重庆市武隆中学2016-2017学年高一上学期第二次月考数学试题

合集下载

重庆市2017届高三上学期第二次月考数学理试题Word版含答案

重庆市2017届高三上学期第二次月考数学理试题Word版含答案

秘密☆启用前2016年重庆一中高2017届高三上期第二次月考数学试题卷(理科)2016.10数学试题共4页,共24小题,满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题。

(共12小题,每小题5分,共60分)1.已知集合«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»=()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»2.等差数列«Skip Record If...»中,若«Skip Record If...»,则«Skip Record If...»()A.6 B.9 C.12 D.153.下列函数为奇函数的是()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»4.计算«Skip Record If...»的结果是()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»5.已知非零向量«Skip Record If...»的夹角为60°,且«Skip Record If...»,则«Skip Record If...»=()A.«Skip Record If...»B.1 C.«Skip Record If...»D.26.下列说法中正确的是()A.已知«Skip Record If...»是可导函数,则“«Skip Record If...»”是“«Skip Record If...»是«Skip Record If...»的极值点”的充分不必要条件B.“若«Skip Record If...»,则«Skip Record If...»”的否命题是“若«Skip Record If...»,则«Skip Record If...»”C.若«Skip Record If...»,则«Skip Record If...»D.若«Skip Record If...»为假命题,则«Skip Record If...»均为假命题7.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»8.已知双曲线«Skip Record If...»的一条渐近线与圆«Skip Record If...»相切,则双曲线C的离心率等于()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»9.(原创)已知«Skip Record If...»,其导函数«Skip Record If...»的部分图象如图所示,则下列对«Skip Record If...»的说法正确的是()A.最大值为4且关于直线«Skip Record If...»对称B.最大值为4且在«Skip Record If...»上单调递增C.最大值为2且关于点«Skip Record If...»中心对称D.最大值为2且在«Skip Record If...»上单调递减10.(原创)在«Skip Record If...»中,«Skip Record If...»,AD,BC的交点为M,过M 作动直线l分别交线段AC,BD于E,F两点,若«Skip Record If...»,则«Skip Record If...»的最小值为()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»11.(原创)已知«Skip Record If...»的三边长分别为«Skip Record If...»,在平面直角坐标系中,«Skip Record If...»的初始位置如图(图中CB⊥x轴),现将«Skip Record If...»沿x轴滚动,设点«Skip Record If...»的轨迹方程是«Skip Record If...»,则«Skip Record If...»=()A.«Skip Record If...»B.«Skip Record If...»C.4 D.012.(原创)已知«Skip Record If...»是定义在«Skip Record If...»上的可导函数,其导函数为«Skip Record If...»,且当«Skip Record If...»时,恒有«Skip Record If...»,则使得«Skip Record If...»成立的x的取值范围是()A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»二、填空题。

重庆市高一上学期数学第二次月考试卷

重庆市高一上学期数学第二次月考试卷

重庆市高一上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)若角的终边落在直线x+y=0上,则的值等于().A . 2B . -2C . -2或2D . 02. (2分) (2019高一上·田阳月考) 的值等于()A .B .C .D .3. (2分)二次函数中,,则函数的零点个数是()A . 0个B . 1个C . 2个D . 无法确定4. (2分) (2019高一上·汤原月考) 设为不相等的实数,若二次函数,满足,则()A . 7B . 5C . 4D . 25. (2分) (2016高一上·贵阳期末) 对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2 ,则y=f(x)与y=log5x的图象的交点个数为()A . 3B . 4C . 5D . 66. (2分)下列各角中与330°角的终边相同的是()A . 510°B . 150°C . -150°D . -390°7. (2分)函数的最小正周期是()A . πB . 6πC . 4π8. (2分) (2018高一下·深圳期中) 设函数,若的取值范围是()A . (-1,1)B . (-1,+ )C .D .9. (2分)设函数y=f(x)在(-,)内有定义,对于给定的正数k,定义函数:,取函数,若对任意的x∈(-,),恒有fk(x)=f(x),则()A . k的最大值为2B . k的最小值为2C . k的最大值为1D . k的最小值为110. (2分) (2019高三上·番禺月考) 设,,,则().A .B .C .D .11. (2分)已知扇形的周长为12cm,面积为8cm2 ,则扇形圆心角的弧度数为()A . 1C . 1或4D . 2或412. (2分) (2016高一上·红桥期中) 已知函数f(x)=x2+2x﹣3,则f(﹣5)=()A . ﹣38B . 12C . 17D . 32二、填空题 (共4题;共4分)13. (1分) (2016高一下·湖北期中) 已知sinα+cosα= ,则cos2α=________.14. (1分) (2019高一上·怀宁月考) =________.15. (1分) (2018高一下·集宁期末) 关于f(x)=4sin (x∈R),有下列命题①由f(x1)=f(x2)=0可得x1-x2是π的整数倍;②y=f(x)的表达式可改写成y=4cos ;③y=f(x)图象关于对称;④y=f(x)图象关于x=-对称.其中正确命题的序号为________(将你认为正确的都填上)。

