2018年上海市浦东新区高考二模数学试题及答案
2018年浦东区高三二模数学(附解析)
上海市浦东新区2018届高三二模数学试卷2018.04一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)… 2n 11.Iimn n 12.不等式一X0的解集为x 13•已知{a n}是等比数列,它的前n项和为S n,且83 4,8,则S5 _________________4.已知f 1(x)是函数f(x) log2(x 1)的反函数,贝U f 1(2) ______5.Ox丄)9二项展开式中的常数项为____________xx 2cos6.椭圆_ (为参数)的右焦点坐标为_____________y v3sinx 2y 42x y 3 一7.满足约束条件的目标函数f 3x 2y的最大值为_____________x 0y 08.函数f(x) cos2x ' 3si n2x , x R的单调递增区间为29.已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水面的宽为________ 米10.一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为 __________11.已知f(x)是定义在R上的偶函数,且f (x)在[0,)上是增函数,如果对于任意x [1,2], f (ax 1) f (x 3)恒成立,则实数a的取值范围是 _______________12.已知函数f (x) x2 5x 7 ,若对于任意的正整数n,在区间[1,n -]上存在m 1个n实数a。
、a1、a2、、a m,使得f(a°) f(Q) f(a2) f (a m)成立,则m 的最大值为_________二.选择题(本大题共4题,每题5分,共20分)213.已知方程x px 1 0的两虚根为洛、X2,若|X1 X2I 1,则实数p的值为( )A. 3B. 、5C. - 3 , ■- 5D. , 514. 在复数运算中下列三个式子是正确的: (1 )1乙Z 2| | Z 1 |匕|;( 2) | Z 1Z 2 ||Z 1 | | Z 2 |;r r r r(3)(z i Z 2) Z 3 Z 1 (Z 2 Z 3),相应的在向量运算中,下列式子:(1) | a b| | a | |b|;(2)|a b| |a| |b| ; ( 3)(a b ) c a (b c ),正确的个数是( ) A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
2018年上海市黄浦区高考数学二模试卷含详解
2018年上海市黄浦区高考数学二模试卷一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.(4分)已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是.2.(4分)不等式|1﹣x|>1的解集是.3.(4分)若函数是偶函数,则该函数的定义域是.4.(4分)已知△ABC的三内角A、B、C所对的边长分别为a、b、c,若a2=b2+c2﹣2bcsinA,则内角A的大小是.5.(4分)已知向量在向量方向上的投影为﹣2,且,则=.(结果用数值表示)6.(4分)方程的解x= .7.(5分)已知函数,则函数f(x)的单调递增区间是.8.(5分)已知α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,且|α|≤2,则实数m的取值范围是.9.(5分)已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.10.(5分)将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示)11.(5分)已知数列{a n}是共有k个项的有限数列,且满足,若a1=24,a2=51,a k=0,则k=.12.(5分)已知函数f(x)=ax2+bx+c(0<2a<b)对任意x∈R恒有f(x)≥0成立,则代数式的最小值是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)在空间中,“直线m⊥平面α”是“直线m与平面α内无穷多条直线都垂直”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件14.(5分)二项式的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项15.(5分)实数x、y满足线性约束条件,则目标函数w=2x+y﹣3的最大值是()A.0B.1C.﹣2D.316.(5分)在给出的下列命题中,是假命题的是()A.设O、A、B、C是同一平面上的四个不同的点,若(m ∈R),则点A、B、C必共线B.若向量是平面α上的两个不平行的向量,则平面α上的任一向量都可以表示为,且表示方法是唯一的C.已知平面向量满足||=r(r>0),且=,则△ABC是等边三角形D.在平面α上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(14分)在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC∥AD,BC=1,CD=.(1)画出四棱锥P﹣ABCD的主视图;(2)若PA=BC,求直线PB与平面PCD所成角的大小.(结果用反三角函数值表示)18.(14分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知OA=10米,OB=x 米(0<x<10),线段BA、线段CD与弧、弧的长度之和为30米,圆心角为θ弧度.(1)求θ关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.19.(14分)已知动点M(x,y)到点F(2,0)的距离为d1,动点M(x,y)到直线x=3的距离为d2,且.(1)求动点M(x,y)的轨迹C的方程;(2)过点F作直线l:y=k(x﹣2)(k≠0)交曲线C于P、Q两点,若△OPQ的面积(O是坐标系原点),求直线l的方程.20.(16分)已知函数(1)求函数f(x)的反函数f﹣1(x);(2)试问:函数f(x)的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程的三个实数根x1、x2、x3满足:x1<x2<x3,且x3﹣x2=2(x2﹣x1),求实数a的值.21.(18分)定义:若数列{c n}和{d n}满足,则称数列{d n}是数列{c n}的“伴随数列”.已知数列{b n}是数列{a n}的伴随数列,试解答下列问题:(1)若,,求数列{a n}的通项公式a n;(2)若,为常数,求证:数列是等差数列;(3)若,数列{a n}是等比数列,求a1、b1的数值.2018年上海市黄浦区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.(4分)已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是2.【考点】12:元素与集合关系的判断.【专题】11:计算题;32:分类讨论;4O:定义法;5J:集合.【分析】利用元素与集合的关系及集合中元素的互异性能求出非零实数m的数值.【解答】解:∵集合A={1,2,3},B={1,m},3﹣m∈A,∴或或,解得m=2.∴非零实数m的数值是2.故答案为:2.【点评】本题考查实数值的求法,考查元素与集合的关系及集合中元素的互异性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.(4分)不等式|1﹣x|>1的解集是(﹣∞,0)∪(2,+∞).【考点】R5:绝对值不等式的解法.【专题】38:对应思想;4R:转化法;59:不等式的解法及应用.【分析】去掉绝对值,求出不等式的解集即可.【解答】解:∵|1﹣x|>1,∴1﹣x>1或1﹣x<﹣1,∴x<0或x>2,故答案为:(﹣∞,0)∪(2,+∞).【点评】本题考查了解绝对值不等式问题,考查转化思想,是一道基础题.3.(4分)若函数是偶函数,则该函数的定义域是[﹣2,2] .【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数奇偶性的定义可得=,分析可得a的值,即可得f(x)=,据此分析函数的定义域即可得答案.【解答】解:函数,则f(﹣x)=f(x),则有=,解可得a=0,则函数f(x)=,有8﹣2x2≥0,解可得﹣2≤x≤2,则函数f(x)的定义域为[﹣2,2];故答案为:[﹣2,2].【点评】本题考查函数的奇偶性的性质,注意函数的奇偶性的定义.4.(4分)已知△ABC的三内角A、B、C所对的边长分别为a、b、c,若a2=b2+c2﹣2bcsinA,则内角A的大小是.【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】利用余弦定理,化简已知条件,然后求解即可.【解答】解:△ABC的三内角A、B、C所对的边长分别为a、b、c,a2=b2+c2﹣2bcsinA,又a2=b2+c2﹣2bccosA,可得sinA=cosA,所以A=.故答案为:.【点评】本题考查三角形的解法,余弦定理的应用,考查计算能力.5.(4分)已知向量在向量方向上的投影为﹣2,且,则=﹣6.(结果用数值表示)【考点】9O:平面向量数量积的性质及其运算.