2019-2020学年马鞍山市和县七年级上册期末数学试卷(有答案)-精品推荐

合集下载

【解析版】安徽省马鞍山市2019-2020年七年级上期末数学试卷.doc

【解析版】安徽省马鞍山市2019-2020年七年级上期末数学试卷.doc

【解析版】安徽省马鞍山市 2019-2020 年七年级上期末数学试卷3-2014 学年马七年级(上)期末数学试卷一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.( 3 分)(秋 ?马鞍山期末)﹣的相反数是() A .﹣B .C .﹣D .考点 :相反数.分析: 根据相反数的概念解答即可.解答: 解:﹣的相反数是﹣(﹣) =. 故选 D .点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上 “﹣ ”号;一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.2.( 3 分)(秋 ?马鞍山期末)下列算式正确的是()A .﹣ 2+1= ﹣ 3B . ( ﹣ ) ÷(﹣2D .﹣ 5﹣(﹣4) =1 C .﹣ 3 =92) =﹣ 3考点 :有理数的混合运算.专题 :计算题.分析: 原式各项计算得到结果,即可做出判断. 解答: 解: A 、原式 =﹣ 1,错误;B 、原式 = × =,错误;C 、原式 =﹣ 9,错误;D 、原式 =﹣ 5+2= ﹣ 3,正确, 故选 D点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 3.( 3 分)(秋 ?马鞍山期末)已知关于 x 的方程 2x+a ﹣ 8=0 的解是 x=3,则 a 的值为( )A . 2B . 3C . 4D . 5考点 :一元一次方程的解.分析: 把 x=3 代入方程即可得到一个关于 a 的方程,解方程即可求解. 解答: 解:把 x=3 代入方程得: 6+a ﹣ 8=0, 解得: a=2. 故选 A .点评: 本题考查了方程的解的定义,理解定义是关键.4.( 3 分)( ?攀枝花)为了了解年中考数学学科各分数段成绩分布情况,从中抽取 150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )A . 150B .被抽取的150 名考生C.被抽取的150 名考生的中考数学成绩D .年中考数学成绩考点:总体、个体、样本、样本容量.分析:根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解答:解:了解年中考数学学科各分数段成绩分布情况,从中抽取 150 名考生的中考数学成绩进行统计分析.样本是,被抽取的150 名考生的中考数学成绩,故选 C.点评:此题主要考查了样本确定方法,根据样本定义得出答案是解决问题的关键.5.( 3 分)( ?德州)已知,则a+b等于()A . 3 B.C. 2 D . 1考点:解二元一次方程组.专题:计算题.分析:① +②得出 4a+4b=12,方程的两边都除以 4 即可得出答案.解答:解:,∵① +②得: 4a+4b=12,∴a+b=3.故选: A .点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.6.( 3 分)(秋 ?马鞍山期末)我市对某主干道进行绿化,计划在此公路的一侧全部栽上“市树”﹣﹣樟树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔 5 米栽 1 棵,则树苗缺21 棵;如果每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是()A .5( x+2 ) =6( x﹣ 1)B . 5( x+21﹣ 1)=6( x﹣ 1)C.5( x+21﹣ 1) =6x D.5( x+21 )=6x考点:由实际问题抽象出一元一次方程.分析:设原有树苗 x 棵,由栽树问题栽树的棵数 =分得的段数 +1,可以表示出路的长度,由路的长度相等建立方程即可.解答:解:设原有树苗x 棵,则路的长度为5(x+21 ﹣ 1)米,由题意,得5( x+21 ﹣ 1) =6( x﹣1),故选 B .点评:本题考查了栽树问题的运用,栽树的棵数 =分得的段数 +1 的运用,列一元一次方程解实际问题的运用,解答时由路的长度不变建立方程是关键.7.( 3 分)( ?金华)如图,若 A 是实数 a 在数轴上对应的点,则关于a,﹣ a,1 的大小关系表示正确的是()A .a<1<﹣ aB . a<﹣ a< 1C. 1<﹣ a<aD .﹣ a< a< 1考点:实数与数轴.分析:根据数轴可以得到a< 1<﹣ a,据此即可确定哪个选项正确.解答:解:∵实数 a 在数轴上原点的左边,∴a< 0,但 |a|> 1,﹣ a> 1,则有 a< 1<﹣ a.故选 A .点评:本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数8.( 3 分)( ?娄底)如图,自行车的链条每节长为 2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60 节,则这根链条没有安装时的总长度为()A .150cmB . 104.5cm C. 102.8cm D.102cm考点:规律型:图形的变化类.专题:压轴题.分析:根据已知可得两节链条的长度为: 2.5×2﹣ 0.8, 3 节链条的长度为:2.5×3﹣ 0.8×2,以及 60 节链条的长度为: 2.5×60﹣ 0.8×59,得出答案即可.解答:解:∵根据图形可得出:两节链条的长度为: 2.5×2﹣ 0.8,3 节链条的长度为: 2.5×3﹣ 0.8×2,4 节链条的长度为: 2.5×4﹣ 0.8×3,∴60 节链条的长度为: 2.5×60﹣0.8×59=102.8 ,故选: C.点评:此题主要考查了图形的变化类,根据题意得出60 节链条的长度与每节长度之间的关系是解决问题的关键.9.( 3 分)(秋 ?马鞍山期末)如图,,D为AC的中点,DC=3cm,则AB的长是()A .3cmB . 4cm C. 5cm D.6cm考点:两点间的距离.专题:推理填空题.分析:先根据 D 为 AC 的中点, DC=3cm 求出 AC 的长,再根据BC= AB 可知 AB=AC ,进而可求出答案.解答: 解:∵ D 为 AC 的中点, DC=3cm ,∴ A C=2DC=2×3=6cm , ∵BC= AB ,∴ A B= AC= ×6=4cm .故选 B .点评: 本题考查的是两点间的距离,在解答此类题目时要注意运用各线段之间的倍数关系.10.( 3 分)(秋 ?马鞍山期末)如图是年 1 月的日历表,在此日历表上可以用一个矩形圈出 3×3 个位置的 9 个数(如 6, 7,8, 13, 14, 15, 20, 21, 22).若圈出的 9 个数中, 最大数是最小数的 3 倍,则这 9 个数的和为( )A . 32B . 126C . 135D .144考点 :一元一次方程的应用.分析: 设圈出的数字中最小的为 x ,则最大数为 x+16 ,根据题意列出方程,求出方程的解得到 x 的值,进而确定出 9 个数字,求出之和即可. 解答: 解:设圈出的数字中最小的为 x ,则最大数为 x+16 , 根据题意得: x+16=3x , 解得: x=8 ,所以 9 个数之和为: 8+9+10+15+16+17+22+23+24=144 . 故选: D .点评: 此题考查了一元一次方程的应用,掌握日期排列的规律,找出题中的等量关系是解本题的关键.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.请将答案直接填在题后的横线上.)11.( 3 分)(秋 ?马鞍山期末)计算: 80°37′﹣ 37°46′28″=42°50′32″ .考点 :度分秒的换算.分析: 首先将分化为秒,乘以 60,与秒相减,将度化为分与分相减,最后度与度相减. 解答: 解: 80°37′﹣37°46′28″=79°96′60″﹣ 37°46′28″ =42°50′32″,故答案为: 42°50′32″.点评: 本题考查角度的运算,注意将高级单位化为低级单位时,乘以 60,反之,将低级单位转化为高级单位时除以 60 是解答此题的关键.12.( 3 分)( ?佛山)地球上的海洋面积约为361000000km 2,则科学记数法可表示为3.61×10 8 km 2.考点 :科学记数法 —表示较大的数.分析: 科学记数法的表示形式为a ×10n 的形式,其中 1≤|a|<10, n 为整数.确定 n 的值时, 要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原 数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答: 解:将 361 000 000 用科学记数法表示为 3.61×108.故答案为 3.61×108.a ×10n 的形式,其中 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为1≤|a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.13.( 3 分)(秋 ?马鞍山期末) 3 点 30 分,时钟的时针与分针的夹角是 75° .考点 :钟面角.分析: 根据时钟 3 时 30 分时,时针在 3 与 4 中间位置,分针在 6 上,可以得出分针与时针 的夹角是 2.5 大格,每一格之间的夹角为 30°,可得出结果. 解答: 解:∵钟表上从 1 到 12 一共有 12 格,每个大格 30°,∴时钟 3 时 30 分时,时针在 3 与 4 中间位置,分针在 6 上,可以得出分针与时针的夹角是 2.5 大格, ∴分针与时针的夹角是 2.5×30=75°.故答案为: 75°.点评: 此题主要考查了钟面角的有关知识,得出钟表上从 1 到 12 一共有 12 格,每个大格30°,是解决问题的关键.3 n5x m2n ﹣ m )= ﹣ 1 .14.( 3 分)(秋 ?马鞍山期末)若 2x y 与﹣ y 是同类项,则( 考点 :同类项. 分析: 利用同类项所含字母相同,并且相同字母的指数也相同求解即可.3 n与﹣ 5x m解答: 解:∵ 2x y y 是同类项,∴ m =3 , n=1 ,∴( 2n ﹣ m ) =(﹣ 1) =﹣1,故答案为:﹣ 1.点评: 本题主要考查了同类项,解题的关键是熟记同类项的定义.15.( 3 分)( 2001?河南)一个锐角的补角比它的余角大 90 度.考点 :余角和补角. 专题 :计算题.分析: 相加等于 90°的两角称作互为余角,相加和是 180 度的两角互补,因而可以设这个锐角是 x 度,就可以用代数式表示出所求的量.解答: 解:设这个锐角是 x 度,则它的补角是( 180﹣ x )度,余角是( 90﹣ x )度. 则( 180﹣ x )﹣( 90﹣ x ) =90°.故填 90.点评: 本题主要考查补角,余角的定义,是一个基础的题目.16.( 3 分)(秋 ?马鞍山期末)为了拓展销路,商店对某种照相机的售价作了调整,按原价的 8 折出售,此时的利润率为 14%,若此种照相机的进价为 1200 元,问该照相机的原售价是 1710 元 .考点:一元一次方程的用.分析:照相机的原售价是x 元,从而得出售价0.8x ,等量关系:售价=价(1+ 利率),列方程求解即可.解答:解:照相机的原售价是x 元,根据意得:0.8x=1200 ×( 1+14% ),解得: x=1710.答:照相机的原售价是1710 元.故答案: 1710 元.点:此考了一元一次方程的用,与合,是近几年的点考,首先懂目的意思,根据目出的条件,找出合适的等量关系,列出方程,再求解17.( 3 分)(秋 ?鞍山期末)某校开跆拳道、法两合践活,参加跆拳道的有 a 人,参加法的人数比参加跆拳道的人数少10 人,两活都参加的有7 人,参加两合践活的同学共有( 2a 17)人(用含有 a 的代数式表示).考点:列代数式.分析:根据参加法的人数比参加跆拳道的人数少10 人,两活都参加的有7 人列出代数式即可.解答:解:参加两合践活的同学共有(2a 17),故答案:( 2a 17).点:此考列代数式,关是根据意中参加跆拳道的有 a 人,参加法的人数比参加跆拳道的人数少10 人,两活都参加的有7 人列出代数式.18.( 3 分)(秋 ?鞍山期末)有一列数 a1, a2, a3,⋯,a n,从第二个数开始,每个数都等于 1 与它前一个数的倒数的差,即 a2=1 ,a3=1 ,⋯,若 a1=2, a= 1 .考点:律型:数字的化.分析:根据:每个数都等于 1 与它前面那个数的倒数的差,逐一行算找出律解决即可.解答:解:当a1=2,a2=1=,a3=1 2= 1,a4=1( 1) =2,a5=1=,一列数是按照2,,1的序依次循,由此可知,÷3=671 ,所以 a 与 a3相同,即a= 1.故答案: 1.点:此考数字的化律,通算,数据的律,利用律一步解决.三、解答(本大共 6 小,共46 分.)19.( 8 分)(秋 ?鞍山期末)算:(1)(﹣+)×(﹣36);(2)﹣ 2 2 3 3).×(﹣)﹣ |﹣ 2| +(﹣考点:有理数的混合运算.专题:计算题.分析:(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:( 1)原式 =﹣ 12+6﹣ 9=﹣ 15;(2)原式 = ﹣8﹣ =﹣ 8.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.( 7 分)(秋 ?马鞍山期末)已知2 2) ]﹣ab 的a=﹣1, b=2 ,求 2a ﹣ [8ab+ ( ab﹣4a值.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把 a 与 b 的值代入计算即可求出值.解答:解:原式 =2a 2﹣ 8ab﹣ ab+2a2﹣ab=4a2﹣ 9ab,当a=﹣ 1, b=2 时,原式 =4 ﹣ 9×(﹣ 1)×2=22.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.( 8 分)(秋 ?马鞍山期末)(1)解方程:﹣2=(2)在等式 y=kx+b 中,当 x=1 时, y=2 ; x=2 时, y=1;当 x=3 时, y=a,求 a 的值.考点:解二元一次方程组;解一元一次方程.专题:计算题.分析:(1)方程去分母,去括号,移项合并,把x 系数化为 1,即可求出解;(2)把 x 与 y 的两对值代入等式求出k 与 b 的值,确定出y=kx+b ,把 x=3 代入计算即可求出 a 的值.解答:解:(1)去分母得:5(3x+1)﹣20=3x﹣2,去括号得: 15x+5 ﹣ 20=3x ﹣ 2,移项合并得: 12=13 ,解得: x=;(2)把 x=1, y=2; x=2, y=1 代入等式得:,解得:,∴y= ﹣ x+3当x=3 时, a=0.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.( 7 分)(秋 ?马鞍山期末)在“走基层,树新风”活动中,青年记者深入边远山区,随机走访农户,调查农村儿童生活教育现状.根据收集的数据,编制了不完整的统计图表如下:山区儿童生活教育现状类别现状户数比例A 类父母常年在外打工,孩子留在老家由老人照顾100B 类父母常年在外打工,孩子带在身边20 10%C 类父母就近在城镇打工,晚上回家照顾孩子50D 类父母在家务农,并照顾孩子15%请你用学过的统计知识,解决问题:(1)记者走访了边远山区多少家农户?(2)将统计表中的空缺数据填写完整;(3)分析数据后,你能得出什么结论?考点:条形统计图;统计表.分析:(1)利用受访的总户数=B 类÷对应的百分比求解即要可;(2)先求出 A 类的比例, C 类的比例及 D 类的人数补全图表空缺数据即可;(3)由图表可知孩子带在身边有益孩子的身心健康,建议社会关心留守儿童的生活状况.解答:解:( 1)由图、表可知受访的总户数为20÷10%=200 ;(2) A 类的比例为×100%=50% ,C 类的比例为×100%=25% ,D 类的人数为200×15%=30 ,补全图表空缺数据;类别现状户数比例A 类父母常年在外打工孩子留在老家由老人照顾100 50%B 类父母常年在外打工,孩子带在身边20 10%C 类父母就近在城镇打工,晚上回家照顾孩子50 25%D 类父母在家务农,并照顾孩子30 15%(3)由图表可知孩子带在身边有益孩子的身心健康,建议社会关心留守儿童的生活状况.点评:本题主要考查了条形统计图,扇形统计图,中位数及众数,解题的关键是读懂统计图,获得准确的信息.23.( 8 分)(秋 ?马鞍山期末)(1)如图,已知∠AOB=90 °,∠ BOC=30 °, OM 平分∠AOC ,ON 平分∠ BOC ,求∠ MON 的度数;(2)如果( 1)中的∠ AOB= α,∠ BOC= β,其它条件不变,请用求α或β来表示∠ MON 的度数.考点:角的计算;角平分线的定义.分析:(1)根据角平分线的定义得到∠MOC=∠ AOC,∠NOC=∠ BOC,则∠MON= ∠ MOC ﹣∠ NOC=(∠ AOC﹣∠BOC)=∠ AOB,然后把∠AOB的度数代入计算即可;(2)由∠ AOB= α,∠ BOC= β,得到∠ AOC= ∠ AOB+ ∠ BOC= α+β,根据 OM 平分∠AOC ,ON 平分∠ BOC ,于是得到∠ MOC= ∠AOC= (α+β),∠NOC=∠BOC=β,即可得到结果.解答:解:(1)∵∠ AOB=90°,∠BOC=30°,∴∠ AOC= ∠ AOB+ ∠ BOC=90 °+30°=120°,又∵ OM 平分∠ AOC , ON 平分∠ BOC,∴∠ MOC=∠ AOC=60°,∠NOC=∠ BOC=15°,∴∠ MON= ∠ MOC ﹣∠ NOC=60 °﹣ 15°=45 °,(2)∵∠ AOB= α,∠ BOC= β,∴∠ AOC= ∠ AOB+ ∠ BOC= α+β,又∵ OM 平分∠ AOC , ON 平分∠ BOC,∴∠ MOC=∠ AOC=(α+β),∠NOC=∠ BOC=β,∴∠ MON= ∠ MOC ﹣∠ NOC=(α+β)﹣β=α.点评:本题考查的是角平分线的定义,熟知角平分线的定义是解答此题的关键.24.( 8 分)(秋 ?马鞍山期末)为了鼓励市民节约用电,某市居民生活用电按阶梯式电价计费.下表是该市居民“一户一表”生活用电阶梯式计费价格表的一部分信息:生活用电销售价格每户每月用电量单价:元 /度180 度及以下 a超过 180 度不超过350 度的部分 b超过 350 度的部分0.87已知小王家年 6 月份用电160 度,交电费91.20 元; 7 月份用电300 度,交电费177.00 元.(1)求 a,b 的值;(2)因 8 月份高温天气持续较长,小王家 8 月份电费达到 234.10 元,则小王家 8 月份用电多少度?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)根据题意结合表格中数据得出160a=91.20, 180a+( 300﹣ 180) b=177.00 即可求出;(2)首先求出当月用电量为350 度时的电费,进而表示出8 月份的电费,求出即可.解答:解:(1),解得;(2)当月用电量为 350 度时,电费为: 180×0.57+(350﹣ 180)×0.62=208(元)< 234.10元,故小王家用电量超过350 度.设小王家 8 月份用电 x 度,则得到180×0.57+( 350﹣180)×0.62+( x﹣ 350)×0.87=234.10 ,解得 x=380 (度),答:小王家8 月份用电量为380 度.点评:本题考查了二元一次方程组的应用,根据题意得出正确等量关系是解题关键.。

