八年级数学第一学期期末试题

合集下载

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。

每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<35.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=5;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);(2)S△ABC=3×4﹣×2×2﹣×2×3﹣×4×1=5;故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。

八年级数学上册期末试题及答案解析

八年级数学上册期末试题及答案解析

期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.下列各式中,无论字母取何实数时,分式都有意义的是( )A.225x x+B.211y y -+C.213x x+D.21ba + 2.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10 000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装个鸡蛋,根据题意下列方程正确的是( ) A .10 00010 0001050x x -=+ B .10 00010 0001050x x -=- C .10 00010 0001050x x -=- D .10 00010 0001050x x-=+ 3.方程22(1)101x x ++=-有增根,则增根是( ) A.x =1 B.x =-1 C.x =±1D.04.如图,已知点A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( ) A.甲B.乙C.丙D.丁5.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .196.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7.如图所示,四边形ABCD 是平行四边形,E 是边CD 延长线上一点,BE 分别交AC 、AD 于点O 、F ,则图中相似三角形共有( )第6题图第5题图 第4题图A .6对B .5对C .4对D .3对8.举反例说明“一个角的余角大于这个角”是假命题,错误的是( )A.设这个角是45°,它的余角是45°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°9.针对甲、乙两组数据:甲组:20,21,23,25,26;乙组:l00,101,103,105,106.下列说法正确的是( )A .乙组比甲组稳定B .甲组比乙组稳定C .甲乙两组的稳定程度相同D .无法比较两组数据的稳定程度10.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.566.5这一小组的频率为( ) A .0.04 B .0.5 C .0.45 D .0.4 11.等式=成立的条件是( )A.1x >B.1x <-C.≥D.≤ 12.24n n 的最小值是( )A.4B.5C.6D.2 二、填空题(每小题3分,共24分)13.若干名游客要乘坐汽车,要求每辆汽车坐的人数相等,如果每辆汽车乘坐30人,那么有一人未能上车;如果少一辆汽车,那么所有游客正好能平均分到各辆汽车上,已知每辆汽车最多容纳40人,则有游客 人. 14.化简262393m m m m +÷+--的结果是 . 15.为了调查不同面额纸币上细菌数量与使用频率之间的关系,某中学研究性学习小组从银行、商店、农贸市场及医院收费处随机采集了5种面额纸币各30张,分别用无菌生理盐水溶液清洗这些纸币,对洗出液进行细菌培养,测得细菌如下表:面额5角1元5元10元100元细菌总数(个/30张) 147 400 381 150 98 800 145 500 12 250(1)计算出所有被采集的纸币平均每张的细菌个数约为 (结果取整数); (2)由表中数据推断出面额为 的纸币的使用频率较高,根据上面的推断和生活常识总结出:纸币上细菌越多,纸币的使用频率 ,看来,接触钱币以后要注意洗手噢!第7题图16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2009~2013年,这两家公司中销售量增长较快的是 公司.17.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (填“甲”或“乙”).18.不通过计算,比较图中甲、乙两组数据的标准差:s 甲 s 乙.(填“>”“<”或“=”)19.若△ABC 的三边长为a ,b ,c ,其中a ,b 满足22690a b b -+-+=,则c 的取值范围 为________.20.已知a b 、为有理数,m n 、分别表示57-的整数部分和小数部分, 且21amn bn +=,则2a b += . 三、解答题(共60分)21.(6分)(1)计算:12 01112(3)(1)3-⎛⎫-+--- ⎪⎝⎭-1;(2)化简:9352422a a a a -⎛⎫÷+- ⎪--⎝⎭. 22.(6分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(6分)如图,D 是△ABC 的边AB 上一点,连接CD ,若AD =2,BD =4,∠ACD =∠B ,求AC 的长.第23题图第16题图第18题图24.(6分)如图,△OAB 是等腰直角三角形,∠A =90°,AO =AB .以斜边OB 为直角边,按顺时针方向画等腰直角三角形OBC ,再以同样的方法画等腰直角三角形OCD .(1)按照此种要求和顺序画等腰直角三角形ODE 和等腰直角三角形OEF ; (2)在完成(1)后,图中有位似图形吗?若有,请算出较小三角形与较大三角形的位似比.25.(6分)判断下列命题是真命题还是假命题,如果是假命题,举一个反例:(1)两条直线被第三条直线所截,同位角相等; (2)如果>b ,那么c >bc ; (3)两个锐角的和是钝角.26.(6分)如图所示,AD 是△ABC 的高,∠EAB =∠DAC ,EB ⊥AB .试证明:AD •AE =AC •AB .27.(8分)某班参加体育测试,其中100 m 游泳项目的男、女生成绩的频数分布表如下: 男生100 m 游泳成绩的频数分布表 组别(min )1.552.552.553.55 3.554.554.555.55频数 2 12 5 1 女生100 m 游泳成绩的频数分布表组别(min )1.552.552.553.553.554.554.555.555.556.55频数168 41(1)在同一坐标系中画出男、女生100 m 游泳成绩的频数分布折线图. (2)男生成绩小于3.55 min 为合格,女生成绩小于4.55 min 为合格.问男、女生该项目 成绩合格的频数、频率分别为多少? (3)根据所画的频数分布折线图,分析比较男、女生该项目成绩的差异(至少说出两项). 28.(8分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒): 编号类型 一 二 三 四 五 六 七 八 九 十 甲种电子钟 1 -3 -4 4 2 -2 2 -1 -1 2 乙种电子钟4-3-12-21-22-21(1)计算甲、乙两种电子钟走时误差的平均数. (2)计算甲、乙两种电子钟走时误差的方差. (3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:第27题图第24题图第26题图你会买哪种电子钟?为什么? 29.(8分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.(1)试求:①671+的值;②nn ++11(n 为正整数)的值.(2+⋅⋅⋅+.期末检测题参考答案1.B 解析:A.当x =0时,分母等于0,没有意义,故选项错误;B.不论y 取何值,210y +>一定成立,故无论字母取何实数时,分式都有意义,故选项正确;C.当x =0时,分母等于0,没有意义,故选项错误;D.当1a =-时,分母等于0,没有意义,故选项错误.故选B .2.B 解析:已知每个甲型包装箱可装个鸡蛋,则每个乙型包装箱可装个鸡蛋,根据题意,得10 00010 0001050x x-=-.故选B . 3.B 解析:方程两边都乘21x -,得22110x x ++-=().∵ 原方程有增根,∴ 最简公分母210x -=,解得x =1或-1.当x =1时,4=0,这是不可能的;当x =-1时,0=0,符合题意.故选B . 4.C 解析:根据题意,△ABC 的三边之比为2︰5︰5,要使△ABC ∽△PQR ,则△PQR 的三边之比也应为2︰5︰5,经计算只有丙点合适,故选C .5.B 解析:如图,根据等腰直角三角形的性质知,AC =BC ,BC =CE =CD ,∴ AC=2CD ,623CD ==,∴ EC 2=22+22,即EC =2. ∴S 1的面积为EC 2=2×2=8.根据等腰直角三角形的性质知S 2的边长为3,∴ S 2的面积为3×3=9,∴S1+S 2=8+9=17.故选 B. 6.A 解析:∵ 小正方形的边长均为1, ∴ △ABC 三边长分别为2,, . 同理:A中各边长分别为:,1,;B 中各边长分别为:1、2,;C 中各边长分别为:,3,; D中各边长分别为:2,,.只有A 项中三角形的三边与已知三角形的三边对应成比例,故选A .7.A 解析:∵ ABCD 是平行四边形,∴ AD ∥BC ,AB ∥DC .∴ △ABO ∽△CEO ,△AOF ∽△COB ,△EFD ∽△EBC ,△ABF ∽△DEF ,△ABF ∽△CEB 五对,还有一对特殊的相似即△ABC ≌△CDA ,∴ 共6对.故选A . 8.B 解析:A.所设的角与它的余角相等,和原结论相符,故A 正确; B.所设的角小于它的余角,和原结论相反,故错误; C.所设的角大于它的余角,和原结论相符,故正确;D.所设的角大于它的余角,和原结论相符,故正确.故选B .9.C 解析:甲组:20,21,23,25,26;乙组:l00,101,103,105,106,根据一组数据第5题答图同时减去或加上同一数据其方差不变,∴ 要求这两组数据的方差,即求:0,1,3,5,6的方差, 故两组数据方差相同,即甲乙两组的稳定程度相同,故选C .10.D 解析:根据题意,可知在64.566.5之间的有8个数据, 故64.566.5这一小组的频率为80.420=.故选D . 11.C 解析:由题意知,≥≥,所以≥ 12.C 解析:∵ ,当=6时, =6,∴ 原式=2=12,∴ 的最小值为6.故选C .13.961 解析:设有辆汽车,少一辆汽车后每辆坐人,根据题意列方程得, 30+1=(-1),整理得301313011x y x x +==+--.∵ 为大于30而不大于40的整数, ∴-1能整除31,∴=2或=32,当=2时,=61(不合题意,舍去);当=32时,=31.因此游客人数为30×32+1=961(人). 14.1 解析:()()262633·139333323m m m m m m m m m m m -++÷=+==+--++-+. 15.5 234 1元 越高 解析:(1)(147 400+381 150+98 800+145 500+12 250)÷(30×5)≈5 234个;(2)面额为1元的纸币的使用频率较高,纸币上细菌越多,纸币的使用频率越高.16.甲 解析:从折线统计图中可以看出:甲公司2013年的销售量约为510辆,2009年约为100辆,则从2009~2013年甲公司增长了510-100=410(辆);乙公司2013年的销售量为400辆,2009年的销售量为100辆,则从2009~2013年,乙公司中销售量增长了400-100=300(辆).故甲公司销售量增长较快.17.乙 解析:由于s 2甲>s 2乙,则成绩较稳定的是乙.18.> 解析:由图可知甲的方差大于乙的方差,所以甲的标准差也一定大于乙的标准差.19.1<c <5 解析:∵ 22690a b b --+=,∴22(3)0a b --=.∵20a -,2(3)0b -≥,∴ 20a -=,30b -=,∴ a =2,b =3.∵ △ABC 的三边长为a ,b ,c ,∴ b a c b a -<<+,即3-2<c <3+2, ∴ c 的取值范围为1<c <5.20.2.5 解析:因为所以,,即,所以,,所以,所以.21.分析:(1)分别根据零指数幂、负整数指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. (2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简. 解:(1)12 01112(3)(1)213113-⎛⎫-+---=+-+= ⎪⎝⎭-1;(2)()()233935452422222a a a a a a a a ----⎛⎫÷+-=÷ ⎪----⎝⎭()()()()()3323223323a a a a a a --=⨯=-+-+.22.分析:设原计划每天铺设管道米,根据题意可列方程求解.解:设原计划每天铺设管道米,则()12030012027120%x x -+=+,解得=10(米), 经检验,=10是原方程的解.答:原计划每天铺设管道10米. 23.分析:可证明△ACD ∽△ABC ,则AC ADAB AC=,即得出AC 2=AD •AB ,从而得出AC 的长. 解:在△ABC 和△ACD 中,∵ ∠ACD =∠B ,∠A =∠A ,∴ △ABC ∽△ACD ,∴AC ADAB AC=, 即AC 2=ADAB =AD (AD +BD )=2×6=12,∴ AC =2.24.解:(1)如图:(2)有,△OAB 与△OEF 是位似图形. 设OA =a ,∵∠A =90°,AO =AB , ∴ OB 22222OA AB a a a ++,同理:OC =222a a =,OD 2222a a =,OE 2224a a =, ∴144OA a OE a ==, ∴ 较小三角形与较大三角形的位似比为1︰4.25.分析:判断是否为真命题,需要分别分析各题设是否能推出结论,如果能推出结论就为真命题,如果不能推出结论就为假命题.解:(1)假命题,两直线不平行时不成立,可通过画图说明; (2)假命题,当c ≤0时不成立,如3>2,但3×0=2×0;(3)假命题,如=20°,=50°,则=70°,不是钝角.26.证明:∵ AD 是△ABC 的高,∴ AD ⊥BC . 又∵ EB ⊥AB ,∴ ∠ADC =∠ABE =90°. 又∵ ∠EAB =∠DAC ,∴ △ABE ∽△ADC ,第24题答图∴AB AEAD AC=,即AD •AE =AC •AB . 27.分析:(1)根据频数分布表正确描点连线; (2)根据频数分布表计算符合条件的频数和,再进一步计算频率; (3)能够根据统计图直观地反映信息. 解:(1)男、女生100 m游泳成绩的频数分布折线图如下:(2)男生该项目成绩合格的频数为14,频率为0.7;女生该项目成绩合格的频数为15,频率为0.75.(3)男生总体成绩好于女生,女生的频数变化较男生平缓等.28.分析:根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.解:(1)甲种电子钟走时误差的平均数是:1344222120111--++-+--+=(); 乙种电子钟走时误差的平均数是:43122122101210--+-+-+-+=(). ∴ 两种电子钟走时误差的平均数都是秒. (2)2222[103020110]s =-+--++-=甲()()()110606⨯=; 2222[403010110]s =-+--++-=乙()()()480.1148⨯=.∴ 甲、乙两种电子钟走时误差的方差分别是6和4.8.(3)我会买乙种电子钟,因为平均水平相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优. 29.解:(1)①671+1(76)(76)(76)⨯-=+-76(1)11(1)(1)n n n n n n n n n n +==++++++-第27题答图数学试卷及试题+⋅⋅⋅+(2=。

