七下实数提高题与常考题型压轴题(含解析)

合集下载

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)x是a的平方根 a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即a2,那么这个正数xx=叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式a2x=(x≥0)中,规定ax=。

(2)a的结果有两种情况:当a是完全平方数时,a是一个有限数;当a不是一个完全平方数时,a是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小(5)a x=2 (x≥0) <—> a x = a 是x 的平方 x 的平方是a x 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a ≥0) 0≥a==a a 2 ;注意a 的双重非负性: -a (a <0)a ≥(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

3、立方根(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根(2)一个数a 的立方根,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3) 一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即)0a =>。

(5)a x =3 <—> 3a x =a 是x 的立方 x 的立方是ax 是a 的立方根 a 的立方根是x(6)33a a -=-,这说明三次根号内的负号可以移到根号外面。

(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)
1、平方根 (1)平方根的定义:如果一个数 x 的平方等于 a,那么这个数 x 就叫做 a 的平方根.即:如果
x2 a ,那么 x 叫做 a 的平方根. (2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是
非负数才有意义. (3)平方与开平方互为逆运算: 3 的平方等于 9,9 的平方根是 3 (4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后
才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行.
7、有理数除法运算法则就什么?
两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个
第 6 页(共 30 页)
(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)(word 版可编辑修改)
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的
相反数。
3、立方根
第 4 页(共 30 页)
(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)(word 版可编辑修改)
(1)立方根的定义:如果一个数 x 的立方等于 a ,这个数叫做 a 的立方根(也叫做三次方根),
(2) a 的结果有两种情况:当 a 是完全平方数时, a 是一个有限数;
当 a 不是一个完全平方数时, a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;
当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小
(5) x2 a (x≥0) 〈—> x a

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

人教版数学七年级下册第六章实数常考题提高难题压轴题练习(含答案解析).doc:一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.的算术平方根是()A.2 B.±2 C.D.±3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>05.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N10.数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣211.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c二.填空题(共13小题)14.的平方根是.15.﹣8的立方根是.16.的算术平方根是.17.﹣()2=.18.已知a、b为两个连续的整数,且,则a+b=.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.20.若实数a、b满足|a+2|,则=.21.比较大小:﹣3﹣2.22.=.23.5﹣的小数部分是.24.比较大小:(填“>”“<”“=”).25.若x,y为实数,且,则(x+y)2010的值为.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.28.计算:(﹣2)2+|﹣1|﹣.29.求值:+()2+(﹣1)2015.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.32.已知,a、b互为倒数,c、d互为相反数,求的值.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.(含答案解析)参考答案与试题解析一.选择题(共13小题)1.9的平方根为()A.3 B.﹣3 C.±3 D.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.的算术平方根是()A.2 B.±2 C.D.±【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数.如果两数互为相反数,它们的和为0.4.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.【点评】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.5估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵5<<6,∴在5到6之间.故选:C.【点评】此题主要考查了估算无理数的那就,“夹逼法”是估算的一般方法,也是常用方法.7.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质,估算其数值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.10数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.﹣1 B.1﹣C.2﹣D.﹣2【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.【解答】解:∵数轴上表示1,的对应点分别为A,B,∴AB=﹣1,∵点B关于点A的对称点为C,∴AC=AB.∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.【点评】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根【分析】A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;C、是2的平方根,故C选项正确;D、=3,3的平方根是±,故D选项错误.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.二.填空题(共13小题)14.的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.16.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.﹣()2=﹣3.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.【点评】本题考查了数的平方运算,是基本的计算能力.18已知a、b为两个连续的整数,且,则a+b=11.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.19.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.比较大小:﹣3<﹣2.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.22.=3.【分析】33=27,根据立方根的定义即可求出结果.【解答】解:∵33=27,∴;故答案为:3.【点评】本题考查了立方根的定义;掌握开立方和立方互为逆运算是解题的关键.23.5﹣的小数部分是2﹣.【分析】根据1<<2,不等式的性质3,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解答】解:由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.【点评】本题考查了估算无理数的大小,利用了不等式的性质:不等式的两边都乘以或除以同一个负数,不等号的方向改变,不等式的两边都加同一个数,不等号的方向不变.24.比较大小:>(填“>”“<”“=”).【分析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【解答】解:∵﹣1>1,∴>.故填空结果为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.25.若x,y为实数,且,则(x+y)2010的值为1.【分析】先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)2010中求解即可.【解答】解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;因此(x+y)2010=1.故答案为:1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.三.解答题(共14小题)27.计算:(﹣2)2+(﹣3)×2﹣.【分析】原式第一项利用乘方的意义化简,第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣6﹣3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.计算:(﹣2)2+|﹣1|﹣.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.求值:+()2+(﹣1)2015.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=+﹣1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)先估计、的近似值,然后判断的小数部分a,的整数部分b,最后将a、b的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y的值,最后求x ﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.31.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.32.已知,a、b互为倒数,c、d互为相反数,求的值.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.33.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.【分析】先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【解答】解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==.【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.34.计算:(﹣2)2﹣(3﹣5)﹣+2×(﹣3)【分析】根据实数的运算顺序计算即可求解.注意实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减,遇有括号,先算括号内的.【解答】解:原式=4﹣(﹣2)﹣2﹣6=﹣2.【点评】此题主要考查了实数的运算,解题要注意实数的混合运算顺序.35.(1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;(2)设这个数为x,则x•=a(a为有理数),所以x=(a为有理数).【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.36.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.【分析】由于被开方数应等于它算术平方根的平方.那么由此可求得y,然后即可求出x.【解答】解:∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.【点评】此题主要考查了平方根的性质:被开方数应等于它算术平方根的平方.正数的平方根有2个.37.画一条数轴,把﹣1,,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.【分析】根据相反数的定义写出各数的相反数,再画出数轴即可解决问题.【解答】解:﹣1的相反数是1;的相反数是﹣;2的相反数是﹣2;∴﹣2<﹣<﹣<<<2.【点评】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是熟知相反数的概念,只有符号不同的两个数叫互为相反数.38.求x的值:(1)4x2=25;(2)(x﹣0.7)3=0.027.【分析】(1)可用直接开平方法进行解答;(2)可用直接开立方法进行解答.【解答】解:(1)x2==,∴x=±.(2)(x﹣0.7)3=0.027=(0.3)3,∴x﹣0.7=0.3,故x=1.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.39.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求出a、b的值,再求出12a+2b的值,求出其立方根即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=(±3)2,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,把a=5代入得,3×5+b﹣1=16,解得b=2,∴12a+2b=12×5+4=64,∴=4,即12a+2b的立方根是4.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.40.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.【分析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N 的平方根.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.【点评】本题考查了立方根、平方根及算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.。

七下实数提高题与常考题型压轴题(含解析)

七下实数提高题与常考题型压轴题(含解析)

实数提高题与常考题型压轴题(含解析)一.选择题(共15小题)1.的平方根是()A.4 B.±4 C.2 D.±22.已知a=,b=,则=()A.2a B.ab C.a2b D.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣π B.﹣3.14 C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个 C.2个 D.1个7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣8.的算术平方根是()A.2 B.±2 C.D.9.下列实数中的无理数是()A.0.7 B.C.πD.﹣810.关于的叙述,错误的是()A .是有理数B.面积为12的正方形边长是C .=2D .在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>012.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8 (31)=332=933=27…新运算log22=1log24=2log28=3…log33=1log39=2log327=3…根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q 是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:a…﹣0.000100.00011100……﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:a0.0004.044400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{}.无理数集合:{}.负实数集合:{}.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4 B.±4 C.2 D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣π B.﹣3.14 C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个 C.2个 D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b 的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7 B.C.πD.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8 (31)=332=933=27…新运算log22=1log24=2log28=3…log33=1log39=2log327=3…根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x的值是﹣1(写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=2﹣4.【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示x A、B表示x B,则AB=|x B﹣x A|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=﹣1.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n 个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F(m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a (a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n 的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a 互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n ﹣p的立方根是1,求n+p的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:a…﹣0.000100.00011100……﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:(1)填表:a0.0004.044400(2)根据你发现规律填空:已知:=2.638,则=26.38,=0.02638;已知:=0.06164,=61.64,则x=3800.【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,=2,=20;。

七下实数提高题与常考题型压轴题(含解析) 之欧阳术创编

七下实数提高题与常考题型压轴题(含解析) 之欧阳术创编

实数提高题与常考题型压轴题(含解析)时间:2021.02.02 创作:欧阳术一.选择题(共15小题)1.的平方根是()A.4B.±4C.2D.±22.已知a=,b=,则=()A.2aB.abC.a2bD.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于 2.236,正确的说法有()A.4个B.3个C.2个D.1个7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣8.的算术平方根是()A.2B.±2C.D.9.下列实数中的无理数是()A.0.7B.C.πD.﹣810.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>012.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.pB.qC.mD.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=222=423=8…31=332=933=27…指数运算log22=1log24=2log28=3…log33=1log39=2log327=3…新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:00.000111000…a…﹣0.0001…﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:a0.00040.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{}.无理数集合:{}.负实数集合:{}.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4B.±4C.2D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2aB.abC.a2bD.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个C.2个D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2B.±2C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7B.C.πD.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.pB.qC.mD.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=222=423=8…31=332=933=27…指数运算log22=1log24=2log28=3…log33=1log39=2log327=3…新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x的值是﹣1(写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n 为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=2﹣4.【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x 1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示x A、B表示x B,则AB=|x B﹣x A|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b 之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M >0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=﹣1.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q 是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F (m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F (57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得 2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n ﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:a…﹣00.000111000…0.0001…﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:(1)填表:a0.00040.04 4 400(2)根据你发现规律填空:已知:=2.638,则=26.38,=0.02638;已知:=0.06164,=61.64,则x=3800.【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.2638;3800.。