重庆市2016-2017学年高一10月月考数学试题

重庆市2016-2017学年高一10月月考数学试题

数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,则()()u U C A C B 等于()A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅3.满足{1,2}{1,2,3,4,5}A ⊂⊆≠的集合A 的个数是( )A .3个B .5个C .7个D .8个4.下列函数中,在区间(1,1)-上是单调减函数的函数为( )A .23y x =-B .1y x = C. y = D .23y x x =-5.以下从M 到N 的对应关系表示函数的是( )A .{|0}:||M R N y y f x y x ==>→=,,B .*{|2,}M x x x N =≥∈,*{|0,}N y y y N =≥∈,2:22f x y x x →=-+C. {|0}M x x =>,N R =,:f x y →=D .M R =,N R =,1:f x y x →=6.已知函数y =S ,则使S T S T =的集合T =( )A .{|0x x <或1}x ≥B .{|1x x ≤-或1}x ≥ C. {|01}x x <≤D .{|1}x x ≥7.函数5y = )A .[11,5]-B .[1,5] C. [2,5] D .(,5]-∞8.设102,(10)()[(6)],()x x f x f f x x -≥⎧=⎨+<⎩,则(5)f 的值为( )A .10B .11 C.12 D .139.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线()y f x =,一种是平均价格曲线()y g x =(如(2)3f =表示开始交易后第2个小时的即时价格为3元;(2)4g =表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示()y f x =,虚线表示()y g x =,其中可能正确的是( )A .B . C. D .10.已知函数()f x =的定义域是R ,则实数a 的取值范围是( ) A .12a <- B .120a -<≤ C.120a -<< D .0a ≥11.已知函数()f x =(1,1)-上是单调递增的,则a 的取值范围是( )A .[2,1]--B .(,1]-∞- C. [1,2] D .[1,)+∞12.已知a b c >>,函数2()f x ax bx c =++与()g x ax b =+的图象交于A B ,两点,过A B ,两点分别作x 轴的垂线,垂足分别是C D ,,若(1)0f =,则线段CD 的长度的取值范围是( )A .3(,2 B .3(,)2+∞ C. (0, D .(0,)+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知2(12)4f x x -=,则(3)f =__________.14.函数()f x =___________.15.已知函数(5)y f x =-的定义域是[1,3]-,则(24)y f x =-的定义域是__________.16.设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且(1)()f x f x +≥,则称()f x 为M 上的l 高调函数.如果定义域为[1,)-+∞的函数2()f x x =为[1,)-+∞上的l 高调函数,那么实数l 的取值范围是____________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知2{|11240}A x x x =-+>,{||23|5}B x x =->,2{|(1)0}C x x a x a =+--<.(1)求A B ; (2)若B C =∅,求a 的取值范围.18. (本小题满分12分)设2{|40}A x x x =+=,22{|2(1)10}B x x a x a =+++-=,{|4,3,}M x x k k k N ==-≤∈.(1)若7a =,求M AC B ; (2)如果A B B =,求实数a 的取值范围.19. (本小题满分12分)已知二次函数()y f x =的最大值是4,且不等式()0f x >的解集(1,3)-.(1)求()f x 的解析式;(2)若存在[2,2]x ∈-,使得()0f x m -≤成立,求实数m 的取值范围.20. (本小题满分12分)已知某企业原有员工1000人,每人每年可为企业创利润15万元,为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的2%,并且每年给每位待岗员工发放生活补贴1万元.据评估,当待岗员工人数x 不超过原有员工1.4%时,留岗员工每人每年可为企业多创利润2(2)x-万元;当待岗员工人数x 超过原有员工1.4%时,留岗员工每人每年可为企业多创利润1.8万元.(1)求企业年利润y (万元)关于待岗员工人数x 的函数关系式()y f x =;(2)为使企业年利润最大,应安排多少员工待岗?21. (本小题满分12分)设定义在R 上的函数()f x 对于任意实数x y ,,都有()()()2f x y f x f y +=+-成立,且(1)1f =,当0x >时,()2f x <.(1)判断()f x 的单调性,并加以证明;(2)试问:当12x -≤≤时,()f x 是否有极值?如果有,求出最值;如果没有,说明理由;(3)解关于x 的不等式22()()(2)(2)f bx f b x f x f b -<-,其中22b >.22.(本小题满分12分)设0a >,0b >,函数2()f x ax bx a b =--+.(1)写出()f x 的单调区间;(2)若()f x 在[0,1]上的最大值为b a -,求b a的取值范围; (3)若对任意正实数a b ,,不等式()(1)|2|f x x b a ≤+-恒成立,求正实数x 的最大值.2016年重庆一中2019级高一上期定时练习数学答案一、选择题1-5:CDCDB 6-10: ABBCB 11、12:AA二、填空题 13.4 14.3(,)2-∞- 15.[1,1]- 16.2l ≥三、解答题17.解:(1){|3A x x =<或8}x >,………………2分 {|1B x x =<-或4}x >………………4分{|3A B x x =<或4}x >,………………5分(2)B C =∅,或(1,)C a =-或(,1)C a =-,………………*分故4a <-或1a >.………………10分18.解:(1)7a =时,{4,12}B =--,{0,4,8,12]M =---,{0,8}M C B =-,{0}M A C B =;…5分(2)由A B B =得B A ⊆,而{4,0}A =-,224(1)4(1)88a a a ∆=+--=+.∴{4,0}B =-得1a =,∴1a =或1a ≤-.………………12分19.解:(1)设2()f x ax bx c =++,由题意,0a <,且13b a -+=-,13c a -⨯=, 故2b a =-,3c a =-,22()23(1)4f x ax ax a a x a =--=--,由已知得44a -=,故1a =-,所以2()23f x x x =-++.………………8分(2)对称轴为1x =,[2,2]x ∈-时,min (2)5y f =-=-,故5m ≥-.………………12分20.解:∵1000 1.4%14⨯=,∴当014x <≤且x N ∈时, 21000()(1000)(152)170022(9)y f x x x x x x==-+--=-+. 当1520x ≤≤且x N ∈时,()16.8(1000)1680017.8y f x x x x ==--=-, ∴1000170022(9),(014,)()1680017.8(1520,)x x x N f x x x x x N ⎧-+<≤∈⎪=⎨⎪-≤≤∈⎩.………………6分 (2)当014x <≤时,易知()f x 在(0,10)增在(11,14)减.(10)170022(90100)16622f =-+=,100010(11)170022(99)170022(9990)(10)1111f f =-+=-++<.即当014x <≤时,min (10)16622y f ==;………………10分当1520x ≤≤时,函数1680017.8y x =-为减函数,min (15)16533(10)y f f ==<. 综上所述,要使企业年利润最大,应安排10名员工待岗.………………12分21.解:(1)()f x 在R 上是减函数,证明如下:对任意实数12x x ,,且12x x <,不妨设21x x m =+,其中0m >,则211111()()()()()()2()()20f x f x f x m f x f x f m f x f m -=+-=+--=-<, ∴21()()f x f x <.故()f x 在R 上单调递减.………………4分(2)∵()f x 在[1,2]-上单调递减,∴1x =-时,()f x 有最大值(1)f -,2x =时,()f x 有最小值(2)f .在()()()2f x y f x f y +=+-中,令1y =,得(1)()(1)2()1f x f x f f x +=+-=-,故(2)(1)10f f =-=,(1)(0)1(1)2f f f =-=--,所以(1)3f -=.故当12x -≤≤时,()f x 的最大值是3,最小值是0.………………6分(3)由原不等式,得22()(2)()(2)f bx f b f b x f x +<+,由已知有22(2)2(2)2f bx b f b x x ++<++,即22(2)(2)f bx b f b x x +<+.∵()f x 在R 上单调递减,∴2222bx b b x x +>+,∴()(2)0x b bx -->.………………9分∵22b >,∴b >b <当b >2b b >,不等式的解集为2{|x x b<或}x b >;当b <2b b <,不等式的解集为2{|}x b x b<<.………………12分 22.(1)单减区间是(,)2b a -∞,单增区间是(,)2b a +∞.………………2分 (2)当b a <时,max (1)0y f b a ==≠-;当b a ≥时,max (0)y f b a ==-成立.故[1,)b a∈+∞.………………6分(3)原不等式221|(1)(1)|b b b x x x a a a ⇔--+≤+-,令b t a =,则不等式变为21|(1)(21)|x tx t x t --+≤+-.2(1)(21)1x t x tx t ⇔+-≥--+或2(1)(21)1x t x tx t +-≤-++-2(31)x t x x ⇔+≥+或22(3)231x x x t x x t x ++≤-++⇔≥+或223x x t x -++≤+,即该关于t 的不等式的解集为2{|31x x A t t x +=≥+或22}3x x t x -++≤+.设(0,)B =+∞,由题意有B A ⊆. 若222313x x x x x x +-++>++,即22(3)()(31)(2)x x x x x x ++>+-++,即(3)(1)(31)(2)(1)x x x x x x ++>-+-+,即(21)(1)(1)0x x x ++->, 即1x >时,要使B A ⊆,必须2031x xx +≤+,显然不成立;当01x <≤时,A R =,此时必有B A ⊆,故x 的最大值是1.………………12分。

