解题秘方:运用线段的和、差来转化线段之间的 数量关系.
知3-练
解题秘方:通过作一对相等 的内错角来作已知直线的平 行线.
感悟新知
解:作法如下: (1)过点C作直线MN与AB相交,交点为F; (2)在直线MN的右侧作∠FCE,使 ∠FCE=∠AFC; (3)反向延长射线CE得到射线CD,则 直线DE即为所求(如图13.4 -5).
知3-练
感悟新知
知3-练
3-1. 如图,已知∠α,求作∠AOB,使∠AOB=3∠α .(写 出作法)
感悟新知
解:如图所示.
知3-练
作法:(1)作射线OA,分别以∠α的顶点和点O为圆心,以 相等的任意长为半径作弧,分别交∠α的两边于点M,N, 交OA于点E;
感悟新知
知3-练
(2)以点E为圆心,以线段MN的长为半径作弧,两弧交于 点F; (3)过点F作射线OC,则∠AOC=∠α; (4)同理,以OC为一边,在∠AOC 的外部,作∠COD= ∠α,再以OD为一边,在∠AOD的外部,作∠BOD = ∠α,则∠AOB=3∠α. ∠AOB就是所求作的角.
感悟新知
例 1 下列属于尺规作图的是( ) A. 用量角器画出∠AOB的平分线OC B. 已知线段a,求作线段AB,使AB=2a C. 作线段AC=3 cm D. 平移法作线段AB的平行线CD
知1-练
解题秘方:紧扣尺规作图的工具及常见的五种基本
华东师大版八年级上册数学第13章13.4课题2 经过一已知点作已知直线的垂线垂直平分线
阅读教材P89~P90,完成下面的内容: 想要作出一条线段的垂直平分线,只要找到线段的垂
直平分线上的任意两点即可.
范例 作线段AB的垂直平分线.用尺规作图的作法如
下:
1
(1)分别以点___A__和点__B___为圆心,以大__于__2_A_B__的
长为半径作弧,两弧相交于点C和点D;
(2)过点C、D作直线__C_D___,则直线__C_D___就是线段
(5)过一点作已知直线的垂线
仿例 已知直线l和l外一点P,利用尺规作l的垂线, 使它经过点P.
作法:1.在直线l与点P的另一侧任取一点 M; 2.以P为圆心,以PM为半径作弧交直线l
于A、B两点;
3.分别以点A和点B为圆心,以大于AB的 长为半径作弧,两弧相交于Q; 4.作直线PQ.则直线PQ为直线l的垂线.
知识模块二 作已知线段的垂直平分线
经过一已知点作已知直线的垂线 作已知线段的垂直平分线
学习目标
1.让学生学会利用直尺和圆规作已知直线的垂线; 2.让学生学会利用直尺和圆规作已知线段的垂直平分 线; 3.经历探索作图的过程,进一步体会成功的喜悦感. 【学习重点】 能够利用直尺和圆规作已知线段的垂直平分线. 【学习难点】 能够利用直尺和圆规作已知直线的垂线.
情景导入
回顾: 1.作平角ACB的平分线CD.问:CD与直线AB有何位 置关系?为什么? 解:CD⊥AB. 因为CD平分平角ACB, 则∠ACD=∠BCD=90°.
2.若A、B是直线AB上两定点,且AC=BC,问: CD垂直平分AB吗?由此你能过直线AB上一点C作出 AB的垂线吗?
