概率论与数理统计讲义稿

合集下载

概率论与数理统计课件 第1讲

概率论与数理统计课件 第1讲
• 在一定条件下对随机现象进行大量重复观 测后就会发现:随机现象的发生具有统计 规律性。
例如: 某射击运动员在一定条件下进行射击训
练, 个别次射击可能会偏离预定目标,但进 行多次射击训练后,该运动员射击的命中率 就会呈现出一定的规律。
再如:
测量一个人的身高时,由 于仪器或观测者受到环境的影 响,每次测量的结果可能有差 异,但多次测量结果的平均值 随着测量次数的增加而逐渐稳 定在某个常数,并且各测量值 大多落在此常数附近,离常数 越远的测量值出现的可能性越 小。
性,即统计规律性”。
想一想
“天有不测风云”和“天气可以预报” 有无矛盾? ☆ 天有不测风云指的是:对随机现象进行一
次观测,其观测结果具有偶然性; ☆ 天气可以预报指的是:观测者通过大量的
气象资料对天气进行预测,得到天气变 化的统计规律。
概率论的广泛应用
(1)金融、信贷、医疗保险等行业策略制定; (2)流水线上产品质量检验与质量控制; (3)服务性行业中服务设施及服务员配置; (4)生物医学中病理试验与药理试验; (5)食品保质期、弹药贮存分析,电器与电
子产品寿命分析; (6)物矿探测、环保监测、机械仿生与考古.
第一章 随机事件
§1.1 基本概念
1.1.1 随机试验与事件
I. 随机试验 把对某种随机现象的一次观察、观测或测
量称为一个试验。如果这个试验在相同的条件 下可以重复进行,且每次试验的结果事前不可 预知,则称此试验为随机试验,也简称试验, 记为 E。 (注:以后所提到的试验均指随机试验。)
总结:
随机现象具有偶然性一面,也有必然
性一面:
偶然统性计一规律面是表指现通在过“对对随随机现机象现的象大做量一
次观测时观,察观,测所结呈现果出具来有的偶事然物性的集(不体可性预规知

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义概率论与数理统计知识体系结构第一章概率论的基本概念 1.随机试验2.样本空间、样本点、事件、基本事件、必然事件、不可能事件3.事件间的关系4.事件的运算5.事件运算的规律6.概率的定义7.概率的运算性质 8.等可能概型(古典概型) 9.几何概型 10.条件概率 11.事件的独立性 12.全概率公式 13.贝叶斯公式第二章随机变量及其分布一.随机变量1.随机变量的定义2.离散型随机变量3.随机变量的分布函数 (1)分布函数的定义(2)分布函数的性质(3)离散型随机变量的分布函数 4.连续型随机变量及其概率密度 (1)连续型随机变量的定义 (2)概率密度函数的性质(3)连续型随机变量分布函数的性质 (4)几种常见的连续型随机变量 5.随机变量的函数的分布 (1)随机变量的函数的定义(2)离散型随机变量的函数的分布律 (3)连续型随机变量的函数的分布①连续型随机变量的函数的分布函数②连续型随机变量的函数的概率密度函数4 45 5 5 5 56 67 789 9 11 12 13 13 13 13 16 16 16 16 17 17 17 17 17 18 18 19 19 19 191第三章多维随机变量及其分布一.二维随机变量1.二维随机变量的定义2.二维随机变量的联合分布函数3.二维随机变量联合分布函数的几条性质4.二维离散型随机变量5.二维连续型随机变量二.边缘分布1.边缘分布函数的定义2.边缘分布函数的计算3.二维离散型随机变量的边缘分布律 3.二维连续型随机变量的边缘概率密度三.二维随机变量的条件分布1.二维离散型随机变量的条件分布律2.二维连续型随机变量的条件概率密度四.相互独立的随机变量1.随机变量独立的定义2.离散型随机变量相互独立的充分必要条件3.连续型随机变量相互独立的充要条件五.两个随机变量函数的分布1.随机变量和的分布2.随机变量差的分布3.随机变量积的分布4.随机变量商的分布5.随机变量的最值的分布第四章随机变量的数字特征一.期望1.离散型随机变量期望的定义2.连续型随机变量的数学期望的定义3.随机变量的函数的数学期望的求法4.多维随机变量的函数的数学期望的求法5.随机变量的数学期望的性质二.随机变量的方差1.方差的定义2.标准差(均方差)的定义3.方差的计算 5.方差的性质 6.切比雪夫不等式三.随机变量的协方差1.协方差、相关系数的定义20 20 20 20 21 21 22 22 22 22 23 23 24 24 24 25 25 25 25 25 25 26 26 28 28 30 30 30 30 30 30 31 31 31 31 32 32 33 34 3422.协方差的计算3.协方差的性质4.相关四.矩与协方差矩阵1.原点矩定义2.中心矩定义3.混合矩定义4.混合中心矩第五章大数定律和中心极限定理一.大数定律1.辛钦大数定律(弱大数定律)2.依概率收敛3.伯努利大数定律4.切比雪夫大数定律二.中心极限定理1.独立同分布的中心极限定理(林德伯格-列维定理)2.棣莫弗-拉普拉斯中心极限定理3.李雅普诺夫中心极限定理34 34 36 36 36 36 36 36 38 38 38 38 39 39 40 40 40 413概率论与数理统计知识体系结构第一章概率论的基本概念第二章一维随机变量及其概率分布第三章二维随机变量及其概率分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及其抽象分布第七章参数估计第八章假设检验4第一章概率论的基本概念1.随机试验满足以下三大条件的试验叫做随机试验: (1) 可以在相同的条件下重复地进行;(2) 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; (3) 在进行一次试验之前不能确定哪一个结果会出现.2.样本空间、样本点、事件、基本事件、必然事件、不可能事件(1) 将试验E的所有可能结果组成的集合成为样本空间,记为S. (2) 样本空间的元素,即试验E的每个结果,称为样本点. (3) 试验E的样本空间S的子集,称为随机事件,简称事件. (4) 由一个样本点组成的单点集,称为基本事件.(5) 样本空间S包含其所有样本点,是其自身的子集,在每次试验时它总会发生,S称为必然事件.(6) 空集?不包含任何样本点,它也作为样本空间的子集,在每次试验时它总不会发生,?称为不可能事件.3.事件间的关系(1) 若事件A发生,事件B就发生,则称事件B包含A,记为A?B. (2) 若事件A、B满足A?B,且B?A,则称事件A与B相等.4.事件的运算(1) 事件A?B?xx?A?or?x?B称为事件A,B的和事件。

概率论与数理统计基础班讲义

概率论与数理统计基础班讲义

考研数学基础班概率论与数理统计电子教材主讲:费允杰第一章 随机事件和概率第一节 基本概念 5432考研论坛( )友情提供下载~~1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A .120种B .140种C .160种D .180种(4)一些常见排列①特殊排列相邻彼此隔开顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?②重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?③对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?④顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序)例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率论与数理统计课件(共199张PPT)

概率论与数理统计课件(共199张PPT)
P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分

定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )

概率论与数理统计(茆诗松)第二章讲义(PDF)

概率论与数理统计(茆诗松)第二章讲义(PDF)