2022-2023学年第一学期八年级期末数学测试题

2022-2023学年第一学期八年级期末数学测试题

2022-2023学年第一学期八年级期末数学测试题1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是() [单选题] *B. C.(正确答案) D.A.2.下列各组数中,不能作为直角三角形的三边长的是() [单选题] * A.1,2,3(正确答案)B.5,4,3C.17,8,15D.7 , 24 , 253.下列说法正确的是() [单选题] *A. 36的平方根是﹣6B.无限小数都是无理数C.9的立方根是3D.平方根等于本身的数是0(正确答案)4.如图,已知,那么添加下列一个条件后,仍无法判定△ABC全等于△ADC的是()[单选题] *A.B.(正确答案)C.D.5.估计的值在() [单选题] *A.2到3之间B.3到4之间(正确答案)C.4到5之间D.5到6之间6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA =3,则PQ的最小值为()[单选题] * A.B.2C.3(正确答案)D.7.如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是()[单选题] * A.(﹣3,﹣2)(正确答案)B.(﹣3,2)C.(﹣2,3)D.(2,3)8.若直线经过一、二、四象限,则直线的图象只能是图中的() [单选题] *A.B.(正确答案)C.D.9.4的算数平方根为____. [填空题] *空1答案:210.若y关于x的函数y=﹣7x+2+m是正比例函数,则m=_____. [填空题] *空1答案:-211.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____. [填空题] *空1答案:512.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____. [填空题] *空1答案:y=3x-113.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为____.[填空题] *空1答案:814.已知点M(x,3)与点N(﹣2,y)关于y轴对称,则x+y=_____. [填空题] *空1答案:515.一次函数y=-2x+4的图象与坐标轴所围成的三角形面积是_____. [填空题] *空1答案:416.如图在△ABC中,AB=AC=5,S△ABC=10,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______. [填空题] *空1答案:417.下列实数中,是无理数的是() [单选题] *A . B. C.(正确答案) D.18.以下标志,其中是轴对称图形的有几个()[单选题] *A.1B.2(正确答案)C.3D.419.下列四组线段中,可以构成直角三角形的是() [单选题] *A.4,5,6 B.2,3,4C.(正确答案) D.20.如果等腰三角形两边长是5cm和2cm,那么它的周长是() [单选题] * A.7cmB.9cmC.9cm或12cmD.12cm (正确答案)21.已知点A(a,2020)与点B(2021,b)关于x轴对称,则的值为() [单选题] *A.-1B.1(正确答案)C.2D.322.对于函数,下列结论正确的是() [单选题] *A.它的图象必经过点(-1,0)B.它的图象经过第一、二、三象限C.当x>1时,y<0(正确答案)D.y的值随x值的增大而增大23.已知点,,都在直线上,则,,的大小关系是() [单选题] *A.(正确答案) B. C. D.24.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG=4,AB=10,则△ABG的面积是()[单选题] *A.10 B.20(正确答案)C.30D.4025.已知三角形三边长分别为6,8,10,则此三角形的面积为__________ . [填空题] *空1答案:2426.比较大小∶____.(填“>”“=”“<”) [填空题] *空1答案:<27.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____. [填空题] *空1答案:528.如图,ΔABC≌ΔDEC,点B,C,D在同一条直线上,且CE=2,CD=4,则BD的长__________. [填空题] *空1答案:629.直线y=2x-3图象不经过第_________象限. [填空题] *空1答案:二30.一次函数的图像向下平移2个单位,得到新的一次函数表达式是___________. [填空题] *空1答案:y=2x-131.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE 交AC于点E.且AC=8,BC=5,则△BEC的周长是________.[填空题] *空1答案:1332.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,DF,当线段DF被CE垂直平分时,AF则线的长为_______.(化成小数填写)[填空题] *空1答案:3.633.在下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是( ) [单选题] *A. B.(正确答案) C.D.34.4的平方根是() [单选题] *A.2 B.(正确答案) C.D. 35.如图,小手盖住的点的坐标可能为()[单选题] *A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)(正确答案)36.当时,一次函数的图象大致是() [单选题] *D.A.(正确答案) B. C.37.下列各点中,在一次函数的图像上的是() [单选题] * A.(-1,1)B.(0,1)(正确答案)C.(2,2)D.(-2,3)38.若成立,则满足得条件() [单选题] *A. B.(正确答案) C. D.39.在平面直角坐标系中,把一次函数向上平移3个单位后,得到的新的一次函数的表达式是() [单选题] *A. B.(正确答案) C. D.40.如图,点A 的坐标是,若点P在x 轴上,且是等腰三角形,则点P的坐标不可能是()[单选题] * A.(4,0)B.(1,0)(正确答案)C.D.41.计算=___ [填空题] *空1答案:-542.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=________ °. [填空题] *空1答案:11043.若正比例函数y=kx的图象经过点(1,2),则k=_______. [填空题] *44.计算=___ [填空题] *空1答案:445.__ _ [填空题] *空1答案:546._____ [填空题] *47.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=___[填空题] *空1答案:148.如图,在平面直角坐标系中,长方形的顶点在坐标原点,顶点分别在轴,轴的正半轴上,,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为_________. [单选题] *A.(1,0)(正确答B.(2,0)C.(3,0)D.(4,0)案)49.计算=___ [填空题] *空1答案:750.计算=___ [填空题] *空1答案:0。

人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。

八年级上学期期末数学试题

八年级上学期期末数学试题
A. B. C. (a>0,b>0)D.
4.下列运算正确的是()
A. B.
C. D.
5.4的算术平方根是
A.16B.2C.-2D.
6.下列标志中,不是轴对称图形的是()
A. B. C. D.
7.下列说法中正确的是()
A.带根号的数都是无理数B.不带根号的数一定是有理数
C.无限小数都是无理数D.无理数一定是无限不循环小数
(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.
29.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.
①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)
②直接写出当△MDC与△CEN全等时t的值.
28.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).
(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;
(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;
16.根据如图所示的计算程序,小明输入的 的值为36,则输出的 的值为__________.
17.点A(2,-3)关于x轴对称的点的坐标是______.
18.3的平方根是_________.
19.比较大小: _______ .

2021-2022学年八年级数学第一学期期末测试试题及参考答案

2021-2022学年八年级数学第一学期期末测试试题及参考答案

2021-2022学年八年级第一学期期末数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣8的立方根是()A.4B.2C.﹣2D.±2【分析】根据立方根的定义即可求解.解:﹣8的立方根是﹣2.故选:C.2.下列数是无理数的是()A.B.πC.0D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是分数,属于有理数,故本选项不合题意;B.π是无理数,故本选项符合题意;C.0是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意;故选:B.3.计算(x2)3的结果是()A.x5B.x6C.x8D.3x2【分析】根据幂的乘方和积的乘方的运算法则求解.解:(x2)3=x6.故选:B.4.计算的结果为()A.10B.5C.3D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.解:=5.故选:B.5.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣16【分析】用平方差公式直接得出结果.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.6.如图所示,在△ABC中,∠ACB=90°,分别以AB、BC、AC为边向外作正方形,若三个正方形的面积分别为225、400、S,则S的值为()A.25B.175C.600D.625【分析】由勾股定理得:AC2+BC2=AB2,直接代入即可.解:在△ABC中,∠ACB=90°,由勾股定理得:AC2+BC2=AB2,∴225+400=S,∴S=625.故选:D.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=28°,求出∠CAB的度数,然后即可求出∠AEC的度数.解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.8.在△ABC中,∠BAC=90°,AB>AC,∠B≠30°,用无刻度的直尺和圆规在BC边上找一点D,使AD=BD,下列作法正确的是()A.B.C.D.【分析】根据“要在BC边上找一点D,使AD=BD”知点D应该是线段AB垂直平分线与BC的交点,据此求解即可.解:若要在BC边上找一点D,使AD=BD,则点D应该是线段AB垂直平分线与BC的交点,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.二次根式有意义,则x的取值范围是x≤3.【分析】直接利用二次根式有意义的条件,即二次根式中的被开方数是非负数,进而得出答案.解:二次根式有意义,则9﹣3x≥0,故x的取值范围是x≤3.故答案为:x≤3.10.比较大小:﹣3 <0(填“>”、“=”或“<”).【分析】首先求出介于2和3之间,从而得最后答案.解:∵2<<3,∴﹣3<0.故答案为:<.11.计算:2x•(﹣3xy)=﹣6x2y.【分析】根据单项式乘单项式的运算法则计算.解:2x•(﹣3xy)=﹣6x2y,故答案为:﹣6x2y.12.若一个三角形的三边长分别为5、12、13,则此三角形的面积为30.【分析】先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=2,AB=5,则△ABD的面积为5.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.14.如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠DAE=72°,则∠EDC的度数为33°.【分析】利用等腰三角形两底角相等和三角形内角和定理可得.解:∵∠BAD=30°,∠DAE=72°,AB=AC,∴∠B=∠C==39°,∵AD=DE,∴∠DAE=∠DEA=72°,∵∠AED=∠C+∠EDC,∴∠EDC=∠AED﹣∠C=72°﹣39°=33°,故答案为:33°.三、解答题(本大题共10小题,共78分)15.计算:﹣﹣﹣|﹣6|.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.解:原式=4﹣+0.5﹣6=﹣2.16.因式分解:(1)4m2﹣36;(2)2a2b﹣8ab2+8b3.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2b,再利用完全平方公式分解因式即可.解:(1)原式=4(m2﹣9)=4(m+3)(m﹣3);(2)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2.17.图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以线段AB为腰画一个等腰三角形.(2)在图②中,以线段AB为底画一个等腰三角形.【分析】(1)根据要求作出图形即可;(2)根据要求作出图形即可.解:(1)如图1中,△ABC即为所求;(2)如图2中,△ABC即为所求.18.先化简,再求值:(x﹣3)2﹣x(2x+1)+x2,其中x=.【分析】直接利用乘法公式、单项式乘多项式化简,合并同类项,再把已知数据代入得出答案.解:原式=x2﹣6x+9﹣2x2﹣x+x2=﹣7x+9,当x=时,原式=﹣7×=﹣1.19.如图,点B、F、C、E四点在同一条直线上,∠B=∠E,AB=DE,BF=CE.求证:AC=DF.【分析】根据题意得出BC=EF,即可利用SAS证明△ABC和△DEF,再利用全等三角形的性质即可得解.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?【分析】根据方向角的概念求出∠CAB=90°,根据勾股定理求出AC的长,得到答案.解:∵甲船沿北偏东40°方向航行,乙船沿南偏东50°方向航行,∴∠CAB=90°,∵AB=16×3=48,BC=60,∴AC==36,∴乙船的航速是36÷3=12海里/时,答:乙船的航速是36÷3=12海里/时.21.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形.(1)图2中间空白的部分的面积是(a﹣b)2;(2)观察图2,请你写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系式(a﹣b)2=(a+b)2﹣4ab;(3)根据你得到的关系式解答下列问题:若x+y=﹣4,xy=3,求x﹣y的值.【分析】(1)由图形面积间和差关系可得此题结果为(a﹣b)2;(2)由图形面积间关系可得:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy,就能求得最后结果.解:(1)由题意得,图2中间空白的部分的面积是(a﹣b)2,故答案为:(a﹣b)2;(2)由图2中间空白的部分的面积的不同表示方法可得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy=(﹣4)2﹣4×3=4∴x﹣y=±2,即x﹣y的值是±2.22.2021年央视春晚,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》(记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:(1)求本次接受调查的学生人数.(2)求扇形统计图中D所在扇形的圆心角度数.(3)将条形统计图补充完整.【分析】(1)根据B的人数除以所占的百分比得到接受调查的学生人数;(2)用360°乘以D节目男、女生人数和占被调查人数的比例即可;(3)先求出D所占百分比,再求出C所占百分比,继而可以求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;解:(1)本次接受调查的学生人数为(12+8)÷40%=50(名);(2)扇形统计图中D所在扇形的圆心角度数为360°×=36°;(3)D占的百分比为×100%=10%,C占的百分比为1﹣(20%+40%+10%)=30%,∴C的人数为50×30%=15(人),即C中男生为15﹣8=7(人);A的人数为50×20%=10(人),A中女生人数为10﹣6=4(人),补全条形统计图,如图所示:23.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【分析】(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD =∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE﹣CD=AD﹣BE;(3)运用(2)中的方法即可得出DE,AD,BE之间的等量关系是:DE=BE﹣AD.解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE ﹣AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD﹣CE=BE﹣AD.24.如图,在Rt△ABC中,∠ABC=90°,BC=AB,AC=8,点D是边AC的中点,动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动.同时,动点Q从点D出发,沿DC以每秒1个单位长度的速度向终点C匀速运动.当点P到达终点时,点Q也随之停止运动.过点Q作QE⊥AC,使QE=QD,且点E落在直线AC的上方,当点P不与点D重合时,以PQ、QE为邻边作长方形PQEF.设长方形PQEF与△ABC 的重叠部分的面积为S,点P的运动时间为t(秒).(1)用含t的代数式表示线段AP的长度为4﹣2t.(2)当点F落在线段AB上时,求t的值.(3)用含t的代数式表示S.(4)连结AF、DF.当△AFD是等腰三角形时,直接写出t的值.【分析】(1)由AC=8,点D是边AC的中点求出AD的长为4,再由动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动,且运动的时间为t得PD=2t,则AP=4﹣2t;(2)当点F落在线段AB上时,可证明△APF是等腰直角三角形,则AP=FP=QE=t,可列方程t=4﹣2t,解方程求出t的值即可;(3)先确定当点P到达终点A时,则点E恰好落在BC边上,再分两种情况进行讨论,一是当0<t≤时,长方形PQEF与△ABC的重叠部分的面积S为长方形PQEF本身,二是当<t≤2时,则长方形PQEF与△ABC的重叠部分的面积S为S长方形PQEF﹣S△FGH,分别求出用含t的代数式表示S的等式即可;(4)△AFD是等腰三角形存在两种情况,一是AF=DF,则PD=PA=AD=2,列方程求出t的值;二是FD=AD=4,在Rt△PDF中根据勾股定理列方程求出t的值即可.解:(1)∵AC=8,点D是边AC的中点,∴AD=AC=4,∵PD=2t,故答案为:4﹣2t.(2)当点F落在线段AB上时,如图1,∵四边形PQEF是长方形,∴∠QPF=90°,FP=QE,∴∠APF=180°﹣∠QPF=90°,∵∠ABC=90°,BC=AB,∴∠A=∠C=45°,∴∠PFA=∠A=45°,∴AP=FP=QE,∵QE=QD=t,∴AP=t,∴t=4﹣2t,解得t=,∴当点F落在线段AB上时,t的值为.(3)当点P与点A重合时,则2t=4,解得t=2,此时QD=QE=QC=2,∴点E恰好落在BC边上,当0<t≤时,如图2,∵PD=2t,QE=QD=t,∴PQ=2t+t=3t,∵S=S长方形PQEF=PQ•QE,∴S=3t•t=3t2;当<t≤2时,如图3,PF交AB于点G,EF交AB于点H,∵∠PGA=∠A=45°,∴∠FGH=∠PGA=45°,∵∠F=90°,∴∠FHG=∠FGH=45°,∵FP=QE=t,GP=AP=4﹣2t,∴FH=FG=t﹣(4﹣2t)=3t﹣4,∵S=S长方形PQEF﹣S△FGH,∴S=3t2﹣(3t﹣4)2=﹣t2+12t﹣8,综上所述,S=.(4)如图4,△AFD是等腰三角形,且AF=DF,∵PF⊥AD,∴PD=PA=AD=2,∴2t=2,解得t=1;如图5,△AFD是等腰三角形,且FD=AD=4,∵∠DPF=90°,∴PD2+FP2=FD2,∵PD=2t,FP=t,∴(2t)2+t2=42,解得t=或t=﹣(不符合题意,舍去),综上所述,t的值为1或.。

