2019-2020年高三数学文科周练试题(九) 缺答案
2019-2020学年人教A版四川省蓉城名校联盟高三第二学期第二次联考(文科)数学试卷 含解析
2019-2020学年高三第二学期第二次联考数学试卷(文科)一、选择题1.已知集合A={﹣1,1,3,4},集合B={x|x2﹣4x+3>0},则A∩B=()A.{﹣1,4}B.{﹣1,1,4}C.{﹣1,3,4}D.(﹣∞,1)∪(3,+∞)2.已知复数z=,则|z|=()A.1B.C.2D.33.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知实数0<a<b,则下列说法正确的是()A.>B.ac2<bc2C.lna<lnb D.()a<()b5.已知命题p:x<2m+1,q:x2﹣5x+6<0,且p是q的必要不充分条件,则实数m的取值范围为()A.m>B.m≥C.m>1D.m≥16.若数列{a n}为等差数列,且满足3+a5=a3+a8,S n为数列{a n}的前n项和,则S11=()A.27B.33C.39D.447.已知α,β是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是()A.若m⊂α,n⊂β,且α⊥β,则m⊥nB.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βC.若m⊥α,n∥β,且α⊥β,则m⊥nD.若m⊥α,n∥β,且α∥β,则m⊥n8.已知抛物线y2=20x的焦点与双曲线﹣=1(a>0,b>0)的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A.B.C.D.9.如图,在△ABC中,=,P是BN上的一点,若m=﹣,则实数m 的值为()A.B.C.1D.210.已知实数a>0,b>1满足a+b=5,则+的最小值为()A.B.C.D.11.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三形三边的数对(x,y)的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为()A.B.C.D.12.已知=(2sin,cos),=(cos,2cos),函数f(x)=•在区间[0,]上恰有3个极值点,则正实数ω的取值范围为()A.[,)B.(,]C.[,)D.(,2]二、填空题13.实数x,y满足,则z=2x+y的最大值为.14.在△ABC中,若a:b:c=2:3:4,则最大内角的余弦值为.15.已知直三棱柱ABC﹣A1B1C1中,∠ABC=,AB=4,BC=CC1=2,则异面直线AB1与BC1所成角的余弦值为.16.已知函数f(x)=﹣x3+x+a,x∈[,e]与g(x)=3lnx﹣x﹣1的图象上存在关于x轴对称的点,则a的取值范围为.三、解答题:共70分。
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。
北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)
北京市西城区2019 — 2020学年度第一学期期末试卷高三数学本试卷共5页.共150分。
考试时长120分钟。
考生务必将答案答在答题卡上•在试 卷上作答无效。
第I 卷(选择题共40分)-S 选择题:本大题共8小题■每小题5分.共40分•在每小题列出的四个选项中,选出 符合题目要求的一项.1. 设集合Λ = {x ∖r<a}. B = {—3,0∙l ∙5}・若集合A∩B 有且仅有2个元索.则实数α 的取值范围为(A) (-3,+∞)(B) (0> 1](C) [l ∙+α□)2. 若复数Z = 注.则在复平面内N 对应的点位于I-TI(A)第一象限 (B)第二象限(C)第三象限3. 在厶ABC 中.若 α=6, A=60o, 3 = 75°,则 C =(A) 4(B) 2√2(C) 2√3(D) 2^4. 设且兀y≠0,则下列不等式中一定成立的是(A)丄>丄(B)InlJrl >ln∣y 丨(C) 2-工<2-,CD) j ∙2>^25. 已知直线T Jry Jr2=0与圆τ ÷j∕2+2jc~2y jra = 0有公共点,则实数"的取值范围为(A) ( — 8. θ](B) [θ∙+oo)(C) [0, 2)(D) (—8, 2)2020. I(D) Eb 5)(D)第四象限6・设三个向b. c互不共线•则∙+b+c=(Γ是^以Iah ∖b∖, ICl为边长的三角形存在"的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特冇的手工制造陶土工艺品,其制作始于明朝正徳年间.紫砂壶的壶型众多•经典的有西施壶.掇球壶、石瓢壶.潘壶等•其中.石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的)・下图给出了一个石瓢壶的相关数据(单位cm),那么该壶的容量约为(A)IOO cm5(B)200 cm3(C)300 cm3(D)400 cn√&已知函数∕Q)=√TTΓ+4 若存在区间O M].使得函数/Q)在区间DZ 上的值域为[α + l,6 + l],则实数〃的取值范围为(A) (-l,+oo) (B) (一 1. 0] (C) (一 +,+8) (D)( —斗,0]4 4第JI 卷(非选择题共110分)二、填空题:本大题共6小题■每小题5分,共3。
高三数学上学期周练试卷(十)文(含解析)-人教版高三全册数学试题
2014-2015学年某某省某某外国语学校高三(上)周练数学试卷(文科)(十)一.选择题1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”3.设S n是等差数列a n的前n项和,若,则=()A.B.C.D.4.若△ABC为锐角三角形,则下列不等式中一定能成立的是()A.log cosC>0 B.log cosC>0C.log sinC>0 D.log sinC>05.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.6.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.7.对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是()A.0 B.C.D.98.设实数x,y满足约束条件,则u=的取值X围是()A.[,] B.[,] C.[,] D.[,]9.若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则的取值X围为()A.(4,+∞)B.(2+2,+∞)C.[4,+∞)D.[2+2,+∞)10.(5分)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在y轴上且离心率小于的椭圆的概率为()A.B.C.D.11.已知函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),则函数g(x)=M(x)﹣|x2﹣1|的零点的个数为()A.1个B.2个C.3个D.4个12.过双曲线﹣=1(a>0,b>0)的一个焦点F引它到渐近线的垂线,垂足为M,延长FM交y轴于E,若=2,则该双曲线离心率为()A.B.C.D.313.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则的最小值是()A.﹣B.﹣C.﹣D.﹣114.设函数y=f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=为闭函数,则k的取值X围是()A.(﹣1,﹣] B.[,1﹚C.(﹣1,+∞)D.(﹣∞,1)二.填空题15.(5分)(2014某某二模)已知||=2,||=2,||=2,且++=,则++=.16.设,若当且仅当x=3,y=1时,z取得最大值,则k的取值X围为.17.(5分)(2014某某一模)已知点P是椭圆=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且=0,则|的取值X围是.18.对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:①“平顶型”函数在定义域内有最大值;②函数f(x)=x﹣|x﹣2|为R上的“平顶型”函数;③函数f(x)=sinx﹣|sinx|为R上的“平顶型”函数;④当t≤时,函数,是区间[0,+∞)上的“平顶型”函数.其中正确的是.(填上你认为正确结论的序号)三.解答题19.(12分)(2014正定县校级三模)已知△ABC是半径为R的圆内接三角形,且2R(sin2A ﹣sin2C)=(a﹣b)sinB.(1)求角C;(2)试求△ABC面积的最大值.20.(12分)(2014某某二模)某公司研制出一种新型药品,为测试该药品的有效性,公司选定2000个药品样本分成三组,测试结果如表:分组A组B组C组药品有效670 a b药品无效80 50 c已知在全体样本中随机抽取1个,抽到B组药品有效的概率是0.35.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(2)已知b≥425,c≥68,求该药品通过测试的概率(说明:若药品有效的概率不小于90%,则认为测试通过).21.(12分)(2015某某模拟)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQ⊥BQ并说明理由.22.(12分)(2014春雁峰区校级月考)在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.(1)求椭圆C1的方程,(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为.23.(12分)(2014某某校级模拟)已知函数f(x)=lnx+x2﹣ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,某某数m的取值X围.2014-2015学年某某省某某外国语学校高三(上)周练数学试卷(文科)(十)参考答案与试题解析一.选择题1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==﹣i﹣1对应的点(﹣1,﹣1)位于第三象限,故选:C.