第二章 随机变量及其分布上一章研究内容: 事件(集合A )→ 概率(数).本章将用函数研究概率,函数是数与数的关系,即需要用数反映事件——随机变量.事件(数)→ 概率(数).§2.1 随机变量及其分布2.1.1.随机变量的概念随机试验的样本点有些是定量的:如掷骰子掷出的点数,电子元件使用寿命的小时数.有些是定性的:如掷硬币正面或反面,检查产品合格或不合格.对于定性的结果也可以规定其数量性质:如掷硬币,正面记为1,反面记为0;检查产品,合格记为1,不合格记为0.随机试验中,可将每一个样本点ω 都对应于一个实数X (ω),称为随机变量(Random Variable ),常用大写英文字母X , Y , Z 等表示随机变量,而随机变量的具体取值通常记为小写英文字母x , y , z .对于随机变量首先应掌握它的全部可能取值:如掷硬币,⎩⎨⎧=反面正面,0,1X ,X 的全部可能取值为0, 1;掷两枚骰子,X 表示掷出的点数之和,X 的全部可能取值为2, 3, 4, … , 12 ;观察某商店一小时内的进店人数X ,X 的全部可能取值为0, 1, 2, … ;电子元件使用寿命,用X 表示使用的小时数,X 的全部可能取值为 ),0[∞+; 一场足球比赛(90分钟),用X 表示首次进球时间(分钟),若为0:0,记X = 100,X 的全部可能取值为 (0, 90 )∪{100};注意:1. 每个样本点都必须对应于一个实数,2.不同样本点可以对应于同一个实数,3.随机变量的每一取值或取值范围都表示一个事件.应掌握将随机变量的取值或取值范围描述为事件,又能将事件用随机变量表达的方法. 例 掷一枚骰子,用X 表示出现的点数,则 X = 1表示出现1点;X > 4表示点数大于4,即出现5点或6点;X ≤ 0为不可能事件.又出现奇数点,即X = 1, 3, 5;点数不超过3,即X ≤ 3. 例 X 表示商店一天中某商品的销售件数(顾客的需求件数), 则 X = 0表示没有销售;X ≤ 10表示销售不超过10件.又销售5件以上(不含5件)即X > 5;若该商店准备了a 件该商品,事件“能满足顾客需要”,即X ≤ a . 例 X 表示一只电子元件的使用寿命(小时), 则 X = 1000表示该元件恰好使用了1000小时,X ≥ 800表示该元件使用寿命在800小时以上. 例 90分钟足球比赛,X 表示首次进球时间(分钟),且0:0时,记X = 100, 则 X = 10表示上半场第10分钟首次进球.又上半场不进球即X > 45;开场1分钟内进球即X ≤ 1.如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.(注:可列个即可以排成一列,一个一个往下数,如非负整数0, 1, 2, 3, … )离散型随机变量的全部可能取值是实数轴上一些离散的点,而连续型随机变量的全部可能取值是实数轴上一个区间或多个区间的并,如电子元件使用寿命X (小时),全部可能取值是),0[∞+.下面按离散型和连续型分别进行讨论.2.1.2. 离散随机变量的概率分布列对于随机变量还应该掌握它的每一取值或取值范围表示事件的概率.定义 如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.设离散型随机变量X 的全部可能取值为x 1, x 2, …, x k , …,则X 取值x k 的概率p k = p (x k ) = P {X = x k }, k = 1, 2, …… 称为离散型随机变量的概率分布函数(Probability Distribution Function ,PDF ),简称概率分布或概率函数.直观上,又写为L LLL)()()(2121k kx p x p x p Px x x X 或 ⎟⎟⎠⎞⎜⎜⎝⎛L L L L)()()(~2121k k x p x p x p x x x X , 称为X 的概率分布列.如掷一枚骰子,X 表示出现的点数,X 的分布列为616161616161654321PX . 概率函数基本性质:(1)非负性 p (x k ) ≥ 0 , k = 1, 2, ……; (2)正则性1)(1=∑∞=k kxp .这是因为事件X = x 1 , X = x 2 , … , X = x k , … 是一个完备事件组, 故P {X = x 1} + P {X = x 2} + … + P {X = x k } + … = P (Ω) = 1,即p (x 1) + p (x 2) + … + p (x k ) + … = 1. 例 设盒中有2个红球3个白球,从中任取3球,以X 表示取得的红球数.求X 的分布列. 解:X 的全部可能取值0, 1, 2 ,样本点总数为1035=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X = 0表示“取到3个白球”,所含样本点个数为1330=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有1.0101)0(==p , X = 1表示“取到1个红球2个白球”,所含样本点个数为612231=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106)1(==p , X = 2表示“取到2个红球1个白球”,所含样本点个数为322132=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103)2(==p . 故X 的分布列为3.06.01.0210P X.求离散型随机变量X 的概率分布步骤: (1)找出X 的全部可能取值,(2)将X 的每一取值表示为事件, (3)求出X 的每一取值的概率.例 现有10件产品,其中有3件不合格.若不放回抽取,每次取一件,直到取得合格品为止.用X 表示抽取次数,求X 的概率分布. 解:X 的全部可能取值1, 2, 3, 4 ,X = 1表示“第1次就取得合格品”,有107)1(=p , X = 2表示“第2次取得合格品且第1次是不合格品”,有30797103)2(=⋅=p , X = 3表示“第3次取得合格品且前两次是不合格品”,有12078792103)3(=⋅⋅=p , X = 4表示“第4次取得合格品且前三次是不合格品”,有1201778192103)4(=⋅⋅⋅=p , 故X 的分布列为120112073071074321PX . 例 上例若改为有放回地抽取,又如何? 解:X 的全部可能取值1 , 2 , … , n , … ,7.0107)1(==p ,21.0107103)2(=⋅=p ,7.03.0)3(2×=p ,…,7.03.0)(1×=−k k p ,…, 故X 的概率函数为L ,2,1,7.03.0)(1=×=−k k p k ;X 的分布列为LL L L 7.03.07.03.021.07.032112××−k PkX .例 若离散型随机变量的概率函数为kCk p =)(,k = 1, 2, 3, 4,且C 为常数. 求:(1)C 的值,(2)P {X = 3},(3)P {X < 3}.解:(1)由正则性知:1432)4()3()2()1(=+++=+++CC C C p p p p ,即11225=C ,故2512=C .(2)254)3(}3{===p X P , (3)25182562512)2()1(}3{=+=+=<p p X P . 2.1.3.随机变量的分布函数连续型随机变量在单个点取值概率为零,如电子元件使用寿命恰好为1000小时这个事件的概率就等于零,因此连续型随机变量不能考虑概率函数.为了用单独一个变量表示一个区间,特别地取区间 (−∞, x ].定义 随机变量X 与任意实数x ,称F (x ) = P {X ≤ x },−∞ < x < +∞为X 的累积分布函数(Cumulative Distribution Function ,CDF ),简称分布函数.P {a < X ≤ b } = P {X ≤ b } − P {X ≤ a } = F (b ) − F (a ),P {X > a } = 1 − P {X ≤ a } = 1 − F (a ),由概率的连续性知)0()(lim }{lim }{−==≤=<−−→→a F x F x X P a X P ax ax ,且P {X = a } = P {X ≤ a } − P {X < a } = F (a ) − F (a – 0),可见X 在任一区间上或任一点取值的概率都可用分布函数表示. 例 已知随机变量X 的分布列为3.05.02.0210PX ,求X 的分布函数.解:X 的全部可能取值为0, 1, 2,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0, 当0 ≤ x < 1时,F (x ) = P {X ≤ x } = p (0) = 0.2,当1 ≤ x < 2时,F (x ) = P {X ≤ x } = p (0) + p (1) = 0.7, 当x ≥ 2时,F (x ) = P {X ≤ x } = P (Ω ) = 1,故⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.2,1,21,7.0,10,2.0,0,0)(x x x x x F若离散型随机变量的全部可能取值为x 1, x 2, ……,概率函数p (x k ) = p k ,k = 1, 2, ……,则分布函数∑≤=≤=xx kk xp x X P x F )(}{)(.且离散型随机变量的分布函数F (x )是单调不减的阶梯形函数,X 的每一可能取值x k 是F (x )的跳跃点,跳跃高度是相应概率p (x k ).例 已知某离散型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤−−<=,5,1,52,6.0,20,4.0,01,3.01,0)(x x x x x x F 求X 的分布列. 解:X 的全部可能取值是F (x )的跳跃点,即 −1, 0, 2, 5,跳跃高度依次为:p (−1) = 0.3 − 0 = 0.3; p (0) = 0.4 − 0.3 = 0.1; p (2) = 0.6 − 0.4 = 0.2; p (5) = 1 − 0.6 = 0.4.故X 的分布列为4.02.01.03.05201PX −.分布函数的基本性质:(1)单调性,F (x ) 单调不减,即x 1 < x 2时,F (x 1) ≤ F (x 2); (2)正则性,F (−∞) = 0,F (+∞) = 1;(3)连续性,F (x ) 右连续,即)()(lim 00x F x F x x =+→. 证:(1)当x 1 < x 2时,{X ≤ x 1} ⊂ {X ≤ x 2},有F (x 1) ≤ F (x 2);(2)F (−∞) = P {X < −∞} = P (∅) = 0,F (+∞) = P {X < +∞} = P (Ω ) = 1;(3)任取单调下降且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n ≤=≤=≤∞=∞→I ,根据概率的连续性知}{}{}{lim 01x X P x X P x X P n n n n ≤=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→I ,即)()(lim 00x F x F x x =+→. 但F (x )不一定左连续,任取单调增加且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n <=≤=≤∞=∞→U ,得}{}{}{lim 01x X P x X P x X P n n n n <=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→U , 故}{)(}{)(lim 0000x X P x F x X P x F x x =−=<=−→.2.1.4. 连续随机变量的概率密度函数离散型随机变量的全部可能取值是有限或可列个点,连续型随机变量的全部可能取值是实数区间.但连续型随机变量在单独一个点取值的概率为0,其概率函数无实际意义,对于连续随机变量通常考虑其在某个区间上取值的概率,这就需要讨论分布函数.连续型随机变量的分布函数是连续函数. 注意:概率为0的事件不一定是不可能事件.定义 随机变量X 的分布函数F (x ),若存在函数p (x ),使 ∫∞−=xdu u p x F )()(,则称X 为连续型随机变量,p(x )为X 的概率密度函数(可以理解为:p (u )为概率密度,p (u )du 为X 在该小区间内取值的概率,∫∞−x 为从−∞ 到x 无限求和.几何意义:在平面上作出密度函数p (x )的图形,则阴影部分的面积即为F (x )的值.密度函数基本性质:(1)非负性 p (x ) ≥ 0;(2)正则性 1)(=∫∞+∞−dx x p .因)()(x F du u p x =∫∞−,有1)()(=+∞=∫∞+∞−F dx x p .连续型随机变量的性质:设连续型随机变量X 的概率密度函数为p (x ),分布函数为F (x ),则有 (1)∫=−=≤<21)()()(}{1221x x dx x p x F x F x X x P ;(2)当p (x ) 连续时,p (x ) = F ′(x ); 因∫∞−=x du u p x F )()(,当p (x ) 连续时,有)(])([)(x p du u p x F x=′=′∫∞−(3)X 在单独一个点取值的概率为0,其分布函数为连续函数;(4)P {x 1 < X ≤ x 2} = P {x 1 ≤ X ≤ x 2} = P {x 1 < X < x 2} = P {x 1 ≤ X < x 2},即连续型...随机变量在某区间内的概率与区间开闭无关,离散型则不成立;(5)只在有限个点上取值不相同的密度函数对应于同一个分布函数,一般,只在概率为0的数集上取值不相同的密度函数都对应于同一个分布函数.例 设F (x ) = A + B arctan x 为某连续型随机变量X 的分布函数. 求:(1)A , B ; (2)}31{≤≤−X P ; (3)密度函数p (x ). 解:(1)由正则性 F (−∞) = 0,F (+∞) = 1,得:02π)arctan (lim =−=+−∞→B A x B A x ,12π)arctan (lim =+=++∞→B A x B A x ,故21=A ,π1=B ;(2)x x F arctan π121)(+=,得1274ππ1213ππ121)1()3(}31{=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅+−⎟⎠⎞⎜⎝⎛⋅+=−−=≤≤−F F X P . (3)密度函数)1π(1)()(2x x F x p +=′=.例 已知⎩⎨⎧<<−=,,0,10),()(32其它x x x C x p是某连续型随机变量X 的密度函数,求:(1)C , (2)}211{<<−X P , (3)分布函数F (x ).