七下实数提高题与常考题型压轴题

七下实数提高题与常考题型压轴题

实数提高题与常考题型压轴题(含解析)一•选择题(共15小题)1•饭〔一.二的平方根是()A. 4B. 土4 C • 2 D. 土22.已知a=J:「, b= 「,则甘1 -=()A.2aB. abC. a2bD. ab23.实数「的相反数是()A.—£B.匚C .—二 D.-224.实数-n,- 3.14 , 0, 「四个数中,最小的是()A.—冗B.- 3.14C. :D. 05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C•开方开不尽的数和n统称无理数D.有理数、无理数统称实数6.下列说法中:(1)二是实数;(2)二是无限不循环小数;(3)匸是无理数; (4)二的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.实数a、b满足+4a2+4ab+b=0,贝U b a的值为()A. 2B.丄C. - 2D.-2 28.:一的算术平方根是()A . 2B . ± 2C .匚D. 二9.下列实数中的无理数是()A . 0.7B . - C. n D. - 8210 .关于.一7的叙述,错误的是()A . . r是有理数B .面积为12的正方形边长是c. r=2 二D.在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,贝U下列式子正确的是()6 a------ •1-------------- 1~•------- >-10 12A. a? b>0B. a+bv0C. |a| v|b|D. a - b>012.如图,四个实数m n, p, q在数轴上对应的点分别为M N P, Q,若n+q=0, 则m, n, p, q四个实数中,绝对值最大的一个是()—•------------ •—<P N时QA. pB. qC. mD. n13.估计一+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,®log J =- 1.其中正确的是()A.①② B•①③C•②③ D.①②③二.填空题(共10小题)16._________________ 匚-2的绝对值是 .17.在-4,, 0,n,1,-「「这些数中'是无理数的是18 .能够说明“ 「=x不成立”的x的值是 ______ (写出一个即可)19.若实数x, y满足(2x+3)2+|9 - 4y|=0,则xy的立方根为20.实数a, n, m b满足av nvm< b,这四个数在数轴上对应的点分别为A, N,M B (如图),若A M=BM? AB B N二AN? AB则称m为a , b的“大黄金数” ,n为a , b的“小黄金数”,当b- a=2时,a , b的大黄金数与小黄金数之差m- n ____________________________________________________________________ .A N 站B应n m b21.规定:log a b (a>0, a^ 1, b>0)表示a, b之间的一种运算.现有如下的运算法则:log a a n=n. log N M^( a>0, a工1, N>0, N M 1, Mlog n N> 0).3 1 o £ f m 5例如:log 22 =3, log 25= ',贝U log 1001000= .1OE21022.对于实数a, b,定义运算“ *”:a*b=gJb(Qb),例如:因为4>2,所[a-b(a<b)以4*2=42- 4X 2=8,贝U (- 3) * (- 2) = .23.观察分析下列数据,并寻找规律:匚,二,2二,《[」,•」「*,.= ,…根据规律可知第n个数据应是_____ .24.下面是一个某种规律排列的数阵:1©第1行2行2第7io yn J12第怖34yi? 720第4行根据数阵的规律,第n行倒数第二个数是____ .(用含n的代数式表示)25.阅读下列材料:设・_ _ :;=0.333…①,则10x=3.333…②,则由②-①得:9x=3,即■■-—.所以〔..:::=0.333•••=.根据上述提供的方法把下列两个数化成分O W数.I L= ____ , . ■;= .三.解答题(共15小题)26.计算下列各式:(1) (―「+ 匚--)X (- 18)9 61.8(2) -12+右兀-(-2)x ",| - 3| - j 「― x: — + ( — 2) 29, 如图,在一张长方形纸条上画一条数轴.I!-8 -7 -6-5 -A-3-2-1 012345678 9^V V(1) 若折叠纸条,数轴上表示-3的点与表示1的点重合,则折痕与数轴的交 点表示的数为 ;(2) 若经过某次折叠后,该数轴上的两个数 a 和b 表示的点恰好重合,则折痕 与数轴的交点表示的数为 (用含a , b 的代数式表示);(3) 若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合, 这样连续对折n 次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与 数轴的交点表示的数.(用含n 的代数式表示)30. 我们知道,任意一个正整数 n 都可以进行这样的分解:n=pxq (p ,q 是正 整数,且p < q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小, 我们就称px q 是n 的最佳分解.并规定:F (n )=.例如12可以分解成1X 12,q2X6或3X4,因为12- 1>6- 2>4- 3,所有3X 4是12的最佳分解,所以F(12)=.4(1) 如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平 方数.求证:对任意一个完全平方数 m 总有F ( m =1 ;(2) 如果一个两位正整数t ,t=10x+y ( K x < y < 9,x ,y 为自然数),交换其 个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为 18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F (t )的最大值.31. (1)定义新运算:对于任意实数 a , b ,都有a ® b=a (a - b ) +1,等式右边 是通常的加法、 减法及乘法运算,比如,数字 2和5在该新运算下结果为-5 .计算如下:2® 5=2 X( 2-5) +127 •化简求值: ^訂):':,其中”,28•计算:=2X( - 3) +1=-6+1=-5求(-2)® 3的值;(2)请你定义一种新运算,使得数字-4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是土4, 3m+n+1的平方根是土5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a - 3和5 -a,求a和x的值.34.已知m+n与m- n分别是9的两个平方根,m+n- p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知::?=- 50, :丁H=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000, 1003=1000000,你能确定:亍二是几位数吗?••• 1000V 59319V 1000000,••• 10V :. V 10°.是两位数;(2)由59319的个位上的数是9,你能确定:辰=7的个位上的数是几吗?•••只有个位数是9的立方数是个位数依然是9,的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27, 43=64,由此你能确定 :的十位上的数是几吗?••• 27V 59 V 64,••• 3°V V 40••••?;*・-]■--门的十位数是3.所以,:于二的立方根是39.已知整数50653是整数的立方,求:亍千的值.37.按要求填空:(1)填表:(2)根据你发现规律填空:已知:==2.638,贝U —1= _____ , jL「「"= _____ ;已知:一一…丁=0.06164, 7=61.64,贝U x= __ .38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:-0, 0.3 (3 无限循环),「,18, 1.21 (21 无限循环),3.14159 , 1.21,彩了,丁,0.8080080008…,-(1)有理数集合: ___ ;(2)无理数集合:—;(3)非负整数集合: ___ ;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)-,那么将1.21 (21无限循环)化为分数,则1.213(21无限循环)= ___ (填分数)39 •将下列各数的序号填在相应的集合里:①-:②2n,③3.1415926,④-0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2匚,⑦,2017⑧- -有理数集合:{ ____ } •无理数集合:{ _} •40.观察下列各式,发现规律:(1)填(2)计算(写出计算过程)(3)请用含自然数n (n》1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一•选择题(共15小题)1.(2017?微山县模拟).丁的平方根是()A. 4B. 土4 C . 2 D. 土2【分析】先化简「=4,然后求4的平方根.【解答】解:."7=4,4的平方根是土2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简 .丁.2.(2017?河北一模)已知a=二,b=二,贝U T =()2 2A. 2aB. abC. a bD. ab【分析】将18写成2X 3X 3,然后根据算术平方根的定义解答即可.【解答】解:飞=3m ~X ~X「二a? b? b=aH.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017?南岗区一模)实数匚的相反数是()A._ -B. -C._「D.-2 2【分析】根据相反数的定义,可得答案.【解答】解:匚的相反数是-匚,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017?禹州市一模)实数-n,- 3.14,0,匚四个数中,最小的是()A.—冗B.- 3.14C. :_iD. 0【分析】先计算| -n |= n, | -3.14|=3.14 ,根据两个负实数绝对值大的反而小得-nV - 3.14,再根据正数大于0,负数小于0得到-nV - 3.14 V 0V ■:.【解答】解::| -n |= n, | - 3.14|=3.14 ,.•.-冗<-3.14 ,•••-n,- 3.14 , 0, 「这四个数的大小关系为-nV- 3.14 V 0V故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春?滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C•开方开不尽的数和n统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春?海宁市校级月考)下列说法中:(1):是实数;(2):是无限不循环小数;(3)匸是无理数;(4)二的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个【分析】根据实数的分类进行判断即可.【解答】解:(1)二是实数,故正确;(2)二是无限不循环小数,故正确;(3)二是无理数,故正确;(4)二的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7. (2016?泰州)实数a b满足.匚—+4a2+4ab+6=0,贝U b a的值为( )A. 2B.C. - 2D.-2 2【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值, 然后代入代数式进行计算即可得解.【解答】解:整理得,.匚—+ (2a+b) 2=0,所以,a+ 仁0, 2a+b=0,解得a=- 1, b=2,所以,b a=2-1=.2故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016?毕节市):一的算术平方根是( )A. 2B. 土2 C .匚D. 二【分析】首先根据立方根的定义求出:—的值,然后再利用算术平方根的定义即可求出结果.【解答】解::_=2, 2的算术平方根是二.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算:—=2.9.(2016?福州)下列实数中的无理数是()A. 0.7 B .丄C. n D.— 82【分析】无理数就是无限不循环小数,最典型就是n,选出答案即可.【解答】解:•••无理数就是无限不循环小数,且0.7为有限小数,I为有限小数,-8为正数,都属于有理数,2n为无限不循环小数,•••n为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016?河北)关于.r的叙述,错误的是()A.7是有理数B.面积为12的正方形边长是.rC.==2 二D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或n;由此即可判定选择项.【解答】解:A =是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是r,原来的说法正确,不符合题意;C、r=2「,原来的说法正确,不符合题意;D在数轴上可以找到表示.r的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数, 无理数的范围以及分类方法.11.(2016?大庆)已知实数a、b在数轴上对应的点如图所示,贝U下列式子正确的是()h a■ | ----------- 1~•-------- >-10 12A. a? b>0B. a+bv0C. |a| v|b|D. a - b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1vav2,- 1v bv 0,••• abv0, a+b>0, |a| > |b| , a - b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016?泰安)如图,四个实数m n, p, q在数轴上对应的点分别为M N P, Q,若n+q=O,则m n, p, q四个实数中,绝对值最大的一个是()—•----------- •P N时QA. pB. qC. mD. n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:I n+q=0,•n和q互为相反数,0在线段NQ的中点处,•••绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016?淮安)估计~+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出匸的取值范围,进而得出答案.【解答】解::2v =v3,•3v +1 v 4,•+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出匸的取值范围是解题关键.14.(2016?天津)估计.r的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【分析】直接利用二次根式的性质得出7的取值范围.【解答】解:T .Tv Hv〒,••• —i的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近.丁的有理数是解题关键.15.(2016?永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,® log^ =- 1.其中正确的是()A.①②B•①③ C•②③ D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125工25,所以此选项错误;③因为2-1^,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017?涿州市一模)匚-2的绝对值是2-二【分析】根据负数的绝对值等于它的相反数解答.【解答】解:匚-2的绝对值是2-即|匚-2|=2 -匚.故答案为:2-",【点评】本题考查了实数的性质,主要利用了绝对值的性质.17,(2016秋?南京期中)在-4,丄,0,冗,1,-二,1.:;这些数中,是无理2 7 、数的是n ,【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称•即有限小数和无限循环小数是有理数,而无限不循环小数是无理数•由此即可判定选择项.【解答】解:无理数只有:n,故答案是:n,【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:n,2 n等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数,18,(2016?金华)能够说明“厂=x不成立”的x的值是 -1 (写出一个即可),【分析】举一个反例,例如x=- 1,说明原式不成立即可.【解答】解:能够说明“ 「=x不成立”的x的值是-1,故答案为:-1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键. 19,(2016?德阳)若实数x, y满足(2x+3)2+|9 - 4y|=0 ,则xy的立方根为_-7―【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解::(2x+3)2+|9 - 4y|=0 ,二2x+3=0,解得x=-二29 -4y=0,解得y=",4xy= - =-=2 4 8二xy的立方根为-22故答案为:-「•2【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20. (2016?成都)实数a, n, m b满足av nv m< b,这四个数在数轴上对应的点分别为A, N, M B (如图),若AM=Bh? AB, BN=ANP AB,则称m为a, b 的“大黄金数”,门为a, b的“小黄金数”,当b-a=2时,a, b的大黄金数与小黄金数之差m- n=_2 4 .A A' M B______ m ■■■亠■!a n MJ b【分析】设AM=x根据AM=Bh? AB列一元二次方程,求出x,得出AM=BN=-1,从而求出MN的长,即m- n的长.【解答】解:由题意得:AB=I- a=2设AM=x 贝U BM=- x2x=2 (2 -x)x= - 1 ±"x i=- 1+ ", X2=- 1 --(舍)贝U AM=BN匸-1MN=m n= AM+BN2=2 (二-1)- 2=2 二-4故答案为:2 ~-4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示X A、B表示X B,则AB=|X B -X A|;同时会用配方法解一元二次方程,理解线段的和、差关系.21. (2016?宜宾)规定:log a b (a>0, 1, b>0)表示a, b之间的一种运现有如下的运算法则:log a a n=n. log N M=一( a>0,a工1, N>0, N M 1, M log n N > 0).例如:log 223=3, log 25= ,贝U log 1。

