高考总复习 数学理科 (新人教B版)--第十一章 第6节 几何概型--(附解析及答案)

合集下载

【全程复习方略】2013版高中数学 (主干知识+典例精析)11.6几何概型课件 理 新人教B版

【全程复习方略】2013版高中数学 (主干知识+典例精析)11.6几何概型课件 理 新人教B版

(3)在集合A={m|关于x的方程x2+mx+ 3 m+1=0无实根}中随
4
机地取一元素m,恰使式子lgm有意义的概率为__________.
【解析】(1) P 0.1 1 0.05
2 20
(2)如图:区域F表示边长为4的正方形
ABCD的内部(含边界),区域E表示单位
12 圆及其内部,因此 P 4 4 16
用几何图形的度量来求随机事件的概率,根据实际问题的具体
情况,合理设置参数,建立适当的坐标系,在此基础上将试验 的每一个结果一一对应于该坐标系的点,便可构造出度量区域.
【提醒】当基本事件受两个连续变量控制时,一般是把两个连
续变量分别作为一个点的横坐标和纵坐标,这样基本事件就构
成了平面上的一个区域,即可借助平面区域解决.
【例3】(2012·临沂模拟)两人约定在20:00到21:00之间相见,
并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自
独立的,在20:00至21:00各时刻相见的可能性是相等的,求两人
在约定时间内相见的概率. 【解题指南】两人不论谁先到都要等迟到者40分钟,即23小 时,设两人分别于x时和y时到达约见地点,要使两人在约定的 时间范围内相见,当且仅当- 2 ≤x-y≤ 2 ,因此转化为面积问
在家看书”为事件C.
1 2 1 ( ) ( )2 2 1 1 3, P B 4 1, PA 1 1 4 4 1 16
P C P A P B 3 1 13 . 4 16 16
答案:
13 16
【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以
【例1】(1)在半径为1的圆内的一条直径上任取一点,过这个点

人教版高中数学B版目录

人教版高中数学B版目录

人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。

高考数学一轮复习 第11章 概率 5 二项分布与超几何分布课件 新人教版

高考数学一轮复习 第11章 概率 5 二项分布与超几何分布课件 新人教版

例4 某超市在节日期间进行有奖促销,凡在该超市购物满500元的顾客,
可以获得一次抽奖机会,有两种方案.方案一:在抽奖的盒子中有除颜色外
完全相同的2个黑球,3个白球,顾客一次性摸出2个球,规定摸到2个黑球奖
励50元,1个黑球奖励20元,没有摸到黑球奖励15元.方案二:在抽奖的盒子中
有除颜色外完全相同的2个黑球,3个白球,顾客不放回地每次摸出一个球,
②依题意,该顾客参加了12次答题返现.
设答对题目的次数为Y,则Y~B(12,0.4).
设该顾客答对k次题目的概率最大,
-1

C12
0.4 (1-0.4)12- ≥ C12 0.4-1 (1-0.4)13- ,

12-
11-

+1

+1
C12 0.4 (1-0.4)
≥ C12 0.4 (1-0.4)
1
口遇到红灯的概率均为 3 ,用X表示他遇到红灯的次数,则E(X)=
由题意可知这 2 次红灯的不同的分布情形共有C52 =10(种).
1
因为他在每个路口遇到红灯的概率均为 ,
3
1
1
5
所以 X~B 5, ,所以 E(X)=5× = .
3
3
3
5
3
.
第二环节
关键能力形成
能力形成点1
n重伯努利试验与二项分布
1 4
的概率分别为 2 和 5.
(1)求该装置正常工作超过10 000小时的概率;
(2)某城市5G基站建设需购进1 200台该装置,估计该批装置能正常工作
超过10 000小时的台数.
解 (1)依题意,元件 A 至少有一个正常工作超过 10 000 小时的概率为