北京四中八年级第一学期期末数学试题(附答案) 2

北京四中八年级第一学期期末数学试题(附答案) 2

北京四中八年级第一学期期末数学试题(附答案)作者:学大教育编辑整理 来源:网络一、选择(本题共30分,每小题3分) 1.下列说法正确的是( ).A .4的平方根是2B .9的算术平方根是C .8的立方根是D .的立方根是2.计算的结果是( ).A .B .C .21D .3.下列图形中,轴对称图形的个数是( ).A .1B .2C .3D .4 4.下列变形正确的是( ).A .B .C .D .5.若函数(k≠0)的图象如图所示,则关于x的不等式≤0的解集在数轴上表示正确的是().6.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是().A.SSS B.SAS C.AAS D.HL7.若将直线(k≠0)的图象向上平移3个单位后经过点(2,7),则平移后直线的解析式为().A.B.C.D.8.如图,等边三角形ABC中,D为BC的中点,BE平分∠ABC交AD于E,若△CDE的面积等于1,则△ABC的面积等于().A .2B .4C .6D .12 9.已知一次函数,其中,则所有符合条件的一次函数的图象一定都经过( ).A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限10.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( ).A .1B .1.5C .2D .2.5二、填空(本题共18分,第15题4分,其余每小题各2分) 11.函数2-=x y 中,自变量x 的取值范围是_________.12.在,,,327这四个实数中,无理数是_________.13.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____.14.若直线(k ≠0)经过点(1,3),则该直线关于x 轴对称的直线的解析式为____15 . Rt △ABC 中,∠C =90°,∠A =30°,P 为AC 边上一点,PC =2,∠PBC =30°.(1)若PD ⊥AB 于D ,在图中画出线段PD ;(2)点P 到斜边AB 的距离等于_________.16.下图是按一定规律排列的一组图形,依照此规律,第n 个图形中的个数为_____.(n 为正整数)17.如图,钝角三角形纸片ABC 中,∠BAC =110°,D 为AC 边的中点.现将纸片沿过点D 的直线折叠,折痕与BC 交于点E ,点C 的落点记为F .若点F 恰好在BA 的延长线上,则∠ADF =_________°.18.对于三个数a 、b 、c ,用}c b min{、、a 表示这三个数中最小的数, 例如,,那么观察图象,可得到的最大值为_________.三、(本题共17分,第19、21题各5分,第20题3分,第22题4分) 19.因式分解:(1); (2).20.计算:.21.先化简再求值:,其中x=3.22.解分式方程:.四、(本题共11分,第23题6分,第24题5分)23.已知:如图,D为△ABC内一点,AC=BC,CD平分∠ACB.求证:∠ABD=∠BAD.24.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.解:(1)画法:(2)答:AM+AN_________BM+BN.(填“>”、“=”或“<”)五、(本题共12分,每小题6分)25.在平面直角坐标系xOy中,一动点从点出发,在由,四点组成的正方形边线上(如图①所示),按一定方向匀速运动.图②是点P运动的路程s与运动时间t(秒)之间的函数图象,图③是点P的纵坐标y与点P运动的路程s之间的函数图象的一部分.请结合以上信息回答下列问题:(1)图②中,s与t之间的函数关系式是_________(t≥0);(2)与图③中的折线段相对应的点P的运动路径是→_________→_________→_________;(填“A”、“B”、“C”、“D”、“M”或“N”)(3)当4≤s≤8时,直接写出y与s之间的函数关系式,并在图③中补全相应的函数图象.26.某中学初二年级300名同学在“爱心包”活动中,集资购买一批学习用品(书包和文具盒),捐赠给灾区90名学生,所买的书包每个54元,文具盒每个12元.现每名同学只购买一种学习用品,而且每2人合买一个文具盒,每6人合买一个书包.若x名同学购买书包,全年级共购买了y件学习用品.(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)若捐赠学习用品的总金额超过2300元,且灾区90名学生每人至少得到一件学习用品,问:同学们如何设计购买方案,才能使所购买的学习用品件数最多?学习用品最多能买多少件?六、解答题(本题共12分,每小题6分)27.已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为,,P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示M点的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.28.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.(1)证明:(2)答:线段BG、AF与FG的数量关系为_________.证明:北京四中八年级第一学期期末数学试题(附答案)参考答案一、选择(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 D D B B B D A C B A二、填空(本题共18分,第15题4分,其余每小题各2分)11.x≥2.12..13.20.14..15.(1)答案见图1;(2)2.16..17.40.18.1.三、计算(本题共17分,第19、21题各5分,第20题3分,第22题4分)19.(1)解:.(2)解:.20.解:.21.解:.当x= 3时,原式=.22.解:去分母,得.2x=2.x=1.经检验,x=1是原方程的解.所以,原方程的解为x=1.四、认真做一做(本题共11分,第23题6分,第24题5分)23.证法一:如图2-1.∵CD平分∠ACB,∴∠1=∠2.在△ACD与△BCD中,∴△ACD≌△BCD.∴AD=BD.∴∠ABD=∠BAD.证法二:如图2-2.延长CD交AB于点E.∵AC=BC,CD平分∠ACB,∴CE垂直平分AB.∵点D在CE上,∴AD=BD.∴∠ABD=∠BAD.24.解:(1)答案图如图3所示.画法:1.作点M关于射线OP的对称点,连结交OP于点A.2.作点N关于射线OQ的对称点,连结交OQ于点B.(2)=.五、仔细想一想(本题共12分,每小题6分)25.(1)(2)M→D→A→N;(3)26.解:(1).(2)由题意得解得<x≤180.又因为x为6的倍数,所以x等于168,174,180.因为随x的增大而减小,所以当x等于168,即168名同学购买书包,132名同学购买文具盒时,所购买的学习用品件数最多.因为时,,所以最多可买94件学习用品.此时168名同学购买书包,132名同学购买文具盒。

山东省济南市历下区2023-2024学年八年级上学期期末数学试题(含解析)

山东省济南市历下区2023-2024学年八年级上学期期末数学试题(含解析)