七下实数提高题与常考题型压轴题(含解析) 之欧阳美创编

七下实数提高题与常考题型压轴题(含解析) 之欧阳美创编

实数提高题与常考题型压轴题(含解析)时间:2021.01.01 创作:欧阳美一.选择题(共15小题)1.的平方根是()A.4B.±4C.2D.±22.已知a=,b=,则=()A.2aB.abC.a2bD.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于 2.236,正确的说法有()A.4个B.3个C.2个D.1个7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣8.的算术平方根是()A.2B.±2C.D.9.下列实数中的无理数是()A.0.7B.C.πD.﹣810.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>012.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.pB.qC.mD.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=222=423=8…31=332=933=27…指数运算log22=1log24=2log28=3…log33=1log39=2log327=3…新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N >0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F (m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a 和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:00.000111000…a…﹣0.0001…﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:a0.00040.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将 1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{}.无理数集合:{}.负实数集合:{}.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4B.±4C.2D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2aB.abC.a2bD.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个C.2个D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2B.±2C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7B.C.πD.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.pB.qC.mD.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=222=423=8…31=332=933=27…指数运算log22=1log24=2log28=3…log33=1log39=2log327=3…新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x的值是﹣1 (写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n 为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n= 2﹣4 .【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x 1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示x A、B表示x B,则AB=|x B﹣x A|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N >0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)= ﹣1 .【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1 ;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p ×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F (m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F (m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F (57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得 2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:a…﹣00.000111000…0.0001…﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:(1)填表:a0.00040.04 4 400(2)根据你发现规律填空:已知:=2.638,则=26.38,= 0.02638 ;。

部编数学七年级下册实数的运算大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)