解:(1)由正则性:1)(=∫∞+∞−dx x p ,得1120)4131()43()(10431032==−−=−=−∫C C x x C dx x x C ,故C = 12;(2)165)641241(12)43(12)(12)(}211{2104321032211=−=−=−==<<−∫∫−x x dx x x dx x p X P ;(3)X 的全部可能取值为 [0, 1],分段点0, 1,当x < 0时,0)()(==∫∞−xdu u p x F ,当0 ≤ x < 1时,4304303234)43(12)(12)()(x x u u du u u du u p x F xxx−=−=−==∫∫∞−,当x ≥ 1时, 1)(12)()(132=−==∫∫∞−du u u du u p x F x,故⎪⎩⎪⎨⎧≥<≤−<=.1,1,10,34,0,0)(43x x x x x x F例 已知⎩⎨⎧<<−=,,0,11|,|)(其它x x x p是某连续型随机变量X 的密度函数,求分布函数F (x ).解:分段点−1, 0, 1,当x < −1时,0)()(==∫∞−xdu u p x F ;当−1 ≤ x < 0时, 212122)()()(22121x x u du u du u p x F xxx−=+−=−=−==−−∞−∫∫; 当0 ≤ x < 1时,21221022)()()(220212001x x u u udu du u du u p x F xxx+=++=+−=+−==−−∞−∫∫∫;当x ≥ 1时, 1)()()(101=+−==∫∫∫−∞−udu du u du u p x F x.故⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤−−<=.1,1,10,21,01,21,0,0)(22x x x x xx x F§2.2 随机变量的数学期望对于随机变量,还应当掌握反映其平均值、分散程度等的指标,这就需要引入数学期望和方差等概念. 2.2.1.数学期望的概念例 甲、乙两个射击选手,在射击训练中甲射了10次,其中3次10环,1次9环,4次8环,2次7环;乙射了15次,其中2次10环,9次9环,2次8环,2次7环.问谁的表现更好? 分析:比较他们射中的平均环数甲共射中3 × 10 + 1 × 9 + 4 × 8 + 2 × 7 = 85环,平均每次射中5.81085=环; 乙共射中2 × 10 + 9 × 9 + 2 × 8 + 2 × 7 = 131环,平均每次射中73.815131=&环. 故乙的表现更好.一般地,若在n 次试验中,出现了m 1次x 1,m 2次x 2,…,m k 次x k ,(其中m 1 + m 2 + … + m k = n ),则平均值为∑==+++ki i i k k n mx n x m x m x m 12211L ,即平均值等于取值与频率乘积之和.因n 很大时,频率稳定在概率附近,即平均值将稳定在取值与概率乘积之和附近. 2.2.2.数学期望的定义定义 设离散型随机变量X 的分布列是⎟⎟⎠⎞⎜⎜⎝⎛L L L L )()()(~2121k kx p x p x p x x x X ,如果级数∑∞=1)(k k k x p x 绝对收敛,则称之为X 的数学期望(Expectation ),记为E (X ). 数学期望的实际意义是反映随机变量的平均取值,是其全部可能取值以相应概率为权数的加权平均.如X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−2.04.01.03.04102,则E (X) = (−2) × 0.3 + 0 × 0.1 + 1 × 0.4 + 4 × 0.2 = 0.6. 例 某人有4发子弹,现在他向某一目标射击,若命中目标就停止射击,否则直到子弹用完为止.设每发子弹命中率为0.4,以X 表示射击次数,求E (X ). 解:先求X 的分布列,X 的全部可能取值为1, 2, 3, 4,X = 1,第一枪就命中, p (1) = 0.4;X = 2,第一枪没有命中,第二枪命中,p (2) = 0.6 × 0.4 = 0.24; X = 3,前两枪没有命中,第三枪命中,p (3) = 0.6 2 × 0.4 = 0.144; X = 4,前三枪没有命中, p (4) = 0.6 3 = 0.216.则X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛216.0144.024.04.04321,故E (X ) = 1 × 0.4 + 2 × 0.24 + 3 × 0.144 + 4 × 0.216 = 2.176.例 若X 的概率函数为L ,2,1,21)2(==⎟⎟⎠⎞⎜⎜⎝⎛−k kp k k,求E (X ). 解:因∑∑∞=∞=−=⋅−11)1(21)2(k kk k k k k 收敛但不是绝对收敛,故E (X ) 不存在.离散型随机变量的数学期望是取值乘概率求和:∑∞=1)(k k k x p x ,类似可定义连续型随机变量的数学期望是取值乘密度积分:∫+∞∞−dx x xp )(.定义 设连续型随机变量X 的密度函数为p (x ).如果广义积分∫+∞∞−dx x xp )(绝对收敛,则称之为X 的数学期望,记为E (X ).例 已知连续型随机变量X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其它x x x p 求E (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xp X E . 例 已知X 的密度函数为⎩⎨⎧<<+=.,0,20,)(其它x bx a x p 且32)(=X E ,求a , b . 解:由正则性得122)2()()(2220=+=⋅+=+=∫∫∞+∞−b a x b ax dx bx a dx x p ,又32382)32()()()(20322=+=⋅+⋅=+==∫∫∞+∞−b a x b x a dx bx a x dx x xp X E ,故21,1−==b a . 例 已知X 的密度函数为+∞<<∞−+=x x x p ,)1π(1)(2,求E (X ).解:因+∞∞−+∞∞−+∞∞−+∞∞−+=⋅+=+=∫∫∫)1ln(π21)(21)1π(1)1π()(2222x x d x dx x x dx x xp 发散, 故E (X )不存在. 2.2.3.数学期望的性质设X 为随机变量,g (x ) 为函数,则称Y = g (X ) 为随机变量函数,Y 也是一个随机变量.下面不加证明地给出随机变量函数的数学期望计算公式.定理 设X 为随机变量,Y = g (X ) 为随机变量函数,则(1)若X 为离散型随机变量,概率函数为p(x k ), k = 1, 2, …,则∑∞===1)()()]([)(k k k x p x g X g E Y E ;(2)若X 为连续型随机变量,密度函数为p (x ),则∫+∞∞−==dx x p x g X g E Y E )()()]([)(.数学期望具有以下性质:(1)常数的期望等于其自身,即E (c ) = c ;(2)常数因子可移到期望符号外,即E (aX ) = a E (X );(3)随机变量和的期望等于期望的和,即E [g 1 (X ) + g 2 (X )] = E [g 1 (X )] + E [g 2 (X )]. 证明:(1)将常数c 看作是单点分布p (c ) = 1,故E (c ) = c p (c ) = c ;(2)以连续型为例加以证明,)()()()(X aE dx x xp a dx x axp aX E ===∫∫+∞∞−+∞∞−;(3)以连续型为例加以证明,∫∫∫+∞∞−+∞∞−+∞∞−+=+=+dx x p x g dx x p x g dx x p x g x g X g X g E )()()()()()]()([)]()([212121= E [g 1 (X )] + E [g 2 (X )].由性质(2)、(3)知随机变量线性组合的期望等于期望的线性组合,可见数学期望具有线性性质. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−3.04.01.02.02101, 求E (2X +1),E (X 2).解:E (2X +1) = −1 × 0.2 + 1 × 0.1 + 3 × 0.4 + 5 × 0.3 = 2.6;E (X 2) = 1 × 0.2 + 0 × 0.1 + 1 × 0.4 + 4 × 0.3 = 1.8. 例 已知圆的半径X 是一个随机变量,密度函数为⎪⎩⎪⎨⎧<<=.,0,31,21)(其他x x p 求圆面积Y 的数学期望. 解:圆面积Y = π X 2,故3π1332π21π)(π)(3133122=⋅=⋅==∫∫∞+∞−xdx x dx x p x Y E . 例 设国际市场对我国某种出口商品的需求量X (吨)的密度函数为⎪⎩⎪⎨⎧<<=.,0,40002000,20001)(其他x x p 设每售出一吨,可获利3万美元,但若销售不出,每积压一吨将亏损1万美元,问如何计划年出口量,能使国家获利的期望最大.解:设计划年出口量为a 吨,每年获利Y 万美元.当X ≥ a 时,销售a 吨,获利3a 万美元;当X < a 时,销售X 吨,积压a − X 吨,获利3X − (a − X ) = 4X − a 万美元;即⎩⎨⎧<≤−≤≤==.2000,4,4000,3)(a X a X X a a X g Y则4000200024000200020003)2(2000120001320001)4()()()(aa a a x a ax x dx a dx a x dx x p x g Y E +−=⋅+⋅−==∫∫∫+∞∞− 8250)3500(10001400071000122+−−=−+−=a a a , 故计划年出口量为3500吨时,使国家获利的期望最大.§2.3 随机变量的方差与标准差数学期望反映平均值,方差反映波动程度.如甲、乙两台包装机,要求包装重量为每袋500克,现各取5袋,重量为甲:498,499,500,501,502; 乙:490,495,500,505,510.二者平均值相同都是500克,但显然甲比乙好.此时比较的是它们的偏差(即取值与平均值之差).偏差:甲:−2,−1,0,1,2;乙:−10,−5,0,5,10. 2.3.1.方差的定义定义 随机变量X 与其数学期望E (X ) 之差X − E (X ) 称为偏差.偏差有大有小,可正可负,比较时需要去掉符号,但绝对值函数进行微积分处理不方便,因此考虑偏差平方的数学期望.定义 随机变量X ,若E [X − E (X )]2存在,则称之为X 的方差(Variance ),记为Var (X ) 或D (X ).即Var (X ) = E [X − E (X )]2.显然方差Var (X ) ≥ 0,称)Var(X 为X 的标准差(Standard Deviation ).在实际问题中,标准差与随机变量有相同的量纲.方差与标准差反映波动程度.方差越大,取值越分散;方差越小,取值越集中. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求E (X ), Var (X ).解:E (X ) = 1 × 0.2 + 2 × 0.4 + 3 × 0.4 = 2.2;Var (X ) = (−1.2)2 × 0.2 + (−0.2)2 × 0.4 + 0.82 × 0.4 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p求E (X ), Var (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xf X E ; 181949821949842)98382()()32()Var(1023410232=+−=⎟⎠⎞⎜⎝⎛+−=+−=−=∫∫∞+∞−x x x dx x x x dx x p x X .例 已知X 的全部可能取值为0, 1, 2,且E (X ) = 1.3,Var (X ) = 0.81.求X 的分布列.解:设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛c b a 210,由正则性得:a + b + c = 1,且E (X ) = 0 × a + 1 × b + 2 × c = b + 2c = 1.3,Var (X ) = (−1.3)2 × a + (−0.3)2 × b + 0.72 × c = 1.69a + 0.09b + 0.49c = 0.81, 解得a = 0.3,b = 0.1,c = 0.6,故X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛6.01.03.0210.2.3.2. 方差的性质方差具有以下性质:(1)方差计算公式:Var (X ) = E (X 2) − [E (X )]2; (2)常数的方差等于零,即Var (c ) = 0;(3)设a , b 为常数,则Var (a X + b ) = a 2 Var (X ). 证:(1)Var (X ) = E [X − E (X )]2 = E [X 2 − 2X ⋅ E (X ) + E (X )2] = E (X 2 ) − 2E (X ) ⋅ E (X ) + [E (X )]2.= E (X 2) − [E (X )]2;(2)Var (c ) = E [c − E (c )]2 = E (c − c )2 = E (0) = 0;(3)Var (a X + b ) = E [(a X + b ) − E (a X + b )]2 = E [a X + b − a E (X ) − b ]2 = a 2 E [X − E (X )]2 = a 2 Var (X ). 由性质(1),显然有以下推论:推论 对于随机变量X ,如果E (X 2) 存在,则E (X 2) ≥ [E (X )]2.以后常利用方差计算公式Var (X ) = E (X 2) − [E (X )]2计算随机变量的方差.通常用公式计算比直接用定义计算方差要方便. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求Var (X ).解:前面已求得E (X ) = 2.2,因E (X 2) = 1 2 × 0.2 + 2 2 × 0.4 + 3 2 × 0.4 = 5.4, 故Var (X ) = E (X 2) − [E (X )]2 = 5.4 − 2.22 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p 求Var (X ).解:前面已求得32)(=X E , 因21422)(141022=⋅=⋅=∫x xdx x X E , 故1813221)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 对于随机变量X ,若方差Var (X ) 存在,且Var (X ) > 0.