重庆市2016—2017学年高一上学期期末数学 试卷 Word版含解析

重庆市2016—2017学年高一上学期期末数学 试卷 Word版含解析

重庆市2016—2017学年年高一上学期期末数学试卷一.选择题.(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅2.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2 3.(5分)已知α是第四象限的角,若cosα=,则tanα=()A.B.﹣C.D.﹣4.(5分)如图,在正六边形ABCDEF中,++等于()A.0 B.C.D.5.(5分)函数f(x)=3x+x﹣3在区间(0,1)内的零点个数是()A.3 B.2 C.1 D.0 6.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)7.(5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cosx B.y=ln|x| C.y=D.y=tan2x8.(5分)设a=tan35°,b=cos55°,c=sin23°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b9.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈B.C.D.二.填空题.(本大题共5小题,每小题5分,共25分.)11.(5分)tan=.12.(5分)如图所示,平行四边形ABCD的对角线AC与BD相交于点O,点M是线段OD的中点,设=,=,则=.(结果用,表示)13.(5分)(lg25﹣lg)÷100=.14.(5分)求值:=.15.(5分)设g(x)=x﹣1,已知f(x)=,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是.三.解答题.(本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16.(13分)已知<α<π,tanα﹣=﹣.(Ⅰ)求tana的值;(Ⅱ)求的值.17.(13分)平面内给定三个向量=(3,2),=(﹣1,2),=(4,1).(Ⅰ)设向量=+,且||=,求向量的坐标;(Ⅱ)若(+k)∥(2﹣),求实数k的值.18.(13分)已知函数f(x)=a x(a>0,a≠1)在区间上的最大值是最小值的8倍.(Ⅰ)求a的值;(Ⅱ)当a>1时,解不等式log a(2a+2x)<log a(x2+1).19.(12分)已知函数g(x)=4sin(ωx+),h(x)=cos(ωx+π)(ω>0).(Ⅰ)当ω=2时,把y=g(x)的图象向右平移个单位得到函数y=p(x)的图象,求函数y=p(x)的图象的对称中心坐标;(Ⅱ)设f(x)=g(x)h(x),若f(x)的图象与直线y=2﹣的相邻两个交点之间的距离为π,求ω的值,并求函数f(x)的单调递增区间.20.(12分)已知函数f(x)=log2(4x+1)+mx.(Ⅰ)若f(x)是偶函数,求实数m的值;(Ⅱ)当m>0时,关于x的方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,求m的范围.21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x >2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.重庆市2016—2017学年年高一上学期期末数学试卷参考答案与试题解析一.选择题.(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅考点:交集及其运算.专题:计算题.分析:分别求出两集合中方程的解,确定出A与B,找出A与B的公共元素即可求出交集.解答:解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.解答:解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.点评:本题考查奇函数的性质,考查函数的求值,属于基础题.3.(5分)已知α是第四象限的角,若cosα=,则tanα=()A.B.﹣C.D.﹣考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由α为第四象限角,以及cosα的值,利用同角三角函数间的基本关系求出s inα的值,即可确定出tanα的值.解答:解:∵α是第四象限的角,若cosα=,∴sinα=﹣=﹣,则tanα==﹣,故选:D.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.4.(5分)如图,在正六边形ABCDEF中,++等于()A.0 B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:利用正六边形ABCDEF的性质,对边平行且相等得到向量相等或者相反,得到所求为0向量.解答:解:因为正六边形ABCDEF中,CD∥AF,CD=AF,所以++=++=;故选A.点评:本题考查了向量相等以及向量加法的三角形法则,属于基础题.5.(5分)函数f(x)=3x+x﹣3在区间(0,1)内的零点个数是()A.3 B.2 C.1 D.0考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:函数f(x)=3x+x﹣3在区间(0,1)上连续且单调递增,利用函数零点的判定定理求解即可.解答:解:函数f(x)=3x+x﹣3在区间(0,1)上连续且单调递增,又∵f(0)=1+0﹣3=﹣2<0,f(1)=3+1﹣3=1>0;∴f(0)•f(1)<0;故函数f(x)=3x+x﹣3在区间(0,1)内有一个零点,故选C.点评:本题考查了函数零点的判定定理的应用及函数的单调性的应用,属于基础题.6.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)考点:正弦函数的图象.专题:三角函数的图像与性质.分析:根据图象确定A,ω和φ的值即可求函数的解析式解答:解:由图象知函数的最大值为2,即A=2,函数的周期T=4()=2,解得ω=1,即f(x)=2sin(x+φ),由五点对应法知+φ=π,解得φ=,故f(x)=2sin(x+),故选:B点评:本题主要考查函数解析式的求解,根据条件确定A,ω和φ的值是解决本题的关键.要要求熟练掌握五点对应法.7.(5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cosx B.y=ln|x| C.y=D.y=tan2x考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据余弦函数的单调性,对数函数的单调性,偶函数、奇函数的定义即可判断每个选项的正误.解答:解:A.y=cosx在(1,2)是减函数,所以A错误;B.显然y=ln|x|是偶函数,且在(1,2)内是增函数,所以B正确;C.显然函数是奇函数,所以该选项错误;D.tan﹣2x=﹣tan2x,所以该函数是奇函数,所以该选项错误.故选B.点评:考查余弦函数的单调性,对数函数的单调性,以及奇函数、偶函数的定义.8.(5分)设a=tan35°,b=cos55°,c=sin23°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b考点:正弦函数的图象.专题:三角函数的求值.分析:利用三角函数的诱导公式结合三角函数的单调性即可得到结论.解答:解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知sin35°>sin23°,即b>c,而a=tan35°=>sin35°=b,∴a>b>c,故选:A点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.9.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈B. C.D.考点:函数的值域.专题:函数的性质及应用.分析:化简得出令=m,则1+sinx=2m﹣mcosx,sinx+mcosx=2m﹣1,φ)=2m﹣1得sin(x+φ)=,由≤1,解得0,利用函数性质求解f(m)=单增,解答:解:f(x)==﹣==﹣=令=m,则1+sinx=2m﹣mcosx,sinx+mcosx=2m﹣1,φ)=2m﹣1得sin(x+φ)=,由≤1,解得0,f(m)=单增,值域为点评:本题考察了函数的性质,换元法求解问题,属于难题,计算量较大.二.填空题.(本大题共5小题,每小题5分,共25分.)11.(5分)tan=﹣.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.解答:解:tan=tan(π﹣)=﹣tan=﹣.故答案为:﹣点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.12.(5分)如图所示,平行四边形ABCD的对角线AC与BD相交于点O,点M是线段OD的中点,设=,=,则=.(结果用,表示)考点:向量的三角形法则.专题:平面向量及应用.分析:利用向量的三角形法则、向量共线定理可得+==,即可得出.解答:解:+===.故答案为:.点评:本题考查了向量的三角形法则、向量共线定理,属于基础题.13.(5分)(lg25﹣lg)÷100=20.考点:有理数指数幂的化简求值.专题:函数的性质及应用.分析:根据对数的运算法则和有理数的公式进行化简即可.解答:解:(lg25﹣lg)÷100=(lg100)×=2×10=20,故答案为:20.点评:本题主要考查有理数的化简,比较基础.14.(5分)求值:=1.考点:三角函数的恒等变换及化简求值.专题:计算题.分析:先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案.解答:解:原式=sin50°•=cos40°===1故答案为:1点评:本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用.15.(5分)设g(x)=x﹣1,已知f(x)=,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是(,1).考点:根的存在性及根的个数判断;分段函数的应用.专题:计算题;作图题;函数的性质及应用.分析:化简f(x)=,从而作出其图象,结合图象可得0<m<,从而分别讨论x1,x2,x3,再令y=x12+x22+x32=+1﹣2m,化简并利用换元法求取值范围即可.解答:解:∵g(x)=x﹣1,f(x)=,f(x)=;即f(x)=;作出其图象如下,若方程f(x)=m有三个根,则0<m<,且当x>0时,方程可化为﹣x2+x﹣m=0,易知,x2+x3=1,x2x3=m;当x≤0时,方程可化为x2﹣x﹣m=0,可解得x1=;记y=x12+x22+x32=+1﹣2m=﹣m﹣+;令t=∈(1,),则y=﹣t2﹣t+,解得,y∈(,1).故答案为:(,1).点评:本题考查了分段函数的应用及数形结合的思想应用,同时考查了换元法的应用及方程的根与函数的图象的交点的关系应用,属于中档题.三.解答题.(本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16.(13分)已知<α<π,tanα﹣=﹣.(Ⅰ)求tana的值;(Ⅱ)求的值.考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:(Ⅰ)设tanα=x,已知等式变形后求出方程的解确定出x的值,即可求出tana 的值;(Ⅱ)原式利用诱导公式化简,再利用同角三角函数间基本关系变形,将tanα的值代入计算即可求出值.解答:解:(Ⅰ)令tanα=x,则x﹣=﹣,即2x2+3x﹣2=0,解得:x=或x=﹣2,∵<α<π,∴tanα<0,则tanα=﹣2;(Ⅱ)原式==tanα+1=﹣2+1=﹣1.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.17.(13分)平面内给定三个向量=(3,2),=(﹣1,2),=(4,1).(Ⅰ)设向量=+,且||=,求向量的坐标;(Ⅱ)若(+k)∥(2﹣),求实数k的值.考点:平面向量共线(平行)的坐标表示;平面向量的坐标运算.专题:平面向量及应用.分析:(Ⅰ)根据向量的坐标运算以及模长公式,求出λ的值即可;(Ⅱ)根据向量平行的坐标表示,列出方程,即可求出k的值.解答:解:(Ⅰ)∵向量=(3,2),=(﹣1,2),∴=+=(,)+(﹣,)=(λ,3λ);又||=,∴=,解得λ=±1,∴=(1,3)或=(﹣1,﹣3);(Ⅱ)∵+k=(3,2)+k(4,1)=(3+4k,2+k),2﹣=2(﹣1,2)﹣(3,2)=(﹣5,2);且(+k)∥(2﹣),∴2×(3+4k)﹣(﹣5)×(2+k)=0,解得k=﹣.点评:本题考查了平面向量的坐标运算问题,也考查了向量平行与求向量模长的问题,是基础题目.18.(13分)已知函数f(x)=a x(a>0,a≠1)在区间上的最大值是最小值的8倍.(Ⅰ)求a的值;(Ⅱ)当a>1时,解不等式log a(2a+2x)<log a(x2+1).考点:指数函数的图像与性质.专题:函数的性质及应用.分析:(Ⅰ)分类讨论当a>1时,当0<a<1时,求出最大值,最小值,即可求解答案.(Ⅱ)转化log2(4+2x)<log2(x2+1)得出得出不等式组,求解即可解答:解:f(x)max=a2,f(x)min=a﹣1,则=a2=8,解得a=2;当0<a<1时,f(x)=max=a﹣1,f(x)min=a2,则=a﹣3=8,解得a=;故a=2或a=(Ⅱ)当a>1时,由前知a=2,不等式log a(2a+2x)<log a(x2+1)即得解集为(﹣2,﹣1)∪(3,+∞).点评:本题考察了指数函数的性质,分类讨论的思想,属于中档题,关键是分类得出方程,不等式组.19.(12分)已知函数g(x)=4sin(ωx+),h(x)=cos(ωx+π)(ω>0).(Ⅰ)当ω=2时,把y=g(x)的图象向右平移个单位得到函数y=p(x)的图象,求函数y=p(x)的图象的对称中心坐标;(Ⅱ)设f(x)=g(x)h(x),若f(x)的图象与直线y=2﹣的相邻两个交点之间的距离为π,求ω的值,并求函数f(x)的单调递增区间.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象;余弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)由题意,先求得:p(x)=4sin(2x+),令2x+=kπ,即可求得函数y=p(x)的图象的对称中心坐标;(Ⅱ)先求得解析式f(x)=2sin(2ωx﹣)﹣,由题意T=π,可解得ω的值,令t=2x﹣是x的增函数,则需y=2sint﹣是t的增函数,由2k≤2x﹣≤2k,可解得函数f(x)的单增区间.解答:解:(Ⅰ)当ω=2时,g(x)=4sin(2x+),g(x﹣)=4sin(2x﹣+)=4sin(2x+),p(x)=4sin(2x+),令2x+=kπ,得x=﹣+,中心为(﹣+,0)(k∈Z);(Ⅱ)f(x)=4sin(ωx+)(﹣cosωx)=﹣4cosωx=2sinωxcosωx﹣2cos2ωx=sin2ωx﹣(1+cos2ωx)=2sin(2ωx﹣)﹣由题意,T=π,∴=π,ω=1令t=2x﹣是x的增函数,则需y=2sint﹣是t的增函数故2k≤2x﹣≤2k,2k≤2x≤2kπ+,k≤x≤kπ+函数f(x)的单增区间是(k∈Z).点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象和性质,属于基础题.20.(12分)已知函数f(x)=log2(4x+1)+mx.(Ⅰ)若f(x)是偶函数,求实数m的值;(Ⅱ)当m>0时,关于x的方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,求m的范围.考点:对数函数的图像与性质;指数函数综合题.专题:函数的性质及应用.分析:(Ⅰ)根据f(x)是偶函数,建立方程关系即可求实数m的值;(Ⅱ)利用对数函数的性质,利用换元法,转化为两个函数的交点问题即可得到结论.解答:解:(Ⅰ)若f(x)是偶函数,则有f(﹣x)=f(x)恒成立,即:log2(4﹣x+1)﹣mx=log2(4x+1)+mx.于是2mx=log2(4﹣x+1)﹣log2(4x+1)=log2()﹣log2(4x+1)=﹣2x,即是2mx=﹣2x对x∈R恒成立,故m=﹣1.(Ⅱ)当m>0时,y=log2(4x+1),在R上单增,y=mx在R上也单增所以f(x)=log2(4x+1)+mx在R上单增,且f(0)=1,则f(8(log4x)2+2log2+﹣4)=1可化为f(8(log4x)2+2log2+﹣4)=f(0),又f(x)单增,得8(log4x)2+2log2+﹣4=0,换底得8()2﹣2log2x+﹣4=0,即2(log2x)2﹣2log2x+﹣4=0,令t=log2x,则t∈,问题转换化为2t2﹣2t+﹣4=0在t∈,有两解,即=﹣2t2+2t+4,令y=﹣2t2+2t+4,则y=﹣2t2+2t+4=﹣2(t﹣)2+,∴当t=时,函数取得最大值,当t=0时,函数y=4,当t=时,函数取得最小值,若方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,则等价为4≤<,解得<m≤1,故求m的范围为<m≤1.点评:本题主要考查函数奇偶性的应用,以及对数函数的应用,利用方程和函数之间的关系,转化为两个函数的交点问题是解决本题的关键.21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x >2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.考点:函数恒成立问题;抽象函数及其应用.专题:函数的性质及应用;三角函数的图像与性质.分析:(Ⅰ)将条件③变形得到f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,其中m=x﹣1,n=y﹣1,令m=n=1,即可解得f(2)=0;(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得f(mn+1)﹣f(n+1)=f(m+1),则要证明f(x)在(1,+∞)上为增函数,只需m>1即可.显然当m>1即m+1>2时f(m+1)>0;(Ⅲ)利用条件①②将问题转化为是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.再令t=sinθ+cosθ,,则问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.分情况讨论,利用二次函数的性质即可解题.解答:解:(Ⅰ)由条件③可知f(x)+f(y)=f(xy﹣x﹣y+2)=f=f,令m=x﹣1,n=y﹣1,则由x>1,y>1知m,n>0,并且f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立.令m=n=1,即有f(2)+f(2)=f(2),故得f(2)=0.(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得:f(mn+1)﹣f(n+1)=f(m+1),要证明f(x)在(1,+∞)上为增函数,只需m>1即可.设x2=mn+1,x1=n+1,其中m,n>0,m>1,则x2﹣x1=n(m﹣1)>0,故x2>x1,则f(x2)﹣f(x1)=f(mn+1)﹣f(n+1)=f(m+1),m>1,m+1>2,所以f(m+1)>0,即f(x2)﹣f(x1)>0,所以f(x2)>f(x1),即f(x)在(1,+∞)上为增函数;(Ⅲ)∵由f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,及f(4)=1∴令m=n=3,有f(4)+f(4)=f(10),即f(10)=2.令m=9,n=,则f(9+1)+f(+1)=f(9×+1)=f(2),故f()=f(2)﹣f(10)=﹣2,由奇偶性得f(﹣)=﹣2,则f(x)<2的解集是.于是问题等价于是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.令t=sinθ+cosθ,,问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.令g(t)=t2﹣(k﹣4)t+k﹣1,则g(t)对恒成立的必要条件是,即解得,此时无解;同理1<g(t)<10恒成立的必要条件是,即解得,即;当时,g(t)=t2﹣(k﹣4)t+k﹣1的对称轴.下面分两种情况讨论:(1)当时,对称轴在区间的右侧,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上单调递减,1<g(t)<10恒成立等价于恒成立,故当时,1<g(t)<10恒成立;(2)当时,对称轴在区间内,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上先单调递减后单调递增,1<g(t)<10恒成立还需,即,化简为k2﹣12k+24<0,解得,从而,解得;综上所述,存在,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立.点评:本题考查了抽象函数的运算,单调性,以及函数恒成立问题,需要较强的分析、计算能力,属于难题.。