A .3.如果,那么下列各式中正确的是(A .50︒m n ≤11m n -≥-A .155B .1587.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长可以列方程组( )A .9.如图,直线A .1B .2431y ax =A.414.若方程组为.3 3x -⎧⎨⎩16.如图,已知接交于点三、解答题(本大题共10个小题,共20.如图,在和边上的中线,且21.用5张大小完全相同的长方形纸片在平面直角坐标系中摆成如图图案,为,求点的坐标.BD AC ABC A B C ''CD ()1,7-B22.用尺规作平行线的方法:已知:直线及直线求作:经过点P 的直线尺规作图步骤:如图,①过点P 作直线为半径画弧,交直线(1)(填写合适的选项)可判定,从而可得到A .“” B .“” C .“” D .“”(2)在上述作图步骤中用到的判定的依据是________________(3)如图3,在中,,小明通过刚才的方法,作出了是底边的平行线,那么是外角23.为丰富校园课余生活,增强班级凝聚力,展现学子积极向上的精神风貌,我市某中学准AB AB CD AB HP PMN HEF △△≌SSS SAS ASA AAS CD AB ∥ABC AB AC =ABC BC AD ABC EAC ∠b.甲乙两人投篮命中数的平均数,众数甲乙平均数(个)7.6众数(个)8根据以上信息,回答下列问题:m n(1)求直线l 的解析式;(2)如图,过线段的中点请求出点F 的坐标.(3)如图,点C 是x 轴上一动点,连接接,直接写出26.在学习了三角形的知识后,关系进行了探究.AB BD ABD △(2)如图,若点E 在边证:;(二)应用拓展(3)如图,在四边形,请直接写出亲爱的同学,祝贺你已经完成了本次考试的所有题目,如果你还有时间,希望挑战一下自己,可以尝试完成下面两道题目,请注意,以下题目的分数不计入总分.四、附加题(本大题共27.已知是二元二次式28.设x ,y ,z 为互不相等的非零实数,且2AE AF AM +=ABDC 43AD =AC 2+-x y答案与解析1.D 【分析】本题考查了轴上点坐标的特征.熟练掌握轴上点坐标的纵坐标为0是解题的关键.根据轴上点坐标的纵坐标为0,判断作答即可.【详解】解:由题意知,点A 的纵坐标为0,故选:D .2.B【分析】本题主要考查了对顶角相等、平行线的性质等知识,理解并掌握平行线的性质是解题关键.首先根据“对顶角相等”可得,再根据“两直线平行,同旁内角互补”,由求解即可.【详解】解:如下图,∵,∴,∵,∴.故选:B .3.D【分析】本题考查了不等式的性质.熟练掌握不等式的性质是解题的关键.x x x 31120∠=∠=︒21803∠=︒-∠1120∠=︒31120∠=∠=︒a b ∥2180360∠=︒-∠=︒∵是的角平分线,∴,∵,BD ABC DE CD =BD BD =17.【分析】本题主要考查了解二元一次方程,解题关键是熟练掌握解二元一次方程的常用方法.利用代入消元法解该方程即可.【详解】解:由①可得,③,将③代入②,可得,解得,将代入③,可得,∴原方程组的解为.18.不等式组的解集,整数解为,1,2.【分析】本题考查的是解一元一次不等式组.分别求出各不等式的解集,利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则再求出其公共解集即可.【详解】解:解不等式得:,解不等式得:,∴不等式组的解集是,∴不等式组的整数解为,1,2.19.见解析【分析】根据,可得,进而得到,结合已知条件,通过等量代换,得到,即可求解,本题考查了平行线的性质与判定,解题的关键是:熟练掌握相关性质与判定定理.【详解】证明:(内错角相等,两直线平行),,(两直线平行,内错角相等),又,,(同位角相等,两直线平行).12x y =⎧⎨=⎩4237x y x y -=⎧⎨+=⎩①②42y x =-3(42)7x x +-=1x =1x =422y =-=12x y =⎧⎨=⎩12x -<≤0x =724x x +>-1x >-()1213x +-≤2x ≤12x -<≤0x =1E ∠=∠AD BE ∥D DCE ∠=∠B D ∠=∠B DCE ∠=∠1E ∠=∠ AD BE ∴∥D DCE ∴∠=∠B D ∠=∠ B DCE ∴∠=∠AB CD ∴∥20.见解析【分析】此题考查了全等三角形的判定,根据三角形中线的定义得到,,由,得到,利用即可证明.【详解】证明:∵与分别为,边上的中线,∴,,∵,∴,在和中,,∴.21.【分析】本题主要考查了坐标与图形、二元一次方程组的应用等知识,正确列出二元一次方程并求解是解题关键.设小长方形的长为,宽为,根据题意列出二元一次方程组并求解,然后确定点的坐标即可.【详解】解:设小长方形的长为,宽为,依题意,得,解得,∴,,∴点的坐标为.22.(1)A(2)同位角相等,两直线平行(3)是,理由见解析【分析】(1)由作图可知,,可证,然后作答即可;(2)根据平行线的判定定理作答即可;2CB CD =2C B C D ''''=CD C D ''=CB C B ''=HL A ABC B C '''≌△△AD A D ''BC B C ''2CB CD =2C B C D ''''=CD C D ''=CB C B ''=Rt ABC △Rt A B C ''' AB A B BC B C ''''=⎧⎨=⎩()Rt Rt HL ABC A B C ''' ≌(6,5)-x y B x y 127x y x y -=⎧⎨+=⎩32x y =⎧⎨=⎩26x =5x y +=B (6,5)-PM HE MN EF PN HF ===,,()SSS PMN HEF ≌(3)由平行线的性质,等边对等角可得,进而可证是外角的平分线.【详解】(1)解:由作图可知,,∴,故选:A ;(2)解:由题意知,,∴,∴判定的依据是同位角相等,两直线平行,故答案为:同位角相等,两直线平行;(3)解:是外角的平分线,理由如下;∵,∴,∴,∵,∴,∴,∴是外角的平分线.【点睛】本题考查了作一个角等于已知角,全等三角形的判定与性质,等腰三角形的判定与性质,角平分线等知识.熟练掌握作一个角等于已知角,全等三角形的判定与性质,等腰三角形的判定与性质,角平分线是解题的关键.23.(1);(2)(3)(4)他在投篮训练中每个球的平均分是分【分析】本题考查统计综合,涉及平均值、众数、极差、方差及解应用题,熟记相关统计量的定义及求解公式是解决问题的关键.(1)根据题中数据,由平均数即众数定义直接求解即可得到答案;(2)结合题中数据,由极差定义与求法代值求解即可得到答案;EAD DAC ∠=∠AD ABC EAC ∠PM HE MN EF PN HF ===,,()SSS PMN HEF ≌MPN EHF ∠=∠CD AB ∥CD AB ∥AD ABC EAC ∠EAD B ∠=∠AD BC ∥DAC C ∠=∠AB AC =B C ∠=∠EAD DAC ∠=∠AD ABC EAC ∠7.674>1.88)()(2297.68+-+-)()(2287.67+-+-∵点E 是线段的中点,∴直线是线段的垂直平分线,∴,在中,∴,解得AB EF AB AF BF =Rt AOF 22AO FO +=()2224=3FO FO ++FO∵点在直线∴,∵轴且点F 在x ∴.∵为等腰直角三角形,∴,∵,∴∵,(),2E a y =3,22E ⎛⎫ ⎪⎝⎭FE x ⊥3,02F ⎛⎫ ⎪⎝⎭ACD AC CD ==90ACD ∠︒90ACO MCD ∠+∠=90ACO CAO ∠+∠=︒设点,则,,故点,,得,∴点D 在直线上运动,设直线与x 轴交于点P ,与y 轴交于点Q ,连接并延长至点,使得,过点作轴交于点N ,连接和,如图,则点,,∵,∴,∵,∴,则线段垂直平分,∴,∵,,∴,∴,当、B 和D 共线时可以取到最小值,∵,,,∴,∴,,∵,,(),0C t 4OM OC CM t =+=+DM t =()4,D t t +4x t y t =+⎧⎨=⎩4y x =-4y x =-4y x =-AP AP P 'AP A P '=A 'A N x '⊥A D 'A B '()4,0P ()0,4Q -()0,4A 4OP OA OQ ===90AOP ︒=∠90APQ ∠=︒QD AA 'AD A D '=4AO =3OB =5AB =5ABD C AB BD AD BD A D '=++=++ A 'BD A D A B ''+=90A NP AOP '∠=∠=︒A P AP '=A PN APO '∠=∠()AAS A PN APO ' ≌A N AO '=PN PO =4OP =3OB =∵,∴∵,点D 为的中点∴,90BAC ∠=︒AB AC=45B C ∠=∠=︒AB AC =BC 1452EAD BAC ∠=∠=︒ADC ∠=∵,点D 为的中点,∴∵∴∴AB AC =BC 1452EAM MAN BAC ∠=∠=∠=︒MN AM⊥90AM N ∠=︒9045FNM MAN ∠=︒-∠=︒∴∵,∴∴∴在和中,180ECB ACD∠=︒-∠60BAC ∠=︒BDC ∠360B ACD ∠+∠=︒-180B ACD∠=︒-∠ECD B∠=∠ABD △ECD∴,∵∴∴∴∵∴.12AF EF AE ==30DAE ∠=︒1232DF AD ==226AF AD DF =-=212AE AF ==7CE AB ==5AC AE CE =-=。

河南省驻马店市正阳县2022-2023学年八年级上学期期末数学试题(含答案)

河南省驻马店市正阳县2022-2023学年八年级上学期期末数学试题(含答案)

2022—2023学年度第一学期期末质量监测试卷八年级数学注意事项1.本试卷共8页,三大题,23个小题,满分120分,考试时间100分钟.请用黑色水笔或2B 铅笔在答题卡上作答.2.答卷前将相关信息在答题卡上准确填涂.一二三题号1~1011~151617181920212223总分得分一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填涂在答题卡上.1.下列图形中,是轴对称图形的是( )A. B. C. D.2.科学家在实验中检测出新型冠状病毒直径约为0.000000018米.将数0.000000018用科学记数法表示为( )A. B. C.D.3.已知三角形的两边长分别为和,则第三边的长可以是()A. B. C. D.4.下列运算正确的是( )A. B. C. D.5.如图所示,已知,用尺规在线段上确定一点P ,使得,则符合要求的作图痕迹是( )A. B.C. D.6.已知点与点关于x 轴对称,则( )A. B. C. D.461.810-⨯81.810-⨯71.810-⨯71810-⨯5cm 8cm 2cm3cm6cm13cm326a aa ⋅=2ab bab ÷=()222m n m n -=-()239239x yx y -=()AC AB B C C AB <<△BC PA PC BC +=(),2A a ()3,B b 2a b +=4-1-2-7.如果代数式,那么代数式的值是( )A.22B.18C. D.8.定义运算“※”: ,若3※,则x 的值为( )A.1B.5C.1或5D.5或79.如图,在中,,以为底边在外作等腰,过点D 作的平分线分别交,于点E ,F .若,,点P 是直线上的一个动点,则周长的最小值为( )A.15B.17C.18D.2010.如图,在中,,的平分线与的平分线交于点,得,的平分线与的平分线交于点,得的平分线与的平分线交于点,得,则( )A.B. C. D.二、填空题(每小题3分,共15分)11.如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为 .12.如图,在和中,,,要使,还需添加一个条件,这个条件可以是 .2317y y --=2662y y +-8-10-2,2,a b a ba b a b b a ⎧>⎪⎪-=⎨⎪<⎪-⎩※1x =ABC △90ACB ∠=︒AC ABC △ACD △ADC ∠AB AC 5BC =30CAB ∠=︒DE PBC △ABC △αA ∠=ABC ∠ACD ∠1A 1A ∠1A BC ∠1D A C ∠2A 22022,,A A BC ∠∠ 2022D A C ∠2023A 2023A ∠2023A ∠=α2022α20232022α22023α2ABC △DFE △90A D ∠=∠=︒AC DE =ABC DFE △≌△13.“数理世界”展厅的WiFi 的密码被设计成如图的数学问题.小东在参观时认真思索,输入密码后顺利地连接到了网络,则他输入的密码是 .14.如图,在三角形中,点分别是的中点,且的面积为8,则阴影部分的面积是 .15.如图,在直角三角形中,,,点D 是边上的一点,连接,将沿折叠,使点C 落在点E 处,当是直角三角形时,的度数为 .三、解答题(本大题共8个小题,共75分)16.(每小题5分,共10分)(1)计算:;(2)解方程:.17.(9分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.ABC D E F 、、BC AD CE 、、ABC △ABC 90C ∠=︒60BAC ∠=︒BC AD ACD △AD BDE △CAD ∠()12022112 3.143π-⎛⎫---+--- ⎪⎝⎭4322x x x x--=--(1)利用尺规作图:在边上找一点,使点到的距离相等.(不写作法,保留作图痕迹)(2)在网格中,的下方,直接画出,使与全等.18.(9分)先化简,再求值:,其中,且a 是整数.19.如图,用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,),点C 在上,点A 和B 分别与木墙的顶端重合.(1)求证:(2)求两堵木墙之间的距离.20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了25%,生产300万剂疫苗比原来要少用1天,求现在每天生产疫苗多少万剂?21.如图,在中,,,.将三角板中角的顶点D 放在边上移动,使这个角的两边分别与的边相交于点E ,F ,且使始终与垂直.(1)求证:是等边三角形.(2)设,,则 .(用含x 的式子表示y )(3)当移动点D 使时,求AD 的长.22.阅读并解答:对于三次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式,设另一个因式为,多项式可以表示成,整理得,可得到,,所以,,把求出的a ,b 代入,就可以把多项式因式分解.以上这种因式分解的方法叫“试根法”.对于多项式,用“试根法”分解因式.23.(1)问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点N ,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1AC D D AB BC 、ABC △EBC △EBC △ABC △322293344a a a a a a -⎛⎫÷++ ⎪--+⎝⎭15a <<2cm AC BC =90ACB ∠=︒DE ADC CEB △≌△Rt ABC △90ACB ∠=︒30A ∠=︒1BC =30︒AB 30︒ABC △AC BC ,DE AB BDF △AD x =CF y =y =//EF AB 3233x x x --+1x =32330x x x --+=()1x -()2x ax b ++()()322331x x x x x ax b --+=-++()()3232331x x x x a x a b x b --+=-----11a -=3b =-0a =3b =-3233x x x --+324318x x x +--ABCD BD ABC ∠180A C ∠+∠=︒DA DC =+BC BM BA =DM BA BN BC =DN和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D 作,垂足为点E ,请直接写出线段、、之间的数量关系:.AC 60DAC ∠=︒AB BC BD ABCD 180A C ∠+∠=︒DA DC =DE BC ⊥AB CE BC2022—2023学年度第一学期期末质量监测试卷八年级数学参考答案与评分标准一、选择题(每小题3分,共30分)题号12345678910答案ABCBABDCAD二、填空题(每小题3分,共15分)题号1112131415答案(答案不唯一)20222或三、解答题(本大题共8个小题,满分75分)16.解:(1)原式(2)去分母,得:去括号,得:移项,得:合并同类项,得:系数化为1,得:检验:把代入,得:所以是增根,原分式方程无解.17.解:(1)如图点D 即为所求;(2)或即为所求(画出一个即可得4分)18解:原式,且,a 是整数.可以取4当时,原式40︒BC EF =30︒45︒1213=--++1=()432x x x +-=-436x x x +-=-364x x x +-=-+2x -=-2x =2x =2x -20x -=2x =EBC △E BC '△()()()()22233932a a a a a a -+-+=÷--2232a a a a-=⨯-32a a -=-()()230a a a --≠ 15a <<a ∴4a =431422-==-19.(1)证明:由题意得:,,,,,,,在和中(2)解:由题意得:,,,,答:两堵木墙之间的距离为20cm.20.解:设原来每天生产疫苗x 万剂,则现在每天生产疫苗万剂根据题意得:解得:经检验得:是原方程的解答:现在每天生产疫苗75万剂21.(1)证明:,,,,,,,是等边三角形(2)(3)当时,,,,,,,即22.解:当时,,AC BC =90ACB ∠=︒AD DE ⊥BE DE ⊥90ADC CEB ∴∠=∠=︒90ACD BCE ∠+∠=︒∴90ACD DAC ∠+∠=︒BCE DAC∴∠=∠ADC △CEB △ADC CEB DAC ECBAC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴△≌△236cm AD =⨯=7214cmBE =⨯=ADC CEB △≌△6cm EC AD ==∴14cm DC BE ==()20cm DE DC CE ∴=+=()125%x +()1300300125%x x =++60x =60x =()125% 1.256075x ∴+=⨯=ED AB ⊥ 30EDF ∠=︒60FDB ∴∠=︒30A ∠=︒ 90ACB ∠=︒60B ∴∠=︒60DFB ∠=︒∴BDF ∴△1x -//EF AB 30CEF ∠=︒90FED EDA ∠=∠=︒12E CF F ∴=12EF DF =1DF BF y ==- ()114y y ∴=-15y ∴=615x y =+=65AD =2x =3243188166180x x x +--=+--=多项式有因式,设另一个因式为,,,,,23.解:(1)方法1:在上截,连接,如图.平分,.在和中,,.,.,.方法2:延长到点N ,使得,连接,如图.平分,.在和中,.,.∴()2x -()2x ax b ++()()32243182x x x x ax b x ∴+--=-++()()32324318222x x x a x a b x bx ∴+--=+----24a ∴-=218b -=-6a ∴=9b =()()()()2322431826923x x x x x x x x +--=∴-++=-+BC BM BA =DM BD ABC ∠ABD CBD ∴∠=∠ABD △MBD △BD BD ABD MBD BA BM =⎧⎪∠=∠⎨⎪=⎩ABD MBD∴△≌△A BMD ∴∠=∠AD MD =180BMD CMD +∠=︒∠ 180C A ∠+∠=︒C CMD ∴∠=∠DM DC ∴=DA DC ∴=BA BN BC =DN BD ABC ∠NBD CBD ∠=∠∴NBD △CBD △BD BD NBD CBDBN BC =⎧⎪∠=∠⎨⎪=⎩NBD CBD ∴△≌△BND C ∴∠=∠ND CD =,..,.(2)之间的数量关系为:.(或者:,)理由:延长CB 到点P ,使,连接AP ,如图所示.由(1)可知,.为等边三角形.,.,..,为等边三角形.,.,,即.在和中,,.,,.(3)(或者:,)(解:连接BD ,过点D 作于F ,如图所示.,..180NAD BAD ∠+∠=︒ 180C BAD ∠+∠=︒BND NAD ∴∠=∠DN DA ∴=DA DC ∴=AB BC BD 、、AB BC BD +=BD CB AB -=BD AB CB -=BP BA =AD CD =60DAC ∠=︒ ADC ∴△AC AD ∴=60ADC ∠=︒180BCD BAD ∠+∠=︒ 36018060120ABC ∴∠=︒-︒-︒=︒18060PBA ABC ∴∠=︒-∠=︒BP BA = ABP ∴△60PAB ∠=︒∴AB AP =60DAC ∠=︒ PAB BAC DAC BAC ∴∠+∠=∠+∠PAC BAD ∠=∠PAC △BAD △PA BA PAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩PAC BAD ∴△△≌PC BD ∴=PC BP BC AB BC =+=+ AB BC BD +=∴2BC AB CE -=2BC CE AB -=2AB CE BC +=DF AB ⊥180BAD C ∠+∠=︒ 180BAD FAD ∠+∠=︒FAD C ∴∠=∠在和中,,,,.在和中,.,,.DFA △DEC △DFA DEC FAD C DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩DFA DEC ∴△≌△DF DE ∴=AF CE =Rt BDF △Rt BDE △BD BD DF DE=⎧⎨=⎩Rt Rt BDF BDE ∴△≌△BF BE ∴=2BC BE CE BA AF CE BA CE ∴=+=++=+2BC BA CE ∴-=。