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”【分析】利用充要条件的定义,可判断A,B,判断原命题的真假,进而根据命题的否定与原命题真假性相反,可判断C,根据存在性(特称)命题的否定方法,可判断D.【解答】解:若“<1”成立,则“a>1”或“a<0”,故“<1”是“a>1”的不充分条件,若“a>1”成立,则“<1”成立,故“<1”是“a>1”的必要条件,综上所述,“<1”是“a>1”的必要不充分条件,故A正确;若“p∧q为真命题”,则“p,q均为真命题”,则“p∨q为真命题”成立,若“p∨q为真命题”则“p,q存在至少一个真命题”,则“p∧q为真命题”不一定成立,综上所述,“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故B错误;命题p:“∀x∈R,sinx+cosx=sin(x+)≤”为真命题,则¬p是假命题,故C 错误;命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3≥0”,故D错误;故选:A.【点评】本题以命题的真假判断为载体,考查了充要条件,命题的否定等知识点,是简单逻辑的简单综合应用,难度中档.3.设S n是等差数列a n的前n项和,若,则=()A.B.C.D.【分析】由题意可得 S3、S6﹣S3、S9﹣S6、S12﹣S9也成等差数列,由此可得 S6=S9+S3①,S12=3S9﹣3S6+S3②,再由可得 S12=S6③,利用①、②、③化简可得的值.【解答】解:∵S n是等差数列a n的前n项和,∴S3、S6﹣S3、S9﹣S6、S12﹣S9也成等差数列,∴S6﹣2S3=S9﹣2S6+S3,∴S6=S9+S3①.同理可得,S12﹣2S9+S6=S9﹣2S6+S3,即 S12=3S9﹣3S6+S3②.而由可得 S12=S6③.由①、②、③化简可得S3=S9,∴=,故选:C.【点评】本题主要考查等差数列的性质的应用,属于中档题.4.若△ABC为锐角三角形,则下列不等式中一定能成立的是()A.log cosC>0 B.log cosC>0C.log sinC>0 D.log sinC>0【分析】由锐角三角形ABC,可得1>cosC>0,0<A<,0<B<,,利用正弦函数的单调性可得sinB>sin(﹣A)=cosA>0,再利用对数函数的单调性即可得出.【解答】解:由锐角三角形ABC,可得1>cosC>0,0<A<,0<B<,,∴0<<B<,∴sinB>sin(﹣A)=cosA>0,∴1>>0,∴>0.故选:B.【点评】本题考查了锐角三角形的性质、锐角三角函数函数的单调性、对数函数的单调性等基础知识与基本技能方法,属于中档题.5.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.【分析】先对函数进行图象变换,再根据正弦函数对称轴的求法,即令ωx+φ=即可得到答案.【解答】解:图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.【点评】本小题综合考查三角函数的图象变换和性质.图象变换是考生很容易搞错的问题,值得重视.一般地,y=Asin(ωx+φ)的图象有无数条对称轴,它在这些对称轴上一定取得最大值或最小值.6.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.【分析】从三视图可以推知,几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面,易求侧面积.【解答】解:几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面.且底面直角梯形的上底为1,下底为2,高为1,四棱锥的高为1.四个侧面都是直角三角形,其中△PBC的高PB===故其侧面积是S=S△PAB+S△PBC+S△PCD+S△PAD==故选A【点评】本题考查三视图求面积、体积,考查空间想象能力,是中档题.7.对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是()A.0 B.C.D.9【分析】由框图知,a⊗b的运算规则是若a≤b成立,则输出,否则输出,由此运算规则即可求出(3⊗2)⊗4的值【解答】解:由图a⊗b的运算规则是若a≤b成立,则输出,否则输出,故3⊗2==2,(3⊗2)⊗4=2⊗4==故选C.【点评】本题考查选择结构,解题的关键是由框图得出运算规则,由此运算规则求值,此类题型是框图这一部分的主要题型,也是这几年对框图这一部分考查的主要方式.8.设实数x,y满足约束条件,则u=的取值X围是()A.[,] B.[,] C.[,] D.[,]【分析】作出不等式组对应的平面区域,利用数形结合将目标函数进行转化,利用直线的斜率结合分式函数的单调性即可得到结论.【解答】解:作出不等式组对应的平面区域如图:则对应的x>0,y>0,则u==,设k=,则u==,由图象可知当直线y=kx,经过点A(1,2)时,斜率k最大为k=2,经过点B(3,1)时,斜率k最小为k=,即.∴,,∴,即,即≤z≤,故选:C【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键,综合性较强,运算量较大.9.若函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,则的取值X围为()A.(4,+∞)B.(2+2,+∞)C.[4,+∞)D.[2+2,+∞)【分析】利用导数求解,由函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,可得f′(x)>0恒成立,找出a,b,c的关系,再利用基本不等式求最值.【解答】解:∵函数f(x)=ax3+bx2+cx+d(a,b,c>0)在R上是单调函数,∴f′(x)≥0在R上恒成立,即3ax2+2bx+c≥0恒成立,即△=4b2﹣12ac≤0 即b2≤3ac,∴==++2≥2+2≥4.故选C.【点评】考查利用导数即基本不等式的解决问题的能力,把问题转化为恒成立问题解决是本题的关键,应好好体会这种问题的转化思路.10.(5分)在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在y轴上且离心率小于的椭圆的概率为()A.B.C.D.【分析】根据椭圆的性质结合椭圆离心率,求出a,b满足的条件,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:∵在区间[1,5]和[2,4]分别取一个数,记为a,b,∴,若方程表示焦点在y轴上且离心率小于,则,由e=<得c<a,平方得c2<a2,即a2﹣b2<a2,即b2>a2,则b>a或b a(舍),即,作出不等式组对应的平面区域如图:则F(2,2),E(4,4),则梯形ADEF的面积S==4,矩形的面积S=4×2=8,则方程表示焦点在y轴上且离心率小于的椭圆的概率P=,故选:C.【点评】本题主要考查几何概型的概率的计算,根据椭圆的性质求出a,b的条件,求出对应的面积,利用数形结合是解决本题的关键.11.已知函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),则函数g(x)=M(x)﹣|x2﹣1|的零点的个数为()A.1个B.2个C.3个D.4个【分析】求出M(a)的解析式,根据函数g(x)=M(x)﹣|x2﹣1|的零点,即函数M(x)=与函数y=|x2﹣1|交点的横坐标,利用图象法解答.【解答】解:∵函数f(x)=|x+a|(a∈R)在[﹣1,1]上的最大值为M(a),∴M(a)=,函数g(x)=M(x)﹣|x2﹣1|的零点,即函数M(x)=与函数y=|x2﹣1|交点的横坐标,由图可得:函数M(x)=与函数y=|x2﹣1|有三个交点,故函数g(x)=M(x)﹣|x2﹣1|有3个零点,故选:C【点评】本题考查函数图象的作法,熟练作出函数的图象是解决问题的关键,属中档题.12.过双曲线﹣=1(a>0,b>0)的一个焦点F引它到渐近线的垂线,垂足为M,延长FM交y轴于E,若=2,则该双曲线离心率为()A.B.C.D.3【分析】先利用FM与渐近线垂直,写出直线FM的方程,从而求得点E的坐标,利用已知向量式,求得点M的坐标,最后由点M在渐近线上,代入得a、b、c间的等式,进而变换求出离心率【解答】解:设F(c,0),则c2=a2+b2∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x∴垂线FM的斜率为﹣∴直线FM的方程为y=﹣(x﹣c)令x=0,得点E的坐标(0,)设M(x,y),∵=2,∴(x﹣c,y)=2(﹣x,﹣y)∴x﹣c=﹣2x且y=﹣2y即x=,y=代入y=x得=,即2a2=b2,∴2a2=c2﹣a2,∴=3,∴该双曲线离心率为故选C【点评】本题考查了双曲线的几何性质,求双曲线离心率的方法,向量在解析几何中的应用13.已知P、M、N是单位圆上互不相同的三个点,且满足||=||,则的最小值是()A.﹣B.﹣C.﹣D.﹣1【分析】由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P (0,1),点M(x1,y1),则点N(﹣x1,y1),由得=,求出最小值.【解答】解:由题意可得,点P在MN的垂直平分线上,不妨设单位圆的圆心为O(0,0),点P(0,1),点M(x1,y1),则点N(﹣x1,y1),﹣1≤y1<1∴=(x1,y1﹣1),=(﹣x1,y1﹣1),.∴===2﹣,∴当y1=时的最小值是故选:B.【点评】本题主要考查两个向量的数量积公式,二次函数的性质,属于中档题.14.设函数y=f(x)的定义域为D,若函数y=f(x)满足下列两个条件,则称y=f(x)在定义域D上是闭函数.①y=f(x)在D上是单调函数;②存在区间[a,b]⊆D,使f(x)在[a,b]上值域为[a,b].如果函数f(x)=为闭函数,则k的取值X围是()A.(﹣1,﹣] B.[,1﹚C.(﹣1,+∞)D.(﹣∞,1)【分析】若函数f(x)=为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,故a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,由此能求出k的取值X围.