新人教B版高中数学(必修3)3.3.1《几何概型》

新人教B版高中数学(必修3)3.3.1《几何概型》
在几何概型中,事件A的概率的求解步骤?
记事件 指出概率类型 构造几何图形
求概率
计算几何度量
例1.有一杯1升的水,其中含有1个细菌, 用一个小杯从这杯水中取出0.1升,求小 杯水中含有这个细菌的概率. 解: 记A=“小杯水 中含有这个细菌” P(A)=0.1/1=0.1
例2:一金鱼在水池中自由游弋,水 池为长30米,宽20米的长方形,求 金鱼离岸边不超过2米的概率?
E C O D
关 键:
对于复杂的实际问题,解题的关键
是要建立模型,找出随机事件与所有 基本事件相对应的几何区域,把问题 转化为几何概型问题,利用几何概型 的概率公式来求解.
课堂小结
(1)几何概型的特点 (2)几何概型的定义 (3)几何概型的概率计算公式
1、在线段[0,3]上任取一点,则此点坐标小于1 的概率是:( ) A:1/3 B:1/2 C:2/3 D:2/9 2、在直角坐标系内,射线OT落在60°的终边上, 任作一条射线OA,则射线OA落在∠XOT内的概 率是( ) A:1/3 B:1/4 C:1/5 D:1/6 3、如果在一个1万平方公里的海域里有表面积 达40平方公里的大陆架贮藏着石油,假如在这海 领域里随意选定一点钻探,问钻到石油的概率是 ( ) A:1/40 B:1/25 C:1/250 D:1/500
等可能发生的的概率类型;
2.几何概型主要用于解决与长度.角度.面积.
1.几何概型适用于试验结果是无穷多且事件是
体积有关的题目;
3.求解公式为
μA 子 区 域 A的几 何 度 量 P(A) = = μΩ 区 域的 几 何 度 量
练习:求下列事件的概率
长度
1.取一根长为3m的绳子,拉直后在任意位置剪断, 那么剪得两段的长都不小于1m的概率为( 1 ) 3 2.在40根纤维中,有12根的长度超过30mm,从中 3 任取一根,取到长度超过30mm的纤维的概率( 10) 3.如图在圆心角为90O 的扇形AOB中,以圆心O为 起点作射线OC,则∠AOC和∠BOC都不小于20O 5 的概率为( ) 面积 4、向面积为S的△ABC内任投一点P,则△PBC的 面积小于 S 的概率为( 3 )

2013届高考北师大版数学总复习课件:11.6几何概型

2013届高考北师大版数学总复习课件:11.6几何概型

• 7.某人欲从某车站乘车出差,已知该站发 往各站的客车均为每小时一班,求此人等 车时间不多于 分钟的概率. [解析] 设 A=10 {等车的时间不多于 10 分钟},事件 A 恰
好是到站等车的时刻位于[50,60]这一段时间内,因此由几何 60-50 1 概型的概率公式得 P(A)= = ,即此人等车时间不多 60 6 1 于 10 分钟的概率为 . 6
知识梳理 1.几何概型 向平面上有限区域(集合)G 内随机地投掷点 M,若点 M 落在 子区域 G1 G 的概率与 G1 的面积成 正比 ,而与 G 的形状、位 置 无关 ,即 P(点 M 落在 G1)= 型为几何概型.
G1的面积 G的面积
,则称这种模
2.几何概型中,事件 A 的概率计算公式
构成事件A的区域长度面积或体积 P(A)= 试验的全部结果所构成的区域长度面积或体积.
4.(文)如图所示,转盘上有 8 个面积相等的扇形,转动 转盘,则转盘停止时指针落在阴影部分的概率是( 1 A. 8 1 C. 2 1 B. 4 3 D. 4 )
[答案] C
[解析] 阴影部分共有 4 个扇形,占总扇形的一半,所以 1 转盘停止时,指针落在阴影部分的概率为 . 2
(理)(2012· 临沂模拟)如图所示,边长为 2 的正方形中有一 封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它 2 落在阴影区域内的概率为 ,则阴影区域的面积为( 3 4 A. 3 2 C. 3 8 B. 3 D.无法计算 )
[答案] B
[解析] 正方形的面积为 2×2=4, 则阴影部分的面积为 2 8 4× = ,故选 B. 3 3
5.在区间[-1,2]上随机取一个数 x,则|x|≤1 的概率为 ________.
2 [答案] 3

高考数学(人教新课标理科)总复习配套课件 10-6_几何概型

高考数学(人教新课标理科)总复习配套课件 10-6_几何概型

答案
1 2
解析 如图,m,n 的取值在边长为 2 的正方形中.
当 m>n 时,椭圆离心率 e= mm2-n2= 1-mn 2, 由 e> 23,得 m>2n. 同理,当 m<n 时,n>2m. 故满足条件的 m,n 为图中阴影部分. 所求概率 P=2×12×222×1=12.
4.某路公共汽车每 5 分钟发车一次,某乘客到乘车点的时
又∵a∈[-5,5],∴所求概率为130.
【答案】
3 10
例 2 (1)(2012·北京)设不等式组00≤ ≤xy≤ ≤22, 表示的平面
区域为 D.在区域 D 内随机取一个点,则此点到坐标原点的距离
大于 2 的概率是
()
π
π-2
A.4
B. 2
π
4-π
C.6
D. 4
【解析】 画草图易知区域 D 是边长为 2 的正方形,到原 点的距离大于 2 的点在以原点为圆心,以 2 为半径的圆的外部, 所以所求事件的概率为 P=2×22-×142·π·22=4-4 π.选 D.
=12.
【答案】
1 2
(2)(2012·辽宁)在长为 12 cm 的线段 AB 上任取一点 C.现作
一矩形,邻边长分别等于线段 AC,CB 的长,则该矩形面积大
于 20 cm2 的概率为
()
1
1
A.6
B.3
2
4
C.3
D.5
【解析】 设|AC|=x cm,0<x<12,则|CB|=(12-x) cm,要 使矩形面积大于 20 cm2,只要 x(12-x)>20,则 x2-12x+ 20<0,2<x<10,所以所求概率为 P=101-2 2=23,故选 C.