朝阳区2023-2024学年第一学期期末八年级数学试题答案

朝阳区2023-2024学年第一学期期末八年级数学试题答案

北京市朝阳区2023-2024学年度第一学期期末检测八年级数学参考答案及评分标准(选用)2024.1一、选择题(共24分,每题3分)17.解:23437a a a a ⋅+−÷()()5127a a a =+−÷ ............................................................3分55a a =− ........................................................................4分=0........................................................................................5分18.解:()()()22222x y x y x y y −−−−−.(2222244322x xy y x xy y =−+−−+−...............................3分2222244322x xy y x xy y y =−+−+−−................................4分xy =− ....................................5分19.解:去分母,得 ()()21211x x x x +−−=− ..............2分解得x =2..................................... 经检验,x =2是原分式方程的解.所以原分式方程的解是x =2...........................5分 20.解:2222421112t t t t t t t++−÷+−−+ 222(2)(1)1(1)(1)2t t t t t t t +−=−⋅++−+..........................2分 22(1)11t t t t −=−++............................................3分21t =+..........................................4分 答案不唯一.如:当t =0时,原式=2...........................5分 21.证明:△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ACB =60°..................1分 ∵AE //BC ,∴∠CAE =∠ACB =60°...............................2分 ∴∠BAD =∠CAE . ∵∠ABD =∠ACE ,∴△ABD ≌△ACE ...................................3分 ∴AD =AE.....................................4分∴△ADE 是等边三角形.................................5分 22.法一:(1)如图所示. .................................2分(2)证明:由作图可知AP =CP .................................3分 ∴∠P AC =∠PCA ...............................4分 ∵∠B =∠BAD =∠CAD , ∴∠B =∠BAD =∠CAD =∠PCA.∵∠APC +∠CAD +∠PCA =180°,∠ADB +∠B +∠BAD =180°, ∴∠APC =∠ADB ...............................5分 ∴点P 即为所求. 法二:(1)如图所示.(2)证明:由作图可知CP =CD ....................................3分 ∴∠CPD =∠CDP ..................................4分 ∵∠APC +∠CPD =180°,∠ADB +∠CDP =180°, ∴∠APC =∠ADB ..................................5分 ∴点P 即为所求.23.解:设测试者使用键盘输入平均每分钟输入个单词,则使用语音输入平均每分钟输入3x 个单词.........1分 由题意,得3003002.53x x−=.....................2分 解得x =80..........................................3分经检验,x =80是原分式方程的解,且符合题意. .........................................4分 所以3x =240.答:测试者使用语音输入平均每分钟输入240个单词. .........................................5分 24.解:(l)1215,5x x == ;..............1分 (2) 121,x n x n==;............2分 (3) 12,1ax a x a ==−...................4分 25.(1)证明:∵将DA 沿直线BC 翻折得到DE , ∴AD =ED ,∠ADB =∠EDB ..........1∵将BD 平移得到EF (点B 与点E 为对应点), ∴BD =EF ,BD //EF ...........2分 ∴∠E =∠EDB . ∴∠ADB =∠E .∴△ADB ≌△DEF ...................3分(2) △ABC 需要满足的条件为AB =AC ...............4分 证明:此时图形如图所示.由(1)可知△ADB ≌△DEF .∴AB =DF ,∠B =∠DFE ..................5分 ∵AB =AC ,∴AC =DF ,∠B =∠ACB . ∵BD //EF , ∴∠DFE =∠FDC . ∴∠ACB =∠FDC .∴△ACD ≌△FDC . ..................6分 ∴AD =CF . 26.数据计算:111;;21117121..................................3分 实验结论:三..................................4分 推广证明:依题意可得,选择方案一进行一次漂洗后,衣服中存有的污物是原来的aa m+,可化为22a a am +;选择方案二进行两次漂洗后,衣服中存有的污物是原来的()a aa x a m x ⋅++−,整理得222a a am mx x++−; 选择方案三进行两次漂洗后,衣服中存有的污物是原来的22()2a m a +,整理得2224a m a am ++..................................5分因为三个分式的分子、分母都是正数,且分子相同,所以要判断三个分式值的大小,只需比较分母的大小.因为()()2222a am mx x a am mx x x m x ++−−+=−=− , 且m >x ,x >0, 所以x (m -x )>0.所以222a am mx x a am ++−>+所以222a a a m a am mx x >+++− ....................................6分 即方案二比方案一的漂洗效果好.因为2222222()()442m m m a am a am mx x mx x x ++−++−=−+=−, 且2m x ≠, 所以2()20m x −>. 所以22224m a am a am mx x ++>++−. 所以2222224a a m a am mx xa am >++−++.....................7分即方案三比方案二的漂洗效果好.综上,在这三种方案中,方案三的漂洗效果最好.说明:各解答题的其他正确解法请参照以上标准给分.祝各位老师寒假愉快!。

2022-2023学年山西省太原市山西大学附属中学校八年级上学期1月数学期末考试卷带讲解

2022-2023学年山西省太原市山西大学附属中学校八年级上学期1月数学期末考试卷带讲解
B=90°,本选项符合题意.
C、若(c+a)(c-a)=b2,则 即 ,则△ABC是直角三角形,是真命题,本选项不符合题意.
D、若∠A:∠B:∠C=5:2:3,则 ,则△ABC是直角三角形,是真命题,本选项不符合题意.
故选:B.
【点睛】本题考查命题与定理,直角三角形的定义,勾股定理的逆定理等知识,解题的关键是掌握勾股定理的逆定理,属于中考常考题型.
【分析】先根据勾股定理求出 的长,再根据折叠的性质得 .设 为x,将 用含x的代数式表示出来,然后在 中根据勾股定理列方程即可求出 的长.
【详解】解:∵在 中 , ,
根据折叠的性质得

设 ,则
在Rt 中,根据勾股定理得
解得
故答案为:
【点睛】本题主要考查了勾股定理与折叠问题.熟练掌握勾股定理,用勾股定理列方程是解题的关键.
【详解】解:早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中.
故选:A.
【点睛】本题考查了勾股定理的历史渊源,仔细阅读教材,熟记知识是解题的关键.
6.在 中,∠A,∠B,∠C的对边分别是a,b,c,下列命题中,属于假命题的是()
5.我国是最早了解勾股定理的国家之一.早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于下列哪部著名数学著作中()
A. 《周髀算经》B. 《九章算术》
C. 《海岛算经》D. 《几何原本》
A
【分析】加强教材的阅读,熟记相关知识的来源与出处.
解:过点P作 ,
∵ (已知),