【解答】解:若函数f(x)=为闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,∴a,b是方程x=的两个实数根,即a,b是方程x2﹣(2k+2)x+k2﹣1=0(x,x≥k)的两个不相等的实数根,当k时,,解得﹣1<k≤﹣.当k>﹣时,,无解.故k的取值X围是(﹣1,﹣].故选A.【点评】本题考查函数的单调性及新定义型函数的理解,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.二.填空题15.(5分)(2014某某二模)已知||=2,||=2,||=2,且++=,则++= ﹣12 .【分析】把++=两边平方,变形可得++=(),代入数据计算可得.【解答】解:∵++=,∴平方可得(++)2=2,∴+2(++)=0,∴++=()=(4+8+12)=﹣12故答案为:﹣12【点评】本题考查平面向量数量积的运算,由++=两边平方是解决问题的关键,属中档题.16.设,若当且仅当x=3,y=1时,z取得最大值,则k的取值X围为(﹣,1).【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值X围.【解答】解:作出不等式对应的平面区域如图:由z=kx﹣y得y=kx﹣z,要使目标函数z=kx﹣y仅在x=3,y=1时取得最大值,即此时直线y=kx﹣z的截距最小,则阴影部分区域在直线y=kx﹣z的上方,目标函数处在直线x+2y﹣5=0和x﹣y﹣2=0之间,而直线x+2y﹣5=0和x﹣y﹣2=0的斜率分别为﹣,和1,即目标函数的斜率k,满足﹣<k<1,故答案为:(﹣,1).【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.根据条件目标函数z=kx﹣y仅在点A(3,1)处取得最大值,确定直线的位置是解决本题的关键.17.(5分)(2014某某一模)已知点P是椭圆=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且=0,则|的取值X围是.【分析】延长PF2、F1M,交与N点,连接OM,利用等腰三角形的性质、三角形中位线定理和椭圆的定义,证出|OM|=||PF1|﹣|PF2||.再利用圆锥曲线的统一定义,化简得||PF1|﹣|PF2||=|x0|,利用椭圆上点横坐标的X围结合已知数据即可算出|的取值X围.【解答】解:如图,延长PF2、F1M,交与N点,连接OM,∵PM是∠F1PF2平分线,且=0可得F1M⊥MP,∴|PN|=|PF1|,M为F1F2中点,∵O为F1F2中点,M为F1N中点∴|OM|=|F2N|=||PN|﹣|PF2||=||PF1|﹣|PF2||设P点坐标为(x0,y0)∵在椭圆=1中,离心率e==由圆锥曲线的统一定义,得|PF1|=a+ex0,|PF2|=a﹣ex0,∴||PF1|﹣|PF2||=|a+ex0﹣a+ex0|=|2ex0|=|x0|∵P点在椭圆=1上,∴|x0|∈[0,4],又∵x≠0,y≠0,可得|x0|∈(0,4),∴|OM|∈故答案为:【点评】本题求两点间的距离的取值X围,着重考查了椭圆的定义、等腰三角形的性质、三角形中位线定理和椭圆的简单几何性质等知识,属于中档题.18.对于定义在区间D上的函数f(X),若存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:①“平顶型”函数在定义域内有最大值;②函数f(x)=x﹣|x﹣2|为R上的“平顶型”函数;③函数f(x)=sinx﹣|sinx|为R上的“平顶型”函数;④当t≤时,函数,是区间[0,+∞)上的“平顶型”函数.其中正确的是①④.(填上你认为正确结论的序号)【分析】根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,但是定义并没有指出函数最小值的情况.由此定义再结合绝对值的性质和正弦函数的图象与性质,对于四个选项逐个加以判断,即得正确答案.【解答】解:对于①,根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,故①正确.对于②,函数f(x)=x﹣|x﹣2|=的最大值为2,但不存在闭区间[a,b]⊊D和常数c,使得对任意x1∈[a,b],都有f(x1)=2,且对任意x2∈D,当x2∉[a,b]时,f(x2)<2恒成立,故②不符合“平顶型”函数的定义.对于③,函数f(x)=sinx﹣|sinx|=,但是不存在区间[a,b],对任意x1∈[a,b],都有f(x1)=2,所以f(x)不是“平顶型”函数,故③不正确.对于④当t≤时,函数,,当且仅当x∈[0,1]时,函数取得最大值为2,当x∉[0,1]且x∈[0,+∞)时,f(x)=<2,符合“平顶型”函数的定义,故④正确.故答案为:①④.【点评】本题以命题真假的判断为载体,着重考查了函数的最值及其几何意义、带绝对值的函数和正弦函数的定义域值域等知识点,属于中档题.三.解答题19.(12分)(2014正定县校级三模)已知△ABC是半径为R的圆内接三角形,且2R(sin2A ﹣sin2C)=(a﹣b)sinB.(1)求角C;(2)试求△ABC面积的最大值.【分析】(1)根据正弦定理,已知等式中的角转换成边,可得a、b、c的平方关系,再利用余弦定理求得cosC的值,可得角C的大小;(2)根据正弦定理算出c=R,再由余弦定理c2=a2+b2﹣2abcosC的式子,结合基本不等式找到边ab的X围,利用正弦定理的面积公式加以计算,即可求出△ABC面积的最大值.【解答】解:(1)∵2R(sin2A﹣sin2C)=(a﹣b)sinB,∴根据正弦定理,得a2﹣c2=(a﹣b)b=ab﹣b2,可得a2+b2﹣c2=ab∴cosC===,∵角C为三角形的内角,∴角C的大小为(2)由(1)得c=2Rsin=R由余弦定理c2=a2+b2﹣2abcosC,可得2R2=a2+b2﹣ab≥2ab﹣ab=(2﹣)ab,当且仅当a=b时等号成立∴ab≤=()R2∴S△ABC=absinC≤()R2=R2即△ABC面积的最大值为R2【点评】本题给出三角形的外接圆半径为R,在已知角的关系式情况下,求三角形面积最大值.着重考查了三角形的外接圆、正余弦定理和基本不等式求最值等知识,属于中档题.20.(12分)(2014某某二模)某公司研制出一种新型药品,为测试该药品的有效性,公司选定2000个药品样本分成三组,测试结果如表:分组A组B组C组药品有效670 a b药品无效80 50 c已知在全体样本中随机抽取1个,抽到B组药品有效的概率是0.35.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?(2)已知b≥425,c≥68,求该药品通过测试的概率(说明:若药品有效的概率不小于90%,则认为测试通过).【分析】(1)利用抽样的性质先求出a,再根据样本总个数得出b+c=500,从而根据分层抽样的特点确定应在C组抽取样本多少个;(2)列举(b,c)的所有可能性,找出满足b≥425,c≥68,情况,利用古典概型概率公式计算即可.【解答】解:(1)∵,∴a=700∵b+c=2000﹣670﹣80﹣700﹣50=500∴应在C组抽取样本个数是个.(2)∵b+c=500,b≥425,c≥68,∴(b,c)的可能性是(425,75),(426,74),(427,73),(428,72),(429,71),(430,70),(431,69),(432,68)若测试通过,则670+700+b≥2000×90%=1800∴b≥430∴(b,c)的可能有(430,70),(431,69),(432,68)∴通过测试的概率为.【点评】本题考查分层抽样的性质,古典概型概率公式的应用,属于中档题.21.(12分)(2015某某模拟)已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQ⊥BQ并说明理由.【分析】(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,则体积可以求得.(2)求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.(3)假设存在这样的点Q,使得AQ⊥BQ.解法一:通过假设的推断、计算可知以O为圆心、以BC为直径的圆与DE相切.解法二:在含有直线与平面垂直垂直的条件的棱柱、棱锥、棱台中,也可以建立空间直角坐标系,设定参量求解.这种解法的好处就是:1、解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.2、即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.设满足题设的点Q存在,其坐标为(0,m,n),点Q在ED上,∴存在λ∈R(λ>0),使得=λ,解得λ=4,∴满足题设的点Q存在,其坐标为(0,,).【解答】解:(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=1,∴S梯形BCED=×(4+1)×4=10∴V=S梯形BCED AC=×10×4=.即该几何体的体积V为.(3分)(2)解法1:过点B作BF∥ED交EC于F,连接AF,则∠FBA或其补角即为异面直线DE与AB所成的角.(5分)在△BAF中,∵AB=4,BF=AF==5.∴cos∠ABF==.即异面直线DE与AB所成的角的余弦值为.(7分)解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.则A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4)∴=(0,﹣4,3),=(﹣4,4,0),∴cos<,>=﹣∴异面直线DE与AB所成的角的余弦值为.(3)解法1:在DE上存在点Q,使得AQ⊥BQ.(8分)取BC中点O,过点O作OQ⊥DE于点Q,则点Q满足题设.(10分)连接EO、OD,在Rt△ECO和Rt△OBD中∵∴Rt△ECO∽Rt△OBD∴∠EOC=∠OBD∵∠EOC+∠CEO=90°∴∠EOC+∠DOB=90°∴∠EOB=90°.(11分)∵OE==2,OD==∴OQ===2∴以O为圆心、以BC为直径的圆与DE相切.切点为Q∴BQ⊥CQ∵AC⊥面BCED,BQ⊂面CEDB∴BQ⊥AC∴BQ⊥面ACQ(13分)∵AQ⊂面ACQ∴BQ⊥AQ.(14分)解法2:以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.