重庆市2016届高三上学期第二次月考试卷 数学文

重庆市2016届高三上学期第二次月考试卷 数学文

第二次月考数学文试题【重庆版】一、选择题:(每小题5分,共计50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知3sin ,(,)52πααπ=∈,则cos α的值为A. 34B.34-C. 45D.45-2.“0<x ”是“0)1ln(<+x ”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要3.函数lg(1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞4.已知21,e e 是夹角为32π的两个单位向量,若向量2123e e a -=,则=⋅1e aA .2B .4C .5D .75.已知等差数列{}n a 中,20132,a a 是方程0222=--x x 的两根,则=2014SA .2014-B .1007-C .1007D .20146. 函数()22xf x x =+-的零点所在的一个区间是 A . (2,1)-- B .(1,0)- C . (0,1)D .(1,2)7.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知命题:p 若22sin =A ,则45A =︒;命题:q 若cos cos a A b B =,则ABC ∆为等腰三角形或直角三角形,则下列的判断正确的是A .p 为真 B.p q ∧为假 C.q ⌝为真 D.p q ∨为假 8.一个几何体的三视图如图所示,则该几何体的体积为A .316B .332C .16D .32 9.设对任意实数[]1,1x ∈-,不等式230x ax a +-<总成立.则实数a 的取值范围是 A .0a > B .12a >C .14a >D .012a a ><-或10.过双曲线)0(12222>>=-a b b y a x 的左焦点)0)(0,(>-c c F 作圆222a y x =+的切线,切点为E ,延长FE 交抛物线cx y 42=于点P .若)(21OP OF OE +=,则双曲线的离心率为A . 233+ B . 251+ C .25D . 231+二、填空题:(每小题5分,共计25分,把答案填在答题卡的相应位置.)11.复数=z (i 是虚数单位),则2z z + .12.设()f x 为定义在R 上的奇函数,当0x ≤时,()232xf x x m =-+(m 为实常数),则(1)f = .13.不等式组⎪⎪⎩⎪⎪⎨⎧-++-0≥0≤20 ≥1y y x y x 所表示的平面区域面积为 .14.如图是某算法的程序框图,若任意输入1[,19]2中的实数x ,则输出的x 大于25的概率为 .设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3] 上是“关联函数”,则m 的取值范围是 .三、解答题:(本大题共6小题,共计75分,解答应写出文字说明、证明过程或演算步骤.) 16.某公司近年来科研费用支出x 万元与公司所获得利润y 万元之间有如下的统计数据:A(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆy bx a =+; (2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.参考公式:用最小二乘法求线性回归方程ˆˆˆy bx a =+的系数公式:1221ˆˆ,ni ii nii x y n x ybay ax xnx ==-⋅⋅==--∑∑参考数据:2×18+3×27+4×32+5×35=42017.已知322()2f x x ax a x =+-+.(1)若1a =,求曲线)(x f y =在点))1(,1(f 处的切线方程; (2)若0,>a 求函数()f x 的单调区间.18.先将函数)232cos()(π+=x x f 的图象上所有的点都向右平移12π个单位,再把所有的点的横坐标都伸长为原来的2倍,纵坐标不变,得到函数)(x g y =的图象. (1)求函数)(x g 的解析式和单调递减区间;(2)若A 为锐角三角形的内角,且31)(=A g ,求)2(Af 的值.19.已知三棱锥A BPC -中,AP ⊥PC ,BC AC ⊥,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形. (1)求证:BC ⊥平面APC ;(2)若3BC =,10AB =,求三棱锥MDC B -的体积MDC B V -.20.已知数列{}n a 中,11,2a =点1(2,2)n n a a +-在直线1y x =+上,其中=1,2,3n .(1)求证:{}1n a -为等比数列并求出{}n a 的通项公式; (2)设数列{}n b 的前,n n 项和为S 且111,2n nn b S b +==,令,nn n c a b =⋅{}n c 求数列的前n 项和n T 。