人教版八年级第一学期期末数学试卷及答案

人教版八年级第一学期期末数学试卷及答案

人教版八年级第一学期期末数学试卷及答案一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,填在题后的括号内)1.若分式值为零,则()A.x=0B.x=1C.x≠0D.x≠12.下列图形具有稳定性的是()A.B.C.D.3.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.4.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解5.2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米6.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°7.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm8.若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定9.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A.40°B.50°C.80°D.100°10.若=,则2n﹣3m的值是()A.﹣1B.1C.2D.311.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB12.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.4913.在△ABC中给定下面几组条件:①∠ACB=30°,BC=4cm,AC=5cm②∠ABC=30°,BC=4cm,AC=3cm③∠ABC=90°,BC=4cm,AC=5cm④∠ABC=120°,BC=4cm,AC=5cm若根据每组条件画图,则△ABC不能够唯一确定的是()A.①B.②C.③D.④14.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:出行方式路径路程地铁A地→大兴机场全程约43公里公交B地→大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程()A.B.C.D.15.将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点M处,则下列说法正确的是()A.点E、M、C在同一条直线上B.点E、M、C不在同一条直线上C.无法判断D.以上说法都不对16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2021B2021A2022的边长为()A.2021B.4042C.22021D.22020二、填空题(本大题共4个小题,17-19小题,每小题3分,20题每空2分,共13分.请将答案写在横线上.)17.如图,图中以BC为边的三角形的个数为.18.5﹣1+50=.19.对于两个非零的实数a,b,定义运算※如下:a※b=.例如:3※4=.若x※y=2,则的值为.20.如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交于点D、E.(1)当△MPD与△NPE全等时,直接写出点P的位置:;(2)当△NPE是等腰三角形时,则∠NPE的度数为.三、解答题(本大题共7个小题,共65分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在相应位置.)21.(1)因式分解:a2(b+1)﹣4(b+1);(2)计算:(2m2n﹣1)2•3m3n﹣5;(3)先化简,再求值,其中|x|=2.22.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.23.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°,而乙同学说,θ也能取630°,甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,请确定x的值.24.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使PA+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影;(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.25.已知关于x的分式方程.(1)当a=5时,求方程的解;(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?小明说:“解这个关于x的分式方程,得到方程的解为x=a﹣2.因为解是正数,可得a﹣2>0,所以a>2”,小明说的对吗?为什么?(4)关于x的方程有整数解,直接写出整数m的值,m值为.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.参考答案一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,填在题后的括号内)1.若分式值为零,则()A.x=0B.x=1C.x≠0D.x≠1【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.解:∵分式值为零,∴x﹣1=0,解得:x=1.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.2.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性判断即可.解:具有稳定性的图形是三角形,故选:A.【点评】本题考查的是三角形的性质,掌握三角形具有稳定性是解题的关键.3.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.【点评】此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.5.2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:125纳米=0.000000125米=1.25×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.【点评】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.7.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm【分析】先设第三根木棒的长为xcm,再根据三角形的三边关系求出x的取值范围,找出不符合条件的x的值即可.解:设第三根木棒的长为xcm,∵已经取了10cm和15cm两根木棍,∴15﹣10<x<15+10,即5<x<25.∴四个选项中只有D不在其范围内,符合题意.故选:D.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.8.若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定【分析】求出M和N的展开式,计算M﹣N的正负性,即可判断M与N的大小关系.解:M=(x﹣3)(x﹣4)=x2﹣7x+12;N=(x﹣1)(x﹣6)=x2﹣7x+6;故选:A.【点评】本题主要考查了多项式乘多项式的运算,难度适中,熟练掌握多项式乘多项式的运算法则是解题的关键.9.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A.40°B.50°C.80°D.100°【分析】根据线段的垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EBA=∠A=40°,根据三角形的外角性质计算即可.解:∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠BEC=∠EBA+∠A=80°,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.若=,则2n﹣3m的值是()A.﹣1B.1C.2D.3【分析】利用幂的乘方法则和同底数幂的除法法则,先计算,再利用负整数指数幂表示出,根据两者的关系计算得结论.解:∵=33m÷32n=33m﹣2n,=3﹣1,∴3m﹣2n=﹣1.【点评】本题考查了同底数幂的除法,掌握幂的运算法则是解决本题的关键.11.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.【点评】本题考查了作图﹣基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.12.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.49【分析】利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,∴ab=10,a+b=7,∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.故选:B.【点评】此题考查了因式分解法的应用,熟记公式结构正确将原式分解因式是解题的关键.13.在△ABC中给定下面几组条件:①∠ACB=30°,BC=4cm,AC=5cm②∠ABC=30°,BC=4cm,AC=3cm③∠ABC=90°,BC=4cm,AC=5cm④∠ABC=120°,BC=4cm,AC=5cm若根据每组条件画图,则△ABC不能够唯一确定的是()A.①B.②C.③D.④【分析】符合全等三角形的判定条件所画出的三角形是唯一的,则可对①③进行判断;根据②的条件可画出锐角三角形或钝角三角形,根据④的条件只能画出唯一的钝角三角形,则可对②④进行判断.解:①若∠ACB=30°,BC=4cm,AC=5cm,则根据“SAS”可判断画出的△ABC是唯一的;②若∠ABC=30°,BC=4cm,AC=3cm,不符合三角形全等的条件,则画出的△ABC可能为锐角三角形,也可能为钝角三角形,三角形不是唯一的;③若∠ABC=90°,BC=4cm,AC=5cm,则根据“HL”可判断画出的△ABC是唯一的;④若∠ABC=120°,BC=4cm,AC=5cm,则画出的△ABC是唯一的;故选:B.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟练掌握全等三角形的判定方法.14.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:出行方式路径路程地铁A地→大兴机场全程约43公里公交B地→大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程()A.B.C.D.【分析】根据地铁及公交速度间的关系,可得出地铁的平均速度为2x公里/时,利用时间=路程÷速度,结合小贝比小京少用了半小时到达机场,即可得出关于x的分式方程,此题得解.解:∵地铁的平均速度约为公交平均速度的两倍,公交的平均速度为x公里/时,∴地铁的平均速度为2x公里/时.根据题意得:+=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.15.将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点M处,则下列说法正确的是()A.点E、M、C在同一条直线上B.点E、M、C不在同一条直线上C.无法判断D.以上说法都不对【分析】利用正五边形的性质得出△BAE≌△EDC即可求出∠AEB=∠DEM=36°,进而即可得出结论.解:连接MC,∵五边形ABCDE是正五边形,∴∠AED=108°=∠CDE且DC=DE,∴∠DEM=36°,在△BAE和△EDC中,,∴△BAE≌△EDC(SAS),∴∠AEB=∠DEM=36°,∴∠BEM=36°,∴∠BEM=∠EBM=36°,∴B,A′和D三点共线,即E、M、C三点在同一条直线上.故选:A.【点评】此题考查了正多边形与圆,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是得出∠BEM=∠EBM=36°.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2021B2021A2022的边长为()A.2021B.4042C.22021D.22020【分析】根据等边三角形的性质和∠MON=30°,可求得∠OB1A2=90°,可求得OA2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,于是可得出答案.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠A1B1O=30°,∴OA1=A1B1可求得OA2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,在△OB n A n+1中,∠O=30°,∠B n A n+1O=60°,∴∠OB n A n+1=90°,∴B n A n+1=OA n+1=×2n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,∴△A2021B2021A2022的边长为22021﹣1=22020,故选:D.【点评】本题主要考查图形变化类,等边三角形的性质和含30°角的直角三角形的性质,根据条件找到等边三角形的边长和OA1的关系是解题的关键.二、填空题(本大题共4个小题,17-19小题,每小题3分,20题每空2分,共13分.请将答案写在横线上.)17.如图,图中以BC为边的三角形的个数为4.【分析】根据三角形的定义即可得到结论.解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.【点评】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.18.5﹣1+50=.【分析】根据负整数指数幂和零指数幂的定义解答.解:原式=+1=.故答案为.【点评】本题考查了负整数指数幂和零指数幂,掌握基本概念是解题的关键.19.对于两个非零的实数a,b,定义运算※如下:a※b=.例如:3※4=.若x※y=2,则的值为.【分析】已知等式利用题中的新定义化简,计算即可求出所求.解:根据题中的新定义化简得:﹣=2,通分化简得:=2,则=,故答案为:【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交于点D、E.(1)当△MPD与△NPE全等时,直接写出点P的位置:MN的中点;(2)当△NPE是等腰三角形时,则∠NPE的度数为40°或70°或55°或35°.【分析】(1)由全等三角形对应边相等得到MP=NP,即点P是MN的中点;(2)需要分类讨论:PN=PE、PE=NE、PN=NE、当D点在M点右侧.解:(1)∵a∥b,∴∠DMN=∠PNE.又∵∠MPD=∠NPE,∴当△MPD与△NPE全等时,即△MPD≌△NPE,∴MP=NP,即点P是MN的中点;故答案为:MN的中点;(2)∵a∥b,∴∠DMN=∠PNE=70°,①若PN=PE时,∴∠DMN=∠PNE=70°,∴∠NPE=180°﹣∠PNE﹣∠PEN=180°﹣70°﹣70°=40°;②若EP=EN时,则∠NPE=∠PNE=70°;③若NP=NE时,则∠NPE=∠NEP=55°;④当D点在M点右侧时,∠NPE=35°;综上所述,∠NPE=40°或70°或55°或35°.故答案为:40°或70°或55°或35°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,利用分类讨论思想解决问题是解题的关键.三、解答题(本大题共7个小题,共65分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在相应位置.)21.(1)因式分解:a2(b+1)﹣4(b+1);(2)计算:(2m2n﹣1)2•3m3n﹣5;(3)先化简,再求值,其中|x|=2.【分析】(1)根据因式分解的方法分解即可;(2)根据整式运算的法则计算即可;(3)先化简分式,然后代入字母的值计算即可.解:(1)a2(b+1)﹣4(b+1)=(a2﹣4)(b+1)=(a+2)(a﹣2)(b+1);(2)(2m2n﹣1)2⋅3m3n﹣5=4m4n﹣2⋅3m3n﹣5=12m7n﹣7=;(3)====,∵|x|=2,∴x=±2,∵x﹣2≠0,∴x=﹣2,∴原式=.【点评】本题考查了因式分解,分式的化简求值,整式的化简,熟练掌握运算法则是解题的关键.22.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【分析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.【解答】证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.【点评】本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.23.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°,而乙同学说,θ也能取630°,甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,请确定x的值.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程是解题关键解.24.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使PA+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影;(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)作点B关于直线m的对称点B',连接AB',交直线m于点P,则点P即为所求作的点;(3)如图,取格点O,计算可知S△AOC=S△BOC=S△AOB=2(平方单位).(4)如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.推出CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.解:(1)如图所示,△A′B′C′即为所求作,(2)如图,点P即为所求作,(3)如图,即为所作,(4)如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.∴CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.【点评】本题考查作图,轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题.25.已知关于x的分式方程.(1)当a=5时,求方程的解;(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?小明说:“解这个关于x的分式方程,得到方程的解为x=a﹣2.因为解是正数,可得a﹣2>0,所以a>2”,小明说的对吗?为什么?(4)关于x的方程有整数解,直接写出整数m的值,m值为3,4,0.【分析】(1)把a=5代入分式方程中,可得,然后按照解分式方程的步骤进行计算即可解答;(2)根据题意可得x=1,然后把x=1代入整式方程x=a﹣2中可得1=a﹣2,进行计算即可解答;(3)根据题意可得x>0且x≠1,从而可得a﹣2>0且a﹣2≠1,然后进行计算即可解答;(4)根据题意可得m﹣2=±1或m﹣2=±2,从而可得m=3,1,4,0,然后再根据分式方程的分母不能为0可得x≠2,从而可得﹣≠2,进行计算即可解答.解:(1)当a=5时,分式方程为:,5﹣3=x﹣1,解得:x=3,检验:当x=3时,x﹣1≠0,∴x=3是原方程的根;(2),去分母得:a﹣3=x﹣1,解得:x=a﹣2,∵该方程去分母后所得整式方程的解不是原分式方程的解,∴x﹣1=0∴x=1,把x=1代入x=a﹣2中得:1=a﹣2,解得:a=3,∴a的值为3;(3)小明的说法不对,理由:,去分母得:a﹣3=x﹣1,解得:x=a﹣2,∵分式方程的解是正数,∴x>0且x≠1,∴a﹣2>0且a﹣2≠1,解得:a>2且a≠3,∴a的取值范围是:a>2且a≠3;(4),去分母得:mx﹣1﹣1=2(x﹣2),整理得:(m﹣2)x=﹣2,当m≠2时,解得:x=﹣,∵方程有整数解,∴m﹣2=±1或m﹣2=±2,解得:m=3,1,4,0,∵x﹣2≠0,∴x≠2,∴﹣≠2,∴m≠1,∴m=3,4,0,故答案为:3,4,0.【点评】本题考查了解分式方程,分式方程的解,解一元一次不等式,准确熟练地进行计算是解题的关键.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.【点评】此题是三角形综合题,主要考查了角平分线的定义和角平分线定理,等边三角形的判定,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键,(3)判断三角形PHG是等边三角形的个数是解本题难点.27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为7.。

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(共10个小题,每小题3分,满分30分:每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.在下列长度的三条线段中,能围成三角形的是()A.2,3,4 B.2,3,5 C.3,5,9 D.8,4,43.如果一个多边形的内角和等于720°,则它的边数为()A.3 B.4 C.5 D.64.下列运算中正确的是()A.2a3﹣a3=2 B.2a3•a4=2a7C.(2a3)2=4a5D.a8÷a2=a45.在△ABC中,∠C=90°,∠A=60°,AC=2.则AB的长为()A.1 B.2 C.3 D.46.分式的值为0,则y的值是()A.5 B.C.﹣5 D.07.若x2+kx+16能写成一个多项式的平方形式,则k的值为()A.±8 B.8 C.±4 D.48.如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF9.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°10.如图,△ABC和△ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.则下列结论不正确的是()A.BD=CE B.BD⊥CE C.AF平分∠CAD D.∠AFE=45°二、填空题(共6个小题,每小题3分,共18分.)11.已知点P的坐标为(﹣2,3).则它关于y轴对称的点P'的坐标是.12.已知x+y=6,xy=7,则x2y+xy2的值是.13.如图,已知△ABC≌△DEF,∠B=57°,∠D=77°,则∠F=.14.(a2)﹣1(a﹣1b)3=.15.等腰三角形中有一个内角是70°,则另外两个内角的度数分别为.16.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.三、解答题(共7小题,共48分,解答要求写出文字说明,证明过程或计算步骤.)17.(4分)计算:a÷b×.18.(4分)计算:(x+1)(x﹣1)﹣(x+2)2.19.(6分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;(2)在x轴上找一点P,使得PB+PA的值最小.(要求写作法)20.(6分)先化简,再求值:已知(+)÷,其中x满足x2+2x﹣5=0.21.(8分)如图,在△ABC中,∠C=90°,点D,点E在边BC上,且满足AD=BD,AE 平分∠BAD,若∠CAE=42°.求∠AEC和∠B的度数.22.(10分)某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km.而步行路程是骑车路程的.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.(10分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AE⊥DE.四、解答题(共2小题,共24分,解答要求马出文字说明。

重庆市潼南区2023-2024学年八年级上学期期末数学试题(含答案)