设满足题设的点Q存在,其坐标为(0,m,n),则=(﹣4,m,n),=(0,m﹣4,n)=(0,m,n﹣4),=(0,4﹣m,1﹣n)∵AQ⊥BQ∴m(m﹣4)+n2=0①∵点Q在ED上,∴存在λ∈R(λ>0)使得=λ∴(0,m,n﹣4)=λ(0,4,m,1﹣n)⇒m=,n=②②代入①得(﹣4)()2=0⇒λ2﹣8λ+16=0,解得λ=4∴满足题设的点Q存在,其坐标为(0,,).【点评】本小题主要考查空间线面关系、面面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.22.(12分)(2014春雁峰区校级月考)在平面直角坐标系xOy中,已知中心在坐标原点且关于坐标轴对称的椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.(1)求椭圆C1的方程,(2)若直线l与椭圆C1相切于第一象限内,且直线l与两坐标轴分别相交与A,B两点,试探究当三角形AOB的面积最小值时,抛物线C2上是否存在点到直线l的距离为.【分析】(1)由题意设椭圆C1的方程,(a>b>0),且,由此能求出椭圆C1的方程.(2)设直线l的方程为y=kx+m(k<0,m>0)由,得(3+4k2)x2+8kmx+4m2﹣12=0,由此利用根的判别式、韦达定理、点到直线距离公式、弦长公式能推导出抛物线C2上不存在点到直线l的距离为.【解答】解:(1)∵椭圆C1的焦点在抛物线C2:y2=﹣4x的准线上,且椭圆C1的离心率为.∴椭圆焦点在x轴上,设椭圆C1的方程:,(a>b>0),且,解得a=2,b=,∴椭圆C1的方程为.(2)∵直线l与椭圆C1相切于第一象限内,∴直线l的斜率存在且小于零,设直线l的方程为y=kx+m(k<0,m>0)由,得(3+4k2)x2+8kmx+4m2﹣12=0,由题可知,△=0,∴m2=4k2+3,当即时上式等号成立,此时,直线l为设点D为抛物线C2上任意一点,则点D到直线l的距离为,利用二次函数的性质知,∴抛物线C2上不存在点到直线l的距离为.【点评】本题考查椭圆方程的求法,考查当三角形面积最小时满足条件的点是否存在的判断与求法,解题时要认真审题,注意根的判别式、韦达定理、点到直线距离公式、弦长公式的合理运用.23.(12分)(2014某某校级模拟)已知函数f(x)=lnx+x2﹣ax(a为常数).(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0<a≤2时,试判断f(x)的单调性;(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,某某数m的取值X围.【分析】(1)求导数,利用极值的定义,即可求a的值;(2)当0<a≤2时,判断导数的符号,即可判断f(x)的单调性;(3)问题等价于:对任意的a∈(1,2),不等式1﹣a>mlna恒成立.即恒成立.【解答】解:.(1)由已知得:f'(1)=0,∴1+2﹣a=0,∴a=3.…(3分)(2)当0<a≤2时,f′(x)=因为0<a≤2,所以,而x>0,即,故f(x)在(0,+∞)上是增函数.…(8分)(3)当a∈(1,2)时,由(2)知,f(x)在[1,2]上的最小值为f(1)=1﹣a,故问题等价于:对任意的a∈(1,2),不等式1﹣a>mlna恒成立.即恒成立记,(1<a<2),则,…(10分)令M(a)=﹣alna﹣1+a,则M'(a)=﹣lna<0所以M(a),所以M(a)<M(1)=0…(12分)故g'(a)<0,所以在a∈(1,2)上单调递减,所以即实数m的取值X围为(﹣∞,﹣log2e].…(14分)【点评】本题考查导数知识的综合运用,考查函数的极值,考查函数的单调性,考查恒成立问题,正确分离参数是关键.。
2019-2020年高三第二次调研考试数学文试题 含答案(可打印修改)
2019-2020年高三第二次调研考试数学文试题 含答案本卷分选择题非选择题两部分,共4页,满分150分.考试用时间120分钟.注意事项:1.考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;2.选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。
答在试题卷上不得分;3.考试结束,考生只需将答题卷交回.4. 参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.正棱锥的侧面积公式:,是底面周长,是斜高.一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={0,1,2,3,4,5},集合A={2,4},B=,则集合A .{0,4,5,2}B .{0,4,5}C .{2,4,5}D .{1,3,5}2.已知为虚数单位,则=( )A -B -1CD 13.设,则这四个数的大小关系是( )0.320.30.3log 2,log 3,2,0.3a b c d ====A . B . C. D.4.若方程表示双曲线,则k 的取值范围是()A. B. C. D. 或5.某几何体的三视图如图所示(俯视图是正方形,正视图和左视图是两个全等等腰三角形)根据图中标出的数据,可得这个几何体的表面积为( )A .B .C .D .12 6.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( )A.=1.23x +4B.=1.23x +5C .=1.23x +0.08D .=0.08x +1.237. 设不等式组表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原002x y x y ≥⎧⎪≥⎨⎪+≤⎩点的距离大于的概率是( )A . B . C .D .8. 中,角、、所以的边为、、, 若,,面积,则( )A. B. C. D.9.设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值分.解答应写出文字说明,证明过程或演算步骤.(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.18.(本小题满分14分)如图,已知⊙所在的平面,是⊙的直径,,C是⊙上一点,且,.(1) 求证:;(2) 求证:;(3)当时,求三棱锥的体积.19.(本小题满分14分)椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.(1)求椭圆C以及圆O的方程;(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.20.(本小题满分14分)已知函数.(1)判断奇偶性, 并求出函数的单调区间;(2)若函数有零点,求实数的取值范围.21.(本小题满分14分)设等差数列的公差,等比数列公比为,且,,(1)求等比数列的公比的值;(2)将数列,中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得和都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.韶关市xx高三年级第一次调研(期末)测试数学试题(文科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.DCBAB CDDCA二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11. 12.13. (2分),(3分)14.15. 内切三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)函数()的部分图像如右所示.(1)求函数的解析式;(2)设,且,求的值解:(1)∵由图可知:函数的最大值为,………2分且∴,最小正周期………………………………………………………4分∴故函数的解析式为. …………………………………6分(2),………………………………………………………8分∴,∵,∴,…………………………………………………………10分∴ …………………………………………………………………12分17.(本题满分12分)高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.解.(1)分数在之间的频数为,频率为,高一(1)班参加校生物竞赛人数为.………2分所以分数在之间的频数为………4分频率分布直方图中间的矩形的高为.………6分(2)设至少有一人分数在之间为事件A将之间的人编号为,之间的人编号为,在之间的任取两人的基本事件为:,,,,,. 共个,,,,,,,………………………………………………………………………………………………..9分其中,至少有一个在之间的基本事件有个……………………………………10分根据古典概型概率计算公式,得………………………………………11分答:至少有一人分数在之间的概率………………………………………12分18.(本小题满分14分)如图,如图,已知⊙所在的平面,是⊙的直径,C是⊙上一点,且,.(1) 求证:;(2) 求证:;(3)当时,求三棱锥的体积.[网]16.如图所示,一个带正电的粒子沿x轴正向射人匀强磁场中,它所受到的洛伦兹力方向.沿Y轴正向,则磁场方向A.一定沿z轴正向B.一定沿z轴负向.C.一定在xOy平面内D.一定在xoz平面内,[来二、双项选题(共9个小题,每题6分,共54分。
2019-2020学年湖南省三湘名校教育联盟高三(上)第一次联考数学试卷试题及答案(解析版)(文科)