【专题】38:对应思想;49:综合法;5A:平面向量及应用.【分析】根据向量的投影公式计算.【解答】解:设的夹角为θ,则向量在向量方向上的投影为||•cosθ=||•==﹣2,∴=﹣2||=﹣6.故答案为:﹣6.【点评】本题考查了平面向量的数量积运算,属于基础题.6.(4分)方程的解x= 2.【考点】53:函数的零点与方程根的关系.【专题】33:函数思想;34:方程思想;49:综合法;51:函数的性质及应用.【分析】利用对数运算法则以及指数运算法则求解即可.【解答】解:方程,化为:3•2x+5=4x+1,解得(2x+1)(2x﹣4)=0,即2x﹣4=0,解得x=2,故答案为:2.【点评】本题考查对数运算法则的应用,指数运算法则的应用,方程的解法,考查计算能力.7.(5分)已知函数,则函数f(x)的单调递增区间是.【考点】H5:正弦函数的单调性.【专题】35:转化思想;57:三角函数的图像与性质.【分析】根据矩阵的运算可得f(x)=2sinxcosx+cos2x,利用二倍角辅助角化简即可求解f(x)的单调递增区间.【解答】解:由题意,f(x)=2sinxcosx+cos2x=sin2x+cos2x=sin(2x+),令≤2x+≤,k∈Z.可得:≤x≤.函数f(x)的单调递增区间为.故答案为:.【点评】本题主要考查三角函数的图象和性质,二倍角辅助角化简能力.属于基础题.8.(5分)已知α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,且|α|≤2,则实数m的取值范围是.【考点】&S:实系数多项式虚根成对定理.【专题】34:方程思想;59:不等式的解法及应用;5N:数系的扩充和复数.【分析】α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,可得也是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,由△<0,=|α|2=m2+1≤4,解得m范围.【解答】解:α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,则也是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,∴△=[﹣(2m﹣1)]2﹣4(m2+1)<0,解得m.=|α|2=m2+1≤4,解得.则.则实数m的取值范围是.故答案为:.【点评】本题考查了实系数一元二次方程虚数根成对原理及其与判别式的关系,考查了推理能力与计算能力,属于中档题.9.(5分)已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是140人.【考点】B3:分层抽样方法.【专题】36:整体思想;4O:定义法;5I:概率与统计.【分析】根据条件求出抽取比例,结合比例关系进行求解即可.【解答】解:抽取比例为750÷50=15,则抽取总人数为(450+750+900)÷15=2100÷15=140人,故答案为:140.【点评】本题主要考查分层抽样的应用,根据条件求出抽取比例是解决本题的关键.10.(5分)将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示)【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】利用n次独立重复试验中事件A恰好发生k次概率计算公式直接求解.【解答】解:将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是:p==.故答案为:.【点评】本题考查概率的求法,考查n次独立重复试验中事件A恰好发生k次概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(5分)已知数列{a n}是共有k个项的有限数列,且满足,若a1=24,a2=51,a k=0,则k=50.【考点】8H:数列递推式.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.=a n﹣1﹣变形可得a n+1a n﹣a n﹣1a n=﹣n,据此可得(a3a2【分析】根据题意,将a n+1﹣a2a1)=﹣2,(a4a3﹣a3a2)=﹣3,……a k a k﹣1﹣a k﹣1a k﹣2=﹣(k﹣1),用累加法分析可得a k a k﹣1﹣a1a2=﹣[1+2+3+……(k﹣1)],代入数据变形可得k2﹣k﹣2450=0,解可得k的值,即可得答案.【解答】解:根据题意,数列{a n}满足a n+1=a n﹣1﹣,变形可得:a na n﹣a n﹣1a n=﹣n,+1则有(a3a2﹣a2a1)=﹣2,(a4a3﹣a3a2)=﹣3,(a5a4﹣a4a3)=﹣4,……a k a k﹣1﹣a k﹣1a k﹣2=﹣(k﹣1),相加可得:a k a k﹣1﹣a1a2=﹣[1+2+3+……(k﹣1)],又由a1=24,a2=51,a k=0,则有k2﹣k﹣2450=0,解可得:k=50或﹣49(舍);故k=50;故答案为:50.=a n﹣1﹣的变形.【点评】本题考查数列的递推公式的应用,关键是对a n+112.(5分)已知函数f(x)=ax2+bx+c(0<2a<b)对任意x∈R恒有f(x)≥0成立,则代数式的最小值是3.【考点】3V:二次函数的性质与图象.【专题】51:函数的性质及应用.【分析】由二次函数的性质得,代入化简得:≥,设t=,由0<2a<b得t>2,利用基本不等式的性质就能求得最小值.【解答】解:因为∀x∈R,f(x)=ax2+bx+c≥0恒成立,0<2a<b,所以,得b2≤4ac,又0<2a<b,所以,所以=≥===,设t=,由0<2a<b得,t>2,则≥==[(t﹣1)++6]≥=3,当且仅当时取等号,此时t=4,取最小值是3,故答案为:3.【点评】本题主要考查二次函数的性质,基本不等式的应用,以及换元法,式子的变形是解题的关键和难点,属于难题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)在空间中,“直线m⊥平面α”是“直线m与平面α内无穷多条直线都垂直”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】36:整体思想;4O:定义法;5L:简易逻辑.【分析】根据线面垂直的定义,以及充分条件和必要条件的定义进行判断即可.【解答】解:直线m⊥平面α,则直线m与平面α内所有直线,即直线m与平面α内无穷多条直线都垂直成立,若平面α内无穷多条直线都是平行的,则当直线m与平面α内无穷多条直线都垂直时,直线m⊥平面α也不一定成立,即“直线m⊥平面α”是“直线m与平面α内无穷多条直线都垂直”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合线面垂直的定义是解决本题的关键.14.(5分)二项式的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;4A:数学模型法;5P:二项式定理.【分析】写出二项展开式的通项,由为整数求得r值,可得有理项的项数.【解答】解:二项式的展开式的通项为=.∵0≤r≤40,且r∈N,∴当r=0、6、12、18、24、30、36时,∈Z.∴二项式的展开式中,其中是有理项的项数共有7项.故选:B.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.(5分)实数x、y满足线性约束条件,则目标函数w=2x+y﹣3的最大值是()A.0B.1C.﹣2D.3【考点】7C:简单线性规划.【专题】38:对应思想;4R:转化法;59:不等式的解法及应用.【分析】先画出可行域;将目标函数变形;画出目标函数对应的直线;将直线平移由图求出w的最大值即可.【解答】解:画出命题条件的平面区域,如图示:,将w=2x+y﹣3转化为y=﹣2x+w+3,平移直线y=﹣2x,结合图象直线过(3,0)时,w最大,故w max=3,故选:D.【点评】不等式组表示的平面区域、利用图形求二元函数的最值.16.(5分)在给出的下列命题中,是假命题的是()A.设O、A、B、C是同一平面上的四个不同的点,若(m ∈R),则点A、B、C必共线B.若向量是平面α上的两个不平行的向量,则平面α上的任一向量都可以表示为,且表示方法是唯一的C.已知平面向量满足||=r(r>0),且=,则△ABC是等边三角形D.在平面α上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【考点】2K:命题的真假判断与应用.【专题】38:对应思想;4O:定义法;5A:平面向量及应用.【分析】对于A,根据共线定理判断A、B、C三点共线即可;对于B,根据平面向量的基本定理,判断命题正确;对于C,根据平面向量的线性表示与数量积运算得出命题正确;对于D,举例说明命题错误.【解答】解:对于命题A,(m∈R),∴﹣=m(﹣),∴=m,且有公共点C,∴则点A、B、C共线,命题A正确;对于B,根据平面向量的基本定理知,向量是一组基底,则平面α上的任一向量,都可表示为,且表示方法唯一,B正确;对于C,平面向量满足||=r(r>0),且=,∴+=﹣,即+=,∴+2•+=,即r2+2r2•cos<,>+r2=r2,∴cos<,>=﹣,∴、的夹角为120°,同理、的夹角也为120°,∴△ABC是等边三角形,C正确;对于D,如=(0,1),=(1,1),=(﹣1,1),=(﹣1,0),满足(+)•(+)=1×(﹣2)+2×1=0,∴(+)⊥(+),D错误.