2019-2020安徽马鞍山七年级上数学期末试题

2019-2020安徽马鞍山七年级上数学期末试题

马鞍山市2019~2020 学年度第一学期期末素质测试七年级数学试题考生注意:本卷共4 页,24 小题,满分100 分.请在答题卡上答题一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.每小题所给的四个选项中只有一个是正确的,请将正确的答案的代号填在题后的括号内.)1. -2019 的相反数是()A. 2019B. -2019C. - 12019 D.120192. 设x ,y , c 是有理数,下列选项错误的是( )A.若x =y ,则x +a =y -a B.若x =y ,则xa =yaC.若x =y ,则x=yD.若xa a 2a=y,则2x = 3 y3a3.地球绕太阳一天转动通过的路程约是2640000 千米,将2640000 用科学记数法表示为()A. 0.264 ⨯107B. 2.64 ⨯106C. 26.4 ⨯105D. 264 ⨯1044.根据下列线段的长度,能判断A、B、C 三点不在同一条直线上的是()A. AB = 2cm , BC = 3cm , AC = 5cmB. AB = 6cm , BC = 4cm , AC = 2cmC. AB = 3cm , BC = 4cm , AC = 5cmD. AB = 1.5cm , BC = 4cm , AC = 2.5cm5.若2a =b + 1 , c = 3b ,则-8a +b +c 的值为()A. 4B. 0C. -2D. -46.如图所示,数轴上两点A、B 分别表示有理数a 、b ,则下列四个数中最大的一个数是()A. aB. bC.1D.1a b7.下列方程变形正确的是()A. 3x - 2 = 2x + 1 ,移项,得:3x - 2x =-1 + 2B. 3 -x = 2 - 5(x - 1) ,去括号,得: 3 -x = 2 - 5x - 1C. 2t =3,未知数系数化为1 ,得:t = 13 2D. x -1-x= 1 ,化简可得:3x = 60.2 0.5⎨4x + 9 y = -7 8.如果∠α 和∠β 互补,且∠α >∠β ,则下列表示∠β 的余角的正确式子有( ) ① 90o -∠β ;②∠α - 90o;③ 1 (∠α +∠β);④ 1 (∠α -∠β)2 2 A .①②④ B .①②③ C .①③④ D .②③④9.如图是甲、乙两户居民家庭全年支出费用的扇形统计图。

2019-2020学年度第一学期七年级期末数学试卷(有答案)-最新推荐

2019-2020学年度第一学期七年级期末数学试卷(有答案)-最新推荐

2019-2020学年度第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.(-2)×3的结果是…………………………………………………………………………【 】A . - 6 B. – 5 C. - 1 D. l 2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】A .5个B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】 A .∠DOE 的度数不能确定B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】 ①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是……………………………【 】A .x ·30%×80%=312B .x ·30%=312×80%C .312×30%×80%=xD .x (1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】 A .如果s= 2ab,那么b=2s a B .如果12x=6,那么x=3 C .如果x-3 =y-3,那么x-y =0 D .如果mx= my ,那么x=y8.下列方程中,以x =-1为解的方程是………………………………………………………【 】 A .13222xx +=- B .7(x -1)=0 C .4x -7=5x +7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7n B.8+7n C .7n +1 D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。

2019-2020学年马鞍山市和县七年级上期末数学试卷((有答案))