重庆市2017届高三上学期第二次月考数学文试题Word版含答案

重庆市2017届高三上学期第二次月考数学文试题Word版含答案

是否2 , 1==b a开始结束输出ab ac +=b a =2c b =?2016<c 秘密★启用前2016年重庆一中高2017届高三上期第二次月考数 学 试 题 卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分) 1.若全集{}2,1,0,1,2U =--,{}23A x Z x =∈<,则IA =( )A.{}2,2-B. {}2,0,2-C. {}2,1,2--D. {}2,1,0,2-- 2.(改编)已知复数(1)2i z i +-=,则复数z 在复平面上对应的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3.已知命题3:00p x x ∀>>,,那么p ⌝是( )A .30,0x x ∀>≤B . 3000,0x x ∃≤≤C .3000,0x x ∃>≤ D .30,0x x ∀<≤4.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A . 收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D . 前6个月的平均收入为40万元 (注:结余=收入-支出)5.下列函数中,既是奇函数又是增函数的为( ) A .3ln y x = B .2y x =- C . xy 1=D .y x x = 6.执行如下图所示的程序框图(算法流程图),输出的结果是( )A.9 B.121 C.130 D.170217 .若实数x,y满足约束条件2323xx yx y≥⎧⎪+≥⎨⎪+≤⎩,则yxz-=的最小值是( )A.3- B.0 C.32D.38.已知函数()()⎪⎭⎫⎝⎛<>>∈+=2πϕωϕω,,,ARxxsinAxf的部分图像如下图,则( )A.10,116πωϕ== B.10,116πωϕ==-C.2,6πωϕ== D.2,6πωϕ==-9、已知唐校长某日晨练时,行走的时间(x)与离家的直线距离(y)之间的函数图像(如下图).若用黑点表示唐校长家的位置,则唐校长晨练所走的路线可能是( )10.如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是( )A .①②B .③④C .①④D .②③11.已知抛物线x y 82=的焦点到双曲线)0,0(1:2222>>=-b a by a x E 的渐近线的距离不大于3,则双曲线E 的离心率的取值范围是( )A .]2,1(B .]2,1(C .),2[+∞D .),2[+∞ 12.(原创)设等差数列{}n a ,{}n b 的前n 项之和分别为,n n S T ,若对任意*n N ∈有①(3)(31)n n n S n T +=+;②227n n a b λ+≥⋅均恒成立,且存在*0n N ∈,使得实数λ有最大值,则0n =( )A .6B .5C . 4D . 3第Ⅱ卷二.填空题:本大题共4小题,每小题5分.13.(原创)设函数222,0()log (1),0x x x f x x x ⎧--≤=⎨+>⎩,则((1))f f -=14.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xoy 中,以(,)x y 为坐标的点落在直线21x y -=上的概率为 15.若533sin )6cos(=-+απα,则)65sin(πα+= . 16.(原创)设数列{}n a 满足对任意的*n N ∈,(),n n P n a 满足1(1,2)n n P P +=,且124a a +=,则数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项的和n S 为__________.三、解答题:本大题共6小题,共70分。

(完整版)高一上学期第二次月考数学试卷及答案,推荐文档

(完整版)高一上学期第二次月考数学试卷及答案,推荐文档

高一年级上学期第二次月考数学试题卷时间:120分 总分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,.若,则( ){}1,2,4A ={}240x x x m B =-+={}1A B = B =A .B .C .D .{}1,3-{}1,0{}1,3{}1,52. 函数的定义域为( )()f x =A .(-1,2)B . C. D .[1,0)(0,2)- (1,0)(0,2]- (1,2]-3. 函数是奇函数,且其定义域为,则( )3()2f x ax bx a b =++-[34,]a a -()f a =A . B . C . D .43214.已知直线,则该直线的倾斜角为( )20x -=A .30° B .60°C .120°D .150°5. 已知两直线和 ,若且在轴上的截距1:80l mx y n ++=2:210l x my +-=12l l ⊥1l y 为-1,则的值分别为( ),m n A .2,7 B .0,8 C .-1,2 D .0,-86.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为 ( )A . 322πB .324πC . π24D .π)(424+7. 设为平面,为两条不同的直线,则下列叙述正确的是( )αβ,,a b A . B .//,//,//a b a b αα若则//,,a a b b αα⊥⊥若则C .D .//,,,//a b a bαβαβ⊂⊂若则,//,a a b b αα⊥⊥若则8.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°9.若函数的两个零点分别在区间和上,则()()()2221f x m x mx m =-+++()1,0-()1,2的取值范围是( )m A. B. C. D.11,24⎛⎫- ⎪⎝⎭11,42⎛⎫- ⎪⎝⎭11,42⎛⎫ ⎪⎝⎭11,42⎡⎤⎢⎥⎣⎦10. 一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视2图是一个半圆内切于边长为的正方形,则该机器零件的体积为( )2A . B .34π+38π+C. D .π384+π388+11. 如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知△A ′ED 是△AED 绕DE 旋转过程中的一个图形,下列命题中错误的是( )A .恒有DE ⊥A ′FB .异面直线A ′E 与BD 不可能垂直C .恒有平面A ′GF ⊥平面BCEDD .动点A ′在平面ABC 上的射影在线段AF 上12. 设函数的定义域为D ,若函数满足条件:存在,使得在()f x ()f x [],a b D ⊆()f x 上的值域为,则称为“倍缩函数”.若函数为“倍[],a b ,22a b ⎡⎤⎢⎥⎣⎦()f x ()()2log 2x f x t =+缩函数”,则的取值范围是( )t A. B. C. D.10,4⎛⎫ ⎪⎝⎭1,4⎛⎫+∞ ⎪⎝⎭()0,110,2⎛⎤⎥⎝⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13. 设,则的值为 .⎩⎨⎧≥-<=-2),1(log ,2,2)(231x x x e x f x ))2((f f 14. 用一个平行于正棱锥底面的平面截这个正棱锥,截得的正棱台上、下底面面积之比为1:9,截去的棱锥的高是2cm,则正棱台的高是 cm.15.如图,正方体中,交于,为线段上的一个动点,1111D C B A ABCD -AC BD O E 11D B 则下列结论中正确的有_______.①AC ⊥平面OBE②三棱锥E -ABC的体积为定值③B 1E ∥平面ABD ④B 1E ⊥BC 116. 已知函数若存在实数,满足32log ,03,()1108,3,33x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩,,,a b c d ,其中,则的取值范围为 .()()()()f a f b f c f d ===0d c b a >>>>abcd 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分) 已知全集 ,,.UR =1242x A x⎧⎫=<<⎨⎬⎩⎭{}3log 2B x x =≤(1)求 ; A B (2)求.()U C A B 18. (本小题满分12分)(1)已知直线过点,且与两坐标轴的正半轴围成的三角形的面积是4,求直线的l (1,2)A l 方程.(2)求经过直线与的交点.且平行于直线1:2350l x y +-=2:71510l x y ++=的直线方程.230x y +-=19.(本小题满分12分)已知直线,.1:310l ax y ++=2:(2)0l x a y a +-+=(1)当l 1//l 2,求实数的值;a (2)直线l 2恒过定点M ,若M 到直线的距离为2,求实数的值.1l a20. (本小题满分12分) 如图,△中,,四边形是边长ABC AC BC AB ==ABED 为的正方形,平面⊥平面,若分别是的中点.a ABED ABC G F 、EC BD 、(1)求证:;//GF ABC 平面(2) BD EBC 求与平面所成角的大小21. (本小题满分12分) 如图,在四棱锥中,平面,底面ABCD P -⊥PD ABCD 是平行四边形,,为与ABCD BD AD PD AB BAD ====∠,,,3260 O AC 的交点,为棱上一点.BD E PB(1)证明:平面平面;⊥EAC PBD (2)若,求二面角的大小.EB PE 2=B AC E --22. (本小题满分12分) 对于函数与,记集合.()f x ()g x {}()()f g D x f x g x >=>(1)设,求集合;()2,()3f x x g x x ==+f g D >(2)设,若,求实数121()1,()(31,()03xx f x x f x a h x =-=+⋅+=12f h f h D D R >>⋃=的取值范围.a答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)C C B A B CD C C A B A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13. 2 14. 415. ①②③ 16.(21,24)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)解: , B {}12A x x =-<<{}09B x x =<≤·······················4分(1) ····································································6分{}02A B x x =<< (2) ,或 .·····10分{}19A B x x =-<≤ (){1U C A B x x =≤- 9}x >18. (本小题满分12分)(1)解析:解法一 设l :y -2=k (x -1)(k <0),令x =0,y =2-k .令y =0,x =1-,2k S =(2-k )=4,12(1-2k )即k 2+4k +4=0.∴k =-2,∴l :y -2=-2(x -1),即l :2x +y -4=0.···················6分解法二 设l :+=1(a >0,b >0),x a yb 则{12ab =4,1a+2b=1.)a 2-4a +4=0⇒a =2,∴b =4.直线l :+=1.x 2y4∴l :2x +y -4=0.(2)联立,解得.设平行于直线 x +2y ﹣3=0的直线方程为 x +2y +n=0.把代入上述方程可得:n=﹣.∴要求的直线方程为:9x +18y ﹣4=0.···········12分19.(本小题满分12分)(1)a=3,或a=-1(舍)··························4分(2)M(-2,-1)···································8分得a=4··················12分2=20. (本小题满分12分)(1)证明: 连接EA 交BD 于F ,∵F 是正方形ABED 对角线BD 的中点,∴F 是EA 的中点,∴FG ∥AC .又FG ⊄平面ABC ,AC ⊂平面ABC ,∴FG ∥平面ABC .··················6分(2)∵平面ABED ⊥平面ABC ,BE ⊥AB ,∴BE ⊥平面ABC .∴BE ⊥AC .又∵AC =BC =AB ,22∴BC ⊥AC ,又∵BE ∩BC =B ,∴AC ⊥平面EBC .由(1)知,FG ∥AC ,∴FG ⊥平面EBC ,∴∠FBG 就是线BD 与平面EBC 所成的角.又BF =BD =,FG =AC =,sin ∠FBG ==.122a 2122a 4FG BF 12∴∠FBG =30°.························12分21. (本小题满分12分)解:(1)∵平面,平面,∴.⊥PD ABCD ⊂AC ABCD PD AC ⊥∵,∴为正三角形,四边形是菱形,60,=∠=BAD BD AD ABD ∆ABCD ∴,又,∴平面,BD AC ⊥D BD PD = ⊥AC PBD 而平面,∴平面平面.·········································6分⊂AC EAC ⊥EAC PBD (2)如图,连接,又(1)可知,又,OE AC EO ⊥BD ⊥AC∴即为二面角的平面角,EOB ∠B AC E --过作,交于点,则,E PD EH ∥BD H BD EH ⊥又,31,33,3,2,2=====OH EH PD AB EB PE 在中,,∴,EHO RT ∆3tan ==∠OHEHEOH 60=∠EOH 即二面角的大小为.·································································12分B AC E --6022. (本小题满分12分)解:(1) 当得; ······················2分0≥x 3,32>∴+>x x x当 ················4分1320-<∴+>-<x x x x ,时,得··············5分()()∞+⋃-∞-=∴>,31,g f D(2) ······· 7分()⎭⎬⎫⎩⎨⎧>+⋅+=∞+=>>013)31(,121xxh f h f a x D D , ,R D D h f h f =⋃>>21 ∴(]1,2∞-⊇>h f D 即不等式在恒成立 (9)01331>+⋅+xxa (1≤x 分时,恒成立,∴1≤x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛->x x a )31(91在时最大值为,··················11分⎥⎦⎤⎢⎣⎡+-=x x y 31()91( 1≤x 94-故 ·············12分94->a。