高考数学一轮总复习第十一章概率与统计第6节几何概型课件

高考数学一轮总复习第十一章概率与统计第6节几何概型课件

解析 (1)若方程 x2+2=a 有实根,
可知 a-2≥0,即 a≥2,
4-2 2 那么 p= = . 4-(-1) 5
–1
5
O
1
2
3
4
x
2
考点一 与长度(角度)有关的几何概型
点的概率为________.
︵ 弧DB′交 AC,AP,AB 分别为 C′,P′,B′. ︵ 依题意,点 P′在B′D上任何位置是等可能 的,且射线 AP 与线段 BC 有公共点, ︵ 则事件“点 P′在B′C′上发生”.
[训练 2] (1)(2016· 全国Ⅱ卷)从区间[0,1]随机抽取 2n 个数 x1,x2,…,xn,y1, y2,…,yn,构成 n 个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小 于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率π 的近似值为( 4n A. m 2n 4m 2m B. m C. n D. n 解析 如图,数对(xi,yi)(i=1,2,…,n)表示的点落在
–5 –4 –3 –2 –1 O
D 1 2 3 4 5 6x
[训练 1] (2)(2018· 西安调研)在区间[-1,1]上随机地取一个数 k,则事件“直线 y =kx 与圆(x-5)2+y2=9 相交”发生的概率为________.
解析
考点一 与长度(角度)有关的几何概型
(2)直线 y=kx 与圆(x-5)2+y2=9 相交的充要 条件是圆心(5,0)到直线 y=kx 的距离小于 3. |5k-0| 3 3 则 2 2<3, 解得-4<k<4. k +(-1)
边长为 1 的正方形 OABC 内(包括边界),
考点二 与面积有关的几何概型(多维探究)

高考数学总复习11.3几何概型课件文新人教B

高考数学总复习11.3几何概型课件文新人教B

3 【答案】 4
(3)如图所示,在△ABC 中,∠B=60°,∠C=45°,高 AD = 3,在∠BAC 内作射线 AM 交 BC 于点 M,求 BM<1 的概率.
【解析】 因为∠B=60°,∠C=45°,所以∠BAC=75°. AD 在 Rt△ABD 中,AD= 3,∠B=60°,所以 BD= = tan 60° 1,∠BAD=30°. 记事件 N 为“在∠BAC 内作射线 AM 交 BC 于点 M,使 BM < 1” ,则可得∠BAM<∠BAD 时事件 N 发生. 30° 2 由几何概型的概率公式,得:P(N)= = . 75° 5
3.要切实理解并掌握几何概型试验的两个基本特点 无限多个; (1)无限性:在一次试验中,可能出现的结果有________ (2)等可能性:每个结果的发生具有等可能性 _________.
4.随机模拟方法 (1)使用计算机或者其他方式进行的模拟试验,以便通过这个 试验求出随机事件的概率的近似值的方法就是模拟方法. (2)用计算机或计算器模拟试验的方法为随机模拟方法.这个 方法的基本步骤是①用计算器或计算机产生某个范围内的随机数, 并赋予每个随机数一定的意义;②统计代表某意义的随机数的个 M 数 M 和总的随机数个数 N; ③计算频率 fn(A)= N 作为所求概率的 近似值.
【答案】 1 π
题型一
与长度、角度有关的几何概型
【例1】 (1)(2015· 重庆)在区间[0,5]上随机地选择一个
数 p , 则 方 程 x2 + 2px + 3p - 2 = 0 有 两 个 负 根 的 概 率 为
________.
【解析 】 方 程 x2 + 2px + 3p - 2 = 0 有两 个负 根 ,则有
【答案】 A