2019-2020学年马鞍山市和县七年级上期末数学试卷((有答案))

2017-2020学年安徽省马鞍山市和县七年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.3的相反数的倒数是()A. −3B. +3C. −13D. 132.某市2020学年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A. 28×109B. 2.8×108C. 2.8×109D. 2.8×10103.下列说法中正确的是()A. 0不是单项式B. 16πX3的系数为16C. 2aℎ7的次数为2 D. 3x+6y−5不是多项式4.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A. 1B. 2C. 3D. 45.甲乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是()A. 甲超市B. 乙超市C. 两个超市一样D. 与商品的价格有关6.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7.在有理数范围内定义运算“*”,其规则为a*b=-2a+b3,则方程(2*3)(4*x)=49的解为()A. −3B. −55C. −56D. 558.方程2x-1=3与方程1-3a−x3=0的解相同,则a的值为()A. 3B. 2C. 1D. 539.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A. B. C. D.10. 下列说法中,不正确的有( )(1)正方体有8个顶点和6个面(2)两个锐角的和一定大于90°(3)若∠AOB =2∠BOC ,则OC 是∠AOB 的平分线(4)两点之间,线段最短(5)钝角的补角一定大于这个角的本身(6)射线OA 也可以表示为射线AOA. 2个B. 3个C. 4个D. 5个二、填空题(本大题共4小题,共20.0分)11. 若多项式3x 2-2(5+y -3x 2+mx 2)的值与x 的值无关,则m 的等于______.12. 写出一个满足下列条件的一元一次方程:(1)未知数的系数为-23,(2)方程的解是6,则这样的方程可写为______.13. 如果线段AB =10,点C 、D 在直线AB 上,BC =6,D 是AC 的中点,则A 、D 两点间的距离是______.14. 有理数a 和b 在数轴上的位置如图所示,则下列结论中:(1)a -b >0(2)ab >0(3)-a <b <0(4)-a <-b <a(5)|a |+|b |=|a -b |其中正确的是______(把所有正确结论的序号都选上)三、计算题(本大题共3小题,共32.0分)15. 计算:-|-32|-(-3)3-(23-14-38)×24.16. 先化简,再求值:8a 2-10ab +2b 2-(2a 2-10ab +8b 2),其中a =12,b =-13.17. 为满足同学们课外阅读的需求,某中学图书馆向出版社邮购科普系列图书,每本书单价为16元,书的价钱和邮费是通过邮局汇款,相关的书价折扣、邮费和汇款的汇费如下表所示(总费用=总书价+总邮购书数量 折扣 邮费 汇费不超过10本 九折6元 每100元汇款需汇费1元 (汇款不足100元时按100元汇款收汇费) 超过10本 八折 总书价的10% 每100元汇款需汇费1元(汇款不足100元的部分不收汇费)(2)已知学校图书馆需购图书的总数是10的整倍数,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费用为1064元时,共邮购了多本图书?②若你是学校图书馆负责人,从节约的角度出发,在“每次邮购10本“与“一次性邮购”这两种方式中选择一种,你会选择哪一种?计算并说明理由.四、解答题(本大题共5小题,共58.0分)18. 解方程:15x +x−12=4(x−1)2-45x19. 207年李明家买了一辆轿车,他连续记录了一周中每天行驶的路程(如下表),以50km 为标准,多于周一 周二 周三 周四 周五 周六 周日 路程(km ) -6 0 -12 7 -9 +15 +12(2)如果每行驶100km 需要汽油8升,汽油价格6.85元/升,请计算李明家轿车一个月(按30天计算)的汽油费是多少元(精确到个位)?20. (1)如图,已知线段a 、b 、c ,用圆规和直尺作一条线段,使它等于a -2b +c .(2)一个角的补角比它的余角度数的4倍还多30°,求这个角的度数.21. 观察下列计算过程,发现规律,利用规律猜想并计算:1+2=(1+2)×22=3;1+2+3=(1+3)×32=6,1+2+3+4=(1+4)×42=10;1+2+3+4+5=(1+5)×52=15;…(1)猜想:1+2+3+4+…+n =______.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n 的结果.22. 如图,已知∠AOB 内部有三条射线,OE 平分∠AOD ,OC 平分∠BOD .(1)若∠AOB =90°,求∠EOC 的度数;(2)若∠AOB =α,求∠EOC 的度数;(3)如果将题中“平分”的条件改为∠EOA =15∠AOD ,∠DOC =34∠DOB ,∠AOD =50°,且∠AOB =90°,求∠EOC 的度数.答案和解析1.【答案】C【解析】解:3的相反数是-3,3的相反数的倒数是-,故选:C.根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,先求相反数再求倒数.2.【答案】D【解析】解:280亿=2.8×1010.故选:D.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.3.【答案】C【解析】解:(A)0是单项式,故A错误;(B)πX3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选:C.根据单项式与多项式的概念即可求出答案.本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.4.【答案】C【解析】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:设商品的定价为λ,则在甲超市购买这种商品价格为:=;在乙超市购买这种商品的价格为:=,∴在乙超市购买这种商品合算.故选:B.根据题意,分别列出降价后在甲乙两个商场的购物价格,问题即可解决.该题考查了列代数式在现实生活中的应用问题;解题的关键是深刻把握题意,正确列出代数式,准确求解运算.6.【答案】B【解析】解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选:B.根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.7.【答案】D【解析】解:根据题中的新定义得:-×(-)=49,整理得:56+7x=441,解得:x=55,故选:D.原式利用题中的新定义计算即可求出值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:解方程2x-1=3,得x=2,把x=2代入方程1-=0,得1-=0,解得,a=.故选:D.先解方程2x-1=3,求得x的值,因为这个解也是方程1-=0的解,根据方程的解的定义,把x代入求出a的值.此题考查同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.9.【答案】B【解析】解:A、左视图和主视图都是相同的正方形,所以A选项错误;B、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高,主视图的长方形的宽为三棱柱的底面三角形的边长,所以B选项正确;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选:B.从正面看是主视图,从左面看是左视图,利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.【答案】C【解析】解:(1)正方体有8个顶点和6个面,正确;(2)30°+20°=50°,所以两个锐角的和不一定大于90°,不正确;(3)OC在∠AOB的外部时,OC不平分∠AOB,所以若∠AOB=2∠BOC,则OC是∠AOB的平分线,不正确;(4)两点之间,线段最短,正确;(5)如果一个钝角是120°,则它的补角为60°,所以钝角的补角不一定大于这个角的本身,不正确;(6)射线OA不能表示为射线AO,不正确;不正确的有:(2),(3),(5),(6),故选:C.根据正方体的定义、角平分线的性质、角的定义,线段,补角和射线的性质进行判断即可.本题考查了正方体的定义、角平分线的性质、角的定义,线段,补角和射线的性质,理解这些定义和性质是解题关键.11.【答案】4.5【解析】解:∵3x2-2(5+y-3x2+mx2)=3x2-10-2y+6x2-2mx2,=(3+6-2m)x2-2y-10,此式的值与x的值无关,则3+6-2m=0,解得m=4.5.故答案为:4.5.此题可根据多项式3x2-2(5+y-3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.12.【答案】-2x=-43【解析】解:根据题意得:-x=-4,故答案为:-x=-4根据题意写出方程即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】2或8【解析】解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点, ∴AD=AC=×16=8.故答案为:2或8.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答. 本题考查的是两点间的距离,解答此题时要注意应用分类讨论的思想,不要漏解. 14.【答案】(1)、(3)、(4)、(5)【解析】解:由数轴上点的位置关系,得a >0>b ,|a|>|b|.(1)a-b >0,正确;(2)ab <0,错误;(3)-a <b <0,正确;(4)-a <-b <a ,正确,(5)|a|+|b|=|a-b|,正确;故答案为:(1),(3),(4),(5).根据数轴上点的位置关系,可得a 、b 的大小,根据绝对值的意义,判断即可.本题考查了有理数的大小比较,利用数轴确定a 、b 的大小即|a|与|b|的大小是解题关键.15.【答案】解:-|-32|-(-3)3-(23-14-38)×24=-9+27-23×24+14×24+38×24=-9+27-16+6+9=17.【解析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【答案】解:原式=8a 2-10ab +2b 2-2a 2+10ab -8b 2=6a 2-6b 2,当a =12,b =-13时,原式=32-23=56.【解析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17.【答案】108.8【解析】解:(1)由题意可得,总书价为:16×7×0.9=100.8(元),∴总的费用为:100.8+6+2=108.8(元),故答案为:108.8元;(2)①设共邮购了x 本图书,∵16×10×0.9=144(元),∴16×x×0.9+6×+=1064,解得,x=70,答:共邮购了70本;②从节约的角度出发,选择一次性邮购的方式,理由:设共购买了x 本,按每次邮购10本,最后的总费用为:16×0.9x+6×+=15.2x(元),一次性邮购的总书价和邮费为:16×0.8x(1+10%)=14.08x,∵超过10本,不足100元的部分不收汇费,∴汇费不大于:0.1408x元,∵15.2x-(14.08x+0.1408x)=0.9792x>0,∴从节约的角度出发,选择一次性邮购的方式.(1)根据题意和表格中的数据,可以解答本题;(2)①根据题意和表格中的数据可以列出相应的方程,从而可以解答本题;②根据题意,可以分别表示出两种方式的总费用,然后比较大小,即可解答本题.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.18.【答案】解:去分母,得2x+5(x-1)=5×4(x-1)-2×4x,去括号,得2x+5x-5=20x-20-8x,移项,得2x+5x-20x+8x=-20+5,合并同类项,得-5x=-15,系数化为1,得x=3.【解析】依次经过去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了一元一次方程的解法.题目难度不大,掌握解一元一次方程的一般步骤是解决本题的关键.19.【答案】解:(1)50+(-6+0-12=7-9+15+12)÷7=51(km)答:李明家轿车一周中平均每天行驶51千米;×51×30×6.85=838(元)(2)8100答:李明家轿车一个月(按30天计算)的汽油费是838元【解析】(1)求出表格中数字之和,与50与7的积相加,除以7即可求出结果;(2)求出一千米的耗油,乘以单价,再乘以平均每天行驶的千米数,即可得到结果.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.弄清题意是解本题的关键.20.【答案】解:(1)如图,作射线AM,在AM顺次截取AB=a,BC=c,截取CD=2b,则相对AD即为所求;(2)设这个角为x度.由题意:180-x=4(90-x)+30,解得x=70,答:这个角的度数为70°.【解析】(1)如图,作射线AM ,在AM 顺次截取AB=a ,BC=c ,截取CD=2b ,则相对AD 即为所求;(2)设这个角为x 度.根据题意,构建方程即可解决问题;本题考查作图-复杂作图,余角和补角的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】(1+n)×n 2 【解析】解:(1)1+2+3+4+…+n=;故答案为:; (2)1+2+3+4+…+200==2020年0.(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=. (1)从1开始连续自然数的和,等于两端的数相加乘数的个数,再除以2,由此得出答案即可;(2)利用(1)的规律计算即可;(3)把整体和提公因式3可进行计算.此题考查数字的变化规律,找出数字之间的联系,得出运算规律是解决问题的关键. 22.【答案】解:(1)∵OE 平分∠AOD ,OC 平分∠BOD ,∴∠EOD =12∠AOD ,∠DOC =12∠DOB ,∴∠EOC =12(∠AOD +∠DOB )=45°.(2)由(1)可知:∠EOC =12(∠AOD +∠DOB )=12α.(3)∵∠AOB =90°,∠AOD =50°,∴∠DOB =40°,∵∠EOA =15∠AOD ,∠DOC =34∠DOB ,∴∠DOE =45∠AOD =40°,∠DOC =34∠DOB =30°,∴∠EOC =∠EOD +∠DOC =70°.【解析】(1)根据角平分线的定义以及角的和差定义计算即可;(2)利用(1)中结论计算即可;(3)分别求出∠EOD,∠DOC 即可解决问题;本题考查角的计算、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