2019-2020学年湖南省三湘名校教育联盟高三(上)第一次联考数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|x(x﹣2)≤0},B={﹣1,0,1,2,3},则(∁U A)∩B=()A.{﹣1}B.{﹣1,3}C.{1,2,3}D.{﹣1,0,2,3} 2.若复数z满足(1﹣i)z=1+2i,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.“0<x<1”是“log2(x+1)<1”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分也非必要条件4.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱5.已知函数f(x)=x2+2cos x,f'(x)是f(x)的导函数,则函数y=f'(x)的图象大致为()A.B.C.D.6.已知,均为单位向量,|+|=,则(2+)•(﹣)=()A.﹣B.C.﹣D.7.在△ABC中,AB=1,AC=3,=1,则△ABC的面积为()A.B.1C.D.8.要得到函数的图象,只需将函数g(x)=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位9.设a=log43,b=log86,c=20.1,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a10.定义在R上的奇函数f(x)满足f(1+x)=f(1﹣x),且当x∈[0,1]时,f(x)=x(3﹣2x),则=()A.﹣1B.C.D.111.设函数,若关于x的方程f(x)+m=0对任意的m∈(0,1)有三个不相等的实数根,则a的取值范围是()A.(﹣∞,﹣2]B.[2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)12.已知f'(x)是f(x)(x∈R)的导函数,且f'(x)>f(x),f(1)=e,则不等式f(x)﹣e x<0的解集为()A.(﹣∞,e)B.(e,+∞)C.(﹣∞,1)D.(1,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=lg(x2+2x﹣3)的单调递减区间为.14.已知向量,,且,则=.15.已知f(x)=ln(e ax+1)﹣bx(b≠0)是偶函数,则=.16.已知数列{a n}的前n项和为S n,,,则当S n 取最大值时,n的值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}的前n项和为S n,a5=19,S5=55.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.18.已知a,b,c分别为△ABC内角A,B,C的对边,2(a2﹣b2)=2ac cos B+bc.(1)求A;(2)若D是BC边上一点,且BD=3DC,,求tan C.19.设函数.(1)求f(x)的最小正周期、最大值及取最大值时x的取值集合;(2)讨论f(x)在区间上的单调性.20.已知数列{a n}满足a n>1且=.(1)求数列{a n}的通项公式;(2)设b n=a n•log2a n,求数列{b n}的前n项和T n.21.设函数f(x)=x2﹣ax+2+lnx.(1)若f(x)在其定义域上是增函数,求实数a的取值范围;(2)当a=3时,f(x)在[e n,+∞)(n∈Z)上存在两个零点,求n的最大值.22.已知函数f(x)=e x+ax+a+2.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x≤0时,f(x)≥2,求实数a的取值范围.2019-2020学年湖南省三湘名校教育联盟高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|x(x﹣2)≤0},B={﹣1,0,1,2,3},则(∁U A)∩B=()A.{﹣1}B.{﹣1,3}C.{1,2,3}D.{﹣1,0,2,3}【解答】解:A=[0,2],∁U A=(﹣∞,0)∪(2,+∞),(∁U A)∩B={﹣1,3}.故选:B.2.若复数z满足(1﹣i)z=1+2i,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由(1﹣i)z=1+2i,得z=,∴,则在复平面内对应的点的坐标为(,),位于第三象限.故选:C.3.“0<x<1”是“log2(x+1)<1”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分也非必要条件【解答】解:由log2(x+1)<1得0<x+1<2,解得﹣1<x<1,则“0<x<1”是“log2(x+1)<1”的充分不必要条件,故选:A.4.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,∴在这个问题中,丙所得为1钱.故选:D.5.已知函数f(x)=x2+2cos x,f'(x)是f(x)的导函数,则函数y=f'(x)的图象大致为()A.B.C.D.【解答】解:函数的导数f′(x)=2x﹣2sin x,则f′(x)为奇函数,图象关于原点对称,排除A,B,设g(x)=f′(x)=2x﹣2sin x,则g′(x)=2﹣2cos x≥0,即g(x)为增函数,排除D故选:C.6.已知,均为单位向量,|+|=,则(2+)•(﹣)=()A.﹣B.C.﹣D.【解答】解:∵,均为单位向量,且|+|=,∴3=,∴=,则(2+)•(﹣)==,故选:B.7.在△ABC中,AB=1,AC=3,=1,则△ABC的面积为()A.B.1C.D.【解答】解:∵AB=1,AC=3,=1,∴cos(π﹣B)==,∴a cos B=﹣1,由余弦定理可得,a×=﹣1,∴a2+1﹣9=﹣2,∴a2=6即a=,cos B=﹣,则△ABC的面积S===.故选:C.8.要得到函数的图象,只需将函数g(x)=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:函数=cos2x﹣==sin(2x+),要得到f(x)的图象,只需将函数g(x)=sin2x的图象向左平移个单位即可得到.故选:A.9.设a=log43,b=log86,c=20.1,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【解答】解:由指数函数y=2x在R上单调递增,得20.1>20,即c>1,由对数函数y=log4x,y=log8x在(0,+∞)上单调递增,得:log41<log43<log44,log81<log86<log88,即0<a<1,0<b<1,∴c最大,又∵a=log43=log23=log2,b=log86=3log26=log2,且,∴a<b,∴c>b>a,故选:D.10.定义在R上的奇函数f(x)满足f(1+x)=f(1﹣x),且当x∈[0,1]时,f(x)=x(3﹣2x),则=()A.﹣1B.C.D.1【解答】解:根据题意,f(x)为奇函数,则f(﹣x)=﹣f(x),又由f(1﹣x)=f(1+x),则f(x+1)=﹣f(x﹣1)=f(x﹣3),则有f(x)=f(x+4),即函数f(x)是周期为4的周期函数,则有;故选:A.11.设函数,若关于x的方程f(x)+m=0对任意的m∈(0,1)有三个不相等的实数根,则a的取值范围是()A.(﹣∞,﹣2]B.[2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【解答】解:当x≤0时,∀m∈(0,1),e x﹣1=﹣m有一根,∴当x>0时,x2﹣ax=﹣m有两根,作图可知,解得a≥2.故选:B.12.已知f'(x)是f(x)(x∈R)的导函数,且f'(x)>f(x),f(1)=e,则不等式f(x)﹣e x<0的解集为()A.(﹣∞,e)B.(e,+∞)C.(﹣∞,1)D.(1,+∞)【解答】解:构造函数,则,∴F(x)在R上为增函数,又∵F(1)==1,∴原不等式f(x)﹣e x<0可化为F(x)•e x﹣e x<0,∴e x[F(x)﹣1]<0,∴F(x)<1,∴F(x)<F(1),又∵F(x)在R上为增函数,∴x<1,故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=lg(x2+2x﹣3)的单调递减区间为(﹣∞,﹣3).【解答】解:根据题意,函数f(x)=lg(x2+2x﹣3),必有x2+2x﹣3>0,解可得x<﹣3或x>1,即函数的定义域为(﹣∞,﹣3)∪(1,+∞),设t=x2+2x﹣3,则y=lgt,又由t=x2+2x﹣3在(﹣∞,﹣3)上为减函数,在(1,+∞)上为增函数,而y=lgt在区间(0,+∞)上为增函数,则f(x)=lg(x2+2x﹣3)的单调递减区间为(﹣∞,﹣3);故答案为:(﹣∞,﹣3)14.已知向量,,且,则=.【解答】解:∵向量,,且,∴,∴sinα=2cosα,∴sin2α+cos2α=sin2α+α=1,解得sin2α=,∴=﹣sinα(﹣sinα)=sin2α=.故答案为:.15.已知f(x)=ln(e ax+1)﹣bx(b≠0)是偶函数,则=2.【解答】解:∵f(x)是偶函数,∴f(﹣x)=f(x),即=ln(e ax+1)﹣ax+bx=ln(e ax+1)﹣bx,∴ax﹣bx=bx,∴ax=2bx,∴a=2b,且b≠0,∴.故答案为:2.16.已知数列{a n}的前n项和为S n,,,则当S n 取最大值时,n的值为674.【解答】解:数列{a n}的前n项和为S n,,,可得a n=S n﹣S n﹣1=S n S n﹣1,则﹣=﹣1,可得=﹣(n﹣1)=,则S n=,当1≤n≤674时,S n>0;n≥675时,S n<0.且1≤n≤674时,S n递增,当S n取最大值时,n的值为674.故答案为:674.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列{a n}的前n项和为S n,a5=19,S5=55.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.【解答】解:(1)设公差为d,则,解得,∴a n=3+4(n﹣1)=4n﹣1;(2),∴=(﹣)=.18.已知a,b,c分别为△ABC内角A,B,C的对边,2(a2﹣b2)=2ac cos B+bc.(1)求A;(2)若D是BC边上一点,且BD=3DC,,求tan C.【解答】解:(1)∵由已知及余弦定理可得2(a2﹣b2)=a2+c2﹣b2+bc,∴b2+c2﹣a2=﹣bc,∴,∵A∈(0,π),∴.(2)∵,,可得∠DAC=,可得sin∠DAC=,∴在△ACD中,,在△ABD中,,∵BD=3DC,∴3sin B=2sin C,即,化简得.19.设函数.(1)求f(x)的最小正周期、最大值及取最大值时x的取值集合;(2)讨论f(x)在区间上的单调性.【解答】解:(1)==,∴f(x)的最小正周期T=π,当,即时,f(x)取最大值为.(2)x∈,,结合正弦函数图象可得f(x)在区间上单调递增,在区间与上单调递减.20.已知数列{a n}满足a n>1且=.