高考备考指南理科数学课件第11章第6讲几何概型

高考备考指南理科数学课件第11章第6讲几何概型
(2)因为射线 OA 在坐标系内是等可能分布的, 所以 OA 落在∠yOT 内的概率为36600=16.
栏目索引
第十一章 计数原理、概率、随机变量及其分布
高考备考指南
与体积有关的几何概型
理科数学
(2018 年厦门校级月考)已知棱长为 1 的正方体,若在正方体内任取一
点,则这一点不在正方体内切球内的概率为( )
栏目索引
第十一章 计数原理、概率、随机变量及其分布
高考备考指南
理科数学
与面积有关的几何概型
【考向分析】 与面积有关的几何概型是近几年高考的热点之一.常见的考向有: (1)与三角形、矩形、圆等平面图形面积有关的问题; (2)与线性规划交汇命题的问题; (3)与定积分交汇命题的问题.
栏目索引
第十一章 计数原理、概率、随机变量及其分布
高考备考指南
理科数学
【解析】分别画出区域 A1,A2,如图圆内部分和正方形及其内部所示,易求得 圆的面积为 4π,正方形的面积为 18.根据几何概型可知,所求概率为18- 184π=1-29π.
第十一章 计数原理、概率、随机变量及其分布
栏目索引
高考备考指南
理科数学
与线性规划交汇命题的问题
(2018 年衡水中学三模)在满足条件xx- +23yy- -11≥ ≥00, , x+y-7≤0
高考备考指南
理科数学
与定积分交汇命题的问题
正方形的四个顶点 A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别 在抛物线 y=-x2 和 y=x2 上,如图所示,若将一个质点随机投入正方形 ABCD 中, 则质点落在图中阴影区域的概率是________.
【答案】23 【解析】S 正方形=4,S 阴影=21-1(1-x2)dx=2 x-x331-1=83,

高考数学总复习 12.3几何概型课件 理 新人教B版

高考数学总复习 12.3几何概型课件 理 新人教B版

题型一
与长度、角度有关的几何概型
Байду номын сангаас
【例 1】 (1)在区间[-1,1]上随机 思维启迪 解析 思维升华
取一个数 x,求 cos
π 2x
的值介于
0 到12之间的概率.
(2)如图所示,在△ABC 中,∠B
解答几何概型问题的关键在于弄 清题中的考查对象和对象的活动 范围.当考查对象为点,点的活 动范围在线段上时,用线段长度
(2) 在 ∠BAC 内 作 射 线 , 可 将
于点 M,求 BM<1 的概率.
BM<1 转化为∠BAM 的条件.
题型分类·深度剖析
题型一
与长度、角度有关的几何概型
【例 1】 (1)在区间[-1,1]上随机
取一个数 x,求 cos
π 2x
的值介于
0 到12之间的概率.
(2)如图所示,在△ABC 中,∠B
C.6
D. 4
(2)有一个底面圆的半径为 1、高为 2
的圆柱,点 O 为这个圆柱底面圆的圆
心,在这个圆柱内随机取一点 P,则
点 P 到点 O 的距离大于 1 的概率为
【例 1】 (1)在区间[-1,1]上随机
取一个数 x,求 cos
π 2x
的值介于
0 到12之间的概率.
(2)如图所示,在△ABC 中,∠B
=60°,∠C=45°,高 AD= 3,
思维启迪 解析 思维升华
cos
π 2x
的值介于
0
到12之间的概
2
率为32=31.
在∠BAC 内作射线 AM 交 BC (2)因为∠B=60°,∠C=45°,
数学 R B(理)
§12.3 几何概型