马鞍山市七年级上册数学期末试卷及答案-百度文库

马鞍山市七年级上册数学期末试卷及答案-百度文库

马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5927.计算(3)(5)-++的结果是()A.-8 B.8 C.2 D.-28.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查9.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.010.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y11.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <12.3的倒数是()A.3B.3-C.13D.13-13.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥14.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点确定一条直线B.两点之间,线段最短C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离15.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.把5,5,35按从小到大的顺序排列为______.19. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm. 20.计算:()222a -=____;()2323x x ⋅-=_____.21.因式分解:32x xy -= ▲ .22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.24.若α与β互为补角,且α=50°,则β的度数是_____.25.数字9 600 000用科学记数法表示为 .26.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.32.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.33.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)35.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上册马鞍山数学期末试卷测试题(Word版 含解析)

七年级上册马鞍山数学期末试卷测试题(Word版 含解析)

七年级上册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.下列各图是正方体展开图的是( )A .B .C .D .2.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为()A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯ 3.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )A .B .C .D .4.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -5.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( )A .116元B .145元C .150元D .160元6.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )7.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是()A .1B .3C .7D .98.下列方程为一元一次方程的是( )A .12y y +=B .x+2=3yC .22x x =D .3y=29.下列平面图形不能够围成正方体的是( ) A . B . C . D .10.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④12.如图正方体纸盒,展开后可以得到( )A .B .C .D . 13.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.17.一个角的度数为2018',则这个角的补角的度数是________.18.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.19.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20.已知关于x 的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.按照下图程序计算:若输入的数是 -3 ,则输出的数是________23.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .24.若a -2b =1,则3-2a +4b 的值是__.25.单项式345ax y -的次数是__________. 三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.28.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.29.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 . (2)请选择其中一种方法,写出完整的解答过程.30.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分 BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数.(2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示)31.如图,在三角形ABC 中,CD 平ACB ∠,交AB 于点D ,点E 在AC 上,点F 在CD 上,连接DE ,EF .(1)若70ACB ∠=︒,35CDE ∠=︒,求AED ∠的度数;(2)在(1)的条件下,若180BDC EFC ∠+∠=︒,试说明:B DEF ∠=∠.32.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.33.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P 和图形M ,点B 是图形M 上任意一点,我们把线段PB 长度的最小值叫做点P 与图形M 之间的距离.例如,以点M 为圆心,1cm 为半径画圆如图1,那么点M 到该圆的距离等于1cm ;若点N 是圆上一点,那么点N 到该圆的距离等于0cm ;连接MN ,若点Q 为线段MN 中点,那么点Q 到该圆的距离等于0.5cm ,反过来,若点P 到已知点M 的距离等于1cm ,那么满足条件的所有点P 就构成了以点M 为圆心,1cm 为半径的圆.(初步运用)(1)如图2,若点P 到已知直线m 的距离等于1cm ,请画出满足条件的所有点P . (深入探究)(2)如图3,若点P 到已知线段的距离等于1cm ,请画出满足条件的所有点P . (3)如图4,若点P 到已知正方形的距离等于1cm ,请画出满足条件的所有点P .四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

马鞍山市七年级上册数学期末试卷及答案-百度文库

马鞍山市七年级上册数学期末试卷及答案-百度文库

马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1072.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 3.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 5.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 6.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限7.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 8.已知∠A =60°,则∠A 的补角是( ) A .30° B .60° C .120°D .180° 9.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x y m m =,则x y =D .若x y =,则x y m m= 10.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D . 11.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 12.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2 二、填空题13.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.14.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 15.把53°24′用度表示为_____.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.17.单项式22ab -的系数是________. 18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.若方程11222m x x --=++有增根,则m 的值为____. 20.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.21.当x= 时,多项式3(2-x )和2(3+x )的值相等.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.23.若523m x y +与2n x y 的和仍为单项式,则n m =__________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.27.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?28.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试A B C D四个等级进行统计(说明:A级:90分~100分;B级:75分~89成绩,按,,,分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?29.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少?(2)求此件商品的利润率.30.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.4.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.5.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.6.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.7.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.【详解】设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.故选:C .【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.D解析:D【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.10.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.二、填空题13.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x 、y 的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x =±3,y =±2,∵x <y ,∴x =﹣3,y =±2,当x =﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x 、y 的值,然后计算即可解答.【详解】解:∵|x |=3,y 2=4,∴x =±3,y =±2,∵x <y ,∴x =﹣3,y =±2,当x =﹣3,y =2时,x +y =﹣1,当x =﹣3,y =﹣2时,x +y =﹣5,所以,x +y 的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x 、y 的值.14.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键. 15.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;17.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键20.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式21.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.22.17【解析】【分析】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.221122a ab b -+-,值为:799- 【解析】【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】 本题考查化简求值,解题关键在于对整式加减的理解.26.小明家到景蓝小区门口的距离为1000米.【解析】【分析】可设小明家到景蓝小区门口的距离是x 米,根据等量关系:小明家到景蓝小区门口的时间=小明的父母到景蓝小区门口的时间,依此列出方程求解即可.【详解】解:设小明家到景蓝小区门口的距离为x 米,由题意得:54054060x x ⨯+=+ 解得:x =1000,答:小明家到景蓝小区门口的距离为1000米.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60. 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6400x=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T 恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.28.(1)50;(2)36°;(3)作图见解析;(4)100名.【解析】【分析】(1)根据条形统计图和扇形统计图的对应关系,用条形统计图中某一类的频数除以扇形统计图中该类所占百分比即可解决.(2)用单位1减掉A 、B 、C 所占的百分比,得出D 项所占的百分比,然后与360°相乘即可解决.(3)用总数减去A 、B 、C 的频数,得出D 项的频数,然后画出条形统计图即可.(4)用七年级所有学生乘A 项所占的百分比,即可解决.【详解】(1)10÷20%=50;(2)()360146%24%20%36010%36︒⨯---=︒⨯=︒;(3)D 项的人数:50-10-23-12=5.补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A 级学生人数约为100名.【点睛】本题考查了条形图和扇形统计图结合题型,解决本题的关键是正确理解题意,熟练掌握扇形统计图和条形图的各类量的对应关系.29.(1)这件商品的成本价是150元;(2)此件商品的利润率是20%【解析】【分析】(1)设这件商品的成本价为x 元,根据售价=标价×80%,据此列方程.(2)根据利润率=100%⨯利润成本计算. 【详解】解:(1)设这件商品的成本价为x 元,由题意得,x (1+50%)×80%=180.解得:x =150,答:这件商品的成本价是150元;(2)利润率=180150150-×100%=20%. 答:此件商品的利润率是20%.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.30.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】 (1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,。

马鞍山市七年级上册数学期末试卷及答案-百度文库

马鞍山市七年级上册数学期末试卷及答案-百度文库

马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.52.﹣3的相反数是( )A .13- B .13 C .3- D .33.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,3 4.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-2 5.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a - 6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=09.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+ C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚 二、填空题13.=38A ∠︒,则A ∠的补角的度数为______.14. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.若方程11222m x x --=++有增根,则m 的值为____. 17.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 21.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 22.|﹣12|=_____. 23.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .24.已知一个角的补角是它余角的3倍,则这个角的度数为_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.27.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.28.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.29.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.30.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.31.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:-<-<-<<,2.52 1.501故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r h π的系数和次数分别是π,3;故选:A .【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++ =5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.5.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.6.C解析:C【解析】【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.8.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.9.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.12.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用二、填空题13.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:A∠=,38∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.14.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 16.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键17.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的解析:24 2525【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.22.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.24.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24, ∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2,解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t)解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)10;(2)212±;(3)288. 5±±, 【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10.(2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.27.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.28.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.30.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,。