令)Var()(*X X E X X −=,有0)]()([)Var(1)]([)Var(1)Var()(*)(=−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=X E X E X X E X E X X X E X E X E ; 1)Var()Var(1)](Var[)Var(1)Var()(Var *)Var(==−=⎟⎟⎠⎞⎜⎜⎝⎛−=X X X E X X X X E X X .称X *为X 的标准化随机变量.2.3.3. 切比雪夫不等式方差反映随机变量的分散程度,切比雪夫不等式给出其定量标准.切比雪夫不等式表明大偏差概率的上限与方差成正比.定理 设X 为随机变量,且方差Var (X ) 存在,则对于任何正数ε ,都有2)Var(}|)({|εεX X E X P ≤≥−.证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫≥−=≥−εε|)(|)(}|)({|X E x dx x p X E X P ,且∫∞+∞−−=−=dx x p X E x X E X E X )()]([)]([1)Var(22222εεε,故222|)(|22)Var()()]([)()]([}|)({|εεεεεX dx x p X E x dx x p X E x X E X P X E x =−≤−≤≥−∫∫∞+∞−≥−,得证.注:切比雪夫不等式的等价形式2)Var(1}|)({|εεX X E X P −≥<−.如随机变量X 的数学期望为E (X ) = 10,方差Var (X ) = 1,则由切比雪夫不等式可得43211}2|10{|}128{2=−≥<−=<<X P X P . 例 设随机变量X 的全部可能取值为),0[∞+,且数学期望E (X ) 存在,试证:对任何正数a ,都有)(1}{X E aa X P ≤≥. 证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫+∞=≥a dx x p a X P )(}{,且∫∫+∞+∞∞−==0)()(1)(1dx x p a x dx x xp a X E a ,故)(1)()(}{0X E adx x p a x dx x p a x a X P a =≤≤≥∫∫+∞+∞,得证.定理 设随机变量X 的方差存在,则Var (X ) = 0的充分必要条件是存在常数b ,使得X 几乎处处收敛于b ,即P {X = b } = 1.证:充分性,设存在常数b ,使得P {X = b } = 1,有P {X ≠ b } = 0,即E (X ) = b P {X = b } = b ,故Var (X ) = E [X − E (X )]2 = E (X − b )2 = 0 × P {X = b } = 0; 必要性,设X 的方差Var (X ) = 0,因事件U +∞=+∞→⎭⎫⎩⎨⎧≥−=⎭⎬⎫⎩⎨⎧≥−=>−11|)(|lim 1|)(|}0|)({|n n n X E X n X E X X E X ,则01)Var(lim 1|)(|lim 1|)(|}0|)({|21=⎟⎠⎞⎜⎝⎛≤⎭⎬⎫⎩⎨⎧≥−=⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧≥−=>−+∞→+∞→+∞=n X n X E X P n X E X P X E X P n n n U , 可得P {| X − E (X )| > 0} = 0,即P {| X − E (X )| = 0} = 1,取b = E (X ),有b 为常数, 故P {X = b } = 1.注:如果P {X = b } = 1,记为X = b , a.e.(或a.s.),称为X = b 几乎处处成立(或几乎必然成立).这里,a.e.就是almost everywhere 的缩写,a.s.就是almost surely 的缩写.意味着不成立的情况是一个测度(或概率)等于零的集合(或事件).§2.4 常用离散分布对于一个给定的函数,只要满足概率函数的两条基本性质:非负性、正则性,都可以成为某个离散随机变量的概率函数.但绝大多数在实际工作中并不常见,下面是几种常用的概率函数. 2.4.1.两点分布与二项分布一.两点分布两点分布只可能在两个点取值,通常就是0或1.定义 随机变量的可能取值只有两个:0或1,且概率函数为p (0) = 1 − p ,p (1) = p , 其中0 < p < 1,称X 服从两点分布(Two-point Distribution )或0-1分布,记为X ~ (0-1).分布列为⎟⎟⎠⎞⎜⎜⎝⎛−p p110. 两点分布实际背景是一次伯努利试验.通常描述为:X 表示一次伯努利试验中事件A 发生的次数.非负性:p (0) = 1 − p > 0,p (1) = p > 0; 正则性:(1 − p ) + p = 1. 两点分布的数学期望为E (X ) = 0 × (1 − p ) + 1 × p = p .又因E (X 2 ) = 02 × (1 − p ) + 12 × p = p ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = p − p 2 = p (1 − p ).二.二项分布在n 重伯努利试验中,以X 表示事件A 的发生次数,则X 的全部可能取值为0, 1, 2, …, n ,且kn k p p k n k X P −−⎟⎟⎠⎞⎜⎜⎝⎛==)1(}{. 定义 若离散型随机变量X 的概率函数为kn k p p k n k p −−⎟⎟⎠⎞⎜⎜⎝⎛=)1()(, k = 0, 1, 2, …, n ;0 < p < 1, 则称X 服从二项分布(Binomial Distribution ),记为X ~ b (n , p ).二项分布的实际背景是n 重伯努利试验. 当n = 1时,二项分布就是两点分布.非负性:0)1()(>−⎟⎟⎠⎞⎜⎜⎝⎛=−kn k p p k n k p ; 正则性:1)]1([)1()(11=−+=−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑=−=nnk k n k nk p p p p k n k p . 例 掷三枚硬币,X 表示正面朝上的次数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3 ,将掷每一枚硬币看作一次试验.每次试验两种结果:正面A ,反面A ;每次试验相互独立;每次试验概率5.0)(=A P . 即n 重伯努利试验,n = 3,5.0=p ,有X ~ b (3, 0.5),p (0) = 0.5 3 = 0.125,375.05.05.013)1(21=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 375.05.05.023)2(12=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (3) = 0.5 3 = 0.125.例 现有5台机床,每台机床一小时内平均开动18分钟,且是否开动相互独立,以X 表示同一时刻开动的机床数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3, 4, 5 ,将每台机床是否开动看作一次试验.每次试验两种结果:开动A ,不开动A ;每次试验相互独立;每次试验概率P (A ) = 0.3. 即n 重伯努利试验,n = 5,p = 0.3,有X ~ b (5, 0.3).p (0) = 0.7 5 = 0.16807,36015.07.03.015)1(41=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 3087.07.03.025)2(32=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 1323.07.03.035)3(23=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 02835.07.03.045)4(14=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (5) = 0.3 5 = 0.00243 .一般地,如果随机变量X 服从二项分布,概率函数值p (k ) 将随着k 的增加,先逐渐增加,达到最大值后,又逐渐减少.通常,一个随机变量X 的概率函数或密度函数的最大值点称为X 的最可能值.二项分布b (n , p )的最可能值为⎩⎨⎧+−++++=.)1(,1)1()1(,)1(],)1[(0是正整数时当或不是正整数时当p n p n p n p n p n k 这里[x ]表示不超过x 的最大整数.如[2.3] = 2,[3.14] = 3,[−1.2] = −2.证:若X ~ b (n , p ),有n k p p k n k n p p k n k p k n k kn k ≤≤−−=−⎟⎟⎠⎞⎜⎜⎝⎛=−−0,)1()!(!!)1()(, 则11)1()!1()!1(!)1()!(!!)1()(+−−−−+−−−−−=−−k n k k n k p p k n k n p p k n k n k p k p ⎟⎠⎞⎜⎝⎛+−−−⋅−−−=−−11)1()!()!1(!1k n p k pp p k n k n k n k)1()1()1()!()!1(!1+−−+⋅−−−=−−k n k k p n p p k n k n k n k , 当k < (n + 1) p 时,有p (k ) > p (k − 1);当k > (n + 1) p 时,有p (k ) < p (k − 1).如果(n + 1) p 不是正整数,取k 0 = [(n + 1) p ],有k 0 < (n + 1) p ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > (n + 1) p ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果(n + 1) p 是正整数,取k 0 = (n + 1) p ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值.如X ~ B (3, 0.5),有(n + 1) p = 4 × 0.5 = 2是正整数,最可能值k 0 = 2或1;X ~ B (5, 0.3),有(n + 1) p = 6 × 0.3 = 1.8不是正整数,最可能值k 0 = [1.8] = 1.三.二项分布的数学期望和方差组合数公式⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−⋅−−⋅=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!(!!k n k n k n k n k n k n k n k n , (n ≥ k > 0). 二项分布b (n , p )的数学期望为∑∑∑=−−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅⋅=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k kn k nk k n k p p k n np p p k n k n k p p k n k X E 1110)1(11)1(11)1()( = np [ p + (1 − p )]n − 1 = np .又因∑∑∑=−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k k n k nk k n k p p k n k p p k n k k p p k n k X E 002022)1()1(11)()1()( )()1(22)1()1()(22X E p p k n k k n n k k nk k n k+−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=∑=− np p p k n pn n nk kn k +−⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=−−222)1(22)1( = n (n − 1) p 2 [ p + (1 − p )]n − 2 + np = (n 2 − n ) p 2 + np ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = (n 2 − n ) p 2 + np − (np )2 = − np 2 + np = np (1 − p ).2.4.2.泊松分布一.泊松分布泊松分布是一种理论推导的极限分布(成立的条件和推导过程见附录). 定义 若随机变量X 的概率函数为λλ−=e !)(k k p k, k = 0, 1, 2, …… ;λ > 0,则称X 服从参数为 λ 的泊松分布(Poisson’s Distribution ),记为X ~ P (λ).泊松分布的实际背景是已知平均发生次数为常数λ ,实际发生次数的概率分布.如足球比赛进球数,商店进店人数,电话接听次数等.非负性:λ > 0时,0e !>−λλk k;正则性:1e e e !=⋅=⋅−∞=−∑λλλλk kk .例 已知一场足球比赛的进球数X 服从参数λ = 2.3的泊松分布,求比分为0:0, 1:0以及总进球数超过5个的概率.解:因X ~ P(2.5),则3.2e !3.2)(−=k k p k , k = 0, 1, 2, …….比分0:0,即X = 0,100.0e e !03.2)0(3.23.20===−−p (查表);比分1:0,即X = 1,231.0100.0331.0e 3.2e !13.2)1(3.23.21=−===−−p (查表);总进球数超过5个,即X > 5,030.0970.01e !3.21e!3.2}5{53.263.2=−=−==>∑∑=−∞=−k k k k k k X P (查表). 例 已知某公用电话每小时内打电话的人数X 服从参数为λ = 8的泊松分布.求某一小时内无人打电话的概率,恰有10人打电话的概率,至少有10人打电话的概率.解:因X ~ P(8),有8e !8}{−==k k X P k . 无人打电话的概率0003.0e e !08}0{880====−−X P ,恰有10人打电话的概率099.0717.0816.0e !108}10{810=−===−X P (查表),至少有10人打电话的概率283.0717.01}9{1e !8}10{108=−=≤−==≥∑∞=−X P k X P k k (查表). 例 已知某商店一天中某种贵重商品的销售件数X 服从泊松分布P (7),问该商店每天应该准备多少件该商品才能以99.9%以上的概率满足顾客需要?