故选:D.【点评】本题利用命题真假的判断考查了平面向量的综合应用问题,是中档题.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(14分)在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC∥AD,BC=1,CD=.(1)画出四棱锥P﹣ABCD的主视图;(2)若PA=BC,求直线PB与平面PCD所成角的大小.(结果用反三角函数值表示)【考点】L7:简单空间图形的三视图;MI:直线与平面所成的角.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)由题意能作出主视图.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出直线PB与平面PCD所成角的大小.【解答】(本题满分14分)本题共有2个小题,第1小题满分(4分),第2小题满分(10分).解(1)在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC∥AD,BC=1,CD=.作出主视图如下:(2)根据题意,可算得AB=1,AD=2.又PA=BC=1,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,可得,A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).于是,有.设平面PCD的法向量为,则即令z=2,可得y=1,x=1,故平面PCD的一个法向量为.设直线PB与平面PCD所成角的大小为θ,则.所以直线PB与平面PCD所成角的大小为.【点评】本题考查主视图的作法,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(14分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知OA=10米,OB=x 米(0<x<10),线段BA、线段CD与弧、弧的长度之和为30米,圆心角为θ弧度.(1)求θ关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.【考点】5C:根据实际问题选择函数类型.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】(1)根据弧长公式和周长列方程得出θ关于x的函数解析式;(2)根据面积公式求出y关于x的函数值,从而得出y的最大值.【解答】解:(1)根据题意,可算得弧BC=x•θ(m),弧AD=10θ(m).∴2(10﹣x)+x•θ+10θ=30,∴.(2)依据题意,可知,化简得:y=﹣x2+5x+50=.∴当,(m2).答:当米时铭牌的面积最大,且最大面积为平方米.【点评】本题考查了函数解析式的求解,函数最值的计算,属于中档题.19.(14分)已知动点M(x,y)到点F(2,0)的距离为d1,动点M(x,y)到直线x=3的距离为d2,且.(1)求动点M(x,y)的轨迹C的方程;(2)过点F作直线l:y=k(x﹣2)(k≠0)交曲线C于P、Q两点,若△OPQ的面积(O是坐标系原点),求直线l的方程.【考点】KH:直线与圆锥曲线的综合;KK:圆锥曲线的轨迹问题.【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)结合题意求出.通过,求动点M(x,y)的轨迹C的方程.(2)联立方程组,设点P(x1,y1)、Q(x2,y2),利用韦达定理以及弦长公式,结合点O到直线l的距离.求解三角形的面积,推出结果即可.【解答】(本题满分14分)本题共有2个小题,第1小题满分(6分),第2小题满分(8分).解:(1)结合题意,动点M(x,y)到点F(2,0)的距离为d1,动点M(x,y)到直线x=3的距离为d2,可得.又,于是,,化简得.因此,所求动点M(x,y)的轨迹C的方程是.(2)联立方程组得(1+3k2)x2﹣12k2x+12k2﹣6=0.设点P(x1,y1)、Q(x2,y2),则于是,弦,点O到直线l的距离.由,得=,化简得k4﹣2k2+1=0,解得k=±1,且满足△>0,即k=±1都符合题意.因此,所求直线的方程为x﹣y﹣2=0或x+y﹣2=0.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法.考查转化思想以及计算能力.20.(16分)已知函数(1)求函数f(x)的反函数f﹣1(x);(2)试问:函数f(x)的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程的三个实数根x1、x2、x3满足:x1<x2<x3,且x3﹣x2=2(x2﹣x1),求实数a的值.【考点】4R:反函数;53:函数的零点与方程根的关系;57:函数与方程的综合运用.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】(1)用y表示出x,即可得出反函数;(2)设出对称的两点横坐标坐标,令函数值的和为0求出点的横坐标,从而得出两点坐标;(3)判断f(x)与2的大小,求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值.【解答】解:(1)∵∴当﹣1≤x<0时,f(x)=﹣2x,且0<f(x)≤2.由y=﹣2x,得,互换x与y,可得.当0≤x≤1时,f(x)=x2﹣1,且﹣1≤f(x)≤0.由y=x2﹣1,得,互换x与y,可得.∴(2)函数图象上存在两点关于原点对称.设点A(x0,y0)(0<x0≤1)、B(﹣x0,﹣y0)是函数图象上关于原点对称的点,则f(x0)+f(﹣x0)=0,即,解得,且满足0<x≤1.因此,函数图象上存在点关于原点对称.(3)令f(x)=2,解得x=﹣,①当时,有,原方程可化为﹣4x﹣2ax﹣4=0,解得,令,解得:.②当时,,原方程可化为,化简得(a2+4)x2+4ax=0,解得,又,∴.∴.由x3﹣x2=2(x2﹣x1),得,解得a=﹣(舍)或a=.因此,所求实数.【点评】本题考查了反函数的求解,考查函数的对称性,函数零点的计算,属于中档题.21.(18分)定义:若数列{c n}和{d n}满足,则称数列{d n}是数列{c n}的“伴随数列”.已知数列{b n}是数列{a n}的伴随数列,试解答下列问题:(1)若,,求数列{a n}的通项公式a n;(2)若,为常数,求证:数列是等差数列;(3)若,数列{a n}是等比数列,求a1、b1的数值.【考点】8M:等差数列与等比数列的综合.【专题】32:分类讨论;49:综合法;55:点列、递归数列与数学归纳法.【分析】(1)根据题意,有.由,,即可求解数列{a n}的通项公式.(2)通过逐项递推关系,可得,n∈N*.,n∈N*.即可正数列是首项为、公差为1的等差数列.(3)由题意,求解:.{a n}是等比数列,且a n>0,设公比为r(r >0),则.对其进行讨论,从而求解满足题意的a1、b1的数值.【解答】解:(1)根据题意,有.由,,得,n∈N*.所以,n∈N*.证明:(2)∵,,∴,,n∈N*.∴,n∈N*.∴数列是首项为、公差为1的等差数列.解:(3)由,,由,得.∵{a n}是等比数列,且a n>0,设公比为r(r>0),则.∴当r>1,即,与矛盾.因此,r>1不成立.当0<r<1,即,与矛盾.因此,0<r<1不成立.∴r=1,即数列{a n}是常数列,于是,a n=a1().∴.∵b n>0,∴b1>0,数列{b n}也是等比数列,设公比为q(q>0),有.∴,可化为,n∈N*.∵,∴关于x的一元二次方程有且仅有两个非负实数根.一方面,q n(n∈N*)是方程的根;另一方面,若q≠1(q>0),则无穷多个互不相等的q,q2,q3,q4,…,q n,…都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!∴q=1,即数列{b n}也是常数列,于是,b n=b1,n∈N*.∴由,得.把,代入,解得.∴.【点评】本题考查等差、等比数列的通项公式和综合能力的运用,考查运算能力,属于中档偏难的题.。
上海市杨浦区2018届高考二模数学试题含答案
已知 A {x | y 2 x x 2 } , B {x | x 1} ,则 A B 等于( A. [0,1] U (2, )
B.
)
D.
[0,1) U (2, )源自C. [0,1][0, 2]
15. 已知 a12 b12 0 , a2 2 b2 2 0 ,则“
上海市杨浦区 2018 届高三二模数学试卷
2018.04
一. 填空题(本大题共 12 题,1-6 每题 4 分,7-12 每题 5 分,共 54 分) 1. 函数 y lg x 1 的零点是 2. 计算: lim
2n n 4n 1
3. 若 (1 3 x) n 的二项展开式中 x 2 项的系数是 54 ,则 n 4. 掷一颗均匀的骰子,出现奇数点的概率为
2
8. 若双曲线
x 2 16 y 2 2 1 ( p 0) 的左焦点在抛物线 y 2 2 px 的准线上,则 p 3 p
3 ,则 tan 2 y 的值为 5
9. 若 sin( x y )cos x cos( x y )sin x
10. 若 {an } 为等比数列, an 0 ,且 a2018
m , m) ,射线 OM 与 交于点 P,四边形 OAPB 能否为平行四边形? 3
若能,求此时 l 的斜率;若不能,说明理由.