部编数学七年级下册实数的运算大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题6.5实数的运算大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•右玉县期末)计算:(1)−12+×(2)【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)−12+×=﹣1+(﹣3)﹣6=﹣4﹣6=﹣10;(2)=2﹣2+(﹣4)=2﹣2++4=2.(2021秋•兰考县期末)(1+(2.【分析】(1)首先计算开方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算开方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1=5﹣2+2=5.(2=2+(−32)﹣(2=12−2+=−323.(2021秋•安宁市校级期末)计算:(1)−12018+(2+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简绝对值,然后再进行计算即可解答.【解答】解:(1)−12018++=﹣1+51﹣2﹣3=(2+=+2=2.4.(2021秋•大丰区校级月考)计算:(1)(−1)2021+(2【分析】(1)直接利用有理数的乘方运算法则、二次根式的性质化简,进而得出答案;(2)直接利用有理数的乘方运算法则、二次根式的性质化简,进而得出答案.【解答】解:(1)(−1)2021+=﹣1+5=4;(2=2﹣(﹣2)=4.5.(2021秋•道里区期末)计算:(1(2.【分析】(1)先化简各数,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【解答】解:(1+=5+(﹣2)﹣6=﹣3;(2=3+3=6.6.(2022春•仁怀市校级月考)计算:−43÷+.【分析】直接利用有理数的乘方运算法则、立方根的性质、绝对值的性质、算术平方根分别化简,进而合并得出答案.【解答】解:原式=﹣64÷(﹣32)+2﹣(1﹣3)+1=2+2+2+1=57.(2022秋•铜山区期中)计算:(1(2)|﹣3|+(﹣1)0【分析】(1)首先计算开平方和开立方,然后计算除法,最后计算减法,求出算式的值即可.(2)首先计算零指数幂、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1÷=9÷(﹣3)﹣5=﹣3﹣5=﹣8.(2)|﹣3|+(﹣1)0=3+1﹣3+2=3.8.(2022秋•永康市期中)计算:(1(﹣1)2023(22|【分析】(1)根据算术平方根,立方根和有理数的乘方运算可解答;(2)根据绝对值,算术平方根,立方根运算可解答.【解答】解:(1(﹣1)2023=5﹣4+1=2;(22|=23+3=29.(2022秋•镇平县期中)计算:(1|1(2)+(3(﹣3)(﹣2)2.【分析】(1)先算开方,再去绝对值符号,再进行计算即可;(2)先开方,再算加减即可;(3)先算乘方,开方,再算乘法,最后算加减即可.【解答】解:(1)原式=2﹣|1﹣4|=2﹣3=﹣1;(2)原式=−54+5=15 4;(3)原式=﹣6+(﹣3)×10﹣4=﹣6﹣30﹣4=﹣40.10.(2022秋•南岗区校级期中)计算:(2)+3+;(3+【分析】(1)先去括号,再合并同类二次根式;(2)先计算绝对值、去括号,再合并同类二次根式;(3)先计算平方根和立方根,再计算加减.【解答】解:(1)==(2)+3+=1+3+1=+1;(3+=2﹣2−1 2=−1 2.11.求下列各式的值.(1(2×+×【分析】(1)原式利用平方根的定义化简,计算即可得到结果;(2)原式利用平方根定义及二次根式的性质化简,计算即可得到结果.【解答】解:(1)原式=5﹣4+2=3;(2)原式=0.01×100+6×0.2=1+1.2=2.2.12.计算:(2×|﹣(3×1|0.001)(4(5+【分析】原式各项利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+(2)原式=×=4(3)原式=×1)=3≈0.150;(4)原式=2=2﹣(5)原式=+9﹣2+7.13.计算.(1(2+【分析】(1)原式利用平方根定义化简,计算即可得到结果;(2)原式利用平方根及立方根定义化简,计算即可得到结果.【解答】解:(1)原式=0.6+35=1.2;(2)原式=12−52×(−15)﹣7+3=﹣4.14.计算(12;(2+0;(3+−2;(4.【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式利用平方根,立方根,绝对值,以及零指数幂法则计算即可得到结果;(3)原式利用平方根,立方根,绝对值,以及负指数幂法则计算即可得到结果;(4)原式利用立方根,平方根,以及绝对值的定义化简即可得到结果.【解答】解:(1)原式=﹣2+2﹣3=﹣3;(2)原式=5﹣2+3+1=7(3)原式=2﹣4+3+13=43+(4)原式=﹣1﹣2+2+1=15.计算:(1(2)+(3×(−12)2(41|﹣|3【分析】(1)原式利用平方根及立方根定义化简即可得到结果;(2)原式利用平方根及立方根定义化简即可得到结果;(3)原式利用平方根及立方根定义化简即可得到结果;(4)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式﹣0.5﹣(﹣3)=0.5+3=3.5;(2)原式=﹣8+8=0;(3)原式=4﹣4×14−(﹣3)=4﹣1+3=6;(4)原式=2+11﹣37.16.计算:(1)2)(2)|1【分析】(1)原式去括号合并即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=2=2;(2)原式=1++21.17.(2021春•柳南区校级期中)计算(1(2)﹣22×(12)2+|﹣2|.【分析】(1)首先根据二次根式的性质、立方根计算,再算加减即可;(2)首先计算有理数的乘方,开立方,根据绝对值的性质计算绝对值,然后再算乘除,后算加减即可.【解答】解:(1)原式=5﹣3−13=123;(2)原式=﹣4×14−4÷2=﹣1﹣2=﹣3.18.(2021春•青川县期末)计算:(1)(﹣3)2+2×1)﹣|﹣(2+|2+【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=2﹣=7;(2)原式=﹣2+2+4=﹣2−35+2+4=−35.19.(2021春•柳南区校级期末)计算:(1)﹣12+(﹣2)×(21)2|【分析】(1)原式利用乘方的意义,立方根定义,以及乘法法则计算即可求出值;(2)原式利用二次根式乘法法则,绝对值的代数意义计算即可求出值.【解答】解:(1)原式=﹣1+(﹣3)+2×3=﹣1﹣3+6=2;(2)原式=3+2=5.20.(2020秋•江都区期末)计算:(1+(2)|1(﹣2)2【分析】(1)直接利用立方根以及算术平方根分别化简得出答案;(2)直接利用绝对值的性质分别化简得出答案.【解答】解:(1)原式=1﹣2+4 3=1 3;(2)原式=1+4=3.21.(2022春•连山区期末)计算.(1(2)+(−5)2【分析】(1)实数的混合运算,先分别化简算术平方根,立方根,然后再计算;(2)实数的混合运算,先化简绝对值,有理数的乘方,然后再计算.【解答】解:(1)原式=7﹣3+3=7;(2)原式=1+25=24.22.(2020秋•松北区期末)计算:(1|2(2)【分析】(1)首先计算开方、绝对值,然后从左向右依次计算即可.(2)首先计算绝对值,然后从左向右依次计算即可.【解答】解:(1|2=﹣42)﹣=﹣42﹣=5.(2)=+=23.(2021春•福州期末)计算:(1)|﹣2|+(﹣1)2019;(2)6+2.【分析】(1)直接利用实数的混合运算法则计算得出答案;(2)直接利用实数的混合运算法则计算得出答案.【解答】解:(1)|﹣2|+(﹣1)2019,=2﹣2﹣(﹣1),=1,(2)6+2,=6×13−3+2,=2﹣3+2,=1.24.(2020秋•道里区期末)计算:(1(2+【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用绝对值的性质和算术平方根分别化简得出答案.【解答】解:(1)原式=4+3+7=14;(2)原式=+5=525.计算(1(2)+(﹣1)3【分析】(1)原式各项化简后,合并即可得到结果;(2)原式利用算术平方根、立方根定义,以及乘方的意义计算即可得到结果.【解答】解:(1)原式=0.8−32+1.2=0.5;(2)原式=14−1−32=−94.26.(2021春•安定区校级期中)计算下列各题(1+|1(2【分析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用平方根、立方根的定义计算即可得到结果.【解答】解:(1)原式=2﹣2﹣3+14;(2)原式=5+3+12=812.27.(2018春•遵义期中)计算下列各题:(1++(2)|7|【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7π+7=﹣π.28.计算:(1(2)﹣【分析】(1)先进行开方运算,再合并同类项即可;(2)先开方运算,再合并即可得到答案.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣=﹣8﹣4×(﹣4)=﹣8+16=8.29.计算下列各题:(1+(2)(3+2.【分析】(1)先计算算术平方根、立方根,再计算有理数的加减即可;(2)先化简绝对值、计算平方根,再计算实数的加减即可;(3)先计算算术平方根、化简绝对值、立方根、实数的平方,再计算实数的加减即可.【解答】解:(1+=4+(﹣3)−12+0.5+18=11 8;(2)=(7π7=7π7=﹣π;(3+2=6+1)﹣2+5=830.(2022春•罗定市期中)计算:(﹣2)2+2|.【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.【解答】解:原式=4+2=4+3﹣3+2=6。

七下实数提高题与常考题型压轴题(含解析)

七下实数提高题与常考题型压轴题(含解析)

七下实数提高题与常考题型压轴题(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七下实数提高题与常考题型压轴题(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七下实数提高题与常考题型压轴题(含解析)的全部内容。

实数提高题与常考题型压轴题(含解析)一.选择题(共15小题)1.的平方根是()A.4 B.±4C.2 D.±22.已知a=,b=,则=()A.2a B.ab C.a2b D.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2。

236,正确的说法有()A.4个B.3个C.2个D.1个7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2 B.C.﹣2 D.﹣8.的算术平方根是()A.2 B.±2C.D.9.下列实数中的无理数是()A.0.7 B.C.πD.﹣810.关于的叙述,错误的是( )A .是有理数B .面积为12的正方形边长是C .=2D .在数轴上可以找到表示的点11.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a •b >0B .a+b <0C .|a|<|b |D .a ﹣b >012.如图,四个实数m,n,p ,q 在数轴上对应的点分别为M ,N ,P,Q ,若n+q=0,则m ,n,p,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n 13.估计+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 14.估计的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运算21=2 22=4 23=8 … 31=3 32=9 33=27 …新运算 log 22=1 log 24=2 log 28=3 … log 33=1 log 39=2 log 327=3 …根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立"的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b 的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0。

七下实数提高题与常考题型压轴题(含解析) 之欧阳治创编

七下实数提高题与常考题型压轴题(含解析) 之欧阳治创编

实数提高题与常考题型压轴题(含解析)时间2021.03.10 创作:欧阳治一.选择题(共15小题)1.的平方根是()A.4 B.±4C.2 D.±22.已知a=,b=,则=()A.2a B.ab C.a2b D.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个C.2个D.1个7.实数a、b满足+4a2+4ab+b2=0,则ba的值为()A.2 B. C.﹣2 D.﹣8.的算术平方根是()A.2 B.±2C.D.9.下列实数中的无理数是()A.0.7 B. C.π D.﹣810.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0 12.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=2 22=4 23=8 …31=3 32=9 33=27 …指数运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy 的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:logaan=n.logNM=(a >0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b 表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n 的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F (n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:0 0.0001 1 1000 …a …﹣0.0001…﹣0.1 0 1 …(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:a 0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{}.无理数集合:{}.负实数集合:{}.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4 B.±4C.2 D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个C.2个D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则ba的值为()A.2 B. C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,ba=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2 B.±2C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7 B. C.π D.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b 的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a <2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=2 22=4 23=8 …31=3 32=9 33=27 …指数运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x 的值是﹣1 (写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n= 2﹣4 .【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN 的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示xA、B表示xB,则AB=|xB﹣xA|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:logaan=n.logNM=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据logNM=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)= ﹣1 .【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x 即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+ ==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1 ;(2)若经过某次折叠后,该数轴上的两个数a和b 表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b 的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y (1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F(m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F (46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a 的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得 2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p 的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:a …﹣0 0.0001 1 1000 …0.0001…﹣0.1 0 1 …(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:(1)填表:a 0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则= 26.38 ,= 0.02638 ;已知:=0.06164,=61.64,则x= 3800 .【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,。

初一下册 实数 单元 综合提高训练(含详细解答与分析)

初一下册 实数 单元 综合提高训练(含详细解答与分析)