高考数学总复习 12.3几何概型配套文档 理 新人教b版

高考数学总复习 12.3几何概型配套文档 理 新人教b版

§12.3 几何概型1. 几何概型的定义事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足以上条件的试验称为几何概型. 2. 几何概型的概率公式P (A )=μAμΩ,其中μΩ表示区域Ω的几何度量,μA 表示子区域A 的几何度量.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ ) (3)在几何概型定义中的区域可以是线段、平面图形、立体图形. ( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ )2. 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,则某人到达路口时看见的是红灯的概率是( )A.15B.25C.35D.45 答案 B解析 以时间的长短进行度量,故P =3075=25.3. 点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧 AB 的长度小于1的概率为________. 答案 23解析 如图可设 ABl =1,则由几何概型可知其整体事件是其周长3,则其概率是23.4. 在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为________.答案 13解析 如图,这是一个长度型的几何概型题,所求概率P =|CD ||AB |=13.5. 已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率是________.答案 25解析 区域D 为区间[-2,3],d 为区间(1,3],而两个区间的长度分别为5,2.故所求概率P =25.题型一 与长度、角度有关的几何概型例1 (1)在区间[-1,1]上随机取一个数x ,求cos π2x 的值介于0到12之间的概率.(2)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.思维启迪 (1)cos π2x 介于0到12之间转化为-1<x <-23或23<x <1;(2)在∠BAC 内作射线,可将BM <1转化为∠BAM 的条件.解 (1)由函数y =cos π2x 的图象知,当-1<x <-23或23<x <1时,0<cos π2x <12.由概率的几何概型知:cos π2x 的值介于0到12之间的概率为232=13.(2)因为∠B =60°,∠C =45°,所以∠BAC =75°, 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.思维升华 解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围.当考查对象为点,点的活动范围在线段上时,用线段长度比计算;当考查对象为线时,一般用角度比计算.事实上,当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.(1)若在例1(2)中“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC上找一点M ”则结果为________.(2)在半径为1的圆内一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________. 答案 (1)3-12 (2)12解析 (1)由∠B =60°,∠C =45°,AD =3得, BD =ADtan B =1,DC =AD =3,则BM <1的概率为P =13+1=3-12.(2)记事件A 为“弦长超过圆内接等边三角形的边长”,如图,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长(此时F 为OE 中点),弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型公式得: P (A )=12×22=12.题型二 与面积、体积有关的几何概型例2 (1)(2012·北京)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6D.4-π4(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.思维启迪 平面区域内的几何概型,一般用面积求概率,空间区域内的几何概型,一般用体积求概率. 答案 (1)D (2)23解析 (1)根据题意作出满足条件的几何图形求解.如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,所以选D.(2)先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于或等于1的概率为23π2π=13,故点P 到点O 的距离大于1的概率为1-13=23.思维升华 求解几何概型的概率问题,一定要正确确定试验的全部结果构成的区域,从而正确选择合理的测度,进而利用概率公式求解.(1)在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax-b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π4(2)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 (1)B (2)1-π12解析 (1)由函数f (x )=x 2+2ax -b 2+π2有零点, 可得Δ=(2a )2-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点, 试验的全部结果构成的区域为 Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π}, 其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2}, 即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4,所以选B. (2)V 正=23=8,V 半球=12×43π×13=23π,V 半球V 正=2π8×3=π12,∴P =1-π12.题型三 生活中的几何概型问题例3 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.思维启迪 当基本事件受两个连续变量控制时,一般是把两个连续变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 解 这是一个几何概型问题.设甲、乙两艘船到达码头的时刻分别为x 与y ,A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152. 思维升华 生活中的几何概型度量区域的构造方法: (1)审题:通过阅读题目,提炼相关信息. (2)建模:利用相关信息的特征,建立概率模型. (3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.张先生订了一份报纸,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能得到报纸的概率是________. 答案 78解析 以横坐标x 表示报纸送到时间,以纵坐标y 表示张先生离家时间,建立平面直角坐标系,因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落到阴影部分,就表示张先生在离开家前能得到报纸,即所求事件A 发生,所以P (A )=1×1-12×12×121×1=78.混淆长度型与面积型几何概型致误典例:(12分)在长度为1的线段上任取两点,将线段分成三段,试求这三条线段能构成三角形的概率.易错分析 不能正确理解题意,无法找出准确的几何度量来计算概率. 规范解答解 设x 、y 表示三段长度中的任意两个. 因为是长度,所以应有0<x <1,0<y <1,0<x +y <1,即(x ,y )对应着坐标系中以(0,1)、(1,0)和(0,0)为顶点的三角形内的点,如图所示.