推荐下载 重庆市武隆中学2018学年高一上学期第二次月考数学试卷 含解析

推荐下载 重庆市武隆中学2018学年高一上学期第二次月考数学试卷 含解析

2018-2018学年重庆市武隆中学高一(上)第二次月考数学试卷一、选择题(共12小题,每小题5分,共60分.)1.设集合,,则下列关系中正确的是()A.A=B B.A⊆B C.B⊆A D.A∩B=[1,+∞)2.下列函数中,在区间(0,1)上是增函数的是()A.y=|x|B.y=3﹣x C.y= D.y=﹣x2+43.已知函数y=f(x+1)的图象过点(3,2),则函数y=﹣f(x)的图象一定过点()A.(2,﹣2)B.(2,2) C.(﹣4,2)D.(4,﹣2)4.已知y=f(x+1)是R上的偶函数,且f(2)=1,则f(0)=()A.﹣1 B.0 C.1 D.25.已知函数f(x)=ax2﹣x+a+1在(﹣∞,2)上单调递减,则a的取值范围是()A.(0,]B.[0,]C.[2,+∞)D.[0,4]6.函数f(x)=的最大值是()A.B.C.D.7.设函数f(x)=,则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(2,+∞) B.(﹣3,1)∪(3,+∞) C.(﹣1,1)∪(3,+∞)D.(﹣∞,﹣3)∪(1,3)8.已知f(x)=|x+1|+|x﹣3|,x1,x2满足x1≠x2,且f(x1)=f(x2)=101,则x1+x2等于()A.0 B.2 C.4 D.69.函数f(x)=x+,x∈(,2),若f(x)﹣m>0对一切x∈(,2)恒成立,则实数m的取值范围为()A.(﹣∞,)B.(﹣∞,)C.(﹣∞,) D.(,)10.设f(x)=,又记f1(x)=f(x),f k(x)=f(f k(x)),k=1,2,…,则+1f2018(x)=()A.﹣ B.x C.D.11.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.B.2或﹣C.或﹣D.2或﹣或﹣12.函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=()A.6 B.8 C.10 D.12二、填空题(本大题共4小题,每小题5分,共20分).13.函数f(x)=的单调递减区间是.14.已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)=.15.已知A={x|x2﹣3x+2=0},B={x|x2﹣2ax+a2﹣a=0},若A∪B=A,求实数a的取值集合.16.对于函数f(x)=(其中a为实数,x≠1),给出下列命题:①当a=1时,f(x)在定义域上为单调增函数;②f(x)的图象的对称中心为(1,a);③对任意a∈R,f(x)都不是奇函数;④当a=﹣1时,f(x)为偶函数;⑤当a=2时,对于满足条件2<x1<x2的所有x1,x2总有f(x1)﹣f(x2)<3(x2﹣x1).其中正确命题的序号为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.设,(1)若0<a<1,求f(a)+f(1﹣a)的值;(2)求的值.18.已知函数f(x)=(+)x3.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)证明f(x)>0.19.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.20.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?21.已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.(1)证明函数y=f(x)是R上的单调性;(2)讨论函数y=f(x)的奇偶性;(3)若f(x2﹣2)+f(x)<0,求x的取值范围.22.已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1)且与x轴有唯一的交点(﹣1,0).(Ⅰ)求f(x)的表达式;(Ⅱ)在(Ⅰ)的条件下,设函数F(x)=f(x)﹣mx,若F(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;(Ⅲ)设函数g(x)=f(x)﹣kx,x∈[﹣2,2],记此函数的最小值为h(k),求h(k)的解析式.2018-2018学年重庆市武隆中学高一(上)第二次月考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.)1.设集合,,则下列关系中正确的是()A.A=B B.A⊆B C.B⊆A D.A∩B=[1,+∞)【考点】集合的包含关系判断及应用;函数的定义域及其求法;函数的值域.【分析】根据题意,集合A是函数y=的值域,而集合B是函数y=的定义域,由此将集合A、B分别化简,不难选出正确选项.【解答】解:∵集合A={}∴化简,得集合A=[0,+∞)又∵B={}∴化简,得集合B={x|x2﹣1≥0}=(+∞,﹣1]∪[1,+∞)因此,集合A∩B=[1,+∞)故答案为:D2.下列函数中,在区间(0,1)上是增函数的是()A.y=|x|B.y=3﹣x C.y= D.y=﹣x2+4【考点】函数单调性的判断与证明.【分析】本题考查的是对不同的基本初等函数判断在同一区间上的单调性的问题.在解答时,可以结合选项逐一进行排查,排查时充分考虑所给函数的特性:一次函数性、幂函数性、二次函数性还有反比例函数性.问题即可获得解答.【解答】解:由题意可知:对A:y=|x|=,易知在区间(0,1)上为增函数,故正确;对B:y=3﹣x,是一次函数,易知在区间(0,1)上为减函数,故不正确;对C:y=,为反比例函数,易知在(﹣∞,0)和(0,+∞)为单调减函数,所以函数在(0,1)上为减函数,故不正确;对D:y=﹣x2+4,为二次函数,开口向下,对称轴为x=0,所以在区间(0,1)上为减函数,故不正确;故选A.3.已知函数y=f(x+1)的图象过点(3,2),则函数y=﹣f(x)的图象一定过点()A.(2,﹣2)B.(2,2) C.(﹣4,2)D.(4,﹣2)【考点】函数的图象与图象变化.【分析】将特殊点带入验证即可【解答】解:∵函数y=f(x+1)的图象过点(3,2),∴f(4)=2,∴函数y=﹣f(x)的图象一定过点(4,﹣2).故选:D.4.已知y=f(x+1)是R上的偶函数,且f(2)=1,则f(0)=()A.﹣1 B.0 C.1 D.2【考点】函数奇偶性的性质.【分析】根据f(x+1)为偶函数便有f(x+1)=f(﹣x+1),从而f(2)=f(1+1)=f(﹣1+1),从而便可得出f(0)的值.【解答】解:f(x+1)为R上的偶函数;∴f(2)=f(1+1)=f(﹣1+1)=f(0)=1;即f(0)=1.故选:C.5.已知函数f(x)=ax2﹣x+a+1在(﹣∞,2)上单调递减,则a的取值范围是()A.(0,]B.[0,]C.[2,+∞)D.[0,4]【考点】二次函数的性质.【分析】对函数求导,函数在(﹣∞,2)上单调递减,可知导数在(﹣∞,2)上导数值小于等于0,可求出a的取值范围.【解答】解:对函数求导y′=2ax﹣1,函数在(﹣∞,2)上单调递减,则导数在(﹣∞,2)上导数值小于等于0,当a=0时,y′=﹣1,恒小于0,符合题意;当a≠0时,因函导数是一次函数,故只有a>0,且最小值为y′=2a×2﹣1≤0,⇒a≤,∴a∈[0,],解法二、当a=0时,f(x)递减成立;当a>0时,对称轴为x=,由题意可得≥2,解得0<a≤,当a<0不成立.∴a∈[0,].故选B.6.函数f(x)=的最大值是()A.B.C.D.【考点】基本不等式;函数的最值及其几何意义.【分析】把分母整理成=(x﹣)2+进而根据二次函数的性质求得其最小值,则函数f(x)的最大值可求.【解答】解:∵1﹣x(1﹣x)=1﹣x+x2=(x﹣)2+≥,∴f(x)=≤,f(x)max=.故选D7.设函数f(x)=,则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(2,+∞) B.(﹣3,1)∪(3,+∞) C.(﹣1,1)∪(3,+∞)D.(﹣∞,﹣3)∪(1,3)【考点】函数单调性的性质.【分析】先计算f(1)的值,再按分段函数讨论求出不等式f(x)>f(1)的解集.【解答】解:∵f(x)=,∴f(1)=1﹣4+6=3;当x≥0时,有x2﹣4x+6>3,解得x>3,或x<1,即0≤x<1,或x>3;当x<0时,x+6>3,解得x>﹣3,即﹣3<x<0;综上,不等式f(x)>f(1)的解集是:{x|﹣3<x<1,或x>3};故选:B.8.已知f(x)=|x+1|+|x﹣3|,x1,x2满足x1≠x2,且f(x1)=f(x2)=101,则x1+x2等于()A.0 B.2 C.4 D.6【考点】根的存在性及根的个数判断.【分析】使得函数值是101,需要针对于函数中绝对值内的正负确定去掉绝对值以后的代数式,去掉绝对值以后,解出x的值,把两个自变量的值相加得到结果.【解答】解:∵f(x)=|x+1|+|x﹣3|,x1,x2满足x1≠x2,且f(x1)=f(x2)=101,由绝对值的几何意义知x1,x2距离﹣1与3的距离之和是101,当x在﹣1与3的左边时,﹣x﹣1+3﹣x=101,∴x=﹣当x在3的右边时,x+1+x﹣3=101,∴x=则x1+x2=﹣故选B.9.函数f(x)=x+,x∈(,2),若f(x)﹣m>0对一切x∈(,2)恒成立,则实数m的取值范围为()A.(﹣∞,)B.(﹣∞,)C.(﹣∞,) D.(,)【考点】函数恒成立问题.【分析】由题意知f(x)﹣m>0对一切x∈(,2)恒成立,可转化为:m<x+在(,2)上恒成立.【解答】解:∵f(x)﹣m>0 即f(x)>m⇒m<x+;令h(x)=x+h'(x)=1﹣•,令h'(x)=0⇒x=±(负舍);所以,h(x)在(,)上单调递减,(,2)上单调递增;∴h(x)min=;所以,m的取值范围为(﹣∞,);故选:B10.设f(x)=,又记f1(x)=f(x),f k(x)=f(f k(x)),k=1,2,…,则+1f2018(x)=()A.﹣ B.x C.D.【考点】数列递推式.【分析】先由f(x)=以及f1(x)=f(x),f k+1(x)=f(f k(x)),求出f k(x)的前几项,得到其周期为4,即可求得结论.【解答】解:因为f(x)=,且f1(x)=f(x),f k+1(x)=f(f k(x)),所以有:f2(x)=f(f1(x))=f()==﹣;f3(x)=f(f2(x))=f(﹣)==;f4(x)=f(f3(x))=f()==x.所以f k(x)的周期为4,又2018=4×1018+1故f2018(x)=f1(x)=故选D.11.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.B.2或﹣C.或﹣D.2或﹣或﹣【考点】二次函数的性质.【分析】求出二次函数的对称轴为x=m,再分对称轴在区间[﹣2,1]的左侧、中间、右侧三种情况,分别根据当﹣2≤x≤1时y的最大值为4,求得m的值,综合可得结论.【解答】解:∵二次函数y=﹣(x﹣m)2+m2+1的对称轴为x=m,﹣2≤x≤1,当m<﹣2时,函数f(x)在[﹣2,1]上是减函数,函数的最大值为f(﹣2)=﹣(2﹣m)2+1+m2=4,求得m=,舍去;当﹣2≤m≤1时,函数f(x)的最大值为f(m)=1+m2=4,求得m=﹣(舍去).当m>1时,函数f(x)在[﹣2,1]上是增函数,函数的最大值为f(1)=﹣(1﹣m)2+1+m2=4,求得m=2.综上可得,m=2或﹣.故选:B.12.函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=()A.6 B.8 C.10 D.12【考点】根的存在性及根的个数判断;函数的图象.【分析】结合函数图象可知,若f(g(x))=0,则g(x)=﹣1或g(x)=0或g (x)=1;若g(f(x))=0,则f(x)=﹣1.5或f(x)=1.5或f(x)=0;从而再结合图象求解即可.【解答】解:由图象可知,若f(g(x))=0,则g(x)=﹣1或g(x)=0或g(x)=1;由图2知,g(x)=﹣1时,x=﹣1或x=1;g(x)=0时,x的值有3个;g(x)=1时,x=2或x=﹣2;故m=7;若g(f(x))=0,则f(x)==﹣1.5或f(x)=1.5或f(x)=0;由图1知,f(x)=1.5与f(x)=﹣1.5无解;f(x)=0时,x=﹣1,x=1或x=0;故n=3;故m+n=10;故选:C.二、填空题(本大题共4小题,每小题5分,共20分).。