1.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B ﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=.解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒个单位长度.2.如图1,在数轴上A、B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D 点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α﹣β|=45°,请用t 的式子表示α、β并直接写出t的值.3.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值4.为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.5.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.情况①若x=2,y=3时,x+y=5情况 ②若x=2,y=﹣3时,x+y=﹣1情况③若x=﹣2,y=3时,x+y=1情况④若x=﹣2,y=﹣3时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?通过分析我们发现,满足题意的情况有两种情况①当点C在点B的右侧时,如图1,此时,AC=情况 ②当点C在点B的左侧时,如图2,此时,AC=通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?仿照问题1,画出图形,结合图形写出分类方法和结果.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC⊥OD,求∠BOD的度数.画出图形,直接写出结果.6.已知3x+1的算术平方根是4,x+2y的立方根是﹣1,(1)求x、y的值;(2)求2x﹣5y的平方根.7.解方程:(1)9x2﹣16=0(3)(x+1)3+27=0.8.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?9.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=,y=;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+ y+(y﹣2x)=2a+b,求x、y的值.10.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x=秒时,原点O恰为线段MN的三等分点.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,求S与t 的关系式.参考答案1.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B ﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=.解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒1或个单位长度.【解答】解:(1)根据阅读材料可知:x C==故答案为;(2)∵AP+BP=9,∴x P﹣(﹣3)+x P﹣4=9解得x P=5答:点P表示的实数x P=5;(3)如图,∵点M是AP的中点,点N是BP的中点,∴AP=2AM=2MPBP=2BN=2PN∴MN=MP﹣NP=(AP﹣BP)=AB∴AB=2MNA,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则AB=4设点B的速度为每秒x个单位长度,则点A的速度为每秒2x个单位长度,根据题意可知:3秒后,点A表示的数为﹣3+6x,点B表示的数为4+3x,当点A在点B左侧时,4+3x﹣(﹣3+6x)=4,解得x=1;当点A在点B右侧时,﹣3+6x﹣(4+3x)=4解得x=.答:B点速度为每秒1或个单位长度.【点评】本题考查了实数与数轴、一元一次方程的应用,解决本题的关键是理解阅读材料并运用.2.如图1,在数轴上A、B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D 点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α﹣β|=45°,请用t 的式子表示α、β并直接写出t的值.【解答】(1)∵CF平分∠ACE,∴∠AOF=∠AOE=45°,故答案为:45°;(2)①∵t=1,∴∠ACD=30t=30°,∵∠DCE=90°,∴∠ACE=120°,∵CF平分∠ACE,∴∠ACF=60°,∵∠DCF=α,∴α=∠ACF﹣∠ACD=30°,故答案为:30°;②∠BCE=2α,证明:∠BCE=180°﹣(90°+30t)=90°﹣30t由平分知:90°﹣α=α+30t30t=90°﹣2α∴∠BCE=90°﹣(90°﹣2α)=2α;(3)α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|α﹣β|=45°,∴|30t|=45°,∴t=±,∵0<t<3,∴t=.【点评】本题考查角的计算、角平分线的定义、数轴、平移、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.3.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4.(2)∵9﹣小数部分是m,9+小数部分是n,∴m=9﹣﹣4=5﹣,n=9+﹣13=﹣4,∵(x+1)2=m+n=5﹣+﹣4=1,∴x+1=±1,解得x1=﹣2,x2=0.故答案为:4,﹣4.【点评】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.4.为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1>(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.【解答】解:(1)∵≈2.236,≈3.162,∴+1≈3.236,∵3.236>3.162,∴+1>.故答案为:>;(2)∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>.【点评】本题主要考查了三角形三边关系以及勾股定理的运用,解题时注意:三角形两边之和大于第三边.5.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.情况①若x=2,y=3时,x+y=5情况 ②若x=2,y=﹣3时,x+y=﹣1情况③若x=﹣2,y=3时,x+y=1情况④若x=﹣2,y=﹣3时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?通过分析我们发现,满足题意的情况有两种情况①当点C在点B的右侧时,如图1,此时,AC=11情况 ②当点C在点B的左侧时,如图2,此时,AC=5通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?仿照问题1,画出图形,结合图形写出分类方法和结果.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC ⊥OD,求∠BOD的度数.画出图形,直接写出结果.【解答】解:(1)满足题意的情况有两种:①当点C在点B的右侧时,如图1,此时,AC=AB+BC=8+3=11;②当点C在点B的左侧时,如图2,此时,AC=AB﹣BC=8﹣3=5;故答案为:11,5;(2)满足题意的情况有两种:①当点C在点B的左侧时,如图,此时,BC=2AB=2(2+1)=6,∴点C表示的数为2﹣6=﹣4;②当点C在点B的右侧时,如图,BC=2AB=2(2+1)=6,∴点C表示的数为2+6=8;综上所述,点C表示的数为﹣4或8;(3)满足题意的情况有两种:①当OC,OD在AB的同侧时,如图,∠BOD=180°﹣∠AOC﹣∠COD=30°;②当OC,OD在AB的异侧时,如图,∠BOD=180°﹣(∠COD﹣∠AOC)=150°;【点评】本题主要考查了实数与数轴,垂线的定义以及角的计算,解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.6.已知3x+1的算术平方根是4,x+2y的立方根是﹣1,(1)求x、y的值;(2)求2x﹣5y的平方根.【解答】解:(1)根据题意知3x+1=16、x+2y=﹣1,则x=5、y=﹣3;(2)∵2x﹣5y=10+15=25,则2x﹣5y的平方根为±5.【点评】本题主要考查平方根、立方根,解题的关键是熟练掌握平方根和立方根的定义.7.解方程:(1)9x2﹣16=0(2)(x+1)3+27=0.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:(x+1)3=﹣27,开立方得:x+1=﹣3,解得:x=﹣4.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.8.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.9.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=﹣2,y=1;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+ y+(y﹣2x)=2a+b,求x、y的值.【解答】(1)解:∵x+y=(1﹣),其中x、y为有理数,∴x+y=﹣2+,∴x=﹣2,y=1,故答案为:﹣2,1;(2)证明:∵x+y=a+b,∴x﹣a+(y﹣b)=0,∵x、y、a、b为有理数,∴x﹣a,y﹣b都是有理数,∴x﹣a=0,y﹣b=0,∴x=a,y=b;(3)解:∵4<<5,又知的整数部分为a,小数部分为b,∴a=4,b=﹣4,∵17y+y+(y﹣2x)=2a+b,∴17y+y+y﹣34x=8+(﹣4),17y﹣34x+2y=17+4,∵x、y为有理数,∴,解得:.【点评】本题考查了有理数、无理数、实数的运算,读懂阅读材料内容,是正确解题的关键.10.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是13,点A在数轴上表示的数是﹣11.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x= 2.2或2.5秒时,原点O恰为线段MN的三等分点.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,求S与t 的关系式.【解答】解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN =EH,则N表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x;①当OM=2ON时,则有|4x﹣9|=2|7﹣3x|,解得:x=2.3(经验证,不符合题意,舍去)或x=2.5②当ON=2OM时,则有|7﹣3x|=2|4x﹣9|,解得:x=2.2或x=5(经验证,不符合题意,舍去)综上所述,当x=2.2或x=2.5时,原点O恰为线段MN的三等分点.故答案为:x=2.2或x=2.5.(3)由题意知,当0<t<6时,长方形ABCD和EFGH无重叠,些时S=0当6≤t≤12时,两个长方形重叠部分的面积为S=,即S =.当t>12时,长方形ABCD和EFGH无重叠,S=0.【点评】本题为图象与函数的综合题,考查了实数与数轴上的点的对应关系、一次函数关系以及分类讨论的思想.解题的关键是分清楚在一个运动变化中各个量的变化情况!。

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环"这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a |≥0.零的绝对值时它本身,也可看成它的相反数,若|a |=a,则a ≥0;若|a|=—a,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数.4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x 2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用—a 表示.(6)a x =2 〈-> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a",a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

【初中数学】七年级下册压轴题专项练习(解析版)

【初中数学】七年级下册压轴题专项练习(解析版)