自学互研
知识模块一 以已知点作已知直线的垂线
阅读教材P88~P89,完成下面的内容:
八年级数学上册 13.4 尺规作图 13.4.2 作一个角等于已知角课时练习(含解析)(新版)华东师
13.4.2作一个角等于已知角一、单选题(共15题)1.作一个角等于已知角用到下面选项的哪个基本事实()A.SSS B.SAS C.ASA D.AAS答案:A解析:解答:作“一个角等于已知角”用到了全等三角形的判定方法是:边边边选A分析: 根据作一个角等于已知角可直接得到答案2.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边 B.边角边 C.角边角 D.角角边答案:A解析:解答:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=ODC′D′=CD∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是边边边选:A.分析:通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.3.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线答案:C解析:解答: 根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C选C.分析: 根据三边作三角形用到的基本作图是:作一条线段等于已知线段4.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个300的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解析:解答: A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.分析: 根据尺规作图的定义分别分析5.已知两角及其夹边作三角形,所用的基本作图方法是()A.平分已知角B.作已知直线的垂线C.作一个角等于已知角及作一条线段等于已知线段D.作已知直线的平行线答案:C解析:解答: 已知两角及其夹边作三角形,可先作一条线段等于已知线段,再在线段的两个端点分别作两个角等于已知角,故所用的基本作图方法是作一个角等于已知角及作一条线段等于已知线段选C.分析:看利用ASA是怎么作三角形的6.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如图:对于“想一想”中的问题,下列回答正确的是()A.根据“边边边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOBB.根据“边角边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOBC.根据“角边角”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOBD.根据“角角边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOB答案:A解析:解答: 由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D' 选A.分析: 根据圆的半径相等可得出两个三角形的边长相同,由SSS可得到三角形全等7.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧答案:C解析:解答:A.画角既需要顶点,还需要角度的大小,错误;B.延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C.作一个角等于已知角是常见的尺规作图,正确;D.画弧既需要圆心,还需要半径,缺少半径长,错误选:C.分析: 根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D8.下列画图语句中,正确的是()A.画射线OP=3cm B.连接A,B两点C.画出A,B两点的中点 D.画出A,B两点的距离答案:B解析:解答: A.射线没有长度,错误;B.连接A,B两点是作出线段AB,正确;C.画出A,B两点的线段,量出中点,错误;D.量出A,B两点的距离,错误选B.分析: 根据基本作图的方法,逐项分析,从而得出正确的结论9.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个30°的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解析:解答: A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.分析: 根据尺规作图的定义分别分析10.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点 D.画出A、B两点的距离答案:B解析:解答: A.画射线OP=5cm,错误,射线没有长度,B.画射线OA的反向延长线,正确.C.画出A、B两点的中点,错误,中点是线段的不是两点的,D.画出A、B两点的距离,错误,画出的是线段不是距离选:B.分析:利用射线的定义,线段中点及距离的定义判定11.下列关于几何画图的语句正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a-b答案:C解析:解答: A.延长射线AB到点C,使BC=2AB,说法错误,不能延长射线;B.点P在线段AB上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a-b,说法错误,AC也可能为2a+b选:C.分析: 根据射线、直线、以及角的定义可判断出正确答案12.尺规作图是指()A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图答案:C解析:解答: 尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C.分析: 根据尺规作图的定义:尺是不带刻度的直尺,规是圆规进而得出答案13.下列有关作图的叙述中,正确的是()A.延长直线ABB.延长射线OMC.延长线段AB到C,使BC=ABD.画直线AB=3cm答案:C解析:解答: A.直线本身是向两方无限延伸的,故不能延长直线AB,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM,可以反向延长,故此选项错误;C.延长线段AB到C,使BC=AB,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C分析:根据直线、射线和线段的特点分别进行分析14.下列作图语句中,不准确的是()A.