[4分]要形成三角形,由构成三角形的条件知⎩⎪⎨⎪⎧x +y >1-x -y ,1-x -y >x -y ,1-x -y >y -x ,所以x <12,y <12,且x +y >12,故图中阴影部分符合构成三角形的条件.[8分]因为阴影部分的三角形的面积占大三角形面积的14,故这三条线段能构成三角形的概率为14.[12分]温馨提醒 解决几何概型问题时,还有以下两点容易造成失分,在备考时要高度关注: (1)不能正确判断事件是古典概型还是几何概型导致错误;(2)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.方法与技巧1. 区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限多个. 2. 转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型; (3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型. 失误与防范1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.A 组 专项基础训练 (时间:35分钟)一、选择题1. “抖空竹”是中国的传统杂技,表演者在两根直径约8~12毫米的杆上系一根长度为1 m的绳子,并在绳子上放一空竹,则空竹与两端距离都大于0.2 m 的概率为 ( ) A.12 B.35 C.25 D.23 答案 B解析 与两端都大于0.2 m 即空竹的运行范围为(1-0.2-0.2)m =0.6 m ,记“空竹与两端距离都大于0.2 m ”为事件A ,则所求概率满足几何概型,即P (A )=1-0.2-0.21=35.2. (2012·辽宁)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为 ( )A.16B.13C.23D.45 答案 C解析 根据题意求出矩形面积为20 cm 2时的各边长,再求概率. 设AC =x ,则BC =12-x ,所以x (12-x )=20, 解得x =2或x =10. 故P =12-2-212=23.3. 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P恰好取自阴影部分的概率为 ( )A.14 B.15 C.16 D.17答案 C 解析 ∵S阴影=ʃ10(x -x )d x =⎪⎪⎝⎛⎭⎫2332x -12x 21=23-12=16,又S 正方形OABC =1, ∴由几何概型知,P 恰好取自阴影部分的概率为161=16.4. 已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.5. (2012·湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部 分的概率是( )A .1-2π B.12-1πC.2πD.1π 答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点 为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.二、填空题6. 在长为10 cm 的线段AB 上任取一点G ,以AG 为半径作圆,则圆的面积介于36π cm 2到64π cm 2的概率是________. 答案 15解析 如图,以AG 为半径作圆,圆面积介于36π~64π cm 2,则AG 的长度应介于6~8 cm 之间.∴所求概率P (A )=210=15.7. (2013·湖北)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.即m 的值为3.8. 在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9. 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为________. 答案 1316解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34,去打篮球的概率P 2=π×(14)2π×12=116, ∴不在家看书的概率为P =34+116=1316.三、解答题10.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个; 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0};画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21, 故满足a ·b <0的概率为2125. B 组 专项能力提升(时间:25分钟)1. 在区间[-1,1]上随机取一个数x ,则sinπx 4的值介于-12与22之间的概率为( ) A.14 B.13 C.23 D.56答案 D解析 ∵-1≤x ≤1,∴-π4≤πx 4≤π4. 由-12≤sin πx 4≤22,得-π6≤πx 4≤π4, 即-23≤x ≤1.故所求事件的概率为1+232=56.2. 如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,则以此实验数据为依据可以估算出椭圆的面积约为 ( ) A .7.68 B .16.32 C .17.32 D .8.68答案 B解析 根据几何概型的概率公式得黄豆落在椭圆内的概率P =S 椭圆S 矩形, 而P =300-96300=0.68,S 矩形=24, 故S 椭圆=P ·S 矩形=0.68×24=16.32.3. 已知点A 在坐标原点,点B 在直线y =1上,点C (3,4),若AB ≤10,则△ABC 的面积大于5的概率是( ) A.1924 B.13C.524D.527答案 C 解析 设B (x,1),根据题意知点D (34,1), 若△ABC 的面积小于或等于5,则12×DB ×4≤5,即DB ≤52, 所以点B 的横坐标x ∈[-74,134],而AB ≤10, 所以点B 的横坐标x ∈[-3,3],所以△ABC 的面积小于或等于5的概率为P =3-(-74)6=1924, 所以△ABC 的面积大于5的概率是1-P =524. 4. 在面积为S 的△ABC 内部任取一点P ,△PBC 的面积大于S 4的概率为________. 答案 916解析 如图,假设当点P 落在EF 上时(EF ∥BC ),恰好满足△PBC 的面积等于S 4,作PG ⊥BC ,AH ⊥BC ,则易知PG AH =14.符合要求的点P 可以落在△AEF 内的任一部分,其概率为P =S △AEF S △ABC =916. 5. 平面内有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意投掷在这个平面内,则硬币不与任何一条平行线相碰的概率是________.答案 13解析 如图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为13.6. 在区间[0,2]上任取两个实数a ,b ,求函数f (x )=x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率.解 因为f ′(x )=3x 2+a ,由于a ≥0,故f ′(x )≥0恒成立,故函数f (x )在[-1,1]上单调递增,故函数f (x )在区间[-1,1]上有且只有一个零点的充要条件是⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧ a +b +1≥0,a -b +1≥0.设点(a ,b ),则基本事件所在的区域是⎩⎪⎨⎪⎧0≤a ≤2,0≤b ≤2,画出平面 区域,如图所示,根据几何概型的意义,所求的概率等于以图中阴影部分的面积与以2为边长的正方形的面积的比值,这个比值是78. 7. 身处广州的姐姐和身处沈阳的弟弟在春节前约定分别乘A 、B 两列火车在郑州火车站会面,并约定先到者等待时间不超过10分钟.当天A 、B 两列火车正点到站的时间是上午9点,每列火车到站的时间误差为±15分钟,不考虑其他因素,求姐弟俩在郑州火车站会面的概率.解 设姐姐到的时间为x ,弟弟到的时间为y ,建立坐标系如图,由题意可知,当y ≤x ±16时,姐弟俩会面,又正方形的面积为14,阴影部分的面积为536,所求概率P =53614=59.。