一、解答题1.如图,用两个面积为200cm 2七年级下册数学压轴题专题练习(解析版)的小正方形拼成一个大的正方形.(1)则大正方形的边长是;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为360cm 2?2.如图,在9⨯9网格中,每个小正方形的边长均为1,正方形ABCD 的顶点都在网格的格点上.(1)求正方形ABCD 的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.3.已知在4⨯4的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和-8.4.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二、解答题6.如图,MN//GH,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若∠NAO=116︒,∠OBH=144︒.(1)∠AOB=︒;(2)如图2,点C、D是∠NAO、∠GBO角平分线上的两点,且∠CDB=35︒,求∠ACD的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若∠MAE=n∠OAE,∠HBF=n∠OBF,且∠AFB=60︒,求n的值.7.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.8.如图,已知直线AB//射线CD,∠CEB=100︒.P是射线EB上一动点,过点P作PQ//EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧,求∠PCG的度数;(2)若点P,F,G都在点E的右侧,∠EGC-∠ECG=30︒,求∠CPQ的度数;(3)在点P的运动过程中,是否存在这样的情形,使∠EGC:∠EFC=4:3?若存在,求出∠CPQ的度数;若不存在,请说明理由.9.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足a-30+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).10.问题情境:(1)如图1,AB//CD,∠PAB=128︒,∠PCD=119︒.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE//AB,请你接着完成解答.问题迁移:(2)如图3,AD//BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠PCE=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PF//AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系并证明.三、解答题11.已知:直线l 1∥l 2,A 为直线l 1上的一个定点,过点A 的直线交l 2于点B ,点C 在线段BA 的延长线上.D ,E 为直线l 2上的两个动点,点D 在点E 的左侧,连接AD ,AE ,满足∠AED =∠DAE .点M 在l 2上,且在点B 的左侧(2)射线AF 为∠CAD 的角平分线.①如图2,当点D 在点B 右侧时,用等式表示∠EAF 与∠ABD 之间的数量关系,并证明;②当点D 与点B 不重合,且∠ABM +∠EAF =150°时,直接写出∠EAF 的度数..(1)如图1,若∠BAD =25°,∠AED =50°,直接写出∠ABM 的度数;12.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,∠B =35︒,∠D =37︒,求∠BED 的度数.她是这样做的:过点E 作EF //AB ,则有∠BEF =∠B ,因为AB //CD ,所以EF //CD .①所以∠FED =∠D ,所以∠BEF +∠FED =∠B +∠D ,即∠BED =_;1.小颖求得∠BED的度数为__;2.上述思路中的①的理由是__;3.请你参考她的思考问题的方法,解决问题:已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE 平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=α,∠ADC=β,则∠BED的度数为;(用含有α,β的式子表示).(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).13.如图1,AB//CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.14.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且b//a,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的线.(2)已知,如图3,AB//CD,BE平分∠ABC,CF平分∠BCD.求证:BE//CF(写出每步的依据).15.如图所示,已知AM//BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C、D,且∠CBD=60︒(1)求∠A的度数.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.四、解答题16.在ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE//AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB.①若∠BAC=100︒,∠C=30︒,则∠AFD=_____;若∠B=40︒,则∠AFD=_____;②试探究∠AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F.试探究∠AFD与B之间的数量关系,并说明理由.17.己知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l//PQ.点D在点C的左边且CD=3(1)直接写出的∆BCD面积 ;(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,试说明∠CEF=∠CFE;(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中∠H的值是否变化?若不变,求出其值;若变化,求出变化范围.∠ABC18.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 19.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反3向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO2的度数.20.如果三角形的两个内角α与β满足2α+β=90︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC中,∠ACB=90︒,BD是ABC的角平分线,求证:△ABD是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC中,若∠A=100︒,∠B=70︒,∠C=10︒,则ABC是“准互余三角形”;②若ABC是“准互余三角形”,∠C>90︒,∠A=60︒,则∠B=20︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B,C为直线l上两点,点A在直线l外,且∠ABC=50︒.若P是直线l上一点,且△ABP是“准互余三角形”,请直接写出∠APB的度数.【参考答案】一、解答题1.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm,宽为3x cm,根据题意列出方程,解方程比较4x与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,∴边长为:400=20cm;(2)根据题意设长方形长为4x cm,宽为3x cm,4x⋅3x=360由题:则x2=30x0∴x=30∴长为430430>20∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.2.(1)面积为29,边长为;(2),,,,图见解析.【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为29;(2)A (0,5),B (2,0),C (7,2),D (5,7),图见解析.【分析】(1)面积等于一个7⨯7大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可.【详解】解:(1)正方形的面积S正方形ABCD =72-4⨯⨯2⨯5=29,正方形边长为S =29;(2)建立如图平面直角坐标系,则A (0,5),B (2,0),C (7,2),D (5,7).12【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.3.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD 的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD 的面积为4×4-4×2×3×1=10则正方形ABCD 的边长为10;(2)如下图所示,正方形的面积为4×4-4×2×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点11∴正方形的边长为8∴弧与数轴的左边交点为-8,右边交点为8,实数8和-8在数轴上如图所示.【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.4.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm 2的正方形纸片的边长为a cm∴a 2=400又∵a >0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm ,则宽为2x cm∴6x 2=300∴x 2=50又∵x >0∴x =52∴长方形纸片的长为152又∵152()2=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片5.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二、解答题6.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得∠NAC=58︒,再根据平行线的性质得到∠CEF=58︒;进一步求得∠DBF=18︒,∠DFB=17︒,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=∠OBH=144°,∠HBF=n∠OBF,得∠FBH=∠FKN=∠F+∠FAK,得【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;n⨯64︒,同理n+1n n⨯144︒,从而∠BKA=∠FBH=⨯144︒,又n+1n+1n n⨯144︒=60︒+⨯64︒,即可求n.n+1n+1(2)分别延长AC、CD交GH于点E、F,∵AC平分∠NAO且∠NAO=116︒,∴∠NAC=58︒,又∵MN//GH,∴∠CEF=58︒;∵OBH144,OBG 36∵BD 平分OBG ,∴DBF18,又∵CDB35,∴DFBCDB DBF 351817;∴ACD DFB AEF 175875;(3)设FB 交MN 于K ,∵NAO116,则MAO 64;∴MAEn 64n 1n n 144,BKA =FBH 144,n+1n 1∵OBH144,∴FBH 在△FAK 中,BKAFKA F ∴n n 1446460,n 1n 1n 6460,n 1∴n 3.经检验:n 3是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.7.(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD解析:(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则当∠ACB =∠B 时,有AD 平分∠EAC ;(2)根据角平分线可得∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则有∠ACB =∠B ;(3)由AC⊥BC ,有∠ACB =90°,则可求∠BAC =40°,由平行线的性质可得AC⊥AD .【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.8.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=2∠QCF+2∠FCE=2∠ECQ=40°;(2)∵AB∥CD111∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=2(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,1则∠ECG=x,∠PCF=∠PCD=∵∠ECD=80°,3 x,233∴x+x+x+x=80°,22解得x=16°,3∴∠CPQ=∠ECP=x+x+x=56°;2②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=2∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,1内错角相等.9.(1)30°;(2)∠DEF+2∠CDF =150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行解析:(1)30°;(2)∠DEF +2∠CDF =150°,理由见解析;(3)2【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行线的性质可求∠DEF =180°﹣30°﹣2x °=150°﹣2x °,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB =2∠Q +∠PCD ,∠CPM =2∠Q ,即可求解.【详解】解:(1)∵∵AB ∥CD ,∴∠AMN =∠MND =60°,∵∠AMN =∠B +∠BEM =60°,∴∠BEM =60°﹣30°=30°;(2)∠DEF +2∠CDF =150°.理由如下:过点E 作直线EH ∥AB ,1α-30+(β﹣60)2=0,∴α=30,β=60,∵DF 平分∠CDE ,∴设∠CDF =∠EDF =x °;∵EH ∥AB ,∴∠DEH =∠EDC =2x °,∴∠DEF =180°﹣30°﹣2x °=150°﹣2x °;∴∠DEF =150°﹣2∠CDF ,即∠DEF +2∠CDF =150°;(3)如图3,设MQ 与CD 交于点E ,∵MQ 平分∠BMT ,QC 平分∠DCP ,∴∠BMT =2∠PMQ ,∠DCP =2∠DCQ ,∵AB ∥CD ,∴∠BME =∠MEC ,∠BMP =∠PND ,∵∠MEC =∠Q +∠DCQ ,∴2∠MEC =2∠Q +2∠DCQ ,∴∠PMB =2∠Q +∠PCD ,∵∠PND =∠PCD +∠CPM =∠PMB ,∴∠CPM =2∠Q ,∴∠Q 与∠CPM 的比值为2,故答案为:2.