解:设准备了a 件该商品,X ~ P(7),则7e !7)(−=k k p k .事件“满足顾客需要”,即X ≤ a ,有P {X ≤ a } ≥ 0.999,故查表可得a = 16. 泊松分布P (λ )的最可能值为⎩⎨⎧−=.,1,],[0是正整数时当或不是正整数时当λλλλλk 证:若X ~ P(λ),有L ,2,1,0,e !)(==−k k k p kλλ,故k k k k k k k k p k p k k k k−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=−−=−−−−−−−−−λλλλλλλλλλe )!1(1e )!1(e)!1(e !)1()(111,当k < λ 时,有p (k ) > p (k − 1);当k > λ 时,有p (k ) < p (k − 1).如果λ 不是正整数,取k 0 = [λ ] ,有k 0 < λ ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > λ ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果λ 是正整数,取k 0 = λ ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值. 二.泊松分布的数学期望和方差泊松分布P (λ )的数学期望为λλλλλλλλλλλ=⋅=−⋅=−=⋅=−∞=−−∞=−∞=−∑∑∑e e )!1(e e)!1(e!)(111k k k kk kk k k k X E ,即泊松分布的参数 λ 反映平均发生次数.又因)()!2(e e!e!)(e!)(222222X E k k k k k k k k X E k k k kk kk k+−⋅=⋅+⋅−=⋅=∑∑∑∑∞=−−∞=−∞=−∞=−λλλλλλλλλ= λ 2 e −λ ⋅ e λ + λ = λ 2 + λ ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = λ 2 + λ − (λ )2 = λ .三.二项分布的泊松近似二项分布与泊松分布的实际背景都是反映发生次数问题.下面的定理说明了二者之间的联系,泊松分布是二项分布的一种极限分布. 定理 (泊松定理)在n 重伯努利试验中,记事件A 在每次试验中发生的概率为与试验次数n 有关的数p n ,如果当n → +∞ 时,有n p n → λ ,则λλ−−+∞→=−⎟⎟⎠⎞⎜⎜⎝⎛e !)1(lim k p p k n k k n n k n n . 证:记λ n = n p n ,有λλ=+∞→n n lim ,因nk n n n kn n k n n n n n n p )(11)1(−−⋅−−−⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛−=−λλλλ,且e 1lim =⎟⎠⎞⎜⎝⎛−+−+∞→nnn n n λλ,λλ−=−−+∞→n k n n n )(lim , 则λλλλ−−−⋅−+∞→−+∞→=⎟⎠⎞⎜⎝⎛−+=−e 1lim )1(lim )(n k n n n n k n n n n n n p ,又因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛n k n k n k k n n n k n k 1111!!)1()1(L L ,且11111lim =⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−+∞→n k n n L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→−+∞→n k n p p k n p p k n k n nk n k n k n n k n n 1111)1(!lim )1(lim L λλ−+∞→−+∞→+∞→=⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅=e !1111lim )1(lim !)(lim k n k n p k np k n k n n n k n n L . 此定理表明对于二项分布b (n , p ),当n 很大,p 很小时,可用泊松分布P (λ ) 近似,其中λ = n p .例 某地区每年人口意外死亡率为0.0001,现有60000人投保人身意外保险,求一年内因投保人意外死亡恰好赔付8人的概率以及赔付不超过5人的概率.解:设X 表示“一年内因投保人意外死亡而赔付的人数”,X ~ B (60000, 0.0001).则5999289999.00001.0860000}8{××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,∑=−××⎟⎟⎠⎞⎜⎜⎝⎛=≤50600009999.00001.060000}5{k kk k X P , 但显然计算很繁琐,为便于计算,用泊松分布近似.因n = 60000很大,p = 0.0001很小,λ = np = 6,有)6(~P X &,故103.0744.0847.0e !86}8{68=−=≈=−X P ,446.0e !6}5{506=≈≤∑=−k k k X P .2.4.3. 超几何分布一.超几何分布在N 件产品中,有M 件次品,从中不放回地取n 件,以X 表示取得的次品数.设X 取值为k ,一方面,显然有k ≤ n 且k ≤ M ,即k ≤ min{n , M },另一方面,有k ≥ 0且n − k ≤ N − M ,可得k ≥ M + n − N ,即k ≥ max{0, M + n − N }.这样X 的全部可能取值为l , l + 1, …, L ,其中l = max{0, M + n − N },L = min{n , M },且⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛==n N k n M N k M k X P }{.定义 若随机变量X 的概率函数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=n N k n M N k M k p )(,k = l , l + 1, …, L ,l = max(0, n + M − N ),L = min(M , n ),M < N ,n < N , 则称X 服从超几何分布(Hypergeometric Distribution ),记为X ~ h (n , N , M ).超几何分布的实际背景是古典概型中的不放回抽样检验问题. 注:有放回检验抽样问题对应的是二项分布.非负性:0>⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛n N k n M N k M ;正则性:10=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑∑==n N n N n N k n M N k M n N k n M N k M Ll k L k .注:比较(1 + x )M(1 + x )N − M与(1 + x )N中x n的系数可以证明⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑=n N k n M N k M Ll k .例 一袋中有3个红球,2个白球,不放回地取出3个球,X 表示取得的红球数.求X 的概率分布.解:不放回抽样,N = 3,M = 2,n = 3,则X ~ h (3, 5, 3).故X 的全部可能取值为1, 2, 3, (l = max (0, n + M − N ) = 1,L = min(n , M ) = 3),3.0352213}1{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,6.0351223}2{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,1.0350233}3{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P . 超几何分布h (n , N , M )的最可能值为⎪⎩⎪⎨⎧+++−++++++++++++=.21)1(,121)1(21)1(,21)1(],21)1[(0是正整数时当或不是正整数时当N M n N M n N M n N M n N M n k证:若X ~ h (n , N , M),有)!()!()!()!(!!1)(k n M N k n M N k M k M n N n N k n M N k M k p +−−−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=, 故p (k ) − p (k − 1))!1()!1()!1()!1()!(!)!()!()!(!)!(!−+−−+−+−−⎟⎟⎠⎞⎜⎜⎝⎛−−+−−−−⎟⎟⎠⎞⎜⎜⎝⎛−=k n M N k n k M k n N M N M k n M N k n k M k n N M N M)]()1)(1[()!()!1()!1(!)!(!k n M N k k n k M k n M N k n k M k n N M N M +−−−+−+−+−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=)]2()1)(1[()!()!1()!1(!)!(!+−+++−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=N k n M k n M N k n k M k n N M N M .当21)1(+++<N M n k 时,有p (k ) > p (k − 1);当21)1(+++>N M n k 时,有p (k ) < p (k − 1). 如果21)1(+++N M n 不是正整数,取21)1[(0+++=N M n k ,有21)1(0+++<N M n k ,即p (k 0) > p (k 0 − 1);且21)1(10+++>+N M n k ,即p (k 0 + 1) < p (k 0).故p (k 0) 为最大值.如果21)1(+++N M n 是正整数,取21)1(0+++=N M n k ,即p (k 0) = p (k 0 − 1),故p (k 0) 和p (k 0 − 1) 都是最大值. 二.超几何分布的数学期望和方差超几何分布h (n , N , M )的数学期望为N nM n N k n M N k M N nM n N n N k n M N k M k M k n N k n M N k M k X E Ll k L lk L l k =⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=∑∑∑===11111111)(, 又因∑∑∑===⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=L lk L l k Ll k n N k n M N k M k n N k n M N k M k k n N k n M N k M k X E )()(222 ∑=+⎟⎟⎠⎞⎜⎜⎝⎛−−−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=Llk X E n N n n N N k n M N k M k k M M k k )(22)1()1(22)1()1()(2N nM N N M M n n N nM n N k n M N k M N N M M n n Ll k +−−−=+⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−−=∑=)1()1()1(2222)1()1()1(, 故方差为)1())(()1()1)(1()]([)()Var(222222−−−=−+−−−=−=N N n N M N nM N M n N nM N N M n nM X E X E X . 为了便于记忆,可将超几何分布与二项分布的数学期望和方差进行比较.二项分布b (n , p ):数学期望E (X ) = np ,方差Var (X ) = np (1 − p );超几何分布h (n , N , M ):数学期望N M nX E =)(,方差11)Var(−−⎟⎠⎞⎜⎝⎛−=N n N N M N M n X ; 可见分布h (n , N , M )中的N M 相当于二项分布b (n , p )中的p ,方差修正因子为1−−N nN . 三.超几何分布的二项近似直观上,当抽样个数n 远小于M 及N − M 时,不放回抽样问题可近似看作有放回抽样问题,也就是此时超几何分布可用二项分布近似.定理 如果当N → +∞ 时,p NM→, (0 < p < 1),则k n k N p p k n n N k n M N k M −+∞→−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛)1(lim . 证:因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛N n N n N n n N N N n N n 1111!!)1()1(L L , 且⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛M k M k M k M k 1111!L ,⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−=⎟⎟⎠⎞⎜⎜⎝⎛−−−M N k n M N k n M N k n M N kn 1111)!()(L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→+∞→N n N n N M N k n M N k n M N M k M k M n N k n M N k M n k n k N N 1111!1111)!()(1111!lim lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅−=−+∞→N n N M N k n M N M k M N M N M k n k n nk n k N 111111111111)()!(!!lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=+∞→−+∞→N n N M N k n M N M k M N M N M k n N kn k N 111111111111lim 1lim L L L。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。