重庆市2017届高三第二次月考数学试题(理科)含答案

重庆市2017届高三第二次月考数学试题(理科)含答案

重庆2017学部2016—2017学年度下期第2次月考理科数学一、选择题(本题共12小题,每小题5分) 1.若复数iia 213++(R a ∈,i 是虚数单位)是纯虚数,则a 的值为( ) A.23B.23-C.6D.-62.已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合B C U ⋂A =( )A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}3.已知向量)21(,-=,)1-(,m =,)23(-=,,若⊥-)(,则m 的值是( ) A.27B.35C.3D.-34.直线2:+=my x l 与圆02222=+++y y x x 相切,则m 的值为( )A.1或-6B.1或-7C.-1或7D.1或71-5.甲盒子中装有2个编号分别为1,2的小球,乙盒子中装有3个编号分别为1,2,3的小球,从甲、乙两个盒子中各随机取一个小球,则取出的两个小球的编号之和为奇数的概率为( ) A.32 B.21 C.31 D.616.一个几何体的三视图如图,该几何体的表面积为( )A.280B.292C.360D.372 7.设0>w ,函数2)3sin(++=πwx y 的图象向右平移34π个单位后与原图象重合,则w 的最小值是( ) A.32 B.34 C.23D.38.如果执行右面的程序框图,输入46==m n ,,那么输出的p 等于( )A.720B.360C.240D.120 9.若54cos -=α,α是第三象限的角,则2t a n12t a n1αα-+=( ) A.-21 B.21C.2D.-2 10.在区间],[ππ-内随机取两个数分别记为b a ,,则函数222)(b ax x x f -+= +2π有零点的概率( ) A.8-1π B.4-1π C.2-1π D.23-1π 11.设双曲线的左准线与两条渐近线交于A 、B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为( ) A.)20(, B.)122(, C.)21(, D.)2(∞+, 12.记函数)(x f (e x e≤<1,e=2.71828…是自然对数的底数)的导数为)('x f ,函数)(')1()(x f ex x g -=只有一个零点,且)(x g 的图象不经过第一象限,当e x 1>时,ex x x f 11ln 1ln 4)(>+++,0]1ln 1ln 4)([=+++x x x f f ,下列关于)(x f 的结论,成立的是( )A.)(x f 最大值为1B.当e x =时,)(x f 取得最小值C.不等式0)(<x f 的解集是(1,e )D.当11<<x e时,)(x f >0二、填空题(本题共4小题,每小题5分,共20分) 13.在△ABC 中,若31sin 45==∠=A B b ,,π,则=a . 14.正方体1111D C B A ABCD -中,1BB 与平面1ACD 所成角的余弦值为.15.由直线0323===y x x ,,ππ与x y sin =所围成的封闭图形的面积为 ______.16.设函数⎪⎩⎪⎨⎧<<≥=10ln1ln )(x x x x x x x f ,,,若}{n a 是公比大于0的等比数列,且1543=a a a ,若16212)(...)()(a a f a f a f =+++,则1a = ______ .三、解答题(70分)17.已知等差数列{}n a 满足:267753=+=a a a ,,{}n a 的前n 项和为n S . (1)求n a 及n S .(2)令n b =211n a -(*N n ∈),求数列{}n b 的前n 项和n T . 18.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1(2)当产品中的微量元素x ,y 满足x ≥175且y ≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望). 19.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,60BAD ∠= . (1)求证:BD PAC ⊥平面;(2)若PA=AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.20.设(,)P a b 是椭圆22221(0)x y a b a b+=>>上的动点,21F F ,为椭圆的左右焦点且满足212||||.PF F F = (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆22(1)(16++=x y 相交于M ,N 两点,且5||||8MN AB =,求椭圆的方程.21.已知函数1()[1(2)1(2)]2f x t n x n x =+-- , 且()(4)f x f ≥恒成立。