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.1110.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC=解析:(1)见解析;(2)∠CPD =∠α+180︒-∠β,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),∠CPD =180︒-∠β-∠α;②当P 在BO 之间时(点P 不与点B ,O 重合),∠CPD =∠α-180︒+∠β.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作PF //AD 交CD 于F ,,推出AD //PF //BC ,根据平行线的性质得出BCP 180,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作PE //AB ,AB //CD ,∴PE //AB //CD ,APE PAB =180,∠CPE +∠PCD =180︒,∠PAB =128︒,∠PCD =119︒∴∠APE=52︒,∠CPE=61︒,∴∠APC=52︒+61︒=113︒;(2)∠CPD=∠α+180︒-∠β,理由如下:如图3,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β又∠ADP=∠αCPD DPF CPF=180;(3)①当P在BA延长线时(点P不与点A重合),∠CPD=180︒-∠β-∠α;理由:如图4,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β,又∠ADP=∠α,∴∠CPD=∠CPF-∠DPF=180︒-∠α-∠β;②当P在BO之间时(点P不与点B,O重合),∠CPD=∠α-180︒+∠β.理由:如图5,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β,又∠ADP=∠α∴∠CPD=∠DPF-∠CPF=∠α+∠β-180︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①∠ABD=2∠EAF,见解析;②30或110︒【分析】(1)由平行线的性质可得到:∠DEA=∠EAN,∠MBA=∠BAN,再利用角的等量代换换算即可;(2)①设∠EAF=α,∠AED=∠DAE=β,利用角平分线的定义和角的等量代换表示出∠ABD对比即可;②分类讨论点D在B的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在l1上有一点N在点A的右侧,如图所示:∵l1//l2∴∠DEA=∠EAN,∠MBA=∠BAN∴∠AED=∠DAE=∠EAN=50︒∴∠BAN=∠BAD+∠DAE+∠EAN=25︒+50︒+50︒=125︒∠BAM=125︒(2)①∠ABD=2∠EAF.证明:设∠EAF=α,∠AED=∠DAE=β.∴∠FAD=∠EAF+∠DAE=α+β.∵AF为∠CAD的角平分线,∴∠CAD=2∠FAD=2α+2β.∵l1l2,∴∠EAN=∠AED=β.∴∠CAN=∠CAD-∠DAE-∠EAN=2α+2β-β-β=2α.∴∠ABD=∠CAN=2α=2∠EAF.②当点D在点B右侧时,如图:由①得:∠ABD=2∠EAF又∵∠ABD+∠ABM=180︒∴∠ABM+2∠EAF=180︒∵∠ABM+∠EAF=150︒∴∠EAF=180︒-150︒=30︒当点D在点B左侧,E在B右侧时,如图:∵AF为∠CAD的角平分线1∴∠DAF=∠CAD2∵l1l 2∴∠AED=∠NAE,∠CAN=∠ABE∵∠DAE=∠AED=∠NAE11∴∠DAE=(∠DAE+∠NAE)=∠DAN2211∴∠EAF=∠DAF+∠DAE=(∠CAD+∠DAN)=(360︒-∠CAN)221=180︒-∠ABE2∵∠ABE+∠ABM=180︒11∴∠EAF=180︒-(180︒-∠ABM)=90︒+∠ABM22又∵∠EAF+∠ABM=150︒11∴∠EAF=90︒+⨯(150︒-∠EAF)=165︒-∠EAF22∴∠EAF=110︒当点D和F在点B左侧时,设在l2上有一点G在点B的右侧如图:11此时仍有∠DAE=∠DAN,∠DAF=∠CAD2211(360︒-∠CAN)=180︒-∠ABG22∴11=180︒-(180︒-∠ABM)=90︒+∠ABM22∠EAF=∠DAE+∠DAF=∴∠EAF=110︒综合所述:∠EAF=30︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.12.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B11解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)α+β;(2)2211180-α+β.22【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;11(2)根据BE平分∠ABC,DE平分∠ADC,求出∠ABE=α,∠CDE=β,过点E作2211EF∥AB,根据平行线的性质求出∠BEF=α,∠DEF=180︒-∠CDE=180︒-β,再利用22周角求出答案.【详解】1、过点E作EF//AB,则有∠BEF=∠B,因为AB//CD,所以EF//CD.①所以∠FED=∠D,所以∠BEF+∠FED=∠B+∠D,即∠BED=72;故答案为:72;2、过点E作EF//AB,则有∠BEF=∠B,因为AB//CD,所以EF∥CD(平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE平分∠ABC,DE平分∠ADC,1111∴∠ABE=∠ABC=α,∠CDE=∠ADC=β,2222过点E作EF∥AB,由1可得∠BED=∠BEF+∠FED=∠ABE+∠CDE,11∴∠BED=α+β,2211故答案为:α+β;22(2)∵BE平分∠ABC,DE平分∠ADC,1111∴∠ABE=∠ABC=α,∠CDE=∠ADC=β,22221过点E作EF∥AB,则∠ABE=∠BEF=α,2∵AB//CD,∴EF∥CD,∴∠CDE+∠DEF=180︒,1∴∠DEF=180︒-∠CDE=180︒-β,21111∴∠BED=360︒-∠DEF-∠BEF=360︒-(180︒-β)-α=180-α+β.2222【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.13.(1),见解析;(2);(3)60°【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,1解析:(1)∠BAE+∠CDE=∠AED,见解析;(2)∠AFD=∠AED;(3)60°2【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=1 2∠BAE,∠CDF=2∠CDE,则∠AFD=2(∠BAE+∠CDE),加上(1)的结论得到111∠AFD=2∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用3等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算2出∠BAE的度数.【详解】解:(1)∠BAE+∠CDE=∠AED理由如下:作EF//AB,如图1,AB//CD,∴EF//CD.∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∠BAE、∠CDE的两条平分线交于点F,11∴∠BAF=∠BAE,∠CDF=∠CDE,221∴∠AFD=(∠BAE+∠CDE),2∠BAE+∠CDE=∠AED,1∴∠AFD=∠AED;2(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,11∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED-∠BAE)=2232∠AED-∠BAE,290︒-∠AGD=180︒-2∠AED,3∴90︒-2∠AED+∠BAE=180︒-2∠AED,2∴∠BAE=60︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P点折纸,使痕迹垂直直线a,然后过P点折纸使痕迹与前面的痕迹垂直,从而得到直线b;②步骤(b)中,折纸实际上是在寻找过点P的直线a的垂线.(2)先根据平行线的性质得到∠ABC=∠BCD,再利用角平分线的定义得到∠2=∠3,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的垂线.故答案为垂;(2)证明:BE平分∠ABC,CF平分∠BCD(已知),∴∠1=∠2,∠3=∠3(角平分线的定义),AB//CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∴2∠2=2∠3(等量代换),∴∠2=∠3(等式性质),∴BE//CF(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.15.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1)∠A=60;(2)不变化,∠APB=2∠ADB,理由见解析;(3)∠ABC=30【分析】(1)结合题意,根据角平分线的性质,得∠ABN;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得∠APB=∠PBN,∠ADB=∠DBN;结合角平分线性质,得∠APB=2∠ADB,即可完成求解;(3)根据平行线的性质,得∠ACB=∠CBN;结合∠ACB=∠ABD,推导得∠ABC=∠DBN;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC,BD分别评分∠ABP和∠PBN,11∴∠CBP=∠ABP,∠DBP=∠PBN,22∴∠ABN=2∠CBD又∵∠CBD=60,∴∠ABN=120∵AM//BN,∴∠A+∠ABN=180∴∠A=60;(2)∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN又∵BD平分∠PBN∴∠PBN=2∠DBN,∴∠APB=2∠ADB;∴∠APB与∠ADB之间的数量关系保持不变;(3)∵AD//BN,∴∠ACB=∠CBN又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∵∠ABC+∠CBN=∠ABD+∠DBN∴∠ABC=∠DBN由(1)可得∠CBD=60,∠ABN=1201∴∠ABC=⨯(120-60)=30.2【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.四、解答题16.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=1︒解析:(1)①115°,110°;②∠AFD=90+∠B,证明见解析;(2)21∠AFD=90︒-∠B,证明见解析.2【解析】【分析】1(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得2∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知1AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,21∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得211111∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三22222角形的内角和定理可求得∠AFD=110°;1②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得211∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,221111∠FMD=∠GAC;由此可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=222211(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得221∠AFD=90°+∠B;21(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得2111∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行2221线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM211111+∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角222221的性质可得∠AFD=∠FDM +∠FMD=90°-∠B.2【详解】(1)①∵AG平分∠BAC,∠BAC=100°,1∴∠CAG=∠BAC=50°;2∵DE//AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,1∴∠FDM=∠EDG=15°;2∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠FDM=∠EDG,22∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;11111∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;22222∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;1②∠AFD=90°+∠B,理由如下:2∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠FDM=∠EDG,22∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;11111∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)22222 1=90°-∠B;211∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-∠B)=90°+∠B;221(2)∠AFD=90°-∠B,理由如下:2如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠NDE=∠EDB,221∴∠FDM=∠NDE=∠EDB,2∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;1∴∠FDM=∠NDE=∠C,211111∴∠FDM +∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;222221∴∠AFD=∠FDM +∠FMD=90°-∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.17.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】。