马鞍山市2019—2019年七年级上期末素质测试数学试题及答案

马鞍山市2019—2019年七年级上期末素质测试数学试题及答案

数学试卷马鞍山市 2019—2019 学年度第一学期期末素质测试七年级数学试题考生注意:本卷共 6 页, 24 小题,满分100 分 .三题号一二192021222324总分得分一、选择题(本大题共10 小题,每小题 3 分,共30 分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.- 2 的绝对值是()A .1B.122C.- 2D.22.马鞍山市长江大桥预期投资70.78 亿元,其中70.78 亿用科学记数法表示为()A . 70.78 ×108B. 7.078 ×108C.7.078 ×109D.7.078 ×10113.若单项式x a 1y3与1y b x2是同类项,则 a 、b的值分别为()2A .a 1,b 3B.a 1,b 2C.a 2,b 3D.a 2,b 24.要了解全校学生的课外作业负担情况,你认为以下调查方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.随机抽查七、八、九年级各100 名学生54a3与3a10互为相反数,则 a 的值为().若A .1B. 1C.13D.13 76.有理数 a 在数轴上对应的点如图所示,则 a ,a ,1的大小关系正确的是()A .a1a B.a a1C.1a a D.a a1a0 1第 6题图数学试卷7.如图所示,下列等式中错误的是()A.AD -CD=AB +BC]B.BD - BC = AD -ACA B C DC.BD - BC = AB +BC第 7题图D.AD -BD =AC -BC8.某工程甲独做12 天完成,乙独做8 天完成,现在由甲先做 3 天,乙再参加合做.设完成此工程一共用了 x 天,则下列方程正确的是()x 3 x x x3A .1B.1128128x x x3x 3C.1D.11281289.在直线 AB 上任取一点 O,过点 O 作射线 OC、 OD,使∠ COD=90°,当∠ AOC=30°时,∠BOD 的度数是()A.60°B. 120 °C.60°或 90°D.60°或 120 °10.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再按图②方式放置,测量的数据如图,则桌子的高度是()A . 73 cm C.75 cm B. 74 cm D.76 cm二、填空题(本大题共8 小题,每小题 3 分,共24 分.请将答案直接填在题后的横线上.)11.用四舍五入法将 5.649 精确到0.1 结果是.12.在4,2,9,0这四个数中,最小的数比最大的数小.13.若=72 ° 31,′则的余角大小为.14.在扇形统计图中,其中一个扇形的中心角为72°,则这个扇形所表示的部分占总体的百分数为.15y 2是方程my 3 2 y m的解,则 m..已知数学试卷16.如图( 1)~( 4),是用火柴棒拼成的图形,则第(n) 个图形需根火柴棒.( 1) (2) (3) ( 4)17.如图所示,小明把两块完全相同的三角板如图放置,使两个60°角 的顶点在 A 处重合,若∠ CAE = 100°,则∠ DAB =°.18.某企业现在年产值为15 万元,每增加投资 100 元,一年就可以增加250 元产值.如果新增加的投资额为 x 万元,年产值为 y 万元,那么x 与y 所满足的方程为.第18题图三、解答题(本大题共6 小题,共46 分.)19.(本题满分 8 分,每小题 4 分)( 1)计算: 123 ( 2)3 ( 6) ( 1)2;3 【解】( 2)先化简,再 求值:. .1x 2( x 1y 2) ( 3 x 1y 2 ) ,其中 x2 , y2 . 23233【解】20.(本题满分8 分)解方程(组):( 1)x 1x 21;3x y7( 2)2y8 365x【解】21.(本题满分6 分)学习了统计知识后,班主任王老师请班长对本班同学从家到学校上学的方式进行了一次调查.图①和图②是班长收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:图①图②(1)在扇形统计图中,计算“步行”部分所对应的中心角的度数;(2)求该班共有多少名学生;(3)在图①中,将表示“乘车”的部分补充完整.【解】22.(本题满分8 分)某铁矿码头将运进铁矿石记为正,运出铁矿石记为负.某天的记录如下:(单位: t)+100,- 80,+ 300,+ 160,- 200,- 180,+ 80,- 160.(1)当天铁矿石库存是增加了还是减少了?增加或减少了多少吨?( 2)码头用载重量为20 t 的大卡车运送铁矿石,每次运费100 元,问这一天共需运费多少元?【解】23.(本题满分8 分)如图,线段 AB 的中点为M ,C 点将线段MB 分成 MC ∶CB= 1∶ 3 的两段,若 AC=10 ,求 AB 的长.【解】24.(本题满分8 分)甲、乙两人从 A , B 两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3 小时两人相遇.已知在相遇时乙比甲多行驶了90 千米,相遇后经1 小时乙到达 A 地.( 1)问甲、乙行驶的速度分别是多少?( 2)甲、乙行驶多少小时,两车相距30 千米?【解】马鞍山市 2019— 2019 学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题 3 分,共 30 分)1.D 2.C3.A 4.D 5.B 6. A 7.C 8.B 9. D 10.C二、填空题(每小题 3 分,共 24 分)11. 5.6 12.13 13. 17° 29′ 14. 20% 15.1 16. 2n 117.20°18. y5x 1532三、解答题(共 46 分)119.( 1)【解】原式 =13 ( 8)( 6) 9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分124 54 29⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)【解】原式 =1x2x 2 y 23 x 1 y 2232 3= 3xy 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分22 244. ⋯⋯⋯⋯ ⋯⋯8 分 当 x2 , y时,原式 = 3 ( 2)66339 9(不化简直接代入求出正确值,给 2 分)20.【解】( 1)两边乘以 6,得:去括号,合并同类项,得:2( x 1) ( x 2)6x 4 6⋯⋯⋯⋯⋯⋯ 2分移项,得:x 2 . ⋯⋯⋯⋯⋯⋯ 4 分3x y 7①( 2)2 y8 ②5x由①,得: y 3x 7 ③将③代入②,得:5x 2(3 x 7) 8 .⋯⋯⋯⋯⋯⋯ 6 分去括号,合并同类项,得:11x 14 8移项,系数化为 1,得: x2 .将 x 2 代入③,得: y 1.x 2解,得:.⋯⋯⋯⋯⋯⋯8 分y1本题在解答过程中,能正确运用消元法得到一元一次方程,得 2 分.21.【解】( 1)中心角的度数为(1 20% 50%) 360 108 ;⋯⋯⋯⋯⋯⋯2分( 2)人数为2050% 40 (人);⋯⋯⋯⋯⋯⋯4分( 3)乘车的人数为8 人,图略.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分22.【解】( 1)(+ 100)+ (- 80)+ (+ 300)+ (+ 160)+ (- 200)+ (- 180)+ (+ 80)+ (- 160)=+ 20,即当天铁矿石库存增加了20 t;⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) (| + 100|+ |- 80|+ |+ 300|+ |+ 160|+ |- 200|+ |- 180|+ |+ 80|+ |- 160|) ÷20× 100=1 260 ÷20× 100=6 300所以这一天共需运费 6 300 元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分23.【解】设MC= x,则 BC= 3x,所以 MB= 4x.因为M 为 AB 的中点.所以AM=MB=4x .⋯⋯⋯⋯⋯⋯ 4 分则 AC=AM + MC= 4x+x =10,即x =2.所以 AB=2AM=8x=16.⋯⋯⋯⋯⋯⋯ 8 分24.【解】()设甲、乙行驶的速度分别是每小时x 千米、y千米,根据题意,得13x90 3 y⋯⋯⋯⋯⋯ 2 分y3xx15.解,得45y所以甲、乙行驶的速度分别是每小时15 千米、 45 千米;⋯⋯⋯⋯⋯ 4 分( 2)由第( 1)小题,可得 A ,B 两地相距 45×( 3+ 1)=180(千米).设甲、乙行驶 x 小时,两车相距30千米,根据题意,得两车行驶的总路程是(180- 30)千米或( 180+ 30)千米,则:(45 15)x18030或 (4515) x180 30.⋯⋯⋯⋯⋯ 6 分解,得: x 57或 x.22所以甲、乙行驶5或7小时,两车相距30 千米.⋯⋯⋯⋯⋯2 2。

2020-2021学年马鞍山市和县七年级上学期期末数学试卷(附解析)

2020-2021学年马鞍山市和县七年级上学期期末数学试卷(附解析)

2020-2021学年马鞍山市和县七年级上学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1.从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到2018年3月,我市电商从业人员已达873000人,数字873000可用科学记数法表示为()A. 8.73×103B. 87.3×104C. 8.73×105D. 0.873×1062.下列运算正确的是()A. 2m3+3m2=5m5B. (m+n)(n−m)=m2−n2C. m⋅(m2)3=m6D. m3÷(−m)2=m3.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −124.如果两数互为倒数,则它们的乘积是()A. 0B. 1C. 2D. 35.下列说法正确的有()①−mn2和−3n2m是同类项②3a−2的相反数是−3a+2③5mr2的次数是3④34x3是7次单项式.A. 1个B. 2个C. 3个D. 4个6.如图所示,天平中的物体a、b、c使天平处于平衡状态,则下列判断正确的是()A. a<cB. a<bC. a>cD. b<c7.若关于x的方程1+ax=3的解是x=−2,则a的值是()A. −2B. −1C. 21D. 28.下列说法正确的有几个()①直线AB与直线BA是同一条直线②平角是一条直线③两点之间,线段最短④如果AB=BC,则点B是线段AC的中点A. 1个B. 2个C. 3个D. 4个9.把一个体积为1立方分米的正方体平均分成若干个体积为1立方厘米的小正方体,将所有这些小正方体排成一排,拼成一个长方体(如图所示).设这个长方体的长为x厘米,那么2x+19等于()A. 39B. 219C. 2019D. 2001910.下面说法错误的是()A. M是AB的中点,则AB=2AMB. 直线上的两点和它们之间的部分叫作线段C. 一条射线把一个角分成两个角,这条射线叫作这个角的平分线D. 同角的补角相等二、填空题(本大题共4小题,共20.0分)11.写出一个关于x的二次三项式,使它的二次项系数为−1,则这个二次三项式为______ .12.如图,数轴上的点A,B分别表示−3,2,则A,B两点间的距离是______ .13.85°30′18″=______ 度.14.某种衬衫进价每件100元,标价每件150元,按8折出售,每件利润为______ .三、计算题(本大题共2小题,共16.0分)15.先化简,再求值;2(2a2+9b)−3(5a2−4b)其中a=−1,b=12.16.解方程:(1)3(20−y)=6y−4(y−11);(2)3x−14−1=5x−76.四、解答题(本大题共7小题,共74.0分)17.−12−(−10)÷12×2+(−4)2.18.计算:(1)120+(−24);(2)−5−(8−7)+3;(3)8÷(−2)2;(4)(−36)×(34−56−79)19.用大小相同的黑白两种颜色的菱形纸片按照黑色纸片逐渐增加1的规律拼成如图图案,已知“◇”的长对角线长为√3.(1)第4个图案中白色纸片的个数是______,图案的总长度为______;(2)如果第n个图案中有y个白色纸片,写出y与n的函数关系式,并写出第n个图案的总长度l;(3)当总长度为17√3时,求出此时图案中有多少个白色纸片和黑色纸片?20.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积.21.某中学组织七年级师生秋游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加秋游的人数是多少?(2)已知45座客车的日租金为每辆600元,60座客车的日租金为每辆650元,问怎么安排租车方案,才能最省钱(可以两种客车混租)?22.某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为张,5元纸币数量为张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)130钱数(元)300(2)求出、的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?23. 如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(______ )∴AD//EG,( ______ )∴∠1=∠2,( ______ )∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴ ______ = ______ (等量代换)∴AD平分∠BAC( ______ )参考答案及解析1.答案:C解析:解:数字873000可用科学记数法表示为8.73×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.答案:D解析:解:A、2m3与3m2不是同类项,不能合并,故本选项计算错误;B、原式=n2−m2,故本选项计算错误;C、原式=m1+6=m7,故本选项计算错误;D、原式=m3−2=m,故本选项计算正确.故选:D.根据合并同类项,平方差公式,幂的乘方与积的乘方以及同底数幂的除法计算法则解答.本题综合考查了合并同类项,平方差公式,幂的乘方与积的乘方以及同底数幂的除法,属于基础计算题.3.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.4.答案:B解析:根据互为倒数的乘积为1,故选B。

2019-2020学年马鞍山市数学七年级(上)期末学业质量监测模拟试题

2019-2020学年马鞍山市数学七年级(上)期末学业质量监测模拟试题

2019-2020学年马鞍山市数学七年级(上)期末学业质量监测模拟试题一、选择题1.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A.85°B.90°C.95°D.100°2.如图,直线l 是一条河,P ,Q 是两个村庄。

欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B.C. D.3.计算75°23′12″﹣46°53′43″=( )A .28°70′69″B .28°30′29″C .29°30′29″D .28°29′29″4.我国古代名著《九章算术》中有一个问题,原文:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”译文:野鸭从南海起飞,7天后达到北海;大雁从北海起飞,9日后达到南海,今野鸭和大雁分别从南海和北海同时起飞,几天后相遇?设x 天后相遇,可列方程为( )A.()791x +=B.11179x ⎛⎫+= ⎪⎝⎭C.11197x ⎛⎫-= ⎪⎝⎭D.11179x ⎛⎫-= ⎪⎝⎭5.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b(n>6),则a-b 的值为( )A.6B.8C.9D.12 6.下列各题中,合并同类项结果正确的是( )A.2a 2+3a 2=5a 2B.2a 2+3a 2=6a 2C.4xy-3xy=1D.2m 2n-2mn 2=07.下列方程中,以x = -1为解的方程是 ( ) A.13222x x +=- B.7(x -1)=0C.4x -7=5x +7D.13x =-3 8.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( )A .()13x 12x 1060=++B .()12x 1013x 60+=+C .x x 60101312+-=D .x 60x 101213+-= 9.多项式4x 2﹣x+1的次数是( ) A .4 B .3C .2D .1 10.如果水位下降4m ,记作﹣4m ,那么水位上升5m ,记作( )A .1mB .9mC .5mD .﹣511.有理数(﹣1)2,(﹣1)3,﹣12,|﹣1|,﹣(﹣1),﹣11- 中,其中等于1的个数是( ) A.3个B.4个C.5个D.6个 12.下列运算正确的是( ). A .-(-3)2=-9 B .-|-3|=3 C .(-2)3=-6 D .(-2)3=8二、填空题13.如图,点B 、O 、D 在同一直线上,若∠AOB=17°30′,∠COD=107°29′,则∠AOC= _____.14.如图,Rt △AOB 和Rt △COD 中,∠AOB=∠COD=90°, ∠B=50°, ∠C=60°, 点D 在边OA 上,将图中的△AOB 绕点O 按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t 秒时,边CD 恰好与边AB 平行,则t 的值为 ________.15.代数式x 2+x+3的值为7,则代数式21144x x +﹣3的值为_____. 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是___________元时,甲、乙两家超市实付款一样.17.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______18.定义:a是不为0的有理数,我们把1﹣1a称为a的倒数差.如:2的倒数差是1﹣12=12,12的倒数差是1﹣112=﹣1.已知a1=﹣13,a2是a1的倒数差,a3是a2的倒数差,a4是a3的倒数差,……,依此类推,则a2019=_____.19.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=____.20.由四舍五入法得到的近似数1.230万,它是精确到_____位.三、解答题21.定义一种新运算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5(1)求(﹣2)⊕3的值;(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;(3)若x⊕1=2(1⊕y),求代数式x+y+1的值.22.(8分)我市中学组篮球比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?23.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.24.如图,以直线 AB 上一点 O 为端点作射线 OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点 O 处.(注:∠DOE=90°)(1)如图①,若直角三角板 DOE 的一边 OD 放在射线 OB 上,则∠COE= °;(2)如图②,将直角三角板 DOE 绕点 O 逆时针方向转动到某个位置,若 OC 恰好平分∠BOE,求∠COD 的度数;(3)如图③,将直角三角板 DOE 绕点 O 转动,如果 OD 始终在∠BOC 的内部,试猜想∠BOD 和∠COE 有怎样的数量关系?并说明理由.25.先化简,再求值:()()2222233a b ab ab a b ---+,其中1a =-,13b =. 26.先化简,再求值:﹣a 2b+(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.27.在数轴上表示下列各数,并比较它们的大小.4,-1,132-,0,1.5,-2. 比较大小: < < < < <28.100÷(﹣2)2﹣(﹣2)÷(﹣12).【参考答案】一、选择题1.B2.C3.D4.B5.D6.A7.A8.B9.C10.C11.B12.A二、填空题13.90°1′14.5秒或14.5秒15.-216.75017.12118. SKIPIF 1 < 0解析:3 419.11020.十三、解答题21.(1)2;(2);(3)3.22.胜负场数应分别是18和4.23.(1)MN的长为8cm;(2)∠AOB=120°.24.(1)20;(2)20 º;(3)∠COE﹣∠BOD=20°.25.10 926.-4.27.比较大小见解析,画图见解析. 28.21。

2019-2020学年安徽省马鞍山市数学七年级(上)期末学业质量监测模拟试题

2019-2020学年安徽省马鞍山市数学七年级(上)期末学业质量监测模拟试题

2019-2020学年安徽省马鞍山市数学七年级(上)期末学业质量监测模拟试题一、选择题1.如图是某几何体的表面展开图,则该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图所示,点N 在点O 的( )方向上.A.北偏西65°B.南偏东65°C.北偏西25°D.南偏西25°3.如图,OC 为AOB ∠内一条直线,下列条件中不能确定OC 平分AOB ∠的是( )A.AOC BOC ∠∠=B.AOB 2AOC ∠∠=C.AOC COB AOB ∠∠∠+=D.1BOC AOB 2∠∠= 4.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天.A.10B.20C.30D.255.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是( )A .10B .15C .20D .256.多项式4xy 2–3xy 3+12的次数为( )A .3B .4C .6D .7 7.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 8.如图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价是( )A .22元B .23元C .24元D .26元9.下列判断正确的是( )A .-a 不一定是负数B .|a|是一个正数C .若|a|=a ,则a >0;若|a|=-a ,则a <0D .只有负数的绝对值是它的相反数10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A.4nB.4mC.()2m n +D.()4m n -11.下列结论正确的是( )A .两个负数,绝对值大的反而小B .两数之差为负,则这两数异号C .任何数与零相加,都得零 D .正数的任何次幂都是正数;负数的偶次幂是负数12.若数轴上的点A 、B 分别与有理数a 、b 对应,则下列关系正确的是( )A.a <bB.﹣a <bC.|a|<|b|D.﹣a >﹣b二、填空题13.如图,射线OA 的方向是北偏东20°,射线OB 的方向是北偏西40°,OD 是OB 的反向延长线.若OC 是∠AOD 的平分线,则∠BOC=_____°,射线OC 的方向是_____.14.如图,OP 平分∠MON ,PA ⊥ON ,垂足为A ,Q 是射线OM 上的一个动点,若P 、Q 两点距离最小为8,则PA =____.15.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为______人.16.写出一个与32x y -是同类项的单项式为______.17.已知a 、b 、c 为非零实数,请你探究以下问题:()1当a 0>时,a a =______;当ab 0<时,ab ab =______.()2若a b c 0.++=那么a b c abc a b c abc +++的值为______.18.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为______ 小时.19.比较大小:34-________ ﹣0.65(填“<”、“>”或“=”) 20.若|x|=4,则x=_____;若|﹣x|=7,则x=_____.三、解答题21.如图所示,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若ED =9,求线段AB 的长度.22.图1所示的三棱柱,高为7cm ,底面是一个边长为5cm 的等边三角形.(1)这个三棱柱有 条棱,有 个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开 条棱,需剪开棱的棱长的和的最大值为 cm .23.“滴滴快车”是一种便捷的出行工具,计价规则如下表:随着互联的不断发展,更多的人们选择了“滴滴快车”出行。

安徽省马鞍山市七年级上学期数学期末联考试卷

安徽省马鞍山市七年级上学期数学期末联考试卷

安徽省马鞍山市七年级上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2019·岐山模拟) 的倒数是()A .B .C .D .2. (1分)下列说法中,正确的是()A . 直线是一个平角B . 周角是一条射线C . 角的两边是射线D . 角的两边是直线3. (1分)(2018·上城模拟) 浙江省陆域面积为101800平方千米。

数据101800用科学记数法表示为()A . 1.018×104B . 1.018×105C . 10.18×105D . 0.1018×1064. (1分) (2020七上·盐城期中) 下列运算结果是的是()A .B .C .D .5. (1分)(2019·兴县模拟) 围棋是中国起源很早的传统文化游戏之一.它的玩法从草创到现在的样式,有一个逐渐演变的过程,在一个不透明的罐子里装有若干个白色的围棋子,现要估计白棋子的个数,王叔叔从装黑棋子的罐子里取出10个黑棋子放入白棋子的罐子里.这些棋子除颜色外其他完全相同.将罐子里的棋子搅匀,从中随机摸出一个棋子,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有25次摸到黑棋子,请你估计这个罐子里装有的白棋子有()A . 80个B . 75个C . 70个D . 60个6. (1分) (2019八下·璧山期中) 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A . 6B . 8C . 10D . 127. (1分) (2019七上·光泽月考) 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60kw/h ,水流速度是akm/h , 3h后两船相距()A . 6a千米B . 3a千米C . 180千米D . 360千米8. (1分)按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A . 1种B . 2种C . 3种D . 4种9. (1分) (2020九上·合肥期末) 将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心,则图中阴影部分的面积是()A .B .C .D .10. (1分) (2017七上·姜堰期末) 某品牌商品,按标价八折出售,仍可获得20%的利润,若该商品标价为18元,则该商品的进价为()A . 13元B . 12元C . 15元D . 16元11. (1分) (2020七下·博兴期中) 有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④ 是17的平方根.其中正确的有()A . 0个B . 1个C . 2个D . 3个12. (1分)直线上有三个点,其中AB=5cm,BC=2cm,则线段AC的长度是()A . 3cmB . 7cmC . 3cm或7cmD . 5cm二、填空题 (共4题;共4分)13. (1分)(2019·广西模拟) 一个物体的俯视图是圆,这个物体的可能形状是________、________.14. (1分) (2019七上·丰台期中) 比较大小:﹣3________﹣2(填“<”或“>”)。