2021届高考数学人教B版大一轮总复习:10-6 几何概型

2021届高考数学人教B版大一轮总复习:10-6 几何概型

2.小题热身
(1)在线段[0,3]上任投一点,则此点坐标小于 1 的概率为( B )
1
1
A.2
B.3
1 C.4
D.1
解析:坐标小于 1 的区间为[0,1),长度为 1,[0,3]的区间长 度为 3,故所求概率为13.
(2)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球, 若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游
1 线段 BC 有公共点的概率为____3____.
【解析】 (1)由几何概型的概率计算公式可知所求概率 P=
101-0 7=130,故选 D.
(2)如图,连接
AC,交圆弧
DE
于点
P,则
tan∠CAB=
1= 3
33,
∴∠CAB=30°,∵射线 AP 与线段 BC 有公共点的条件是射线 AP
在∠CAB 内,∴所求概率为3900°°=13.
戏盘是( A )
解析:∵P(A)=38,P(B)=28,P(C)=26,P(D)=13,∴P(Aห้องสมุดไป่ตู้>P(C) =P(D)>P(B).
(3)设不等式组00≤≤xy≤≤22, 表示的平面区域为 D,在区域 D 内随机
取一个点,则此点到坐标原点的距离大于 2 的概率是( D )
π π-2 A.4 B. 2
解析:设 AC=x cm(0<x<12),则 CB=(12-x)cm,则矩形的 面积 S=x(12-x)=12x-x2(cm2).
由 12x-x2<32,即(x-8)(x-4)>0, 解得 0<x<4 或 8<x<12. 在数轴上表示,如图所示.
由几何概型概率计算公式,得所求概率为182=23.

2021高三人教B版数学一轮(经典版)教师用书:第11章 第6讲 几何概型 Word版含解析

2021高三人教B版数学一轮(经典版)教师用书:第11章 第6讲 几何概型 Word版含解析

姓名,年级:时间:第6讲几何概型基础知识整合1.几何概型(1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的错误!长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的两个基本特点2.几何概型的概率公式P(A)=错误!错误!。

几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关.(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.1.(2019·大连模拟)在长为6 m的木棒上任取一点P,使点P到木棒两端点的距离都大于2 m的概率是()A。

错误! B.错误! C。

错误! D.错误!答案B解析将木棒三等分,当P位于中间一段(不包括两个三等分点)时,点P到木棒两端点的距离都大于2 m,∴P=错误!=错误!.2.(2019·湖南长沙统一检测)某人午觉醒来,发现表停了,他打开收音机,想听电台的整点报时,则他等待的时间不多于5分钟的概率为()A.错误!B.错误!C.错误!D.错误!答案B解析设距离电台的整点报时还有x分钟,由题意可得,0≤x≤60,等待的时间不多于5分钟的概率为P=560=错误!,故选B.3.(2019·湖南株洲二模)如图,在边长为1的正方形内有不规则图形Ω,由电脑随机从正方形中抽取10000个点,若落在图形Ω内和图形Ω外的点分别为3335,6665,则图形Ω面积的估计值为()A.错误! B。

错误! C.错误! D。

错误!答案C解析设图形Ω的面积为S,则由几何概型及题意,得错误!=错误!≈错误!,所以S≈错误!=0.3335≈错误!,即图形Ω面积的估计值为错误!.故选C.4.(2019·衡水中学调研)已知正方体ABCD-A1B1C1D1内有一个内切球O,则在正方体ABCD-A1B1C1D1内任取点M,点M在球O内的概率是()A.错误!B.错误! C。