21. 记函数 f ( x) 的定义域为 D. 如果存在实数 a 、 b 使得 f ( a x) f ( a x) b 对任意满 足 a x D 且 a x D 的 x 恒成立,则称 f ( x) 为 函数. (1)设函数 f ( x)
1 1 ,试判断 f ( x) 是否为 函数,并说明理由; x 1 ,其中常数 t 0 ,证明: g ( x) 是 函数; 2 t
2018学年上海高三数学二模分类汇编——二项式定理
2(2018徐汇二模). 在61()x x +的二项展开式中,常数项是 (结果用数值表示) 2(2018长嘉二模). 1()n x x +的展开式中的第3项为常数项,则正整数n = 3(2018杨浦二模). 若(13)n x +的二项展开式中2x 项的系数是,则 5(2018浦东二模). 91)x+二项展开式中的常数项为 6(2018普陀二模). 若321()n x x-的展开式中含有非零常数项,则正整数n 的最小值为 7(2018崇明二模). 若二项式7(2)a x x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+= 8(2018虹口二模). 若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 8(2018青浦二模). 621(1)(1)x x++展开式中2x 的系数为 9(2018金山二模). (12)n x +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍,则正整数n =10(2018奉贤二模). 代数式2521(2)(1)x x+-的展开式的常数项是 (用数字作答) 12(2018闵松二模). 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R ,1222[][][]555n n n na a a b =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为14(2018宝山二模). 在62()x x -的二项展开式中,常数项等于( )A. 160-B. 160C. 150-D. 15014(2018黄浦二模).二项式40的展开式中,其中是有理项的项数共有( ) A. 4项 B. 7项 C. 5项 D. 6项16(2018金山二模). 若对任意1(,1)2x ∈-,都有2012212n n x a a x a x a x x x=+++⋅⋅⋅++⋅⋅⋅+-,则23a a +的值等于( )A. 3B. 2C. 1D. 1-54n =。
2018届上海市高三(二模模拟)检测理科数学试题及答案
2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。
2018年浦东新区高考数学二模含答案
2018年浦东新区⾼考数学⼆模含答案2018年浦东新区⾼考数学⼆模含答案 2018.4注意:1.答卷前,考⽣务必在试卷上指定位置将学校、班级、姓名、考号填写清楚.2.本试卷共有21道试题,满分150分,考试时间120分钟.⼀、填空题(本⼤题共有12⼩题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则⼀律得零分.21lim 1n n n →+∞+=- .2 2.不等式01xx <-的解集为________.(0,1)3.已知{}n a 是等⽐数列,它的前n 项和为n S ,且34,a =48a =-,则5S = ________.114.已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=________.35.91)x⼆项展开式中的常数项为________.846.椭圆2cos ,x y θθ=(θ为参数)的右焦点为________.(1,0)7.满⾜约束条件2423x y x y x y +≤??+≤?≥≥的⽬标函数32f x y =+的最⼤值为________.1638.函数2()cos 2,R f x x x x =+∈的单调递增区间为____________.,,36Z k k k ππππ?-+∈9.已知抛物线型拱桥的顶点距⽔⾯2⽶时,量得⽔⾯宽为8⽶。
当⽔⾯下降1⽶后,⽔⾯的宽为_____⽶。
10.—个四⾯体的顶点在空间直⾓坐标系xyz O -中的坐标分别是(0,0,0),(1,0,1),(0,1,1),(1,1,0),则该四⾯体的体积为________.111.已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成⽴,则实数a 的取值范围是________.[1,0]-12.已知函数2()57f x x x =-+.若对于任意的正整数n ,在区间51,n n ??+上存在1m +个实数012,,,,m a a a a 使得012()()()()m f a f a f a f a >+++成⽴,则m 的最⼤值为________.6⼆、选择题(本⼤题共有4⼩题,满分20分) 每⼩题都给出四个选项,其中有且只有⼀个选项是正确的,选对得 5分,否则⼀律得零分.13.已知⽅程210x px -+=的两虚根为12,x x ,若121x x -=,则实数p 的值为()A A . 3± B .5± C. 3,5 D . 3,5±± 14.在复数运算中下列三个式⼦是正确的:(1)1212z z z z +≤+,(2)1212z z z z ?=?,(3)123123()()z z z z z z ??=??;相应的在向量运算中,下列式⼦:(1)a b a b +≤+,(2)a b a b ?=?,(3)()()a b c a b c ??=??;正确的个数是()BA . 0B .1 C. 2 D .315.唐代诗⼈杜牧的七绝唐诗中两句诗为“今来海上升⾼望,不到蓬莱不成仙。
上海市浦东新区2018届高三下学期质量调研(二模)数学试(含详细解答)
上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 21lim1n n n →+∞+=-2. 不等式01xx <-的解集为3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S =4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91()x x+二项展开式中的常数项为6. 椭圆2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8. 函数23()cos sin 22f x x x =+,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为 米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个 实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5±14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 315. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
浦东区高考数学二模试卷含答案
2017年浦东新区高考数学二模试卷含答案一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知集合201x A xx ⎧-⎫=≥⎨⎬+⎩⎭,集合{|04}B y y =≤<,则A B =____________.2. 若直线l 的参数方程为44,23x tt y t =-⎧∈⎨=-+⎩R ,则直线l 在y 轴上的截距是____________.3. 已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为____________.4. 抛物线214y x =的焦点到准线的距离为____________. 5. 已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=____________.6. 若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为____________.7. 已知射手甲击中A 目标的概率为,射手乙击中A 目标的概率为,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是____________. 8. 函数3sin ,0,62y x x ππ⎛⎫⎡⎤=-∈⎪⎢⎥⎝⎭⎣⎦的单调递减区间是____________. 9. 已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=____________.10. 已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③在[1,1]-上的表达式为[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为____________.11. 已知各项均为正数的数列{}n a 满足:*11(2)(1)0()n n n n a a a a n ++--=∈N ,且110a a =,则首项1a 所有可能取值中的最大值为____________.12. 已知平面上三个不同的单位向量a ⃗,b ⃗⃗,c ⃗满足a ⃗·b ⃗⃗=b ⃗⃗·c ⃗=12,若e ⃗为平面内的任意单位向量,则|a ⃗·e ⃗|+2|b ⃗⃗·e ⃗|+3|c ⃗·e ⃗|的最大值为____________.二、选择题(本大题共有 4 小题,满分 20 分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5 分,否则一律得零分.13、若复数z 满足2=-++i z i z ,则复数z 在平面上对应的图形是( )A.