重庆市潼南区2023-2024学年八年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末检测八年级数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列图标中,是轴对称图形的是( )A .B .C .D .2.要使分式有意义,则应满足( )A .B .C .D .且3.用三根长分别为,,的小木棒首尾相接拼成一个三角形,则的值可以是( )A .5B .15C .25D .354.下列计算结果为的是( )A .B .C .D .5.用三角尺可按下面方法画角平分线:在已知的的两边上,分别取,再分别过点M ,N 作OA ,OB 的垂线,交点为,画射线OP ,则OP 平分.这里判定的方法是( )A .B .SSSC .SASD .AAS6.用三角形按如图所示的规律拼图案,其中第①个图案中有5个三角形,第②个图案中有9个三角形,第③个图案中有13个三角形,第④个图案中有17个三角形,……,按此规律排列下去,则第⑧个图案中三角形的个数为( )A .25B .29C .33D .377.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,1x x -x 1x ≠-0x ≠1x ≠0x ≠1x ≠10cm 15cm cm a a 8x 26x x +24x x ⋅162x x ÷()42x AOB ∠OM ON =P AOB ∠OMP ONP ≌△△HL学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低15元,总费用降低了.设第二次采购单价为元,则所列方程正确的是( )A.B .C .D .8.已知,,则的值为()A .16B .22C .28D .369.如图,在中,,,于点,于点,交AD 于点.若,则BD 的长为( )A .4B .5C .8D .1010.给定一个正整数,若两个整数与分别除以所得的余数相同,则称p ,q 对同余,记作.例如:,,所以31,66对7同余,记作.下列说法:①;②若,则;③若,,则;④若,其中为的整数,b ,c ,d 为的整数,则.其中正确的个数是( )A .1B .2C .3D .4二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:______.12.将分式化为最简分式,所得结果是______.13.若点与点关于轴对称,则______.10%x 2000020000(110%)15x x -=-2000020000(110%)15x x-=+2000020000(110%)15x x -=-2000020000(110%)15x x -=+5m n +=3mn =22m mn n -+ABC △AB AC =45BAC ∠=︒AD BC ⊥D BE AC ⊥E F 10AF =k p q k k (mod )p q k =31743÷=⋅⋅⋅⋅⋅⋅66793÷=⋅⋅⋅⋅⋅⋅3166(mod 7)=19512024(mod 3)≡(mod 3)p q ≡52(mod 3)p q ≡(mod )p q k ≡(mod )s t k ≡(mod )ps qt k ≡1000100(9)10M a b c d =++++a 1~90~9()(mod 9)M a b c d =+++0233-+=2269x x +-(9,)A a b -(2,38)B a b -x a b +=14.如图,一个正方形和一个正五边形各有一边AB ,CD 在直线上,且只有一个公共顶点,则的度数为______.15.如图,在中,AD 是BC 边上的高,CE 平分,交AD 于点,,,则的面积等于______.16.如图,在中,,,的垂直平分线交于点,交AC 于点,,则BC 的长度为______.17.若关于的不等式组的解集为,且关于的分式方程的解为正数,则所有满足条件的整数的值之和为______.18.对于一个四位正整数,若它的千位数字与十位数字之和等于百位数字与个位数字之和,则称这个四位正整数是“和谐数”.如:四位数2783,,是“和谐数”;四位数5326,,不是“和谐数”,则最小的“和谐数”是______;若一个“和谐数”满足千位数字与百位数字的平方差是24,且十位数字与个位数字的和能被5整除,则满足条件的的最大值是______.三、解答题:(本大题8个小题,第19题8分,第20题—第26题每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2).20.解下列方程:(1);l P BPC ∠ABC △ACB ∠E 6AC =2DE =ACE △ABC △90C ∠=︒15A ∠=︒AB AB N M 16AM =x 23114x a x +<-⎧⎪⎨->⎪⎩4x <-y 3211a y y +=---a M M 2873+=+ 2783∴5236+≠+ 5326∴M M (1)(3)(3)x x x x -++-222442a a a a a a ⎛⎫÷+ ⎪-+-⎝⎭352x x =-(2).21.学习了轴对称后,小敏进行了拓展性研究.她发现,直角三角形斜边上的中线等于斜边的一半.她的证明思路是:在中,作直角边CB 的垂直平分线,交斜边AB 于点,垂足为点,连接CD ,然后利用垂直平分线的性质和三角形边角关系等知识推出结论.请根据她的思路完成以下作图与填空:证明:用直尺和圆规,作CB 的垂直平分线,交AB 于点,垂足为点,连接CD (只保留作图痕迹).DE 垂直平分线CB ,① ..,,② .③ ..即CD 是斜边AB 上的中线,且.22.如图,在和中,,,,点在DE 上.(1)证明:;(2)求的度数.23.如图,在边长为1的正方形网格中,的三个顶点A ,B ,C 都在格点上.(1)在图中画出关于轴对称的,其中点A ,B ,C 的对称点分别是,,,并写出21133x x x x =-++Rt ABC △D E D E DC ∴=DCB DBC ∴∠=∠90ACD DCB ∠︒∠+= 90CAD DBC ∠+∠=︒ACD ∴∠=DC ∴=DC DA DB ∴==12CD AB =ABC △ADE △AB AD =B D ∠=∠1240∠=∠=︒C ABC ADE △≌△E ∠ABC △ABC △y 111A B C △1A 1B 1C点的坐标;(2)点是轴上一点,请在图中标出使的周长最小时的点,并直接写出此时点的坐标;(3)计算的面积.24.甲、乙两个施工队共同参与一项全长6300米的筑路工程,分别从两端向中间施工,已知甲队负责施工的长度的3倍比乙队负责施工的长度长900米,两施工队负责施工的长度总和等于该工程全长.(1)求甲、乙两施工队分别负责施工的长度是多少米?(2)若乙队每天施工的长度是甲队每天施工长度的1.5倍,如果两队同时开始施工,乙队比甲队还要多用4天完工,求甲队每天施工多少米?25.如图1,是等边三角形,点M ,N 分别是边AB ,BC 上的动点,点M ,N 以相同的速度,分别从点A ,B 同时出发.(1)如图1,连接AN ,CM ,求证:;(2)如图1,当点M ,N 分别在边AB ,BC 上运动时(端点除外),AN ,CM 相交于点,试探究的大小是否为定值,若是,求出的度数,若不是,请说明理由;(3)如图2,当点M ,N 分别在AB ,BC 的延长线上运动时,直线AN ,CM 相交于点,试探究的大小是否为定值,若是,求出的度数,若不是,请说明理由.26.如图,在中,,点是CB 上一动点,点在AD 的延长线上,且,平分交DE 于,连接BF .(1)如图1,求证:;(2)如图2,时,求证:;(3)如图3,当时,过点作AB 的垂线,过点作AB 的平行线,两直线l ,n 相交于,连接ME .当ME取得最大值时,请直接写出此时的值.2023-2024学年度第一学期期末检测八年级数学试题参考答案及评分意见一、选择题:(本大题10个小题,每小题4分,共40分)1B P y ABP △P P ABC △ABC △ABN CAM △≌△P NPC ∠NPC ∠P NPC ∠NPC ∠ABC △CA CB =D E CA CE =CF BCE ∠F CAF CBF ∠=∠60ABC ∠=︒CF EF AF +=45ABC ∠=︒A l C n M EF AD题号12345678910答案D C B D A C B A B C二、填空题:(本大题8个小题,每小题4分,共32分)11.12.13.514.15.616.817.1118.1001;7546三、解答题:(本大题8个小题,第19题8分,第20题—第26题每小题10分,共78分)19.解(1)原式(2)20.(1)解:检验:当时,所以,原分式方程的解为.(2)解:检验:当时,所以,原分式方程的解为.21.证明:作图如图:①DB ②③DA10923x -18︒2299x x x x =-+-=-22222(2)2442(2)2a a a a a a a a a a a a -+⎛⎫÷+=÷ ⎪-+---⎝⎭222(2)2a a a a =÷--2222(2)a a a a -=⋅-12a =-()325x x-=365x x-=26x =-3x =-3x =-(2)0x x -≠3x =-3233x x x =--33x x =--43x =-34x =-34x =-3(1)0x +≠34x =-CAD ∠22.(1)证明:,在和中,(2)由得,,是等腰三角形,23.解:(1)点(2)如图所示,点(3)24.(1)解:设甲施工队施工的长度是米,乙施工队施工的长度是米,解得答:甲施工队施工的长度是1800米,乙施工队施工的长度是4500米(2)解:设甲队每天各施工y 米,乙队每天各施工米,12∠=∠ BAC DAE ∴∠=∠ABC △ADE △BAC DAE AB ADB D ∠=∠=∠=∠⎧⎪⎨⎪⎩(ASA)ABC ADE ∴△≌△ABC ADE △≌△AC AE =ACE ∴△()()11180180407022E ACE CAE ∴∠=∠=-∠=⨯-︒=︒︒︒1(3,2)B -(0,1)P 111373371249222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△x (3900)x -39006300x x +-=47200x =1800x =318009004500⨯-= 1.5y经检验:当时,.答:甲队每天各施工300米.25.(1)证明:点M ,N 以相同的速度,分别从点A ,B 同时出发是等边三角形,在和中,(2)是,,(3)是,点M ,N 以相同的速度,分别从点A ,B 同时出发是等边三角形,,即在和中,26.证明:(1)平分,4500180041.5y y-=450027006y-=61800y =300y =300y = 1.50y ≠ BN AM∴=ABC △AB CA ∴=ABN CAM∠=∠ABN △CAM △AB CA ABN CAMBN AM =⎧⎪∠=∠⎨⎪=⎩(SAS)ABN CAM ∴△≌△60NPC ∠=︒ABN CAM △≌△BAN ACM∴∠=∠60NPC PAC ACP PAC BAN BAC ∴∠=∠+∠=∠+∠=∠=︒120NPC ∠=︒ AM BN∴=ABC △AB BC CA ∴==60ABC BCA ∠=∠=︒120MBC NCA ∴∠=∠=︒AM AB BN BC -=-BM CN=CBM △ACN △CB AC MBC NCABM CN =⎧⎪∠=∠⎨⎪=⎩(SAS)CBM ACN ∴△≌△BCM CAN∴∠=∠180120NPC PAC ACP BCM ACP BCA ∴∠=∠+∠=∠+-∠=︒∠=︒CF BCE∠ECF BCF∴∠=∠CA CB = CA CE=CE CB∴=在和中,,,(2)证明:连接BF ,由(1)得,在AF 上截取,连接CM ,如图2在和中,,,是等边三角形,为等边三角形,,即(3)BCF △ECF △CF CF CE CB ECF BCF=⎧∠=∠=⎪⎨⎪⎩(SAS)BCF ECF ∴△≌△E CBF∴∠=∠CA CE= E CAF ∴∠=∠CAF CBF∴∠=∠BCF ECF△≌△EF BF ∴=E CBF CAF∠=∠=∠AM BF =ACM △BCF △CA CB CAM CBFAM BF =⎧⎪∠=∠⎨⎪=⎩(SAS)ACM BCF ∴△≌△CM CF ∴=ACM BCF∠=∠CA CB = 60ABC ∠=︒ABC ∴△60ACB ∴∠=︒60MCF MCB BCF MCB ACM ACB ∴∠=∠+∠=∠+∠=∠=︒CM CF= CMF ∴△CF CM MF∴==EF CF AM MF AF ∴+=+=EF CF AF+=12。