高考数学大一轮复习 第十一章 概率 11.3 几何概型教师用书 文 新人教版

高考数学大一轮复习 第十一章 概率 11.3 几何概型教师用书 文 新人教版

2018版高考数学大一轮复习第十一章概率 11.3 几何概型教师用书文新人教版1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型中,事件A的概率的计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.( √)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √)(4)随机模拟方法是以事件发生的频率估计概率.( √)(5)与面积有关的几何概型的概率与几何图形的形状有关.( ×)(6)从区间[1,10]内任取一个数,取到1的概率是P=19.( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( )A.12B.13C.14D.1答案 B解析坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x,则事件“-1≤121log()2x+≤1”发生的概率为( )A.34B.23C.13D.14答案 A解析由-1≤121log()2x+≤1,得12≤x+12≤2,∴0≤x≤32.∴由几何概型的概率计算公式得所求概率P=32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析∵P(A)=38,P(B)=28,P(C)=26,P(D)=13,∴P(A)>P(C)=P(D)>P(B).4.(2017·济南月考)一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是( )A.π180B.π150C.π120D.π90答案 C解析屋子的体积为5×4×3=60(立方米),捕蝇器能捕捉到的空间体积为18×43π×13×3=π2(立方米).故苍蝇被捕捉的概率是π260=π120.5.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是________.答案π4解析设质点落在以AB为直径的半圆内为事件A,则P(A)=阴影面积长方形面积=12π·121×2=π4.题型一与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710B.58C.38D.310(2)(2017·太原调研)在区间[-π2,π2]上随机取一个数x,则cos x的值介于0到12之间的概率为________.答案(1)B (2)13解析(1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x≤π2时,由0≤cos x≤12,得-π2≤x≤-π3或π3≤x≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt△ABD 中,AD =3,∠B =60°, 所以BD =ADtan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12. 思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB =2-142=78.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D 内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( )A.413B.513C.825D.925(2)(2015·福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=⎩⎪⎨⎪⎧x+1,x≥0,-12x+1,x<0的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14C.38D.12答案(1)D (2)B解析(1)作出平面区域D,可知平面区域D是以A(4,3),B(4,-2),C(-6,-2)为顶点的三角形区域.当点在△AEF区域内时,点到直线y+2=0的距离大于2.∴P=S△AEFS△ABC=12×6×312×10×5=925.(2)由图形知C(1,2),D(-2,2),∵S四边形ABCD=6,S阴=12×3×1=32,∴P=326=14.题型三与体积有关的几何概型例4 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.18B.16C.127D.38(2)已知正三棱锥S—ABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得V P—ABC<12V S—ABC 的概率是( )A.78B.34C.12D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.12.几何概型中的“测度”典例 (1)在等腰Rt△ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34 D.78 错解展示解析 (1)∵∠C =90°,∠CAM =30°,∴所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a=33. (2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( )A .16.32B .15.32C .8.68D .7.68 答案 A解析 设椭圆的面积为S ,则S4×6=300-96300, 故S =16.32.2.(2016·南平模拟)设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( ) A.15 B.25 C.35 D.45 答案 C解析 方程有实数根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去), 故所求概率为P =5-25-0=35,故选C.3.(2016·四川宜宾筠连中学第三次月考)如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.13 答案 B解析 正方形中随机撒一粒豆子,它落在阴影区域内的概率P =S 阴影S 正方形. 又∵S 正方形=4,∴S 阴影=83,故选B.4.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.1-2πB.12-1πC.2πD.1π 答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝ ⎛⎭⎪⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.5.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·322=49π. 7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴的夹角小于π4的概率为______.答案12+1π解析半圆区域如图所示.设A表示事件“原点与该点的连线与x轴的夹角小于π4”,由几何概型的概率计算公式得P(A)=A的面积半圆的面积=14πa2+12a212πa2=12+1π.10.(2016·湖南衡阳八中月考)随机向边长为5,5,6的三角形中投一点P,则点P到三个顶点的距离都不小于1的概率是________.答案1-π24解析由题意作图,如图,则点P应落在深色阴影部分,S△=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P到三个顶点的距离都不小于1的概率为12-π212=1-π24.11.已知向量a=(-2,1),b=(x,y).(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a·b=-1的概率;(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.解(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36,由a·b=-1得-2x+y=-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个, 故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6},满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}.画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率. 解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2b a,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ,b⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.*13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P (A )=A 的面积Ω的面积=24-12×12+24-22×12242=506.5576=1 0131 152.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6节几何概型
最新考纲 1.了解随机数的意义,能运用模拟方法估计概率;2.了解几何概型的意义.
知识梳理
1.几何概型的定义
事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量(长度、面积、体积)成正比,而与A的位置和形状无关,满足上述条件的试验称为几何概型.
2.几何概型的两个基本特点
(1)无限性:在一次试验中,可能出现的结果有无限多个;
(2)等可能性:每个结果的发生具有等可能性.
3.几何概型的概率公式
P(A)=μA
μΩ,其中
μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.
基础自测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)随机模拟方法是以事件发生的频率估计概率.( )
(2)从区间[1,10]内任取一个数,取到1的概率是110
.( ) (3)概率为0的事件一定是不可能事件.( )
(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) 答案 (1)√ (2)× (3)× (4)√
2.(引自人教A 版必修3P140练习1)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )
解析 如题干选项中图,各种情况的概率都是其面积比,中奖的概率
依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13
,所以P (A )>P (C )=P (D )>P (B ).
答案 A
3.(必修3P109例2改编)如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积
的估计值为____________.
解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S 4=30
200,∴S =0.6. 答案 0.6
4.(2016·全国Ⅱ卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )
A.710
B.58
C.38
D.310 解析 至少需要等待15秒才出现绿灯的概率为40-1540=58
. 答案 B
5.(2018·大连模拟)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )。

相关文档
最新文档