过点A、B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解析:解答:A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.分析: 根据基本作图的方法,逐项分析,从而得出正确的结论15.按下列条件画三角形,能唯一确定三角形形状和大小的是()A.三角形的一个内角为60°,一条边长为3cmB.三角形的两个内角为30°和70°C.三角形的两条边长分别为3cm和5cmD.三角形的三条边长分别为4cm、5cm和8cm答案:D解析:解答:A.三角形的一个内角为60°,一条边长为3cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm,能唯一确定三角形形状和大小,符合题意选:D.分析: 根据基本作图的方法,及唯一确定三角形形状和大小的条件可知二、填空题(共5题)16.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法___答案: SSS解析:解答: 在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS,即边边边公理分析: 通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理17.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是__________.答案:SSS解析:解答: OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等分析: 1.以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;2.任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E,交O'A'于点C';3.以C'为圆心,CD长为半径画弧,交弧C'E于点D';4.过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等18.已知,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以_________为圆心,_________为半径画弧.分别交OA,OB于点C,D.(2)画一条射线O′A′,以_________为圆心,_________长为半径画弧,交O′A′于点C′,(3)以点_________为圆心_________长为半径画弧,与第2步中所画的弧交于点D′.(4)过点_________画射线O′B′,则∠A′O′B′=∠AOB.答案::O | 任意长 |O′|OC | C | CD |D′解析:解答: 已知,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以O为圆心,任意长为半径画弧.分别交OA,OB于点C,D.(2)画一条射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′,(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′.(4)过点D′画射线O′B′′,则∠AO′B′=∠AOB分析: 利用作一个角等于已知角的基本方法19.所谓尺规作图中的尺规是指:________.答案:没有刻度的直尺和圆规解析:解答:由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规分析: 本题考的是尺规作图的基本概念20.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是________答案:SSS解析:解答: ①设已知角的顶点为O,以O为圆心,任意长度为半径画圆,交角两边为A,B两点;②用直尺画一条射线,端点为M,以M为圆心,用同样的半径画圆,该圆为圆M,交射线为C点;③以A为圆心,以AB为半径画圆,然后以C点为圆心,以同样的半径画圆,交圆M于D,E两点,随意连MD或者ME;得到的∠CMD就是所求的角;由以上作角过程不难看出有三个对应边相等.∴证明全等的方法是SSS分析: 根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等三、解答题(共5题)21.如图,作一个角等于已知角的一半答案:解答: ①以O为圆心,任意长为半径画弧,交OA、OB于M、N,②分别以M、N为圆心,大于12MN长为半径画弧,两弧交于一点P,③画射线OP,∠POB就是∠AOB的一半分析: 根据作角平分线的方法画出∠AOB的平分线即可22.作图题(保留作图痕迹)作一个角等于已知角.答案:解答: 如图所示:∠DEF即为所求分析: 利用作一角等于已知角的作法得出即可23.作一个角等于已知角α(0<α<180°)的补角答案:解答:如图所示:∠DEF即为所求分析:反向延长BO,得到α的补角∠AOC,再作∠FED=∠AOC24.尺规作图:如图,作一个角等于已知角.(要求:写出已知、求作,保留作图痕迹,不写作法).已知:求作:答案:解答:已知:∠AOB,求作:∠ECF等于∠AOB,如图所示:∠ECF即为所求分析: 首先画射线CF;再以O为圆心,任意长为半径画弧交OA、OB于E、D;以C为圆心,OD长为半径画弧,然后再以N为圆心ED长为半径画弧,交前弧于M,过M作射线AE可得∠ECF25.已知:∠1和∠2,作一个角,使它等于∠1-∠2答案:解答:作∠CAB=∠1,∠DAB=∠2,∠CAD就是所求的角分析: 利用尺规作图,作一个角等于已知角,即可解答.。
华师大版八年级数学上册第13章第4节《作一条线段等于已知线段》优秀课件
半 径 作 弧 , 交 OA于,C 交 OB于 D. D
B
3 . 以 点 O'为 圆 心 , 以 O C 长 为
半径作弧,交O'A'于 C'. O
4 . 以 点 C'为 圆 心 , 以 C D 长 为
半 径 作 弧 , 交 前 弧 于'.D
C D’
A
B’
5.过点D'作射线O'B'.
O’
C’
A’
A'O'B'就是所求的角.
尺规作图
教学目标:
1.了解什么是尺规作图. 2.能够用尺规完成下列基本作图:
作一条线段等于已知线段;作一 个角等于已知角;作角的平分线.
尺规作图:在几何里,把只用直
尺和圆规画图的方法称为尺规作图.
基本作图:最基本、最常用的尺规
作图,通常称为基本作图.
基本作图1 作一条线段等于已知线段.
已知:线段a,b(a﹥b) 求作:一条线段,使它等于2a-b.
基本作图3 平分已知角
已知:∠AOB
求作:射线OC, 使∠AOC=∠BOC
作法:1、在OA和OB上,
B
分别截取OD、OE,使
OD=OE
2、分别以D、E为圆心,
以大于 1 DE的长为半径作弧, 2
在∠AOB内,两弧交于点C
E
C
O
D
A
3、作射线OC OC就是所求作的射线
a
b
作法:1.画射线AE. 2.在射线AE上顺次截取AB=BC=a. 3.在线段AC上截取CD=b.