它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。

1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。

概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。

方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。

1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。

这些性质能够帮助我们更好地理解随机事件的规律和特征。

二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。

统计学广泛应用于社会调查、市场研究以及科学实验等领域。

2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。

它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。

2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。

点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。

2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。

它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。

2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。

方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。

三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。

通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。

3.2 医学研究数理统计在医学研究中具有广泛的应用。

概率论与数理统计说课

概率论与数理统计说课
9

例:

一枚硬币抛一次 记录一城市一日中发生交通事故次数


记录一批产品的寿命x
记录某地一昼夜最高温度x,最低温 度y
10
S={正面,反面}; S={0,1,2,„}; S={ x|a≤x≤b } S={(x,y)|T0≤y≤x≤T1};
11
(二) 随机事件 一般我们称S的子集A为E的随
2

A1 , A2 ,...,An , Ai Aj , i j,
n n i 1 i 1
Aj , i j, P( Ai ) P( Ai )
35
3 P( A) 1 P( A)

证: A A S P( A) P( A) 1
S
A
A
36
数奇偶性不同} ,则 B A
17

事件的运算
A与B的和事件,记为

A B
A B { x | x A 或 x B }:A与
}:A与B至少有一发生。
S A B
18

事件的运算

A与B的积事件,记为 A B, A B, AB
A B { x | x A 且 x B }:A与
从中不放回的取n件,记Ak={恰有k 件次品}(k≤D),求P(Ak).
(D N ,n N )
49
解:
P( Ak ) C C
k D
n k N D
/ C , k 0,1,, n
n N
(注:当L>m 或 L<0时,记 C 0 )
L m
50
例3:将n个不同的球,投入N个
不同的盒中(n≤N),设每一球

概率论与数理统计(茆诗松)第四章讲义

概率论与数理统计(茆诗松)第四章讲义

⎡ T eit ( X − x1 ) − eit ( X − x2 ) ⎤ e − itx1 − e − itx2 ( ) ϕ t dt E dt ⎥ = ⎢ ∫−T ∫−T it it ⎦ ⎣
T
⎡ T cos t ( X − x1 ) + i sin t ( X − x1 ) − cos t ( X − x2 ) − i sin t ( X − x2 ) ⎤ dt ⎥ = E ⎢∫ it ⎦ ⎣ −T cos t ( X − x1 ) − cos t ( X − x2 ) ⎤ ⎡ T sin t ( X − x1 ) − sin t ( X − x2 ) dt ⎥ = E ⎢∫ −i −T t t ⎦ ⎣ ⎡ T sin t ( X − x1 ) − sin t ( X − x2 ) ⎤ dt ⎥ , = E ⎢2∫ t ⎦ ⎣ 0
itx 0
+∞
−λ x
dx = ∫ λ e
0
+∞
−( λ −it ) x
e −( λ −it ) x λ ; dx = λ ⋅ = − (λ − it ) 0 λ − it
x2
+∞
1 −2 (6)标准正态分布 N (0, 1):密度函数 p ( x) = e , − ∞ < x < +∞ ,特征函数为 2π
1 1 e itx dx = ⋅ ϕ (t ) = ∫ e ⋅ a b−a b − a it
b itx b
=
a
e ibt − e iat ; it (b − a )
⎧λ e − λx , (5)指数分布 Exp(λ):密度函数 p ( x) = ⎨ ⎩0,
x > 0; x ≤ 0.