(1)求数列{a n}的通项公式;(2)设b n=a n•log2a n,求数列{b n}的前n项和T n.【解答】解:(1)由a n>1,当n=1时,,a1=2,当n≥2时,=,∴=n2,∴,∵n=1也适合,∴;(2),∴,,两式相减得=(1﹣n)•2n+1﹣2,∴.21.设函数f(x)=x2﹣ax+2+lnx.(1)若f(x)在其定义域上是增函数,求实数a的取值范围;(2)当a=3时,f(x)在[e n,+∞)(n∈Z)上存在两个零点,求n的最大值.【解答】解:(1)∵定义域为(0,+∞),,∵f(x)在其定义域上是增函数,∴f'(x)≥0,,∵,∴实数a的取值范围是.(2)当a=3时,,由f'(x)>0得,由f'(x)<0得,∴f(x)在处取得极大值,在x=1处取得极小值f(1)=0,∴x=1是一个零点,当x>1,f(x)>0,故只需且f(e n)≤0,∵,,∴n的最大值为﹣2.22.已知函数f(x)=e x+ax+a+2.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x≤0时,f(x)≥2,求实数a的取值范围.【解答】解:(1)当a=0时,f(x)=e x+2,f(1)=e+2.f'(x)=e x,f'(1)=e,∴切线方程为y﹣(e+2)=e(x﹣1),即y=ex+2.(2)当x≤0时,e x+ax+a+2≥2,即e x+ax+a≥0,令h(x)=e x+ax+a,则h(0)≥0,a≥﹣1,当a=0时,h(x)=e x>0,满足题意;当a>0时,h'(x)=e x+a>0,∴h(x)在(﹣∞,0]上递增,由y=e x与y=﹣a(x+1)的图象可得h(x)≥0在(﹣∞,0]上不恒成立;当﹣1≤a<0时,由h'(x)=e x+a=0,解得x=ln(﹣a),当x<ln(﹣a)时,h'(x)<0,当ln(﹣a)<x≤0时,h'(x)>0,∴h(x)在(﹣∞,0]上的最小值为h(ln(﹣a)),∴h(ln(﹣a))=aln(﹣a)≥0,解得﹣1≤a<0.综上可得实数a的取值范围是[﹣1,0].。
高三数学周练试卷试题
卜人入州八九几市潮王学校洪泽县2021届高三数学周练试卷一.选择题:(题一共12小题,每一小题5分,一共60分) 1.集合}3x 3|N x {A≤≤-∈=,那么必有()A.A 1∈-B.A 0∈C.A 3∈D.A 2∈2.不等式0x32x ≥--的解集是() A.)3,2( B.)3,2[ C.]2,( -∞ D.),3(∞+ 3.函数xcos x2sin )x (f =的最小正周期是() A.2πB.πC.2πD.4π 4.假设)3,2( a=,)x ,4( b =,且a ∥b ,那么x 的值是()A.38-B.38C.-6D.6 5.以下函数中,在区间)1,0( 上为减函数的是()A.)x 1(log y31-= B.2xx 22y -= C.x 1)31(y-= D.)x 1(31y 2-= 6.假设,2y lg x lg =+那么y1x 1+的最小值是() A.2B.21C.51D.201 7、从{1,2,3,4,………,20}中任取3个不同的数,使这三个数仍成等差数列,那么这样的等差数列最多有〔〕(A)90个(B)120个(C)180个(D)200个8.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是701〞.根据这位负责人的话可以推断出参加面试的人数为() A.21B.35 C.42D.70 9.设l 1、l 2为直线,α正确的选项是()C.l 1、l 2与所成的角相等⇒l 1∥l 210.离心率为黄金比215-的椭圆称为“优美椭圆〞.设1by a x 2222=+)0b a (>>是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,那么AB F ∠等于()A.60°B.75°C.90°D.120° 11.设函数x cos b x sin a )x (f ⋅-⋅=图象的一条对称轴方程为4x π=,那么直线0c by ax =+-的倾斜角为() A.4πB.43πC.3πD.32π 12、定义在R 上的函数y=f(x),在〔-∞,a 〕上是增函数,且函数y=f(x+a )是偶函数,当x 1<a ,x 2>a 且a x a x -<-21时,有〔〕(A)f(2a -x 1)>f(2a -x 2)(B)f(2a -x 1)=f(2a -x 2) (C)f(2a -x 1)<f(2a -x 2)(D)-f(2a -x 1)<f(x 2-2a )二.填空题:(本大题一一共6小题;每一小题4分,一共24分) 13.在n 5)x1x (-的展开式中,第4项是常数项,那么n =.14.假设直线沿向量,,)1,0()0,3(又回到后来的位置移动后平移再沿向量==b a 那么直线l的斜率是__________. 15.假设曲线x x )x (f 4-=在点P 处的切线平行于直线0y x 3=-,那么点P 的坐标为.16.圆x 2+y 2=2上到直线x -y -4=0间隔最近的点的坐标是_________.17.将容量为100的样本数据按从小到大的顺序分成8个组,如下表:18.半球内有一内接正方体,正方体的一个面在半球的底面圆内.假设正方体的棱长为6,那么半球的体积为.三.解答题:(本大题5小题,一共66分) 19.(此题12分)向量)1,x (sin a =,)21,x (cos -= b .(1)当b a ⊥时,求||b a +的值;(2)求函数)()x (f b a a -⋅=的值域.解:,1x sin ||22+=a ,41x cos ||22+=b 21x cos x sin -⋅=⋅b a ……(3分)(1),b a⊥ ∴.0=⋅b a ……(4分)又2222|||2|)(||b |b a |a b a b a +⋅+=+=+,4941x cos 1x sin 22=+++=∴.23||=+b a ……(7分) (2)21x 2sin 211x sin )()x (f 222+-+=⋅-=⋅-=-⋅=b a a b a a b a a ……(8分)).4x 2sin(22221x 2sin 2112x 2cos 1π+-=+-+-=……(10分) ∴]222,222[)x (f +-∈ .……(12分) 20.〔此题12分〕:如图,长方体AC 1中,棱AB =BC =3,棱BB 1=4,连结B 1C,过点B 作B 1C 的垂线交CC 1于点E,交B 1C 于点F. (1)求证:A 1C ⊥平面EBD; (2)求点A 到平面A 1B 1C 的间隔; (3)求ED 与平面A 1B 1C 所成角的大小. 解:1中,A 1C 在底面ABCD 上的射影为AC,AC ⊥BD, ∴AC 1⊥BD.……(2分)在长方体AC 1中,A 1C 在平面BB 1C 1C 上的射影为B 1C,B 1C ⊥BE,∴A 1C ⊥BE.……(3分) 又BD BE =B,∴A 1C ⊥平面EBD.……(4分) (2)∵BF ⊥B 1C,BF ⊥AB 1,B 1C A 1B 1=B 1, ∴BF ⊥平面A 1B 1C 1,……(5分)又∵A 1B 1∥AB,A 1B 1⊂平面A 1B 1C,AB ⊄平面A 1B 1C, ∴AB ∥平面A 1B 1C,点A 到平面A 1B 1C 的间隔即为点B 到平面A 1B 1C 间隔,也就是BF.……(7分)在△B 1BC 中,易知224343BF +⨯=512=, 点A 到平面A 1B 1C 的间隔为512.……(8分) (3)连结A 1D 、FD.由(2)知BE ⊥平面A 1B 1C, 即BE ⊥平面A 1B 1CD,∴∠EDF 为ED 与平面A 1B 1C 所成的角.……(9分)矩形B 1BCC 1中,易求得B 1F =516,CF =59,EF =,2027F B CF BF 1=⋅EC =.49F B BB FC 11=⋅ 又在Rt △CDE 中,415CD EC ED22=+=,……(11分) ,259BD EF EDF sin ==∠即ED 与平面A 1B 1C 所成角为259arcsin .……(12分) 21.〔14分〕某渔业公司年初用98万元购置一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元.〔1〕问第几年开场获利〔2〕假设干年后,有两种处理方案: 方案一:年平均获利最大时,以26万元出售该渔船方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算. 解析:〔1〕由题意知,每年的费用以12为首项,4为公差的等差数列. 设纯收入与年数n 的关系为f 〔n 〕,那么++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n .………2分由题知获利即为f 〔n 〕>0,由0984022>-+-n n,得-10511051+<<n .∴<n <1.而n ∈N ,故n =3,4,5,…,17……………5分 .∴当n =3时,即第3年开场获利.…………………6分〔2〕方案一:年平均收入)49(240)(nn n n f +-==.由于1449249=≥+nn n n ,当且仅当n =7时取“=〞号.…………8分 ∴1214240)(=⨯-≤nn f 〔万元〕.……………9分 即第7年平均收益最大,总收益为12×7+26=110〔万元〕.………10分 方案二:f 〔n 〕=22n -+40n -98=-22)10(-n +102.当n =10时,f 〔n 〕取最大值102,总收益为102+8=110〔万元〕.………12分 比较如上两种方案,总收益均为110万元,而方案一中n =7,应选方案一.…14分22.(此题总分值是14分)正方形ABCD 的外接圆方程为x 2+y 2-24x+a=0(a<144),正方形一边CD 所在直线的方向向量为(3,1),〔1〕求正方形对角线AC 与BD 所在直线的方程;〔2〕假设顶点在原点焦点在x 轴的抛物线E 经过正方形在x 轴上方的两个顶点A 、B ,求抛物线E 的方程。
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。
2019-2020年高二下学期期末数学试卷(文科)含解析
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
2019-2020年银川市质检二:宁夏省银川市2019届高三教学质量检测(二)数学(文)word-附答案精品
青霄有路终须到,金榜无名誓不还!