重庆市重点中学重庆武隆中学高数学第二次月考试题数学试题卷

重庆市重点中学重庆武隆中学高数学第二次月考试题数学试题卷

新疆奎屯
· 2007·
y ( x 1)2 ( x 0)
y x2 1( x 0)
B
王新敞 特级教师 源头学子小屋
wxckt@
新疆奎屯
· 2007·
y x2 1( x 1)
王新敞 特级教师 源头学子小屋
wxckt@
新疆奎屯
· 2007·
10
C
王新敞 特级教师 源头学子小屋
wxckt@
新疆奎屯
· 2007·
8
D
王新敞 特级教师 源头学子小屋
wxckt@
新疆奎屯
· 2007·
6
5.已知等比数列 {an } 满足 a1 a2 3,a2 a3 6 ,则 a7 A.64 6
14。 a=
,b=
15. p 是 q 的___________________条件.
16. an
.
三、解答题:本大题共 6 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤. 17.命题 p : x 2 x 3 0, 命题q :
2
1 1 ,若 q且p 为真,求 x 的取值范围。 (12 分) 3 x
解,求 m 的取值范围.
21.(本小题满分 12 分) 已知函数 f ( x)
a 3 3 2 x x (a 1) x 1 ,其中 a 为实数. 3 2
(Ⅰ)已知函数 f ( x ) 在 x 1 处取得极值,求 a 的值;
) 都成立,求实数 x 的取值范围. (Ⅱ)已知不等式 f ( x)>x2 x a 1 对任意 a (0,
S min S 6 S 5
6 10 0 30 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。12 分 2

重庆市一中高三上学期第二次月考(数学理).doc

重庆市一中高三上学期第二次月考(数学理).doc

重庆市一中高三上学期第二次月考(数学理)数学试题共 4 页。

满分 150 分。

考试时间 1钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一.选择题.(共12小题,每小题5分,共50分) 1.函数)10(22≠>+=-a a ay x 且的图像一定经过点 ( )A.(2,3)B.(2,2)C.(3,2)D.(3,3)2.集合{}R x x y y M ∈-==,12,集合{}R x x y y N ∈-==,32,则N M =( )A .{})1,2(),1,2(- B .{}31≤≤-t tC .{}30≤≤t t D .φ3.“212++=n n n a a a 对任意正整数n 成立”是“数列{}n a 为等比数列”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.若N n n n x ∈+∈+=,)1,(31log 131log 12151,则n 的值是 ( )A. 1B. 2C.3D.45.已知n S 是公差不为0的等差数列{}n a 的前n 项和,且421,,S S S 成等比数列, 则132a a a +等于 ( ) A. 4 B. 6 C.8 D.106. 已知函数)(x f y =是最小正周期为2的偶函数,它在[]1,0上的函数解析式为22)(2+-=x x x f ,则在区间[]2,1上,)23(f 等于 ( ) A. 45 B. 43 C. 47D. 17.方程x x sin lg =的实根个数有a 个,方程x x sin =的实根有b 个,则b a +等于 ( )A. 1B. 2C. 3D. 48. ①x x y sin ⋅=; ②1122+-=x y ; ③⎩⎨⎧≤<≤=)10(log )0(22x x x y x ; ④[])2,2(122-∈++-=x x x y 中,函数图像具有对称性的是 ( )A. ①②③B. ①③④C. ②③④D. ①②④ 9.有限数列{},,,,321n a a a a A =n S 是其前n 项和,定义nS S S S n++++ 321为A 的“凯森和”,如有99项的数列{}99321,,,a a a a A =的“凯森和”为1000,则有100项的数列{}99321,,,,1a a a a 的“凯森和”为 ( )A. 1001B. 991C. 999D.990 10.已知函数),(201021201021)(R x x x x x x x x f ∈-++-+-+++++++= 则使2(1)(32)f a f a a -=-+成立的a 值最多可以有 ( )A. 2个B. 3个C. 4个D. 无数个 二.填空题.(共5个小题,每小题5分,共25分)11.若函数x x f a 12log )(-=在),0(+∞上是减函数,且xa y =是R 上的增函数,则实数a 的取值范围为______________. 12.数列{}n a 的通项公式,11++=n n a n 若前n 项和为10,则项数n 为______.13.平行于直线014=--y x 且与曲线23-+=x x y 相切的直线方程是_______.14.设n S 是等差数列{}n a 的前n 项和,已知,144,324,3666===-n n S S S 则n =__________.15.如果一个实数数列{}n a 满足条件:d a a n n =-+21(d 为常数,*N n ∈),则称这一数列 “伪等差数列”, d 称为“伪公差”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)当 a 1 时, f ( x) 在定义域上为单调增函数; (2) f ( x) 的图像关于点(1,a)对称; (3)对任意 a R , f ( x) 都不是奇函数; (4)当 a 1 时, f ( x) 为偶函数; (5)当 a 2 时,对于满足条件 2 x1 x2 的所有 x1 , x2 总有 f ( x1 ) f ( x2 ) 3( x2 x1 ) 。 其中正确的序号为 . 三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明,证 明过程或演算步骤. ) 17. (本小题 10 分)设 f ( x) (1)若 0 a 1 ,求 (2)求 f (
x 2 , 0 x400 400 x 1 R( x) 80000 ,2 x 400 ,其中 x 是仪器的月产量.
(1)将利润 y 元表示为月产量 x 台的函数; (2)当月产量为何值时,公司所获利润最大?最大利润是多少? (总收益=总成本+利润).
21. (本小题 12 分)已知函数 y 都有
x 2 4 x 6, x 0 7.设函数 f ( x) 则不等式 f ( x) f (1) 的解集是() x 6, x 0
A. (3,1) (2,)
B. (3,1) (3,)
C. (1,1) (3,)
D. (,3) (1,3)
D.y=﹣x2+4
3.已知函数 y=f(x+1)的图象过点(3,2),则函数 y=﹣f(x)的 图象一定过点( )
A.(2,﹣2) B.(2,2) C.(﹣4,2) D.(4,﹣2) 4.已知 y f x 1 是 R 上的偶函数,且 f 2 1 ,则 f 0 ( A. 1 B.0 C.1 D.2 )
重庆市武隆中学 2016-2017 学年高一上学期第二次适应性考试


第I卷
一、选择题(共 12 小题,每小题 5 分,共 60 分.) 1.设集合 A.A=B B. A B , C. B A ,则下列关系中正确的是 D.A∩B=[1,+∞) )
2.下列函数中,在区间(0,1)上是增函数的是( A.y=|x| B.y=3﹣x C.y=
11.当 2 x 1 时,二次函数 y ( x m)2 m2 1 有最大值为 4,则实数 m 的值为( A. 3 ) B.2 或- 3 C. - 3 或 3 D.2 或 - 3 或
7 4
12.函数 f(x)的定义域为[﹣1,1],图象如图 1 所示;函数 g(x) 的定义域为[﹣2,2],图象如图 2 所示,方程 f(g(x) )=0 有 m 个 实数根,方程 g ( f ( x ) ) =0 有 n 个实数根,则 m+n= ( )
f ( x) 的定义域为 R
,且对任意 a, b R ,
f (a b) f (a) f (b) ,且当 x 0 时, f ( x) 0 恒成立。 f ( x) 在 R
(1)判断函数 y (2)讨论函数 y 围.
上的单调性,并证明。
(3)若 f ( x) 的奇偶性;
数 m 的取值范围为( A. ( - , ) 10.设 f(x)=
2 2

( - , ) C. 3 2 ( ,) D. 3 9 2 4
B. (- ,2)
,又记 f1(x)=f(x) ,fk+1(x)=f(fk(x) ) , ) C. D.
k=1,2,…,则 f2009(x)=( A.﹣ B.x
+ )x3.
19. (本小题 12 分)已知函数 函数 f(x)的图象经过点(1,3) , (1)求实数 a,b 的值; (2)求函数 f(x)的值域.
(a≠0)是奇函数,并且
高一上学期数学第二次适应性考试 3 / 8
20. (本小题 12 分)某公司生产一种电子仪器的固定成本为 20000 元,每生产一台仪器需要增加投入 100 元,已知总收益满足函数:
9x , 9x 3
f (a) f (1 a) 的值;
1 2 3 999 ) f( ) f( ) f ( ) 的值. 1000 1000 1000 1000
18. (本小题 12 分)已知函数 f(x)=( (1)求 f(x)的定义域; (2)判断 f(x)的奇偶性; (3)证明 f(x)>0.
8.已知 f(x)=|x+1|+|x﹣3|,x1,x2 满足 x1≠x2,且 f(x1)=f(x2) =101,则 x1+x2 等于( )
高一上学期数学第二次适应性考试 1 / 8
A.0 9.函Leabharlann f ( x) x B.2
C.4
D. 6
1 1 1 , x ( ,2) 若 f ( x) m 0 对一切 x ( ,2) 恒成立, 则实 2x 2 2
高一上学期数学第二次适应性考试 2 / 8
15.已知 A {x x2 3x 2 0}, B {x x2 2ax a2 a 0} , 若 A U B A, 则实数 a 的 取值集合为 16. 对于函数 f ( x) .
ax 1 ( 其中 a 为实数, x 1 )给出下列命题 : x 1
A.6
B.8
C.10 第 II 卷
D.12
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分). 13.函数 y x 2 2 x 3 的单调减区间为
2 14. 已知 y f ( x) x 是奇函数, 且

若 g ( x) f ( x) 2 , 则 g (1) f (1) 1 ,
2 5.若函数 f ( x) a x x a 1 在 (, 2) 上单调递减,则 a 的取值范围是
A. 0,

1 4
B. 0,
1 4
C. 2, 的最大值是(
D. 0, 2 1
6.函数 f(x)= A. B.
) D.
C.
相关文档
最新文档