高中数学必修4教学设计:平面向量教案

合集下载

高中数学必修4第二章平面向量教案完整版

高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:;④向量的大小――长度称为向量的模,记作||.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点)B(终点)aO ABaaab b b§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,=b,则向量叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|<||+||; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作= =,则+=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aABCa +ba +baa bbabb aa2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 a (2) 规定:零向量的相反向量仍是零向量.(a ) = a. 任一向量与它的相反向量的和是零向量.a + (a ) = 0如果a 、b 互为相反向量,则a = b , b = a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a b = a + (b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a b ) + b = a + (b ) + b = a + 0 = a作法:在平面内取一点O , 作OA = a , AB = b则BA = a b 即a b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b a.O abBa ba b2)若a ∥b , 如何作出ab§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量a bAABBB ’Oa baa b bOAOBa ba bBA Ob§2.3.2—§ 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相.等的向量的坐标也为.........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定. 设yj xi +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB OA =( x 2, y 2) (x 1,y 1)= (x 2 x 1, y 2 y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=二、讲解新课:a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中bρa ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵bρ0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y =∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (bρ)01221=-=⇔y x y x λ§平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ, 使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F ||s |cos ,是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos 有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c 如右图:a b = |a ||b |cos = |b ||OA|,bc = |b ||c |cos = |b ||OA|a b = b c 但a c(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos 2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a ba ⋅5 |ab | ≤ |a ||b |C二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos ; 2 ab a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4cos =||||b a ba ⋅ ;5|ab | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律1.交换律:a b = b a 证:设a ,b 夹角为,则a b = |a ||b |cos ,ba = |b ||a |cos ∴a b = b a 2.数乘结合律:(λa )b =λ(a b ) = a (λb ) 证:若λ> 0,(λa )b =λ|a ||b |cos, λ(a b ) =λ|a ||b |cos ,a (λb )=λ|a ||b |cos ,若λ< 0,(λa )b =|λa ||b |cos() =λ|a ||b |(cos ) =λ|a ||b |cos ,λ(a b ) =λ|a ||b |cos ,a (λb ) =|a ||λb |cos() =λ|a ||b |(cos ) =λ|a ||b |cos .C3.分配律:(a + b )c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos1 + |b | cos2 ∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos 2, ∴c (a + b ) = c a + c b即:(a + b )c = a c + b c 说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2 三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a b a ⋅ ;5|a b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a b = ba 数乘结合律:(λa )b =λ(a b ) = a (λb ) 分配律:(a + b )c = a c + b c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s =||||b a b a ⋅⋅。

高中数学_必修四第二章平面向量基本定理教学设计学情分析教材分析课后反思

高中数学_必修四第二章平面向量基本定理教学设计学情分析教材分析课后反思

平面向量基本定理教学设计一、教材分析本节课是在学习了共线向量基本定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实的基础。

所以,本节在本章中起到承上启下的作用。

平面向量基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础。

平面向量基本定理提供了一种重要的数学思想—转化思想。

二、教学目标知识与技能: 理解平面向量基本定理,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量.过程与方法:通过学习平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力.情感态度与价值观:通过学习平面向量基本定理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。

教学重点:平面向量基本定理的应用;教学难点:平面向量基本定理的理解.三、教学教法1.学情分析: 学生已经学习了向量的基本知识,并且对向量的物理背景有了初步的了解.2.教学方法:采用“问题导学—讨论探究—展示演练”的教学方法,完成教学目标.3.教学手段:有效使用多媒体和视频辅助教学,直观形象.四、学法指导1.导学:设置问题情境,激发学生学习的求知欲,引发思考.2.探究:引导学生合作探究,解决问题,注重知识的形成过程.3.应用:在解决问题中培养学生的应用意识与学以致用的能力.五、教学过程针对以上情况,结合我校“学本课堂”模式,我设计了如下教学过程,分为六个环节。

第一环节:问题导学自主学习首先是课前预习,预习学案分为问题导学、典例精析、巩固拓展三大部分。

通过预习学案,可以帮助学生完成课前预习。

设计意图:通过预习学案让学生预习新知识,发现问题,使学习更具针对性,培养学生的自学与探索能力.第二环节:创设情境导入课题进入新课,引入课题采用问题情境的办法。

通过导弹的飞行方向和力的分解两个实例,将问题类比,引入本节问题-向量的分解。

为了帮助学生理解,提供了两段直观的视频,直观形象。

设计意图:借助实际与物理问题设置情境,引发学生思考与想象,将问题类比,引入本节课题。

人教版高中必修4《平面向量》教学设计

人教版高中必修4《平面向量》教学设计

人教版高中必修4《平面向量》教学设计《人教版高中必修4《平面向量》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、单元教学内容分析本章节内容教学安排在人教版必修四三角函数章节后,和差公式前,这为后面的和差公式的学习做好铺垫,又为解三角形问题和平面几何中的许多计算问题提供便利工具。