椭圆B.双曲线C.直线D.线段14、已知长方体切去一个角的几何体直观图如图所示,给出下列4个平面图:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)15、已知x x cos 1sin 2+=,则=2cotx( )或21或0D.21或0 16、已知等比数列1a ,2a ,3a ,4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( )A.)83(,B.)162(,C.)84(,D.(226),1三、解答题(本大题共有5小题,满分76分)17. (本小题满分14分,第1小题满分6分,第2小题满分8分)如图所示,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1,且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点.已知球面上一点310,,2D ⎛⎫- ⎪ ⎪⎝⎭. (1)求,D C 两点在球O 上的球面距离;(2)求直线CD 与平面ABC 所成角的大小.18. (本小题满分14分,第1小题满分6分,第2小题满分8分) 某地计划在一处海滩建造一个养殖场. (1)如图,射线,OA OB 为海岸线,23AOB π∠=,现用长度为1千米的围网PQ 依托海岸线围成一个△POQ 的养殖场,问如何选取点,P Q ,才能使养殖场△POQ 的面积最大,并求其最大面积. (2)如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场. 方案一:围成三角形OAB (点,A B 在直线l 上),使三角形OAB 面积最大,设其为1S ; 方案二:围成弓形CDE (点,D E 在直线l 上,C 是优弧DE ̂所在圆的圆心且23DCE π∠=),其面积为2S ;试求出1S 的最大值和2S (均精确到平方千米),并指出哪一种设计方案更好.19. (本小题满分14分,第1小题满分6分,第2小题满分8分)已知双曲线22:143x y C -=,其右顶点为P . (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为n ⃗⃗=(1,1)-,若在双曲线C 上恰有三个点123,,P P P 到直线l 的距离均为d ,求d 的值.20、(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若数列{}n A 对任意的*N n ∈,都有kn n A A =+1()0≠k ,且0≠n A ,则称数列{}n A 为“k 级创新数列”.(1)已知数列{}n a 满足n n n a a a 2221+=+且211=a ,试判断数列{}12+n a 是否为“2级创新数列”,并说明理由;(2)已知正数数列{}n b 为“k 级创新数列”且1≠k ,若101=b ,求数列{}n b 的前n 项积n T ; (3)设βα,是方程012=--x x 的两个实根)(βα>,令αβ=k ,在(2)的条件下,记数列{}n c 的通项n b n n T c nlog 1⋅=-β,求证:n n n c c c +=++12,*N n ∈.21、(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)对于定义域为R 的函数)(x g ,若函数[])(sin x g 是奇函数,则称)(x g 为正弦奇函数. 已知)(x f 是单调递增的正弦奇函数,其值域为R ,0)0(=f .(1)已知)(x g 是正弦奇函数,证明:“0u 为方程[]1)(sin =x g 的解”的充要条件是“0u -为方程[]1)(sin -=x g 的解”;(2)若2)(π=a f ,2)(π-=b f ,求b a +的值;(3)证明:)(x f 是奇函数.参考答案1. [2,4)2. 13. 8π4. 25. 56. 97.8. 20,3π⎡⎤⎢⎥⎣⎦9.1410. 6 11. 16 12.13. D14. C15. C16. D17. (1)3DC π=(2)arcsinθ=18. (1)选取3OP OQ ==时养殖场△POQ 的面积最大,max 12S =(平方千米) (2)1max 18S =(平方千米),20.144S ≈(平方千米) 12S S <,方案二所围成的养殖场面积较大,方案二更好19. (1)2212(2)7x y -+=(2)2d =220. (1)是 (2)1*110()n k kn T n --=∈N(3)证明略21. (1)证明略 (2)0a b += (3)证明略。
浦东区高考数学二模试卷含答案
2017年浦东新区高考数学二模试卷含答案一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知集合201x A xx ⎧-⎫=≥⎨⎬+⎩⎭,集合{|04}B y y =≤<,则A B =I ____________.2. 若直线l 的参数方程为44,23x tt y t =-⎧∈⎨=-+⎩R ,则直线l 在y 轴上的截距是____________.3. 已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为____________.4. 抛物线214y x =的焦点到准线的距离为____________. 5. 已知关于,x y 的二元一次方程组的增广矩阵为215120⎛⎫⎪-⎝⎭,则3x y -=____________.6. 若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为____________.7. 已知射手甲击中A 目标的概率为,射手乙击中A 目标的概率为,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是____________. 8. 函数3sin ,0,62y x x ππ⎛⎫⎡⎤=-∈⎪⎢⎥⎝⎭⎣⎦的单调递减区间是____________. 9. 已知等差数列{}n a 的公差为2,前n 项和为n S ,则1limnn n n S a a →∞+=____________.10. 已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③在[1,1]-上的表达式为[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为____________.11. 已知各项均为正数的数列{}n a 满足:*11(2)(1)0()n n n n a a a a n ++--=∈N ,且110a a =,则首项1a 所有可能取值中的最大值为____________.12. 已知平面上三个不同的单位向量a ⃗,b ⃗⃗,c ⃗满足a ⃗·b ⃗⃗=b ⃗⃗·c ⃗=12,若e ⃗为平面内的任意单位向量,则|a ⃗·e ⃗|+2|b ⃗⃗·e ⃗|+3|c ⃗·e ⃗|的最大值为____________.二、选择题(本大题共有 4 小题,满分 20 分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5 分,否则一律得零分.13、若复数z 满足2=-++i z i z ,则复数z 在平面上对应的图形是( )A.椭圆B.双曲线C.直线D.线段14、已知长方体切去一个角的几何体直观图如图所示,给出下列4个平面图:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)15、已知x x cos 1sin 2+=,则=2cotx( )或21或0D.21或0 16、已知等比数列1a ,2a ,3a ,4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( )A.)83(,B.)162(,C.)84(,D.(226),1三、解答题(本大题共有5小题,满分76分)17. (本小题满分14分,第1小题满分6分,第2小题满分8分)如图所示,球O 的球心O 在空间直角坐标系O xyz -的原点,半径为1,且球O 分别与,,x y z 轴的正半轴交于,,A B C 三点.已知球面上一点310,,2D ⎛⎫- ⎪ ⎪⎝⎭. (1)求,D C 两点在球O 上的球面距离;(2)求直线CD 与平面ABC 所成角的大小.18. (本小题满分14分,第1小题满分6分,第2小题满分8分) 某地计划在一处海滩建造一个养殖场. (1)如图,射线,OA OB 为海岸线,23AOB π∠=,现用长度为1千米的围网PQ 依托海岸线围成一个△POQ 的养殖场,问如何选取点,P Q ,才能使养殖场△POQ 的面积最大,并求其最大面积. (2)如图,直线l 为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场. 方案一:围成三角形OAB (点,A B 在直线l 上),使三角形OAB 面积最大,设其为1S ; 方案二:围成弓形CDE (点,D E 在直线l 上,C 是优弧DE ̂所在圆的圆心且23DCE π∠=),其面积为2S ;试求出1S 的最大值和2S (均精确到平方千米),并指出哪一种设计方案更好.19. (本小题满分14分,第1小题满分6分,第2小题满分8分)已知双曲线22:143x y C -=,其右顶点为P . (1)求以P 为圆心,且与双曲线C 的两条渐近线都相切的圆的标准方程;(2)设直线l 过点P ,其法向量为n ⃗⃗=(1,1)-,若在双曲线C 上恰有三个点123,,P P P 到直线l 的距离均为d ,求d 的值.20、(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若数列{}n A 对任意的*N n ∈,都有kn n A A =+1()0≠k ,且0≠n A ,则称数列{}n A 为“k 级创新数列”.