2019-2020年高考备考
宁夏省银川市2019届高三教学质量检测(二)
文科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{}12A x x =-<≤,{}0B x x =<,则A B = ( ) A.{}2x x ≤
B.{}10x x -<<
C.{}02x x <≤
D.{}1x x <- 2.已知复数z 满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.在等比数列{}n a 中,2a =2,516a =,则6a =( )
A.28
B.32
C.64
D.14
4.设0a >且1a ≠,则“log 1a b >”是“b a >”的( )
A.必要不充分条件
B.充要条件
C.既不充分也不必要条件
D.充分不必要条件
5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin7.50.1305=°,sin3.750.0654=°)。
2019-2020年高中数学人教B版必修5单元提分卷:(9)不等式的实际应用 Word版含答案
单元提分卷(9)不等式的实际应用1、—服装厂生产某种风衣,日产量(单位:件)为 x 时,售价为p 元/件,每天的总成本为R 元,且1602,50030p x R x =-=+,要使获得的日利润不少于1300元,则该厂的日产量 x 的取值范围为( ) A. ()0,45 B. (]0,45 C. (]0,20 D. []20,452、如果一辆汽车每天行驶的路程(单位: km )比原来多19km ,那么在8天内,它行驶的路程S 就超过2200km ;如果它每天行驶的路程比原来少12?km ,那么它行驶同样的路程S 就得花9天多的时间,那么这辆汽车原来每天行驶的路程的取值范围为( )A.(259,260)B.(258,260)C.(257,260)D.(256,260) 3、做一个面积为21m ,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( ) A. 4.6?m B. 4.8m C. 5m D. 5.2m4、设计用232m 的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m ,则车厢的最大容积是( )A. (338m - B. 316mC. 3D. 314m5、将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A.每个95元B.每个100元C.每个105元D.每个110元6、在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A. 1,r θ==B. 2,r θ==C. 2,r θ==D. 2,r θ==7、把长为12cm 的细铁丝截成两段,各自摆成一个正三角形,那么这两个三角形的面积之和的最小值为( )A.22B. 24cmC. 2D. 28、气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为4.910n+元(*)n N ∈,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A.600天 B.800天 C.1000天 D.1200天 9、某商场2014年中秋节前30天月饼的销售总量(单位:盒) ()f t 与时间(单位: 天)(030)t t <≤的关系大致满足2()1016f t t t =++,则该商场前t 天平均售出(如前10天平均售出的月饼(10)10f )的月饼至少为( ) A.16盒 B.18盒 C.20盒 D.27盒 10、一服装厂生产某种风衣,月生产量(单位:件)为x 时,售价为p 元/件,成本为R 元,且1602p x =-,50030R x =+,要使获得的月利润不少于1300元,则该厂的月产量x 的取值范围为( )A.(0,45)B.(0,45]C.(0,20]D.[20,45]11、某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份增加%x ,八月份销售额比七月份增加%x ,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是__________.12、光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板__________块.(参考数据: 20.3010,30.4771lg lg ==)13、现有含盐7%的盐水200克,生产含盐5%以上6%以下的盐水,设需要加入含盐4%的盐水 x 克,则 x 的取值范围是__________.14、国家为了加强对烟酒生产的宏观管理,对烟酒销售征收了附加税.已知4种酒每瓶售价为70元, 不收附加税时,每年大约销售100万瓶,若每销售100元要征收附加税r 元(即税率为%r ),每年的销售量将减少10r 万瓶.如果要使每年在此项经营中所收取的附加税额不少于112万元,那么r 的取值范围是__________.15、一批救灾物资随26辆汽车从某市以x 千米/小时速度匀速直达灾区,已知两地公路长400千米,为安全起见,两汽车间距不得小于220x ⎛⎫ ⎪⎝⎭千米,则物资全部到灾区,最少需要__________h.17、某小区内有一个矩形花坛ABCD ,现将这一矩形花坛扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,如图所示.已知3AB =米, 2AD =米.1.要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内?2.当DN 的长是多少时,矩形花坛AMPN 的面积最小?并求出最小值.18、某建筑工地决定建造一批简易房(房型为长方体,房高为2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米售价:彩色钢板为450元,复合钢板为200元.房顶用其他材料建造,每平方米的材料费为200元.每套房的材料费控制在32000元以内.1.设房前后墙的长均为 x 米,两侧墙的长均为y 米,每套房所用材料费为P 元,试用 ,x y 表示P .2.当前面墙的长度为多少时,简易房的面积最大? 并求出最大面积. 16现有含盐的食盐水200克,生产需要含盐大于且小于的食盐水,设需要加入含盐的食盐水克,则的范围是 。
2019年普通高等学校招生全国统一考试文科数学(含答案)
2019年普通高等学校招生全国统一考试文科数学(含答案)本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |=A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8 10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15BCD12.设F为双曲线C:22221x ya b-=(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为ABC.2 D二、填空题:本题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件23603020x yx yy⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z=3x–y的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC△的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=__________ _.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
安徽省马鞍山市2019-2020学年高三第一次(期末)教学质量检测数学文试题含答案
2019-2020年马鞍山市高中毕业班第一次教学质量检测高三文科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数211z ii在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限2.若全集UR ,集合11A x x ,20B x x x ,则U A C B 为( ) A.02x x B.01x x C.01x xD.10x x3.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为( )A.30B.31C.32D.334.已知圆22:1C x a y 与抛物线24y x 的准线相切,则a 的值为( )A.0B.2C.0或1D.0或25.设2zx y ,其中变量,x y 满足000xy xy y k,若z 的最大值为6,则z 的最小值为( ) A.2 B.1 C.1 D.26.如图,三棱柱111ABCA B C 中,侧棱1AA 底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A.1CC 与1B E 是异面直线B.AC平面11ABB AC.11AC ∥平面1AB ED.AE 与11B C 为异面直线,且1AEB C7.《九章算术》是中国古代的数学专著,是“算经十书”中最重要的一种。
在其第七章中有如下问题:“今有蒲生一日,长三尺,莞生一日,长一尺,蒲生日自半,莞生日自倍,问几何日而长等?”意思是植物蒲发芽的第一天长高三尺,植物莞发芽的第一天长高一尺。
蒲从第二天开始每天生长速度是前一天的一半,莞从第二天开始每天生长速度为前一天的两倍。