概率论与数理统计讲解

概率论与数理统计讲解

概率论第一章随机事件及其概率一。

随机试验1.在相同情况下可以重复进行2.每次试验出现不同的结果,但是究竟出现那种结果并不确定3.事先知道实验出现的全部结果二。

必然现象和随机现象1.一旦某种条件实现,某种现象必然发生或者必然不发生,我们称这种时间为必然现象2.在一定条件实现后,可能发生也可能不发生的现象称为随机现象三。

随机事件1.随机试验E2.3.随机事件E四.1.包含与相等2.作3.事件的交或积4.事件的差5.6.补充:n个时件,A1 , A2 , A3 , ...An 中至少有一个发生称为事件A1 , A2 , A3 , ...An 的并,记作nA1∪A2∪A3...∪An=A i∪i=100可列个事件A i∪i=1n个事件同时发生,称为这n个时间的交或者积,记为:nA1∩A2∩A3∩...∩An=A i∩i=100可列个事件:A i∩i=1例题:1,一批产品中有合格品也有废品,每次抽取一个,又放回的抽取三个产品,用Ai 标示第 i 次抽的废品,试用Ai 标示下列各个事件:①第一次,第二次至少有一次抽到废品: A1∪A2②只有第一次抽的废品: A1∩A2差∩A3差 ③三次都抽到废品: A1∩A2∩A3④至少有一次抽到合格品: A1差∪A2差∪A3差 2,三个目标A,B,C.①目标被击中 A ∪B ∪C②三个人最多了两个人击中(看他的逆命题为三个人都击中) 故而(A ∩B ∩C)的差 ③三个人恰好一个人击中 A 交B 差交C 差+A 差交B 交C 差+A 差B 差交CA 的概率为: ②渠道的五个数字号码依次构成五位偶数的概率是多大①解:由于抽取后放回,故五次收取所得 的基本事件的总数为 105,设A={抽到5个不同的数},则A 包含的基本事件的总数为,故:P (A )= =②设B={五个号码依次组成五位偶数},则B 包含的基本事件总数为9*103*5故而:P(B)= =0.45P51010510*9*8*7*61059*105*51052.设有R个人,R<=365,而且每个人,生日在365田中的可能性是相等的。

概率论与数理统计课件:数理统计基础知识

概率论与数理统计课件:数理统计基础知识

数理统计基础知识
首页 返回 退出
6.1.1 总体
§6.1 总体和随机样本
总体:研究对象的全部可能观察值叫做总体. 个体:组成全体的每个观察值叫做个体.
如:考察某校学生的身高
总体:该校的所有学生的身高 个体:每个学生的身高
数理统计基础知识
首页 返回 退出
实际问题中,要研究的是有关对象的各种数量指标. 总体可以用一个随机变量及其分布来描述.
首页 返回 退出
由于抽样的目的是为了对总体进行统计推断, 为了使抽取的样本能很好地反映总体的信息,必 须考虑抽样方法.
最常用的一种抽样方法叫作“简单随机抽样” 它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
从一批产品中抽5件,检验产品是否合格.
数理统计基础知识
样本容量为5
首页 返回 退出
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1,X2,…,Xn).
但是,一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计基础知识
总体的指标 如体重、身高、寿命等 是随机变量X 个体的指标 如体重、身高、寿命等 是随机变量X 的一个取值
常用随机变量的记号或用其分布函数表示总体.
如:总体X或总体F X
数理统计基础知识
首页 返回 退出
有限总体 总体
无限总体
1.考察某校大一新生(共2000人)的身高. 有限总体
2.观测某地每天最高气温. 无限总体 3.某厂生产的所有电视显像管的寿命. 无限总体

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率论与数理统计讲义

概率论与数理统计讲义

§2.3连续型随机变量及概率密度(一)连续型随机变量及其概率密度定义若随机变量X的分布函数为其中f(t)≥0。

就是说X是连续型随机变量,并且非负函数f(x)是连续型随机变量X的概率密度函数,简称概率密度。

由连续型随机变量及概率密度函数的定义知概率密度有下列性质(1)(2)(3)(a≤b)前面已曾经证明,由于连续型随机变量是在一个区间或几个区间上连续取值,所以它在任何一点上取值的概率为零,即若X是连续型随机变量则有P(X=x)=0,其中X是任何一个实数。

∴有(4)f(x)≥0证(1)在微积分中已知积分上限的函数对上限x的导数它说明分布函数是概率密度的原函数,并且证明连续型随机变量的分布函数F(x)是处处可导函数,所以连续型随机变量的分布函数F(x)处处连续。

(2)(3)∵P(a<X≤b)=F(b)-F(a)因为F(x)是f(x)的原函数因此,对连续型随机变量X在区间上取值的概率的求法有两种:(1)若F(x)已知,则P(a<X≤b)=F(b)-F(a)(2)若f(x)已知,则P(a<X≤b)=例1 设求(1)c(2)解(1)而时,p(x)=0,(2)例2.设连续函数变量X的分布函数为求:(1)X的概率密度f(x);(2)X落在区间(0.3,0.7)的概率。

解:(1)(2)有两种解法:或者例2-1 若解:例2-2 若求x~f(x) 解:例2-3,若解:例3.若解:(1)x≤0时,f(x)=0,(2)0<x<1时,(3)1≤x时,注2.分段函数要分段求导数,分段求积分。

例4.设某种型号电子元件的寿命X(以小时计)具有以下的概率密度。

现有一大批此种元件,(设各元件工作相互独立),问:(1)任取一只,其寿命大于1500小时的概率是多少?(2)任取四只,四只元件中恰有2只元件的寿命大于1500的概率是多少?(3)任取四只,四只元件中至少有1只元件的寿命大于1500的概率是多少?解:(1)(2)各元件工作相互独立,可看作4重贝努利试验,观察各元件的寿命是否大于1500小时,令Y 表示4个元件中寿命大于1500小时元件个数,则,所求概率为(3)所求概率为3.2 均匀分布与指数分布以下介绍三种最常用的连续型概率分布,均匀分布、指数分布和正态分布,本小节先介绍前两种。

概率论与数理统计15讲

概率论与数理统计15讲
5
例如 一个人的身高和体重是非常有关系的, 但 是又并不完全是严格的函数关系, 那么关 系程度究竟有多大呢? 一个人的吸烟量和他的平均寿命是有关系 的, 这个关系量又有多大呢?
6
一种化肥的施用量和农作物的产量是有关 系的, 这个关系的大小又是如何呢? 这样一些问题都希望能够用一个数字就表 示出来, 这就是人们想到要用协方差和相 关系数的原因.
...
...
k0-2 k0-1 k0 k0+1 k0+2 由上图可知P(X=k0)P(X=k0+1)
且P(X=k0)P(X=k0-1)
46
Cnk C k -1
n
n! k!(n -
k)!
(k
-1)!(n n!
k
1)!
n
-k k
1

C p q k0 k0 n-k0 n
C p q k0 -1 k0 -1 n-k0 1 n
(n - k0 1) p k0q
1
(n 1) p k0, 得np p k0
47
k0 1 k0 1 n-k0 -1
再由C p q n C p q k0 k0 n-k0
n
(n - k0) p (k0 1)q
1
np p -1 k0,
即np p -1 k0 np p
48
分析np+p-1k0np+p 知道np+p比np+p-1大了1, 因此挤在这两 个数中间的整数有1个还是2个取决于 np+p是否正好是整数.
yi ,
cov( X ,Y )
1 n
n i1
( xi
-
x )( yi
-
y)
1 n

概率论与数理统计讲义第六章 样本与抽样分布

概率论与数理统计讲义第六章 样本与抽样分布

第六章样本与抽样分布§6.1 数理统计的基本概念一.数理统计研究的对象例:有一批灯泡,要从使用寿命这个数量指标来看其质量,设寿命用X表示。

(1)若规定寿命低于1000小时的产品为次品。

此问题是求P(X 1000)=F(10000),求F(x)? (2)从平均寿命、使用时数长短差异来看其质量,即求E(x)?、D(x)?。

要解决二个问题1.试验设计抽样方法。

2.数据处理或统计推断。

方法具有“从局部推断总体”的特点。

二.总体(母体)和个体1.所研究对象的全体称为总体,把组成总体的每一个对象成员(基本单元)称为个体。

说明:(1)对总体我们关心的是研究对象的某一项或某几项数量指标(或属性指标)以及他们在整体中的分布。

所以总体是个体的数量指标的全体。

(2)为研究方便将总体与一个R.V X对应(等同)。

a.总体中不同的数量指标的全体,即是R.V.X的全部取值。

b.R.V X的分布即是总体的分布情况。

例:一批产品是100个灯泡,经测试其寿命是:1000小时1100小时1200小时20个30个50个X 1000 1100 1200P 20/100 30/10050/100(设X表示灯泡的寿命)可知R.V.X的分布律,就是总体寿命的分布,反之亦然。

常称总体X,若R.VX~F(x),有时也用F(x)表示一个总体。

(3)我们对每一个研究对象可能要观测两个或多个数量指标,则可用多维随机向量(X,Y,Z, …)去描述总体。

2.总体的分类有限总体无限总体三.简单随机样本.1.定义6.1 :从总体中抽得的一部分个体组成的集合称为子样(样本),取得的个体叫样品,样本中样品的个数称为样本容量(也叫样本量)。