(1)已知数列{}n a 满足n n n a a a 2221+=+且211=a ,试判断数列{}12+n a 是否为“2级创新数列”,并说明理由;(2)已知正数数列{}n b 为“k 级创新数列”且1≠k ,若101=b ,求数列{}n b 的前n 项积n T ; (3)设βα,是方程012=--x x 的两个实根)(βα>,令αβ=k ,在(2)的条件下,记数列{}n c 的通项n b n n T c nlog 1⋅=-β,求证:n n n c c c +=++12,*N n ∈.21、(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)对于定义域为R 的函数)(x g ,若函数[])(sin x g 是奇函数,则称)(x g 为正弦奇函数. 已知)(x f 是单调递增的正弦奇函数,其值域为R ,0)0(=f .(1)已知)(x g 是正弦奇函数,证明:“0u 为方程[]1)(sin =x g 的解”的充要条件是“0u -为方程[]1)(sin -=x g 的解”;(2)若2)(π=a f ,2)(π-=b f ,求b a +的值;(3)证明:)(x f 是奇函数.参考答案1. [2,4)2. 13. 8π4. 25. 56. 97.8. 20,3π⎡⎤⎢⎥⎣⎦9.1410. 6 11. 16 12.13. D14. C15. C16. D17. (1)3DC π=(2)arcsinθ=18. (1)选取3OP OQ ==时养殖场△POQ 的面积最大,max 12S =(平方千米) (2)1max 18S =(平方千米),20.144S ≈(平方千米) 12S S <,方案二所围成的养殖场面积较大,方案二更好19. (1)2212(2)7x y -+=(2)2d =220. (1)是 (2)1*110()n k kn T n --=∈N(3)证明略21. (1)证明略 (2)0a b += (3)证明略。
2018学年浦东二模试卷参考答案
浦东新区2018学年度第二学期初三教学质量检测数学试卷参考答案及评分说明 (2019.5.8)一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.B ; 4.A ; 5.C ;6.B . 二、填空题:(本大题共12题,每题4分,满分48分)7.25-; 8.(m -n+2)(m -n -2);9.2; 10.m ≤1; 11.y =12x ; 12.31; 13.平行; 14.160; 15.130; 16.7; 17.22; 18.32. 三、解答题:(本大题共7题,满分78分)19.解:原式=321331-+-+- …………………………………………………(各2分)=-1. ……………………………………………………………………(2分)20.解:由①得 22-≥x . ………………………………………………………………(1分) ∴1-≥x . ………………………………………………………………(2分) 由②得 123<x . ………………………………………………………………(1分) ∴4<x . ………………………………………………………………(2分) ∴原不等式组的解集是41<≤-x . ………………………………………………(2分) ∴原不等式组的自然数解为0、1、2、3. ……………………………………(2分) (注:漏“0”扣1分)21.解:(1)作AD ⊥x 轴,垂足为点D .∵BH ⊥x 轴,AD ⊥x 轴,∴∠BHO =∠ADO =90°.∴AD ∥BH .…………(1分) 又∵BA=2OA ,∴21==AB OA DH OD . …………………………………………(1分) ∵点B 的横坐标为6,∴OH=6.∴OD=2. ………………………………(1分) ∵双曲线xy 6=经过点A ,可得点A 的纵坐标为3. …………………………(1分) ∴点A 的坐标为(2,3). …………………………………………………………(1分) (2)∵双曲线xy 6=上点C 的横坐标为6,∴点C 的坐标为(6,1). ……(1分) 由题意,得 直线AB 的表达式为x y 23=. ……………………………………(1分) ∴设平移后直线的表达式为b x y +=23. ∵平移后的直线b x y +=23经过点C (6,1),∴b +⨯=6231. ………………(1分) 解得8-=b . ……………………………………………………………………(1分) ∴平移后直线的表达式为823-=x y . …………………………………………(1分)22.解:(1)根据题意,得AB=20,∠ABC=70°,CH =BD =2.………………(1分) 在△ACB 中,∵∠ACB =90°,∴sin AC ABC AB∠=. ∵∠ABC=70°,AB=20,∴20sin70200.9418.8AC =⋅≈⨯=o . …………(2分) ∴AH =20.8.答:这辆吊车工作时点A 离地面的最大距离AH 为20.8米. …………(1分)(2)设这次王师傅所开的吊车的速度为每小时x 千米. ……………………(1分) 由题意,得 31402040=--x x . ………………………………………………(1分) 整理,得02400202=--x x .………………………………………………(1分) 解得 x 1=60,x 2=-40. …………………………………………………………(1分) 经检验:x 1=60,x 2=-40都是原方程的解,但x 2=-40不符合题意,舍去.…(1分) 答:这次王师傅所开的吊车的速度为每小时60千米. ……………………(1分)23.证明:(1)∵AB=AD ,∴∠ABD =∠ADB . ……………………………………(1分) ∵AD ∥BC ,∴∠ADB=∠MBC . …………………………………………(1分) ∵AB=AD ,AM ⊥BD ,∴BM =DM . …………………………………………(1分)∵DC ⊥BC ,∴∠BCD =90°.∴BM =DM =CM . ………………………………………………………………(1分) ∴∠MBC =∠BCM . …………………………………………………………(1分) ∴∠ABD=∠BCM . …………………………………………………………(1分)(2)∵∠BNM=∠CNB ,∠NBM=∠NCB ,∴△NBM ∽△NCB . …………(2分) ∴BCBM CN BN =. ………………………………………………………………(2分) ∵BM =DM ,∴BCDM CN BN =. ……………………………………………………(1分) ∴DM CN BN BC ⋅=⋅. ……………………………………………………(1分)24.解:(1)∵抛物线c bx x y ++=231经过点M (3,-4),A (-3,0), ∴⎩⎨⎧+-=++=-.330,33c b c b 4 ………………………………………………………………(1分) 解得⎪⎩⎪⎨⎧-=-=.5,32c b………………………………………………………………(2分)∴这条抛物线的表达式为532312--=x x y . ………………………………(1分) (2)由题意,得 这条抛物线的对称轴为直线1=x . …………………………(1分) 点B 的坐标为(5,0),点C 的坐标为(0,-5). …………………………(1分) 设点P 的坐标为(1,y ).∵PC=BC ,∴PC 2=BC 2. ∴22255)5(1+=++ y . ……………………………………………………(1分)解得y =2或y =-12.∴点P 的坐标为(1,2)或(1,-12).…………………………………………(1分)(3)作PH ⊥BC ,垂足为点H .∵点B (5,0),点C (0,-5),点P (1,2),∴PC =BC =52.…………(1分)∵直线BC 与对称轴相交于点D (1,-4), ∴462116212521⨯⨯+⨯⨯=⨯PH . …………………………………………(1分)解得PH =23. ………………………………………………………………(1分) ∴sin ∠PCB=532523=. ……………………………………………………(1分) 25.解:(1)联结PO 并延长交弦AB 于点H .∵P 是优弧AB ︵ 的中点,PH 经过圆心O ,∴PH ⊥AB ,AH =BH . …………(2分) 在△AOH 中,∵∠AHO =90°,AH=21AB =4,AO=5,∴OH=3. ……(1分) 在△APH 中,∵∠AHP =90°,PH=5+3=8,AH=4,∴AP=54. ……(1分)(2)作OG ⊥AB ,垂足为点G .∵∠OBG =∠ABM ,∠OGB =∠AMB ,∴△OBG ∽△ABM . ………………(1分)∴OB BG AB BM =,即548=BM . ∴532=BM . ……………………………………………………………………(1分) ∴57=OM . ……………………………………………………………………(1分) ∵57<23,∴以点O 为圆心,23为半径的圆与直线AP 相交. …………(1分) (3)作OG ⊥AB ,垂足为点G .∵∠BNO=∠BON ,∴BN=BO . ………………………………………………(1分) ∵BO =AO=5,∴BN=5. ……………………………………………………(1分) (i )当点N 在线段AB 延长线上时,∵BG =21AB =4,∴GN =9. 在△GON 中,∵∠NGO =90°,GN=9,OG=3,∴ON=103.∵圆N 与圆O 相切,∴5103+=r 或5103-=r .∴圆N 的半径为5103-或5103+. …………………………………(各1分) (ii )当点N 在线段AB 上时,同理可得圆N 的半径为105+或105-.……………………………………………………………………………(各1分)。
最新-上海市浦东六校联考2018届高三数学第二次联考试