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.下列长度的三根木棒能组成三角形的是( )A .2 ,3 ,4B .2 ,2 ,4C .2 ,3 ,6D .1 ,2 ,4 2.若分式224x x +-有意义,则x 的取值范围是( ) A .x≠2 B .x≠ ±2 C .x≠﹣2 D .x ≥﹣23.五边形的外角和等于( )A .180°B .360°C .540°D .720°4.某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为( )A .152×105米B .1.52×10﹣5米 C .﹣1.52×105米 D .1.52×10﹣4米 5.若把分式xy x y +的x 和y 都扩大3倍,那么分式xy x y+的值( ) A .扩大3倍 B .扩大9倍 C .扩大4倍 D .不变 6.如果三角形的三个内角的度数比是2:3:4,则它是( )A .锐角三角形B .钝角三角形C .直角三角形D .钝角或直角三角形7.若点A (m ,n )和点B (5,﹣7)关于x 轴对称,则m+n 的值是( )A .2B .﹣2C .12D .﹣128.如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .89.如图,△ABC 中AB 边上的高是( )A .线段ADB .线段AC C .线段CD D .线段BC10.如图,在Rt△ABC 中,△ACB =90°,△A =30°,CD 是斜边AB 上的高,BD =2,那么AD 的长为( )A .2B .4C .6D .8二、填空题11.分解因式:23m m -=________.12.一个正多边形的内角和等于1440°,则此多边形是________边形.13.若a m =3,a n =4,则a m+n =_____.14.已知1112a b -=,则ab b a -的值是_____. 15.如图,已知△ABC△△DCB ,△BDC=35°,△DBC=50°,则△ABD=________.16.如图,若△A =15°,AB =BC =CD =DE =EF ,则△DEF 等于_____.17.如图.已知ABC 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C向点A 运动.若点Q 的运动速度为a 厘米/秒,则当BPD △与CQP 全等时,a 的值为______.18.如图,在ABC ∆中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,ABD ∆的周长为12,cm AC 的长为5cm ,那么ABC ∆的周长是___________cm三、解答题19.解方程:312x x =-. 20.先化简,再求值:2229344--⋅+-+x x x x x ,其中x =﹣1 21.已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2﹣4a ﹣8b+20=0,c=3cm ,求△ABC 的周长.22.如图,在四边形ABCD 中,AD△BC ,E 为CD 的中点,连接AE 、BE ,BE△AE ,延长AE 交BC 的延长线于点F. 已知AD=2cm ,BC=5cm.(1)求证:FC=AD ;(2)求AB 的长.23.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?24.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ),(3)求出'''A B C 的面积25.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:△已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.△计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).26.如图,△ABC 和△AOD 是等腰直角三角形,AB=AC ,AO=AD ,△BAC=△OAD=90°,点O 是△ABC 内的一点,△BOC=130°.(1)求证:OB=DC ;(2)求△DCO 的大小;(3)设△AOB=α,那么当α为多少度时,△COD 是等腰三角形.27.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D . (1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.参考答案1.A2.B3.B4.B5.A6.A7.C8.B9.C10.Cm m11.(3)12.1013.1214.215.45°.16.60°17.2或3【分析】此题要分两种情况:△当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求a;△当BD=CQ时,△BDP△△CQP,计算出BP的长,进而可得运动时间,然后再求a.【详解】解:当BD=PC时,△BPD与△CQP全等,△点D为AB的中点,AB=6cm,△BD=12△BD=PC,△BP=8-6=2(cm),△点P在线段BC上以2厘米/秒的速度由B点向C点运动,△运动时间时1s,△△DBP△△PCQ,△BP=CQ=2cm,△a=2÷1=2;当BD=CQ时,△BDP△△CQP,△BD=6cm,PB=PC,△QC=6cm,△BC=8cm,△BP=4cm,△运动时间为4÷2=2(s),△a=6÷2=3(m/s),故答案为:2或3.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL .18.17.【分析】由DE 是AC 的垂直平分线,可得AD=DC ,由ABD △的周长为12cm ,可得AB+AD+BD=12cm ,再由AD=DC ,可得AB+BC=12cm ,结合AC=5cm 进行计算即可.【详解】解:△ABD △的周长为12cm ,△AB+AD+BD=12cm ,△DE 是AC 的垂直平分线,△AD=DC ,△AB+DC+BD=12cm ,△AB+BC=12cm ,△AC=5cm ,△AB+BC+AC=17cm ,即ABC 的周长是17cm ,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,正确理解线段的垂直平分线的性质是解题的关键.19.3x =【分析】根据分式方程的一般求解步骤求解即可,最后检验方程的根. 【详解】解:312x x =- 化为整式方程为:3(2)x x -=去括号得:36x x -=移项,合并同类项得:26x =解得:3x =经检验:3x =是原方程的根,所以原方程的解为:3x =【点睛】本题考查了分式方程的解法,熟悉掌握分式方程的解法步骤是解题的关键. 20.32x x --,43【分析】根据分式乘法的运算法则对分式进行化简,然后代入求解即可.【详解】解:2229344--⋅+-+x x x x x 2(3)2)3(3)(2x x x x x -+--⋅+=, 32x x -=-, 将1x =-代入得, 原式134123--==--, 【点睛】此题考查了分式的化简求值,解题的关键是掌握分式的有关运算法则,正确对分式进行化简.21.△ABC 的周长为9.【分析】由a 2+b 2﹣4a ﹣8b+20=0,利用非负数的性质可求得a ,b 的值,然后根据三角形的周长公式进行求解即可得.【详解】△a 2+b 2﹣4a ﹣8b+20=0,△a 2﹣4a+4+b 2﹣8b+16=0,△(a ﹣2)2+(b ﹣4)2=0,又△(a ﹣2)2≥0,(b ﹣4)2≥0,△a ﹣2=0,b ﹣4=0,△a=2,b=4,△△ABC 的周长为a+b+c=2+4+3=9,答:△ABC 的周长为9.【点睛】本题考查了因式分解的应用、非负数的性质等,解题的关键是利用因式分解将所给式子的左边转化成非负数的和的形式.22.(1)证明见解析 ;(2)AB=7cm.【详解】试题分析:(1)根据AD△BC 可知△ADC=△ECF ,再根据E 是CD 的中点可求出△ADE△△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF 即可.试题解析:(1)△AD△BC△△ADC=△ECF ,△E 是CD 的中点,△DE=EC ,△在△ADE与△FCE中,ADC ECFDE ECAED CEF∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ADE△△FCE(ASA) ,△FC=AD ;(2)△△ADE△△FCE,△AE=EF,AD=CF ,△BE△AE ,△BE是线段AF的垂直平分线,△AB=BF=BC+CF,△AD=CF ,△AB=BC+AD=5+2=7(cm).23.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据销售单价x销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据题意得:222096052x x-=,解得:x30=,经检验,x30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.24.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, △11A B C S '''=△.25.(1)B ;(2)△3;△2140. 【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)△把x 2﹣4y 2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;△利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ;(2)△△x 2﹣4y 2=(x+2y )(x ﹣2y ),△12=4(x ﹣2y )得:x ﹣2y=3;△原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)…(1﹣119)(1+119)(1﹣120)(1+120) 1324351820192122334419192020=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ =12×2120 =2140. 26.(1)证明见解析;(2)40°;(3)当α的度数为115°或85°或145°时,△AOD 是等腰三角形【分析】(1)由已知证明△AOB△△ADC ,根据全等三角形的性质即可证得;(2)由△BOC=130°,根据周角的定义可得△BOA+△AOC=230°,再根据全等三角形的性质继而可得△ADC+△AOC=230°,由△DAO=90°,在四边形AOCD 中,根据四边形的内角和即可求得△DCO 的度数;(3)分三种情况进行讨论即可得.【详解】(1)△△BAC=△OAD=90°,△△BAC ﹣△CAO=△OAD ﹣△CAO ,△△DAC=△OAB ,在△AOB 与△ADC 中,AB AC OAB DAC AO AD =⎧⎪∠=∠⎨⎪=⎩,△△AOB△△ADC ,△OB=DC;(2)△△BOC=130°,△△BOA+△AOC=360°﹣130°=230°,△△AOB△△ADC△AOB=△ADC,△△ADC+△AOC=230°,又△△AOD是等腰直角三角形,△△DAO=90°,△四边形AOCD中,△DCO=360°﹣90°﹣230°=40°;(3)当CD=CO时,△△CDO=△COD=1801804022DCO︒-∠︒-︒==70°,△△AOD是等腰直角三角形,△△ODA=45°,△△CDA=△CDO+△ODA=70°+45°=115°,又△AOB=△ADC=α,△α=115°;当OD=CO时,△△DCO=△CDO=40°,△△CDA=△CDO+△ODA=40°+45°=85°,△α=85°;当CD=OD时,△△DCO=△DOC=40°,△CDO=180°﹣△DCO﹣△DOC=180°﹣40°﹣40°=100°,△△CDA=△CDO+△ODA=100°+45°=145°,△α=145°,综上所述:当α的度数为115°或85°或145°时,△AOD是等腰三角形.27.(1)见解析;(2)详见解析.【分析】(1)利用SAS证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)△△ABC,△AEF 是等边三角形,△AC=AB,AF=AE,△CAB=△EAF,△△CAB -△FAB =△EAF -△FAB,△△CAF=△BAE,△△CAF△△BAE;(2)过点A 分别作AH△CD 于点H,AG△BE,交BE 的延长线于点G, 由(1)知,△CAF△△BAE ,△CF=BE ,CAF BAE S S =, △1122CE AH BE AG ⨯⨯=⨯⨯,△AH=AG ,△DA 平分△CDE.。

河南省郑州市八年级数学(北师版)2021-2022年第一学期期末

河南省郑州市八年级数学(北师版)2021-2022年第一学期期末
(2)本题解方程组的方法为__________.(填“代入消元法”或“加减消元法”)
17.《民法典》于2021年1月1日生效,这是新中国成立以来第一部以法典命名的法律,它也被称为社会生活的“百科全书”.络普法”大型网络在线答题活动,此次活动共吸引了1673万人次参与.某校七年级、八年级分别有300人,现从中各随机抽取15名同学参加网络在线答题,测试成绩(单位:分)(满分100分)如下表:
A.①②③B.①③④C.②③④D.①②④
8.如图,在平面直角坐标系中,直线l1: 与直线l2: 交于点A( ,b),则关于x、y的方程组 的解为( )
A. B. C. D.
9.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为 (千米),速度为 (千米/分),时间为 (分)下列函数图象能表达这一过程的是()
A. B. C. D.
10.直线y= x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()
A.(-3,0)B.(-6,0)C.(- ,0)D.(- ,0)
二、填空题.(每题3分,共15分)
11.计算: _______.
12.命题“同位角相等,两直线平行”中,条件是_____,结论是_____
18.如图,网格中每个小正方形的边长都是1,点A、B、C、D都在格点上.
(1)线段AB的长度是,线段CD的长度是.
(2)若EF的长为 ,那么以AB、CD、EF三条线段为边能否构成直角三角形,并说明理由.
19.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象可由函数y=x的图象平移得到,且经过点(﹣2,0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
5
20-+()()
163737--+⎩

⎧=+=-82573y x y x 八年级期末测试题
姓名: 班级: 成绩: 一.选择题:
1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6
2.在实数
22
7
,8,–3.1416 ,π,25 , 0.161161116……,中,无理数有( ) A .1个
B .2个
C .3个
D .4个
3. △ABC 中,∠ABC 与∠ACB 的平分线相交于I ,∠BIC =130°,∠A 的度数是 A.40° B.50° C.65° D.80°
4. 已知:如图,下列条件中不能判断直线l 1∥l 2的是( ) A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°
5.如果3251b a 与y x x b a ++-14
1是同类项,则x ,y 的值是 ( ) A .⎩⎨
⎧==31y x B .⎩⎨⎧==22y x C .⎩⎨⎧==21y x D .⎩⎨⎧==3
2
y x 6.下面哪个点在函数y = -2x+3的图象上 ( ) A .(-5,13) B.(0.5,2) C.(3,0) D.(1,5) 7.如图某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;
2452
=甲
s ,
1902=乙
s ,那么成绩较为整齐的是( )
A .甲班
B .乙班
C .两班一样整齐
D .无法确定 8. 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系下
9. 根据下列表述,能确定位置的是… ( ). A .某电影院2排 B .南京市大桥南路 C .北偏东30° D .东经118°,北纬40°
10. 列函数中,y 的值随x 的值增大而增大的函数是 ( )
A .y=2x+3
B .y=-3x-4
C .y=-2x
D .y=-x+2
二. 填空题: 11.若点M(a ,b )在第四象限,则点N (– a ,–b + 2)在
象限
. 12.写出一个图像经过第一三象限的函数是 .
13如图下列结论:①∠A >∠ACD ;②∠B+∠ACB=180°-∠A
;③∠B+∠ACB<180°; ④∠HEC>∠B 。

其中正确的是 (填上你认为正确的所有序号
). 14.P (-1,3)关于X 轴对称的点Q 的坐标是___________.
15.
在平面直角坐标系中,直线y=3x+1向 平移 个单位,得到直线y=3x-4.
16.⎩⎨⎧==1
,2y x 方程2x -ay=5的一个解,则a = ;
17.若042=-+++y x x ,则=-x y . 18. 如图,∠1+∠2+∠3+∠4=________度
19.一次函数y =-x +1的图象与坐标轴围成的三角形的面积是 . 20. 学生的学科期末总成绩由期末考试分数, 平时作业分数, 期中考试分数三部分组成, 并按5: 2: 3的比例确定. 已知小明的数学期末考试80分, 平时作业90分, 期中考试 85分, 则他的数学期末总成绩为 。

三. 解答题:
21.计算(每题3分共6分)
22.解方程组:(8分) Q(升) A
Q(升) B
Q(升) C
Q()
D
23.(5分)某地长途客运公司规定,旅客可随身携带一定质量的行李.如果超过规定,则需购买行李票,行李票费用y (元)是行李质量x (千克)的一次函数,其图象如图.
(1)写出y 与x 之间的函数关系式. (2)旅客最多可免费携带多少千克行李?
24. (5分)已知:如图, AD ∥BC ,∠B=∠D 。

求证:∠E=∠F 。

25. (5分)如图,已知点A ,D ,B 在同一直线上,E ∠=∠∠=∠3,21,求证:DE //BC 。

26.(5分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600
(1)这(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克?
27. (6分)红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。

为吸引客源,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠。

一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元。

(1)三人间、双人间普通客房各住了多少间?(5分)
(2)设三人间共住了a 人,一天一共花去住宿费用s 元,写出s 与a 的函数关系式. (1分)
⎩⎨
⎧+=-+=-)
5(3)1(55)1(3x y y x。

相关文档
最新文档