每个样品的测试值叫观察值。

取得子样的过程叫抽样。

样本的双重含义:(1)随机性:用(X1,X2,……X n) n维随机向量表示。

X i表示第i个被抽到的个体,是随机变量。

(i=1,2,…n)(2)确定性:(x1,x2,……x n)表示n个实数,即是每个样品Xi观测值x i(i=1,2,…n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。

为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E。

称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。

必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。

假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。

于是这三个结果就构成了样本空间Ω。

但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。

如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。

经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。

比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。

尽管这在有3种结果的样本空间内是不对的。

例 1.1.1E:从最简单的试验开始,这些试验只有两种结果。

在抛掷硬币这一试验1中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。

2E :更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出现的点数。

样本空间为:{1,2,3,4,5,6}Ω=。

3E : 掷两枚硬币(或者观察两个零件或两个电子产品),可以得到Ω={(正面,正面)、(反面,反面)、(正面,反面)、(反面,正面) }读者可以将其推广到掷n 个硬币,样本空间里有多少样本点呢?4E :再复杂一些,一名射手向某目标射击,直至命中目标为止,观察其命中目标所进行的射击次数。

从理论上讲,只要不能击中目标,射手就必须一直射下去,故样本空间为{1,2,3,,,}n Ω=L L ,其中含无穷多个样本点。

这也适用于商品销售,假设商场可以无限量地销售某种商品,每天销售的该商品数的样本空间为},2,1,0{Λ=Ω。

5E :在人类学研究中“随机抽取一个人”并测量他的身高和重量,电梯设计师能利用这些资料设计电梯的空间和载重,对于中国人,身高(单位:米)的样本空间取]}5.2,0[,{∈=Ωωω就足够了,体重(单位:公斤)的样本空间取]}200,0[,{∈=Ωωω也许就足够了。

在大部分实际的设计问题中,设计师有时会同时考虑电梯使用者的所有可能的身高和体重,更具体地说,设计者通常会对同时提供了可能使用者身高和体重的结果感兴趣。

因此,样本空间是12{(,)()[0,2.5][0200]}ωωωΩ===∈⨯高度,重量,。

□ 1.1.2 随机事件随机试验的结果称为随机事件,简称事件,并以大写英文字母,,,,A B C D L 记之。

1.1.3 事件与集合的对应以及它们的运算通常用希腊字母Ω表示样本空间, ω表示样本点。

称“ω是Ω的成员”或者“ω属于Ω”,或者“ω是Ω的元素”,记为Ω∈ω.如果ω不是试验的一个可能结果,那么ω不是Ω的元素,则记为Ω∉ω.一个事件对应于样本空间的一个子集,因此某事件发生当且仅当它对应的子集中的某个元素(即样本点)在试验中出现。

用Ω⊂A 表示事件A 是Ω的子集。

事件的相互关系与集合论中集合的包含、相等以及集合的运算等概念对应。

以下就是这些对应关系与运算。

为简化起见,以下均假设涉及的集合12,,, ,, n A B A A A L 等都是Ω的子集,而不再每次申明。

1. 事件的包含—集合的包含集合A B ⊂即“A 包含于B ”,意为A 中元素都在B 中,或说,如果A ∈ω,必有B ∈ω。

对应于事件,表示A 的样本点都在B 中,即当A 的样本点出现于试验结果B 之中,即A 发生时,B 当然也就发生了,或说“A 的发生必导致B 的发生”。

图1.1 A B ⊂的文氏图2. 事件的相等—集合的相等称集合A 和B 相等,并记为A B =,是说“A B ⊂且B A ⊂”。

对应于事件,称A 和B 相等,记为A B =,就是“如果A 发生,则B 必然发生,同样如果B 发生,则A 必然发生”。

相等的事件含有相同的样本点。

3. 事件的并(和)—并集集合A 和B 的并集记为A B U ,它的元素或者属于A ,或者属于B (当然有的可能同时属于A 和B ),即{}:A B A B ωωω=∈∈U 或。

对应事件的并A B U 表示“A 或B 至少有一个发生”。

图1.2 A B U 的文氏图并的概念可以推广到n 个事件和可数个事件,12, ,, n A A A L 的并121ni n i A A A A ==U U UL U 表示“ (1,2,,)i A i n =L 中至少有一个发生”;可数个事件12, ,, ,n A A A L L 的并ΛY ΛY Y Y n i i A A A A 211=∞=表示“ (1,2,,,)i A i n =L L 中至少有一个发生”。

4. 事件的交(积)—交集两个集合A 和B 的交集记为A B I ,它是由既属于A 又属于B 的元素构成的集合,即 对应于事件的交A B I 表示“A 和B 同时发生”。

A B I 常简记作AB 。

图1.3 A B I 的文氏图类似地,交得概念也可以推广到n 个事件的交,121ni n i A A A A ==I I I L I 表示“n 个事件 (1,2,,)i A i n =L 同时发生”,可数个事件的交121i n i A A A A ∞==I I I L I I L 表示“可数个事件(1,2,,,)i A i n =L L 同时发生”。

5. 逆事件(对立事件)—补集Ω的子集A 的补集记为A ,它是由属于Ω但不属于A 的元素构成的集合,因为仅牵涉到属于Ω(样本空间)的点,集合A 就是由那些不属于A 元素组成的。

记为图1.4 A 的文氏图 对应于事件,A 发生当且仅当A 不发生时发生,称作事件A 的逆事件。

利用上述事件的并和交的运算符号,有A A =ΩU 及 AA φ=6. 事件的差—差集集合A 与B 的差集A B -由A 中那些不属于B 的元素全体组成。

对应地,事件的差A B -表示“A 发生而B 不发生”即A B AB -=。

图1.5 A B -的文氏图7. 互斥(或不相容)—事件不交集在集合论中,若AB φ=,则表明A ,B 没有公共元素,它们互不相交。

对应于事件,若AB φ=,则表明A ,B 不同时发生,称A 与B 互斥(或不相容)。

图1.6 AB φ=的文氏图8. 必然事件和不可能事件—样本空间和空集有两个特殊的集合需要特别讨论,一个是样本空间本身,从集合的定义容易推断出Ω是它自身的子集,从包含关系Ω⊂Ω的左边取一个元素使它不在右边集合中,显然是不可能的,因此Ω⊂Ω。

又假设存在集合φ,该集合不包含任何元素(空的集合),φ必定是每一个集合的子集,对任何子集A ,要从φ中找到一个元素不在A 中,显然是不可能的,因为φ没有元素,因此,A ⊂φ成立。

对应于事件,称试验必然会出现的结果为必然事件。

注意到以下等式总是成立的上述事件间的关系与运算可由集合论中的文氏图予以展示。

与集合运算一样,事件的运算亦有如下的运算律:1.交换律:A B B A =U U ,AB BA =;2.结合律:()()A B C A B C =U U U U ,()()A B C A B C =I I I I ;3.分配律:()()()A B C A B A C =I U I U I ,()()()A B C A B A C =U I U I U ;4.对偶律:A B A B =U I ,A B A B =I U 。

上述运算律亦可推广到任意有限个或可列个事件的情况。

例如,对n 个事件(1,2,,)i B i n =L 有分配律()11n n i i i i A B A B ==⎛⎫= ⎪⎝⎭I U U I ,()11n n i i i i A B A B ==⎛⎫= ⎪⎝⎭U I I U 对偶律留给读者自行写出。

图1.7 n 个事件的关系图对可列个事件(1,2,,,)i A i n =L L 的分配律也留给读者,此处给出有对偶律及为帮助读者熟悉事件的运算。

以三个集合为例,A 、B 和C 的并集,如图1.8的文氏图是有用的。

根据图1.8,请读者检验这些等式:图1.8 三个事件的关系图例 已知一批机器螺钉中含有许多次品,随机抽取三个并检验。

令,,A B C 分别表示其第一、二、三次所抽到的螺钉是次品的事件。

试用,,A B C 及其运算表示下列事件:(1)第三次抽到正品;(2)只有第三次抽到次品;(3)恰有一次抽到次品;(4)至少有一次抽到次品;(5)不止一次抽到次品(或至少抽到两个次品);(6)没有抽到次品。

解 (1).C (2).ABC (3).ABC ABC ABC U U(4).A B C U U (5).AB AC BC U U (6)C B A C B A Y Y I I =. □§1.2 概 率1.2.1 频率与概率定义1.2.1 称在相同条件下所做的n 次试验中事件A 发生的次数A n 为A 发生的频数,并称比值A n n为事件A 发生的频率,记作 定义1.2.2 在相同条件下所做的n 次试验中,当n →∞时,事件A 发生的频率()n f A 稳定在某个常数p 附近。

称此常数p 为事件A 发生的概率,记作1.2.2 概率的公理化定义定义1.2.3 设试验E 的样本空间为Ω。

对于Ω中每一个事件A 都赋予一个实数()P A ,它具有以下三条基本性质:1. 0()1P A ≤≤;2. ()1P Ω=;3. 如果Λ,,,321A A A 是Ω中任意一列两两互斥的事件(,)i j A A i j φ=≠I 当,无论有限或无限,如果表示事件“至少出现一个i A ”,则或表示为11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑U , 则称实数()P A 为事件A 的概率。

利用概率的三条基本性质可以推导出概率的其他性质。

4. ()1()P A P A =-。

证 因A A =ΩU ,AA φ=,故由基本性质2及3有1()()()()P P A A P A P A =Ω==+U ,移项即得。

相关文档
最新文档