2018-12月浦东高三第二次六校联考数学试卷(文史类)考生注意:1.答卷前,考生务必在答题纸上将姓名、座位号、准考证号等填写清楚.2.本试卷共有23道试题,满分150分,考试时间120分钟.一. 填空题 (本大题满分56分)本大题共有14题,只要求直接填写结果,每题填对得4分,否则一律得零分.1.若复数z 满足()1z i i +=(i 为虚数单位),则z z ⋅=____________. 2.已知数列{}n a 是等比数列,则行列式1425a a a a =________.3.已知集合{}3A x x =<,集合401x B xx ⎧+⎫=>⎨⎬-⎩⎭,则A B =______________.4.已知矩阵2134A -⎛⎫=⎪⎝⎭,2143B -⎛⎫= ⎪⎝⎭,则A B ⨯=______________. 5.若函数()log m f x x =的反函数图象过点()2,n ,则n m -的最小值是______.6.822x x ⎛⎫- ⎪⎝⎭的展开式中含21x 项的系数为 ____________.7.已知()1,3a =-,()6,2b =,向量a b λ+与3a b -垂直,则实数λ=_______. 8.对任意非零实数a 、b ,若a b ⊗的运算 原理如右图程序框图所示,则32⊗= .9.将甲、乙、丙、丁四名志愿者分到三个 不同的社区进行社会服务,每个社区至少 分到一名志愿者,则不同分法的种数为_____. 10.已知数列{}n a 的前n 项和2n S n n =+*()n N ∈, 则lim nn nna S →∞=_______.11.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且第()2n n ≥行两端的数均为1n,每个数都是它下一行左右相邻两数的和,如111122=+,111236=+,1113412=+,…,则第7行第3个数(从左往右数)为___________.12.设ABC ∆的三个内角分别为A 、B 、C ,则下列条件中能够确定ABC ∆为钝角三角形的条件共有________个. ①::7:20:25A B C =;②sin :sin :sin 7:20:25A B C =; ③cos :cos :cos 7:20:25A B C =; ④tan :tan :tan 7:20:25A B C =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 21lim1n n n →+∞+=-2. 不等式01xx <-的解集为 3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S = 4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -=5. 91)x二项展开式中的常数项为6.椭圆2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为8.函数2()cos 2f x x x =,x ∈R 的单调递增区间为 9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为米10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A.14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 3 15. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
”其中后一句中“成仙”是“到蓬莱”的( ) A. 充分条件B. 必要条件C. 充要条件D. 既非充分又非必要条件16. 设P 、Q 是R 上的两个非空子集,如果存在一个从P 到Q 的函数()y f x =满足:(1){()|}Q f x x P =∈;(2)对任意12,x x P ∈,当12x x <时,恒有12()()f x f x <,那么称这两个集合构成“P Q →恒等态射”,以下集合可以构成“P Q →恒等态射”的是( )A.R →ZB. Z →QC.[1,2](0,1)→D. (1,2)→R三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知圆锥AO 的底面半径为2,母线长为点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=.(1)求圆锥的全面积;(2)求直线CD 与平面AOB 所成角的大小. (结果用反三角函数值表示)18. 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b A b a BC a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积.19. 已知双曲线22:1C x y -=.(1)求以右焦点为圆心,与双曲线C 的渐近线相切的圆的方程;(2)若经过点(0,1)P -的直线与双曲线C 的右支交于不同两点M 、N ,求线段MN 的中垂线l 在y 轴上截距t 的取值范围.20. 已知函数()y f x =定义域为R ,对于任意x ∈R 恒有(2)2()f x f x =-. (1)若(1)3f =-,求(16)f 的值;(2)若(1,2]x ∈时,2()22f x x x =-+,求函数()y f x =,(1,8]x ∈的解析式及值域; (3)若(1,2]x ∈时,3()||2f x x =--,求()y f x =在区间(1,2]n ,*n N ∈上的最大值与最小值.21. 已知数列{}n a 中11a =,前n 项和为n S ,若对任意的*n N ∈,均有n n k S a k +=-(k 是常数,且*k N ∈)成立,则称数列{}n a 为“()H k 数列”. (1)若数列{}n a 为“(1)H 数列”,求数列{}n a 的前n 项和n S ;(2)若数列{}n a 为“(2)H 数列”,且2a 为整数,试问:是否存在数列{}n a ,使得211||40n n n a a a -+-≤对一切2n ≥,*n N ∈恒成立?如果存在,求出这样数列{}n a 的2a 的所有可能值,如果不存在,请说明理由;(3)若数列{}n a 为“()H k 数列”,且121k a a a ==⋅⋅⋅==,证明:211(1)2n kn k k a -+-≥+.上海市浦东新区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 21lim1n n n →+∞+=-【解析】2 2. 不等式01xx <-的解集为 【解析】(1)0(0,1)x x x -<⇒∈3. 已知{}n a 是等比数列,它的前n 项和为n S ,且34a =,48a =-,则5S = 【解析】512481611S =-+-+=4. 已知1()f x -是函数2()log (1)f x x =+的反函数,则1(2)f -= 【解析】12log (1)2(2)3x f -+=⇒=5. 91)x二项展开式中的常数项为【解析】3984C =6.椭圆2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数)的右焦点坐标为【解析】22143x y +=,右焦点为(1,0) 7. 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数32f x y =+的最大值为【解析】交点25(,)33代入最大,16323f x y =+=8. 函数2()cos 2f x x x =,x ∈R 的单调递增区间为 【解析】1()sin(2)62f x x π=++,∴单调递增区间为[,]36x k k ππππ∈-+,k ∈Z9. 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水 面的宽为米【解析】设2y ax =,代入(4,2)-,∴18a =-,∴2138x x -=-⇒=所以宽为10. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0)、(1,0,1)、(0,1,1)、(1,1,0),则该四面体的体积为111463-⨯=11. 已知()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是增函数,如果对于任意[1,2]x ∈,(1)(3)f ax f x +≤-恒成立,则实数a 的取值范围是【解析】|1|3ax x +≤-在[1,2]x ∈恒成立,|1|2a +≤且|21|1a +≤,解得[1,0]a ∈- 12. 已知函数2()57f x x x =-+,若对于任意的正整数n ,在区间5[1,]n n+上存在1m +个实数0a 、1a 、2a 、⋅⋅⋅、m a ,使得012()()()()m f a f a f a f a >++⋅⋅⋅+成立,则m 的最大 值为【解析】min 59()2n n+=,∴在区间9[1,]2上最大值为919()24f =,最小值为53()24f =, 19316444÷=⋅⋅⋅⋅⋅⋅,即m 的最大值为6二. 选择题(本大题共4题,每题5分,共20分)13. 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A. 【解析】由0∆<,排除B 、C 、D ,选A14. 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+;(2)||||||a b a b ⋅=⋅;(3)()()a b c a b c ⋅⋅=⋅⋅,正确的个数是( )A. 0B. 1C. 2D. 3 【解析】① 正确,②③错误,选B15. 唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。