专题02 实数【压轴题专项训练】-2020-2021学年七年级数学下学期(人教版)(解析版)

专题02 实数【压轴题专项训练】-2020-2021学年七年级数学下学期(人教版)(解析版)

专题02 实数【压轴题专项训练】一、单选题1.下列是无理数的为()A B.1.414C D.1 3【答案】C【解析】2=,故A不是无理数;1.414不是无限不循环小数,故B不是无理数;是无限不循环小数,故C是无理数;10.33=,是无限循环小数,故D不是无理数;故选C.2.下列说法中不正确的是()A.0是绝对值最小的实数B2C.3是9的一个平方根D.负数没有立方根【答案】D【解析】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A正确;2,故B正确;9的平方根是3±,故C正确;任何数都有立方根,故D错误;故选D.3.在222,1,,,0.2,0, 3.14374π----中,负分数的个数为()A.1 B.2 C.3 D.4 【答案】B【解析】解:在222,1,,,0.2,0, 3.14374π----中, 负分数有22, 3.147--共2个, 故选B .4.设A 1,A 2,A 3,A 4是数轴上的四个不同点,若|A 1A 3|=λ|A 1A 2|,|A 1A 4|=η|A 1A 2|,且,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则( )A .点C 可能是线段AB 的中点B .点C ,D 可能同时在线段AB 上C .点D 一定不是线段AB 的中点D .点C ,D 可能同时在线段AB 的延长线上【答案】C【解析】解:由已知不妨设A(0,0),B(1,0) ,C(c,0) ,D(d,0),则(c,0)=λ(1,0),(d,0)=η(1,0),λ=c, η=2; 代入112λη+=得: (1),若C 是线段AB 的中点,则c=12,代入(1),d 不存在,故C 不可能是线段AB 的中点,A 错误; 同理D 不可能是线段AB 的中点,故C 正确;若C,D 同时在线段AB 上,则0≤c ≤1, 0≤d ≤1代入(1)c=d=1,此时C 和D 点重合,与条件矛盾,故B 错误; 若C,D 同时在线段AB 的延长线上时,则λ>1, η>1,112λη+<与112λη+=矛盾,故D 错误; 所以C 选项是正确的.5.若a b <<,其中a 、b 为两个连续的整数,则a b 的值为( ) A .9B .12C .64D .81【答案】A【解析】解:∵4<5<9,∴23<<,由a b <<,且a 、b 是两个连续的整数,得到a =2,b =3,则a b =32=9,故选:A .6.在17-,2π,0,3.14,,0.326,133-中,无理数的个数有( ) A .1个B .2个C .3个D .4个 【答案】B【解析】解:7=-,∴无理数有2π,共2个, 故选:B .二、填空题7.若将一个棱长为5米的立方体的体积增加V 立方米,而保持立方体形状不变,则棱长应增加_______米. 1255V【解析】解:∵立方体的棱长为5,∴体积为5×5×5=125,∴增加后的体积为125+V , 1255V(米), 1255V .8的整数部分是a ,小数部分是b ,则2a b -是_______.【答案】 【解析】解:∵,∴a =5,b ,∴2a b -=5-2-5),故答案为:+15.9.一个数的一个平方根是,这个数是_______,另一个平方根是_______.【答案】【解析】解:某数的一个平方根是,那么这个数是11,故答案为:11.10.若|1|x +x =__________,y =_____________.【答案】-1 2【解析】解:∵,∴x +1=0,y -2=0,∴x =-1,y =2,故答案为:-1,2.11.64的算术平方根是___________,立方根是__________.【答案】8 4【解析】解:64=4,故答案为:8,4.12.12-的倒数是______,2(4)-的平方根是_____,| 2.5|--是______. 【答案】-2 ±4 -2.5【解析】 解:12-的倒数是是:-2; (-4)2=16的平方根是:±4;-|-2.5|是:-2.5.故答案为:-2,±4,-2.5.三、解答题13.计算(1)9481(16)49-÷⨯÷- (2)【答案】解:(1)9481(16)49-÷⨯÷- ==1;(2)=424|2|-+--=)4242-+-+==8-+【解析】(1)将除法转化为乘法,再约分计算;(2)分别化简各项,再作加减法.14.把下列各数分别填入相应的集合里. 223.14,,12,,(6),0.101001000173π+-----⋅⋅⋅(每两个1之间依次多一个0) (1)整数集合:{ …}(2)正数集合:{ …}(3)无理数集合:{ …}(4)实数集合:{ …}【答案】解:整数集合:{5,0,12,(6)+---,...}正数集合:{22,(6),0.10100100017+--⋅⋅⋅(每两个1之间依次多一个0),...}无理数集合:,0.10100100013π-⋅⋅⋅(每两个1之间依次多一个0),...}实数集合:{223.14,,12,,(6),0.101001000173π+-----⋅⋅⋅(每两个1之间依次多一个0),...} 【解析】根据实数的分类进行判断即可.15.(1)在数轴上近似地表示下列各数:3|--(2)把这些数按从小到大顺序进行排列,用“<”连接.【答案】解:(1)如图所示:(2)用“< 1.503-<<-.【解析】(1)根据数轴是用点表示数的一条直线,可把数在数轴上表示出来;(2)根据数轴上的点表示的数右边的总比左边的大,可得答案.16.把下列各数分别填在表示它所属的括号里:.(1)负有理数:{ …}(2)整数:{ …}(3)无理数:{ …}.【答案】解:负有理数:{1, 3.246--,...}整数:{15+,...}无理数:{1 3.24,5.2322322232π-⋅⋅⋅,...} 【解析】根据负有理数、整数、无理数的相关定义判断即可.17.计算:(1)(7)5(36)4-⨯--÷;(2)42263⎛⎫--÷- ⎪⎝⎭ 【答案】解:(1)(7)5(36)4-⨯--÷ =359-+=-26;(2)42263⎛⎫--÷- ⎪⎝⎭=31166622⎛⎫⎛⎫--+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =3122622-+⨯⨯=9222-+=352- 【解析】(1)先算乘除,再算加减法;(2)先算乘方和开方,再算乘除,最后算加减.。

(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)-推荐文档

(完整版)初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)-推荐文档

安全预控措施第一章概述为了有效地掌握事故的发生,确保长安馨苑项目部平安生产指标的实现,依据我国及我项目部“平安第一,预防为主”的方针和当今建筑施工中的多发事故种类,结合本工地的平安状况,特制订以下平安事故预控措施。

目的是保证西安曲江泛渼国际大厦工程项目在整个工程施工期间的平安、文明、卫生和本着为每一位现场施工人员的人身平安着想。

为社会和家庭负责,以便能更好的为工程的平安起到更加完善的保证措施。

依据工程需要西安曲江泛渼国际大厦项目部成立事故应急救援“指挥领导小组”,由项目经理及生产、技术、平安、保卫、卫生等管理人员组成,下设应急救援队,日常工作由平安员兼管。

发生重大事故时,以领导小组为基础,即事故应急救援指挥部,项目经理任总指挥,副经理任副指挥,负责项目部应急救援工作的组织和指挥,指挥部设在项目部会议。

注:假如项目经理和副经理不在时,有技术负责人和平安员为临时总指挥和副指挥,全权负责应急救援工作。

1、职责指挥领导小组:(1)负责本项目工程“预案”的制定、修订。

(2)组建应急救援专业队伍,并组织实施和演练。

(3)检查督促做好事故的预控措施和应急救援的各项预备工作。

指挥部:(1)发生事故时,有指挥部发布和解除应急救援命令、信号。

(2)组织指挥救援队伍实施救援行动(3)向上级汇报事故状况,必要时联系有关单位进行救援(4)组织事故调查,总结应急救援工作阅历教训。

指挥部人员分工:总指挥:组织项目部的应急救援工作。

副总指挥:帮助总指挥负责应急救援的详细指挥工作。

指挥部成员:平安员:帮助总指挥做好事故报警、状况通报及事故处置工作。

保卫科科长:负责灭火、警戒、治安保卫、疏散、道路管治工作。

生产负责人:(1)负责事故处置时施工开、停工作(2)事故现场通讯联络和对外联系(3)负责事故现场及有害物质集中区域内的洗消、监测工作(4)必要时代表指挥部对外发布有关信息。

机管员、临时电工:帮助总指挥负责抢险、抢修的现场指挥。

医务室医疗员:负责现场医疗抢救、指挥及中毒、受伤人员分类抢救和护送医院工作。

七下实数提高题与常考题型压轴题(含解析) 之欧阳体创编

七下实数提高题与常考题型压轴题(含解析) 之欧阳体创编

实数提高题与常考题型压轴题(含解析)时间:2021.02.03 创作:欧阳体一.选择题(共15小题)1.的平方根是()A.4 B.±4 C.2 D.±22.已知a=,b=,则=()A.2a B.ab C.a2b D.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于 2.236,正确的说法有()A.4个B.3个C.2个D.1个7.实数a、b满足+4a2+4ab+b2=0,则ba的值为()A.2 B.C.﹣2 D.﹣8.的算术平方根是()A.2 B.±2 C.D.9.下列实数中的无理数是()A.0.7 B.C.π D.﹣810.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>012.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=2 22=4 23=8 …31=3 32=9 33=27 …指数运算新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.21.规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:logaan=n.logNM=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a 和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:a …﹣0.0001 0 0.0001 1 1000 ……﹣0.1 0 1 …(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:a 0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{}.无理数集合:{}.负实数集合:{}.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4 B.±4 C.2 D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个C.2个D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则ba的值为()A.2 B.C.﹣2 D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,ba=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7 B.C.π D.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=2 22=4 23=8 …31=3 32=9 33=27 …指数运算新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x的值是﹣1(写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n 为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=2﹣4.【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示xA、B表示xB,则AB=|xB﹣xA|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:logab(a>0,a≠1,b>0)表示a,b 之间的一种运算.现有如下的运算法则:logaan=n.logNM=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据logNM=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=﹣1.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F (m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F (57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得 2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n ﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:a …﹣0.0001 0 0.0001 1 1000 ……﹣0.1 0 1 …(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:(1)填表:a 0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=26.38,=0.02638;已知:=0.06164,=61.64,则x=3800.【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2×100,将0.00072化为7.2×10﹣4,继而可得出答案;再根据61.64化为0.06164×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.2638;3800.【点评】此题考查了计算器数的开放,属于基础题,解答本题的关键是熟练计算机的运用,难度一般.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数提高题与常考题型压轴题(含解析)
一.选择题(共15小题)
1.的平方根是()
A.4 B.±4 C.2 D.±2
2.已知a=,b=,则=()
A.2a B.ab C.a2b D.ab2
3.实数的相反数是()
A.﹣B.C.﹣D.
4.实数﹣π,﹣3.14,0,四个数中,最小的是()
A.﹣πB.﹣3.14 C.D.0
5.下列语句中,正确的是()
A.正整数、负整数统称整数
B.正数、0、负数统称有理数
C.开方开不尽的数和π统称无理数
D.有理数、无理数统称实数
6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于 2.236,正确的说法有()
A.4个 B.3个 C.2个 D.1个
7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()
A.2 B.C.﹣2 D.﹣
8.的算术平方根是()
A.2 B.±2 C.D.
9.下列实数中的无理数是()
A.0.7 B.C.πD.﹣8
10.关于的叙述,错误的是()
A.是有理数
B.面积为12的正方形边长是。

相关文档
最新文档