问这两种植物在何时高度相同?在此问题中,蒲和莞高度相同的时刻在( ) A.第二天B.第三天C.第四天D.第五天8.执行如图所示的程序框图,若输入的40N ,则输出的S ( )A.115B.116C.357D.3589.函数212ln 12f xx x 的图象大致是( )ABCD 10.已知函数1,0,x f x x 为有理数为无理数,则1232018f fff…( )A.44B.45C.1009D.201811.在ABC △中,tan sin 2A B C ,若2AB ,则ABC △周长的取值范围是( )A.2,22B.22,4C.4,222D.222,612.已知椭圆221112211:10x y C a b a b 与双曲线222222222:10,0x y C a b a b 有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF ,设1C 与2C 的离心率分别为12,e e ,则21e e 的取值范围是( )A.1,3B.1,3C.1,2D.1,2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量1,2a ,,6x b ,且a b ∥,则a b .14.将函数223sin cos 2cos 1f xx x x 的图象向左平移2个单位长度后得到函数g x ,则g x 的单调递减区间为.15.数列n a 的前n 项和为n S ,若22nnS a ,则数列2nna 的前n 项和为 .16.已知四棱椎P ABCD 中,底面ABCD 是边长为2的菱形,且PA PD ,则四棱锥P ABCD 体积的最大值为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC △中,内角,,A B C 所对的边是,,a b c ,6BA AC ,2b c ,tan 15A.(1)求cos A 的值; (2)求BC 边上的高.18.如图,在四棱锥P ABCD 中,PA 平面ABCD ,底面ABCD 是平行四边形,1AB BCAC ,2PA,E 是PC 上的动点.(1)求证:平面PAC 平面BED ;(2)求四棱锥P ABCD 的侧面积.19.某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力 5.0T 为视力正常, 5.0T 为视力低下,其中 4.9T 为轻度,4.6 4.8T为中度, 4.5T为重度.统计检测结果后得到如图所示的柱状图.(1)求该校高一年级轻度近视患病率;(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人? (3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?20.已知抛物线220x py p 的焦点到直线:20l x y 的距离为2. (1)求抛物线的标准方程;(2)设点C 是抛物线上的动点,若以点C 为圆心的圆在x 轴上截得的弦长均为4,求证:圆C 恒过定点. 21.已知函数2ln f xx ax x ,a R .(1)讨论函数f x 的单调性; (2)已知0a ,若函数0f x恒成立,试确定a 的取值范围.22.在直角坐标系xOy 中,曲线1C 的参数方程为cossinx t y t (t 为参数),其中0,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin 5,P 为曲线1C 与2C 的交点. (1)当3时,求点P 的极径;(2)点Q 在线段OP 上,且满足20OP OQ ,求点Q 的轨迹的直角坐标方程.23.已知函数1f xx a x ,其中0a .(1)当1a 时,求不等式4f x 的解集;(2)设函数1g xx ,当x R 时,0f xg x,求a 的取值范围.2019-2020年马鞍山市高中毕业班第一次教学质量检测高三文科数学参考答案一、选择题1-5:CBBDA 6-10:DBDAA 11、12:CD二、填空题13.,36k kkZ 15.11222n n n16.43三、解答题17.解:(1)在ABC △中,由tan 15A ,可得1cos 4A. (2)由(1)知15sin A , 由6BA AC,24bc ,又2b c ,解得:6b ,4c , 由2222cos a b c bc A ,可得8a ,1115sin 2431522ABCS bc A △, 设BC 边上的高为h ,则13152ABC S ah △, 所以BC 边上的高为315h. 18.解:(1)在平行四边形ABCD 中,AB BC , ∴四边形ABCD 是菱形,∴BD AC ,∵PA 平面ABCD ,BD 平面ABCD ∴PABD ,又PAAC A ,∴BD 平面PAC ,∵BD 平面BED , ∴平面PAC平面BED .(2)∵PA平面ABCD ,过A 作AFBC 交BC 于F ,连接PF ,∵2PA ,3AF,90PAF ∠°,∴11PF , ∵BC AP ,BC AF ,PFAF F ,∴BC 平面PAF ,∴BC PF ,∴111111122PBC S BC PF △, 1122122PABS PA PB △, 又∵PAB PAD △≌△,PBC PDC △≌△, ∴四棱锥P ABCD 的侧面积为11222PBC PABS S △△.19.解:(1)由柱状图可得:10.330.140.130.10.0723%,即该校高一年级学生轻度近视患病率为23%. (2)由已知可得:1039 1.30.1135≈(人) 即该校高一年级需通知的家长人数约为135人.(3)记6名学生中视力正常的学生为1A ,2A ,视力低下的学生为1B ,2B ,3B ,4B , 则从中任选2人所有可能为:12,A A ,11,A B ,12,A B ,13,A B ,14,A B ,21,A B ,22,A B ,23,A B ,24,A B ,12,B B ,13,B B ,14,B B ,23,B B ,24,B B ,34,B B , ∴815P.即从这6名学生中任选2人恰有1人为视力正常的概率为815. 20.解:(1)由题意,22x py ,焦点坐标为0,2p, 2322p ,得2p , 所以抛物线的标准方程是24x y .(2)设圆心C 的坐标为200,4x x ,半径为r ,圆C 在x 轴上截得的弦长为4,所以222044x r,圆C 的标准方程:22222000444x x x x y ,化简得:2220012402y x xx x y ,①对于任意的0x R ,方程①均成立,故有:22102204y x xy 解得:0,2x y ,所以,圆C 过一定点为0,2.21.解:(1)由2ln f x x axx ,得:221'ax x f xx,0x , 当0a 时,'0f x 在0,上恒成立,函数f x 在0,上单调递增;当0a 时,令'0f x ,则2210ax x ,得11814a x a,21814a x a, ∵12102x x a,∴120x x ,∴令'0f x得20,x x ,令'0f x得2,xx ,∴f x 在1810,4a a上单调递增,在181,4a a上单调递减.(2)由(1)可知,当0a 时,函数f x 在20,x 上单调递增,在2,x 上单调递减,∴2maxf xf x ,即需20f x ,即2222ln 0x ax x ,又由2'0f x 得22212x ax ,代入上面的不等式得222ln 1x x ,由函数2ln h xx x 在0,上单调递增,11h ,所以201x ,∴211x ,∴2222221111122x a x x x ,所以a 的取值范围是1,a .22.解:(1)由题意可知,曲线1C 的极坐标方程是,当3时,联立方程组3sin5,解得103,故点P . (2)在极坐标系中,设点,Q ,1,P,由题意可得,1120sin5,进而可得4sin ,从而点Q 的轨迹的直角坐标方程为22240x y y .23.解:(1)当1a 时,11f x x x ,解不等式114x x ,得22x ,所以,4f x的解集为22x x.(2)当x R 时,110f x g x x a x x ,所以①当1x 时,0f xg x 等价于2a x 恒成立,所以1a ;②当1x a 时,0f x g x等价于ax 恒成立,所以1a ;③当x a 时,0f x g x 等价于3a x ,此时恒成立,所以0a ;综上可得,1,a ki .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三数学文科周练试题(九) 缺答案
第Ⅰ卷
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合,,则( ) (A ){0} (B ){-1,0} (C ){0,1} (D ){-1,0,1}
2、( )
(A ) (B ) (C ) (D )
3、从中任取个不同的数,则取出的个数之差的绝对值为的概率是( ) (A ) (B ) (C ) (D )
4、已知命题,;命题,,则下列命题中为真命题的是:( ) (C ) (D )
5、执行右面的程序框图,如果输入的, 则输出的属于( )
(A ) (B ) (C ) (D )
6、设首项为,公比为的等比数列的前项和为,则(
(
A ) (
B ) (
C ) (
D )
7、若()cos 33cos 02x x ππ⎛
⎫--+= ⎪⎝
⎭,则等于( )
(A )2 (B )-2 (C ) 12 8、设函数的定义域为,是的极大值点,(A )
(B (C )是的极小值点
(D )是的极小值点
9、函数在的图像大致为( )
O
(A )
(B )
y
10、已知函数22,0,
()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若,则的取值范围是( )
(A ) (B ) (C) (D)
二、填空题:本大题有五个小题,每小题5分,共25分(55=25)
11、已知曲线()421128y x ax a =++-+在点,处切线的斜率为, 则实数 。
12、已知两个单位向量,的夹角为,,若,则_____。
13、设满足约束条件 ,则的最大值为 。
14、若,则的取值范围是 。
15、在平面直角坐标系xOy 中,点.对于某个正实数,存在函数,使得OA OQ OP OA OQ λ⎛⎫ ⎪
=⋅+ ⎪ ⎪⎝⎭
uu r uuu r uu u r uu r uuu r ,
其中点P ,Q 的坐标分别为,,则k 的取值范围是__________。