”其中后一句中“成仙”是“到蓬莱”的( ) A. 充分条件B. 必要条件C. 充要条件D. 既非充分又非必要条件【解析】不到蓬莱→不成仙,∴成仙→到蓬莱,选A16. 设P 、Q 是R 上的两个非空子集,如果存在一个从P 到Q 的函数()y f x =满足:(1){()|}Q f x x P =∈;(2)对任意12,x x P ∈,当12x x <时,恒有12()()f x f x <,那么称这两个集合构成“P Q →恒等态射”,以下集合可以构成“P Q →恒等态射”的是( )A.R →ZB. Z →QC.[1,2](0,1)→D. (1,2)→R【解析】根据题意,定义域为P ,单调递增,值域为Q ,由此判断,D 符合,故选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知圆锥AO 的底面半径为2,母线长为点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=.(1)求圆锥的全面积;(2)求直线CD 与平面AOB 所成角的大小. (结果用反三角函数值表示)【解析】(1)圆锥的底面积214S r ππ==……………3分圆锥的侧面积2S rl π==……………3分圆锥的全面积124(1S S S π=+=……………1分 (2)2BOC π∠=Q OC OB ∴⊥ 且OC OA ⊥,OC ⊥平面AOB ……………2分CDO ∴∠是直线CD 与平面AOB 所成角 ……………1分在Rt CDO V 中,2OC =,OD , ……………1分tan CDO ∠=,CDO ∴∠=2分 所以,直线CD 与平面AOB所成角的为1分18. 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a BC a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积. 【解析】(1)由题意,()()2sin 2sin 2sin c C a b A b a B =-+-;……………2分 由正弦定理得()()2222c a b a b a b =-+-,∴222c a b ab =+-,……………2分∴2221cos 22a b c C ab +-==,∴3C π=;……………2分 (2)由4sin 5A =,c =sin sin a c A C =,∴85a =;…………2分由23a c A C π<⇒<=,∴3cos 5A =,…………2分∴()sin sin sin cos cos sin B A C A C A C =+=+=;…………2分∴118sin 225ABC S ca B ∆-==…………2分19. 已知双曲线22:1C x y -=.(1)求以右焦点为圆心,与双曲线C 的渐近线相切的圆的方程;(2)若经过点(0,1)P -的直线与双曲线C 的右支交于不同两点M 、N ,求线段MN 的中垂线l 在y 轴上截距t 的取值范围.【解析】(1)2F …………1分渐近线 0x y ±=………1分1R = (2)分22(1x y +=………………2分(2)设经过点B 的直线方程为1y kx =-,交点为1122(,),(,)M x y N x y ………………1分22221(1)2201x y k x kx y kx ⎧-=⇒-+-=⎨=-⎩ (1)分则212121,0010k x x k x x ⎧≠∆>⎪+>⇒<<⎨⎪>⎩…2分 MN 的中点为221(,)11k k k ----,…1分得中垂线2211:()11kl y x k k k +=-+--…1分 令0x =得截距2222211t k k -==>--………………2分 即线段MN 的中垂线l 在y 轴上截距t 的取值范围是(2,)+∞.20. 已知函数()y f x =定义域为R ,对于任意x ∈R 恒有(2)2()f x f x =-. (1)若(1)3f =-,求(16)f 的值;(2)若(1,2]x ∈时,2()22f x x x =-+,求函数()y f x =,(1,8]x ∈的解析式及值域; (3)若(1,2]x ∈时,3()||2f x x =--,求()y f x =在区间(1,2]n ,*n N ∈上的最大值与最小值.【解析】(1)(1)3f =-Q 且(2)2()f x f x =-(2)3(2)f ∴=-⋅-……………1分22(2)3(2)f ∴=-⋅-……………1分 33(2)3(2)f ∴=-⋅-………1分44(16)(2)3(2)48f f ∴==-⋅-=-……1分 (2)(2)2()()2()2xf x f x f x f =-⇒=-,(1,2]x ∈时,22()22(1)1f x x x x =-+=-+,()(1,2]f x ∈……………1分 (2,4]x ∈时,221()2()2[(1)1](2)2222x x f x f x =-=--+=---,……………1分()[4,2)f x ∈--……………1分(4,8]x ∈时,2211()2()2[(2)2](4)42224x x f x f x =-=----=-+,……………1分()(4,8]f x ∈……………1分得:222(1)1,(1,2]1()(2)2,(2,4]21(4)4,(4,8]4x x f x x x x x ⎧⎪-+∈⎪⎪=---∈⎨⎪⎪-+∈⎪⎩,值域为[4,2)12](4,8]--(,……………1分(3)(2)2()()2()2x f x f x f x f =-⇒=-当(1,2]x ∈时,3()2f x x =--得:当2(2,2]x ∈时,()2()32x f x f x =-=-……1分当1(2,2]n n x -∈时,1(1,2]2n x -∈,21122113()2()(2)()(2)()(2)(1)3222222n n n n n n x x x x f x f f f x -----=-=-=-=---=--⋅L ……………2分当1(2,2]n n x -∈,n 为奇数时,22()32[,0]4nn f x x -=--⋅∈-当1(2,2]n nx -∈,n 为偶数时,22()32[0,]4nn f x x -=-⋅∈综上:1n =时,()f x 在(1,2]上最大值为0,最小值为12-……………1分 2n ≥,n 为偶数时,()f x 在(1,2]n上最大值为24n ,最小值为28n-……………1分3n ≥,n 为奇数时,()f x 在(1,2]n上最大值为28n ,最小值为24n-……………1分21. 已知数列{}n a 中11a =,前n 项和为n S ,若对任意的*n N ∈,均有n n k S a k +=-(k 是常数,且*k N ∈)成立,则称数列{}n a 为“()H k 数列”. (1)若数列{}n a 为“(1)H 数列”,求数列{}n a 的前n 项和n S ;(2)若数列{}n a 为“(2)H 数列”,且2a 为整数,试问:是否存在数列{}n a ,使得211||40n n n a a a -+-≤对一切2n ≥,*n N ∈恒成立?如果存在,求出这样数列{}n a 的2a 的所有可能值,如果不存在,请说明理由;(3)若数列{}n a 为“()H k 数列”,且121k a a a ==⋅⋅⋅==,证明:211(1)2n kn k k a -+-≥+. 【解析】(1)数列{}n a 为“()1H 数列”,则11n n S a +=-,故121n n S a ++=-, 两式相减得:212n n a a ++=, …………………1分又1n =时,121a a =-,所以2122a a ==,………………1分 故12n n a a +=对任意的N*n ∈恒成立,即12n na a +=(常数), 故数列{}n a 为等比数列,其通项公式为12,*n n a n N -=∈;………………1分21,*n n S n N =-∈………………1分(2)2132321132()2N*n n n n n n n n n n S a a a a a a a n S a +++++++++=-⎧⇒=-⇒=+∈⎨=-⎩21(2,)N*n n n a a a n n ++⇒=+≥∈………………1分当*2,n n N ≥∈时,()222121111()n n n n n n n n n n n a a a a a a a a a a a ++++++-=-+=--因为*11,(3,)n n n a a a n n N +--=≥∈,则22*1211,(3,)n n n n n n a a a a a a n n N ++-+-=-≥∈; 则22*1211,(3,)n n n n n n a a a a a a n n N ++-+-=-≥∈………………2分 则22*11324(3,)n n n a a a a a a n n N -+-=-≥∈,因为432a a a =+ 则222*113232(3,)n n n a a a a a a a n n N -+-=--≥∈………………1分因为13132,13S a a a =-=⇒=,则2229340a a --≤,且2n =时,22340a -≤, 解得:20,1,2,3,4,5,6a =±±±±±-………………2分(3)*1*11(2,)(2,)n k n n k n k n n k n a S k a a a n n N a S k n n N +++--+-=+⎧⎪⇒=+≥∈⎨=+≥∈⎪⎩…………1分 110k a S k +=+>,由归纳知,20,,0k n a a +>⇒>L ,…………1分1211,1k k a a a a k +=====+L ,由归纳知,*1,()n n a a n N +≤∀∈,…………2分 则*11112(2,)n k n k n n k n k n k a a a a a a n n N ++-+-+-+-=+≤+=≥∈*12(2,)n k n k a a n n N ++-≤≥∈…………1分*122121111,()222n k n k n k n k k a a a a n N ++++++--⇒≥≥≥≥∈L …………1分于是*2212111(1),()2n k n k n k n k k a a a a n N ++-++--=+≥+∈ 于是1*2211(1),()2n n k k k a a n N -+-≥+∈…………1分 22k k a S k k =+=,∴112111111(1)2(1),(2(1))222n n k kn k k k k a k k ----+---≥+⋅>+>+…1分结论显然成立.。