线段AD就是所要画的线段.
A
BD
C
E
基本作图2
秋华师大版八年级上册数学习题课件:13.4 尺规作图(第二课时)
• You have to believe in yourself. That's the secret of success. 人必的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/152021/9/15Wednesday, September 15, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/152021/9/152021/9/159/15/2021 4:03:03 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/152021/9/152021/9/15Sep-2115-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/152021/9/152021/9/15Wednesday, September 15, 2021
八年级数学尺规作图第2课时华师大版
尺规作图第2课时(一)本课目标学会用尺规画线段的垂直平分线,已知直线的垂线和已知角的平分线,并弄清其理论依据.(二)教学流程1.情境导入如图所示,已知OA=OB,PA=PB,点P在∠AOB的平分线上吗?为什么?AB P0MN2.课前热身在上题的图形中,若只给一个∠MON,请你比较准确地标出点A、B、P的位置,你怎么做?3.合作探究(1)整体感知通过情境导入和课前热身的操作,让学生整体感知角平分线的尺规画法.(2)四边互动互动1师:由课前热身的操作,你是否已看出角平分线的尺规画法了呢?在草稿纸上任意画一个角,用尺规画出它的平分线.(请一位同学板演)生:画图(师巡视并指正).师:你知道这种画法的理由吗?生:由全等三角形的识别方法(SSS)可知这两个三角形全等,•再由全等三角形的对应角相等可得结论.师:给你们3分钟,写出你的画图步骤.(写完后,•找学生口述一遍并统一写法) 明确 角平分线的尺规画法. 互动2师:我们来看这样的问题:“如图所示,用尺规过点C 画直线L•的垂线”.怎么画呢?(片刻之后……)图中是一个平角吗?此时画垂线的问题就变成了一个我们刚刚学习的什么问题?lC生:是一个平角;就是画平角的平分线. 明确 用尺规过直线上一点画这条直线的垂线. 互动3师:如图,若点C 在直线L 外呢?互相交流一下,•看这个问题能否转化为“用尺规过直线上一点画这条直线的垂线”的问题?lC生:(交流之后请一位同学板演,师巡视并指正)能. 明确 用尺规过直线外一点画这条直线的垂线. 互动4师:(出示投影问题)如图,已知:PA=PB ,QA=QB ,则直线PQ•是线段AB 的垂直平分线吗?为什么?QA BP生:是;•因为到线段的两个端点的距离相等的点在线段的垂直平分线上,•由PA=PB 可知:点P 在线段AB 的垂直平分线上,同理可得:点Q 也在线段AB•的垂直平分线上,所以PQ 是线段AB 的垂直平分线.师:由于PA=PB ,QA=QB 我们都可以用圆规比较容易地实现,•从这里你是否已经看出线段的垂直平分线的画法了呢?画一条线段,用尺规画出它的垂直平分线. 明确 线段的垂直平分线的画法. 4.达标反馈(1)如图所示,过点P 画∠O 两边的垂线.(2)如图所示,画△ABC 的BC 边上的高.AB(3)画出图中三角形三个内角的平分线.CAB【答案】 略 5.学习小结 (1)内容总结: ①角平分线的尺规画法; ②过一点画已知直线的垂线; ③线段的垂直平分线的尺规画法.(2)方法归纳:本节课所学习的三种尺规作图,内容上虽各不相同,•但其本质都有很大的联系.如:我们可以把垂线的作图转化为平角的角平分线的作图.(三)拓展延伸1.生活如图所示,要在两条交叉的公路中间的空地上修建一个加油站P,•使P到两条公路及它们的交叉点的距离相等,你怎样定出加油站P的位置呢?2.巩固练习①画个直角三角形,使其直角边分别等于如图所示的两条线段.②画一个角,使其等于如图所示的∠A.A③试把图中所示的角四等分.④画一个四边形,使它的面积等于如图所示的三角形的面积的2倍.【答案】略(四)板书设计。