2019-2020学年马鞍山市和县七年级上册期末数学试卷(有答案)【优质版】

2019-2020学年马鞍山市和县七年级上册期末数学试卷(有答案)【优质版】

2019-2020学年安徽省马鞍山市和县七年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.3的相反数的倒数是()A. B. C. D.2.某市2019-2020实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A. B. C. D.3.下列说法中正确的是()A. 0不是单项式B. 的系数为C. 的次数为2D. 不是多项式4.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A. 1B. 2C. 3D. 45.甲乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是()A. 甲超市B. 乙超市C. 两个超市一样D. 与商品的价格有关6.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7.在有理数范围内定义运算“*”,其规则为a*b=-,则方程(2*3)(4*x)=49的解为()A. B. C. D. 558.方程2x-1=3与方程1-=0的解相同,则a的值为()A. 3B. 2C. 1D.9.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A. B. C. D.10.下列说法中,不正确的有()(1)正方体有8个顶点和6个面(2)两个锐角的和一定大于90°(3)若∠AOB=2∠BOC,则OC是∠AOB的平分线(4)两点之间,线段最短(5)钝角的补角一定大于这个角的本身(6)射线OA也可以表示为射线AOA. 2个B. 3个C. 4个D. 5个二、填空题(本大题共4小题,共20.0分)11.若多项式3x2-2(5+y-3x2+mx2)的值与x的值无关,则m的等于______.12.写出一个满足下列条件的一元一次方程:(1)未知数的系数为-,(2)方程的解是6,则这样的方程可写为______.13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.14.有理数a和b在数轴上的位置如图所示,则下列结论中:(1)a-b>0(2)ab>0(3)-a<b<0(4)-a<-b<a(5)|a|+|b|=|a-b|其中正确的是______(把所有正确结论的序号都选上)三、计算题(本大题共3小题,共32.0分)15.计算:-|-32|-(-3)3-(--)×24.16.先化简,再求值:8a2-10ab+2b2-(2a2-10ab+8b2),其中a=,b=-.17.为满足同学们课外阅读的需求,某中学图书馆向出版社邮购科普系列图书,每本书单价为16元,书的价钱和邮费是通过邮局汇款,相关的书价折扣、邮费和汇款的汇费如下表所示(总费用=总书价+总邮费+总汇费)购书数量折扣邮费汇费不超过10本九折6元每100元汇款需汇费1元(汇款不足100元时按100元汇款收汇费)超过10本八折总书价的10%每100元汇款需汇费1元(汇款不足100元的部分不收汇费)(1)若一次邮购7本,共需总费用为______元.(2)已知学校图书馆需购图书的总数是10的整倍数,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费用为1064元时,共邮购了多本图书?②若你是学校图书馆负责人,从节约的角度出发,在“每次邮购10本“与“一次性邮购”这两种方式中选择一种,你会选择哪一种?计算并说明理由.四、解答题(本大题共5小题,共58.0分)18.解方程:x+=-x19.207年李明家买了一辆轿车,他连续记录了一周中每天行驶的路程(如下表),以50km为标准,多于50km的记“+”,不足50km的记“-”,刚好506m的记“0”.周一周二周三周四周五周六周日路程(km)-60-127-9+15+12(1)请你求出李明家轿车一周中平均每天行驶多少千米?(2)如果每行驶100km需要汽油8升,汽油价格 6.85元/升,请计算李明家轿车一个月(按30天计算)的汽油费是多少元(精确到个位)?20.(1)如图,已知线段a、b、c,用圆规和直尺作一条线段,使它等于a-2b+c.(2)一个角的补角比它的余角度数的4倍还多30°,求这个角的度数.21.观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n=______.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.22.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB,∠AOD=50°,且∠AOB=90°,求∠EOC的度数.答案和解析1.【答案】C【解析】解:3的相反数是-3,3的相反数的倒数是-,故选:C.根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,先求相反数再求倒数.2.【答案】D【解析】解:280亿=2.8×1010.故选:D.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【答案】C【解析】解:(A)0是单项式,故A错误;(B)πX3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选:C.根据单项式与多项式的概念即可求出答案.本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.4.【答案】C【解析】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:设商品的定价为λ,则在甲超市购买这种商品价格为:=;在乙超市购买这种商品的价格为:=,∴在乙超市购买这种商品合算.故选:B.根据题意,分别列出降价后在甲乙两个商场的购物价格,问题即可解决.该题考查了列代数式在现实生活中的应用问题;解题的关键是深刻把握题意,正确列出代数式,准确求解运算.6.【答案】B【解析】解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选:B.根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.7.【答案】D【解析】解:根据题中的新定义得:-×(-)=49,整理得:56+7x=441,解得:x=55,故选:D.原式利用题中的新定义计算即可求出值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:解方程2x-1=3,得x=2,把x=2代入方程1-=0,得1-=0,解得,a=.故选:D.先解方程2x-1=3,求得x的值,因为这个解也是方程1-=0的解,根据方程的解的定义,把x代入求出a的值.此题考查同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.9.【答案】B【解析】解:A、左视图和主视图都是相同的正方形,所以A选项错误;B、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高,主视图的长方形的宽为三棱柱的底面三角形的边长,所以B选项正确;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选:B.从正面看是主视图,从左面看是左视图,利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.【答案】C【解析】解:(1)正方体有8个顶点和6个面,正确;(2)30°+20°=50°,所以两个锐角的和不一定大于90°,不正确;(3)OC在∠AOB的外部时,OC不平分∠AOB,所以若∠AOB=2∠BOC,则OC是∠AOB的平分线,不正确;(4)两点之间,线段最短,正确;(5)如果一个钝角是120°,则它的补角为60°,所以钝角的补角不一定大于这个角的本身,不正确;(6)射线OA不能表示为射线AO,不正确;6),5),(不正确的有:(2),(3),(故选:C.根据正方体的定义、角平分线的性质、角的定义,线段,补角和射线的性质进行判断即可.本题考查了正方体的定义、角平分线的性质、角的定义,线段,补角和射线的性质,理解这些定义和性质是解题关键.11.【答案】4.5【解析】解:∵3x2-2(5+y-3x2+mx2)=3x2-10-2y+6x2-2mx2,=(3+6-2m)x2-2y-10,此式的值与x的值无关,则3+6-2m=0,解得m=4.5.故答案为:4.5.此题可根据多项式3x2-2(5+y-3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.12.【答案】-x=-4【解析】解:根据题意得:-x=-4,故答案为:-x=-4根据题意写出方程即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】2或8【解析】解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点,∴AD=AC=×16=8.故答案为:2或8.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答.本题考查的是两点间的距离,解答此题时要注意应用分类讨论的思想,不要漏解.14.【答案】(1)、(3)、(4)、(5)【解析】解:由数轴上点的位置关系,得a >0>b ,|a|>|b|.(1)a-b >0,正确;(2)ab <0,错误;(3)-a <b <0,正确;(4)-a <-b <a ,正确,(5)|a|+|b|=|a-b|,正确;故答案为:(1),(3),(4),(5).根据数轴上点的位置关系,可得a 、b 的大小,根据绝对值的意义,判断即可.本题考查了有理数的大小比较,利用数轴确定a 、b 的大小即|a|与|b|的大小是解题关键.15.【答案】解:-|-32|-(-3)3-(--)×24 =-9+27-×24+×24+×24 =-9+27-16+6+9 =17.【解析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【答案】解:原式=8a 2-10ab+2b 2-2a 2+10ab-8b 2=6a 2-6b 2,当a=,b=-时,原式=-=.【解析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17.【答案】108.8【解析】解:(1)由题意可得,总书价为:16×7×0.9=100.8(元),∴总的费用为:100.8+6+2=108.8(元),故答案为:108.8元;(2)①设共邮购了x 本图书,∵16×10×0.9=144(元),∴16×x ×0.9+6×+=1064,解得,x=70,答:共邮购了70本;②从节约的角度出发,选择一次性邮购的方式,理由:设共购买了x本,按每次邮购10本,最后的总费用为:16×0.9x+6×+=15.2x(元),一次性邮购的总书价和邮费为:16×0.8x(1+10%)=14.08x,∵超过10本,不足100元的部分不收汇费,∴汇费不大于:0.1408x元,∵15.2x-(14.08x+0.1408x)=0.9792x>0,∴从节约的角度出发,选择一次性邮购的方式.(1)根据题意和表格中的数据,可以解答本题;(2)①根据题意和表格中的数据可以列出相应的方程,从而可以解答本题;②根据题意,可以分别表示出两种方式的总费用,然后比较大小,即可解答本题.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.18.【答案】解:去分母,得2x+5(x-1)=5×4(x-1)-2×4x,去括号,得2x+5x-5=20x-20-8x,移项,得2x+5x-20x+8x=-20+5,合并同类项,得-5x=-15,系数化为1,得x=3.【解析】依次经过去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了一元一次方程的解法.题目难度不大,掌握解一元一次方程的一般步骤是解决本题的关键.19.【答案】解:(1)50+(-6+0-12=7-9+15+12)÷7=51(km)答:李明家轿车一周中平均每天行驶51千米;(2)(元)答:李明家轿车一个月(按30天计算)的汽油费是838元【解析】(1)求出表格中数字之和,与50与7的积相加,除以7即可求出结果;(2)求出一千米的耗油,乘以单价,再乘以平均每天行驶的千米数,即可得到结果.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.弄清题意是解本题的关键.20.【答案】解:(1)如图,作射线AM,在AM顺次截取AB=a,BC=c,截取CD=2b,则相对AD 即为所求;(2)设这个角为x度.由题意:180-x=4(90-x)+30,解得x=70,答:这个角的度数为70°.【解析】(1)如图,作射线AM,在AM顺次截取AB=a,BC=c,截取CD=2b,则相对AD即为所求;(2)设这个角为x度.根据题意,构建方程即可解决问题;本题考查作图-复杂作图,余角和补角的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】【解析】解:(1)1+2+3+4+…+n=;故答案为:;(2)1+2+3+4+…+200==20100.(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=.(1)从1开始连续自然数的和,等于两端的数相加乘数的个数,再除以2,由此得出答案即可;(2)利用(1)的规律计算即可;(3)把整体和提公因式3可进行计算.此题考查数字的变化规律,找出数字之间的联系,得出运算规律是解决问题的关键.22.【答案】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)=45°.(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α.(3)∵∠AOB=90°,∠AOD=50°,∴∠DOB=40°,∵∠EOA=∠AOD,∠DOC=∠DOB,∴∠DOE=∠AOD=40°,∠DOC=∠DOB=30°,∴∠EOC=∠EOD+∠DOC=70°.【解析】(1)根据角平分线的定义以及角的和差定义计算即可;(2)利用(1)中结论计算即可;(3)分别求出∠EOD,∠DOC即可解决问题;本题考查角的计算、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

安徽省马鞍山市2019-2020学年数学七上期末调研试卷

安徽省马鞍山市2019-2020学年数学七上期末调研试卷

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.若∠β=25°31',则∠β的余角等于( ) A.64°29'B.64°69'C.154°29'D.154°69'2.下列说法中,正确的有( )①小于90°的角是锐角;②等于90°的角是直角;③大于90°的角是钝角;④平角等于180°;⑤周角等于360°.A .5个B .4个C .3个D .2个3.如图,将一副三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=()度。

A.小于180°B.大于180°C.等于180°D.无法确定4.下面计算步骤正确的是( )A.由2(2x -1)-3(x -3)=1,变形得4x -2-3x -9=1 .B.由2?3x =1+-32x ,变形得2(2-x )=1+3(x -3) . C.若α∠的补角是它的3倍,则α∠= 22.5°.D.若a 与b 互为倒数,则-34ab =-34. 5.下列每组单项式中是同类项的是( ) A.2xy 与﹣13yx B.3x 2y 与﹣2xy 2 C.12x -与﹣2xy D.xy 与yz6.下列计算正确的是( ) A.x 3·x 2=x 6B.(2x)2=2x 2C.()23x =x 6D.5x -x =47.下列各式运用等式的性质变形,错误的是( ) A .若a b -=-,则a b = B .若a bc c=,则a b = C .若ac bc =,则a b =D .若22(1)(1)m a m b +=+,则a b =8.鸡兔同笼问题是我国古代著名趣题之一. 大约在1500年前,《孙子算经》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只9.下列各组代数式中,属于同类项的是()A.1xy2与1x2B.26m与22m-C.25pq与22p q-D.5a与5b10.一个数的相反数是-3,则这个数是()A.3 B.-3 C.2 D.011.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是()A.522.8元 B.510.4元 C.560.4元 D.472.8元12.下列运算中,正确的是()A.(-2)+(+1)=-3 B.(-2)-(-1)=-1C.(-2)×(-1)=-2 D.(-2)÷(-1)=-2二、填空题13.如图,∠AOB=72︒,射线OC将∠AOB分成两个角,且∠AOC:∠BOC=1:2,则∠BOC=_____.14.22.5°=________°________′;12°24′=________°.15.若4x﹣1与7﹣2x的值互为相反数,则x=_____.16.某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年安徽省马鞍山市和县七年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.3的相反数的倒数是()A. B. C. D.2.某市2019-2020实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A. B. C. D.3.下列说法中正确的是()A. 0不是单项式B. 的系数为C. 的次数为2D. 不是多项式4.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A. 1B. 2C. 3D. 45.甲乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是()A. 甲超市B. 乙超市C. 两个超市一样D. 与商品的价格有关6.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7.在有理数范围内定义运算“*”,其规则为a*b=-,则方程(2*3)(4*x)=49的解为()A. B. C. D. 558.方程2x-1=3与方程1-=0的解相同,则a的值为()A. 3B. 2C. 1D.9.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A. B. C. D.10.下列说法中,不正确的有()(1)正方体有8个顶点和6个面(2)两个锐角的和一定大于 °(3)若∠AOB=2∠BOC,则OC是∠AOB的平分线(4)两点之间,线段最短(5)钝角的补角一定大于这个角的本身(6)射线OA也可以表示为射线AOA. 2个B. 3个C. 4个D. 5个二、填空题(本大题共4小题,共20.0分)11.若多项式3x2-2(5+y-3x2+mx2)的值与x的值无关,则m的等于______.12.写出一个满足下列条件的一元一次方程:(1)未知数的系数为-,(2)方程的解是6,则这样的方程可写为______.13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.14.有理数a和b在数轴上的位置如图所示,则下列结论中:(1)a-b>0(2)ab>0(3)-a<b<0(4)-a<-b<a(5)|a|+|b|=|a-b|其中正确的是______(把所有正确结论的序号都选上)三、计算题(本大题共3小题,共32.0分)15.计算:-|-32|-(-3)3-(--)× .16.先化简,再求值:8a2-10ab+2b2-(2a2-10ab+8b2),其中a=,b=-.17.为满足同学们课外阅读的需求,某中学图书馆向出版社邮购科普系列图书,每本书单价为16元,书的价钱和邮费是通过邮局汇款,相关的书价折扣、邮费和汇款的汇费如下表所示(总费用=总(1(2)已知学校图书馆需购图书的总数是10的整倍数,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费用为1064元时,共邮购了多本图书?②若你是学校图书馆负责人,从节约的角度出发,在“每次邮购10本“与“一次性邮购”这两种方式中选择一种,你会选择哪一种?计算并说明理由.四、解答题(本大题共5小题,共58.0分)18.解方程:x+=-x19.207年李明家买了一辆轿车,他连续记录了一周中每天行驶的路程(如下表),以50km为标准,(1(2)如果每行驶100km需要汽油8升,汽油价格6.85元/升,请计算李明家轿车一个月(按30天计算)的汽油费是多少元(精确到个位)?20.(1)如图,已知线段a、b、c,用圆规和直尺作一条线段,使它等于a-2b+c.(2)一个角的补角比它的余角度数的4倍还多 °,求这个角的度数.21.观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n=______.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.22.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB= °,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB,∠AOD= °,且∠AOB= °,求∠EOC的度数.答案和解析1.【答案】C【解析】解:3的相反数是-3,3的相反数的倒数是-,故选:C.根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,先求相反数再求倒数.2.【答案】D【解析】解:280亿= . × 10.故选:D.用科学记数法表示较大的数时,一般形式为a× n,其中 ≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a× n,其中 ≤|a|<10,确定a与n的值是解题的关键.3.【答案】C【解析】解:(A)0是单项式,故A错误;(B)πX3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选:C.根据单项式与多项式的概念即可求出答案.本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.4.【答案】C【解析】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:设商品的定价为λ,则在甲超市购买这种商品价格为:=;在乙超市购买这种商品的价格为:=,∴在乙超市购买这种商品合算.故选:B.根据题意,分别列出降价后在甲乙两个商场的购物价格,问题即可解决.该题考查了列代数式在现实生活中的应用问题;解题的关键是深刻把握题意,正确列出代数式,准确求解运算.6.【答案】B【解析】解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D 与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选:B.根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.7.【答案】D【解析】解:根据题中的新定义得:-×(-)=49,整理得:56+7x=441,解得:x=55,故选:D.原式利用题中的新定义计算即可求出值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:解方程2x-1=3,得x=2,把x=2代入方程1-=0,得1-=0,解得,a=.故选:D.先解方程2x-1=3,求得x的值,因为这个解也是方程1-=0的解,根据方程的解的定义,把x代入求出a的值.此题考查同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.9.【答案】B【解析】解:A、左视图和主视图都是相同的正方形,所以A选项错误;B、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高,主视图的长方形的宽为三棱柱的底面三角形的边长,所以B选项正确;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选:B.从正面看是主视图,从左面看是左视图,利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.【答案】C【解析】解:(1)正方体有8个顶点和6个面,正确;(2) °+ °= °,所以两个锐角的和不一定大于 °,不正确;(3)OC在∠AOB的外部时,OC不平分∠AOB,所以若∠AOB=2∠BOC,则OC是∠AOB的平分线,不正确;(4)两点之间,线段最短,正确;(5)如果一个钝角是 °,则它的补角为 °,所以钝角的补角不一定大于这个角的本身,不正确;(6)射线OA不能表示为射线AO,不正确;不正确的有:(2),(3),(5),(6),故选:C.根据正方体的定义、角平分线的性质、角的定义,线段,补角和射线的性质进行判断即可.本题考查了正方体的定义、角平分线的性质、角的定义,线段,补角和射线的性质,理解这些定义和性质是解题关键.11.【答案】4.5【解析】解:∵3x2-2(5+y-3x2+mx2)=3x2-10-2y+6x2-2mx2,=(3+6-2m)x2-2y-10,此式的值与x的值无关,则3+6-2m=0,解得m=4.5.故答案为:4.5.此题可根据多项式3x2-2(5+y-3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.12.【答案】-x=-4【解析】解:根据题意得:-x=-4,故答案为:-x=-4根据题意写出方程即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】2或8【解析】解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D是线段AC的中点,∴AD=AC=× = ;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D是线段AC的中点,∴AD=AC=× = .故答案为:2或8.由于线段BC与线段AB的位置关系不能确定,故应分C在线段AB内和AB外两种情况进行解答.本题考查的是两点间的距离,解答此题时要注意应用分类讨论的思想,不要漏解.14.【答案】(1)、(3)、(4)、(5)【解析】解:由数轴上点的位置关系,得a>0>b,|a|>|b|.(1)a-b>0,正确;(2)ab<0,错误;(3)-a<b<0,正确;(4)-a<-b<a,正确,(5)|a|+|b|=|a-b|,正确;故答案为:(1),(3),(4),(5).根据数轴上点的位置关系,可得a、b的大小,根据绝对值的意义,判断即可.本题考查了有理数的大小比较,利用数轴确定a、b的大小即|a|与|b|的大小是解题关键.15.【答案】解:-|-32|-(-3)3-(--)×=-9+27-× +× +×=-9+27-16+6+9=17.【解析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【答案】解:原式=8a2-10ab+2b2-2a2+10ab-8b2=6a2-6b2,当a=,b=-时,原式=-=.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.17.【答案】108.8【解析】解:(1)由题意可得,总书价为: × × . = . (元),∴总的费用为:100.8+6+2=108.8(元),故答案为:108.8元;(2)①设共邮购了x本图书,∵ × × . = (元),∴ ×x× . + ×+=1064,解得,x=70,答:共邮购了70本;②从节约的角度出发,选择一次性邮购的方式,理由:设共购买了x本,按每次邮购10本,最后的总费用为: × . x+ ×+=15.2x(元),一次性邮购的总书价和邮费为: × . x(1+10%)=14.08x,∵超过10本,不足100元的部分不收汇费,∴汇费不大于:0.1408x元,∵15.2x-(14.08x+0.1408x)=0.9792x>0,∴从节约的角度出发,选择一次性邮购的方式.(1)根据题意和表格中的数据,可以解答本题;(2)①根据题意和表格中的数据可以列出相应的方程,从而可以解答本题;②根据题意,可以分别表示出两种方式的总费用,然后比较大小,即可解答本题.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.18.【答案】解:去分母,得2x+5(x-1)= × (x-1)- × x,去括号,得2x+5x-5=20x-20-8x,移项,得2x+5x-20x+8x=-20+5,合并同类项,得-5x=-15,系数化为1,得x=3.【解析】依次经过去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了一元一次方程的解法.题目难度不大,掌握解一元一次方程的一般步骤是解决本题的关键.19.【答案】解:(1)50+(-6+0-12=7-9+15+12)÷ = (km)答:李明家轿车一周中平均每天行驶51千米;(2)(元)答:李明家轿车一个月(按30天计算)的汽油费是838元【解析】(1)求出表格中数字之和,与50与7的积相加,除以7即可求出结果;(2)求出一千米的耗油,乘以单价,再乘以平均每天行驶的千米数,即可得到结果.此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.弄清题意是解本题的关键.20.【答案】解:(1)如图,作射线AM,在AM顺次截取AB=a,BC=c,截取CD=2b,则相对AD即为所求;(2)设这个角为x度.由题意:180-x=4(90-x)+30,解得x=70,答:这个角的度数为 °.【解析】(1)如图,作射线AM,在AM顺次截取AB=a,BC=c,截取CD=2b,则相对AD即为所求;(2)设这个角为x度.根据题意,构建方程即可解决问题;本题考查作图-复杂作图,余角和补角的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】【解析】解:(1) + + + +…+n=;故答案为:;(2) + + + +…+ ==20100.(3) + + + +… n= ( + + + +…+n)=.(1)从1开始连续自然数的和,等于两端的数相加乘数的个数,再除以2,由此得出答案即可;(2)利用(1)的规律计算即可;(3)把整体和提公因式3可进行计算.此题考查数字的变化规律,找出数字之间的联系,得出运算规律是解决问题的关键.22.【答案】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)= °.(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α.(3)∵∠AOB= °,∠AOD= °,∴∠DOB= °,∵∠EOA=∠AOD,∠DOC=∠DOB,∴∠DOE=∠AOD= °,∠DOC=∠DOB= °,∴∠EOC=∠EOD+∠DOC= °.【解析】(1)根据角平分线的定义以及角的和差定义计算即可;(2)利用(1)中结论计算即可;(3)分别求出∠EOD,∠DOC即可解决问题;本题考查角的计算、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

相关文档
最新文档