向量既有代数特征,又有几何特征,是沟通代数与几何的桥梁。

向量具有代数特征,运算及其规律是代数学研究的基本问题,向量可以进行多种运算,如向量加、减、数乘和数量积等。

向量运算具有一系列运算性质。

向量具有几何特征,它不仅可以描述,刻画几何中的点、线、面及其位置关系,数量关系,还可以表示空间中的曲线与曲面,是研究几何问题的基本工具。

本教材从学生熟悉的实例出发,经过观察、分析、归纳等方法概括出向量的相关概念,比以往的教材更能使学生产生自然而亲切的感觉,有助于激发学生的学习兴趣,调动学生的学习积极性,使他们真正认识到数学的应用价值,从而提高学生应用数学的意识。

教材结合向量的几何背景——有向线段,引入向量的表示法,规定了向量的长度的概念。

定义了零向量,单位向量、平行向量、相等向量、相反向量、共线向量等概念。

对于许多旧有的知识利用向量方法去处理,就会变得简单易懂,从而有助于学生对这些知识有更深刻的理解,更牢固的记忆,更自如的应用。

二、单元学生情况分析1、学生在初中阶段接触过物理学中的矢量,已具备基本的认知水平和运算能力。

2、学生已基本掌握函数和三角函数的基础知识,会运用数形结合法、整体代换法、分类讨论法等解决实际问题。

3、学生已具备基本的分析为和解决问题的勇气和智慧。

三、教学目标1、知识与技能目标(1)理解并掌握平面向量的基本概念。

(2)通过实例,掌握向量的加、减、数乘和数量积运算,并理解其几何意义。

(3)理解并掌握向量共线和垂直问题,理解平面向量基本定理及其意义。

会用坐标表示向量的加、减、数乘和数量积运算。

(4)掌握数量积的坐标表示,能运用数量积表示两个向量的夹角,能解决两个向量的垂直问题,投影问题。

高中数学必修4第二章平面向量教案完整版

高中数学必修4第二章平面向量教案完整版

§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点) B (终点)aO A B a a a b b b §2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加 3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=.4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aA B C a +b a +b a a b b a b b aa2)向量加法的交换律:a +b =b +a5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a ) = a.任一向量与它的相反向量的和是零向量.a + (-a ) = 0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差.即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.2. 用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b3. 求作差向量:已知向量a 、b ,求作向量∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O ,作OA = a , AB = b 则BA = a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b -a. O ab B a b a -b2)若a ∥b , 如何作出a - b§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量a -b A A B B B’ O a -b a a b b O A O B a -b a -b B A O -b§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=. 如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定. 设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=二、讲解新课:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0 探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)01221=-=⇔y x y x b a λ§2.4平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b,可得OP =b a b a λλλλλ+++=++1111. 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅ca = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.C4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 0C3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a 证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅.设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。

高中数学 第二章平面向量教学设计教案人教版必修4

高中数学 第二章平面向量教学设计教案人教版必修4

第二章平面向量教学设计人教A版数学必修4一、教材分析向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景和深刻的几何背景,是解决几何问题的有力工具. 在数学和物理中都有广泛的应用.在本单元中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学及物理中的一些问题.发展运算能力和解决实际问题的能力.1.本单元的教学内容的范围(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。

(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义。

②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。

③了解向量的线性运算性质及其几何意义。

(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。

②掌握平面向量的正交分解及其坐标表示。

③会用坐标表示平面向量的加、减与数乘运算。

④理解用坐标表示的平面向量共线的条件。

(4)平面向量的数量积①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。

②体会平面向量的数量积与向量投影的关系。

③掌握数量积的坐标表达式,会进行平面向量数量积的运算。

④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。

本章知识结构如下:平面向量、实际背景向量及其基本概念线性运算向量的数量积基本定理坐标表示向量的应用根据数学知识的发展过程与学生的认知过程安排内容向量是高中数学课程近年来引进的新内容,为了保证其科学性,同时又易于被学生接受,根据向量知识的发展过程和学生的思维规律,根据“标准”对向量内容的定位,并考虑到学生在数及其运算中建立起来的经验,本章按照如下次序来编排:向量的实际背景及基本概念一向量的线性运算一平面向量基本定理及坐标表示一向量的数量积一向量应用举例.课标要求的具体化和深广度分析①平面向量的实际背景及基本概念《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.如:用向量a,则-a表示____.一辆汽车从A地出发向西行驶了100km,到达B地,可以用向量a表示,那么从B地出发到A达地应如何表示?向量a,b都是非零向量,下面说法不正确的是()(A)向量a与b反向,则向量a+b与向量a的方向可能相同(B)向量a与b反向,则向量a+b与向量b的方向可能相同(C)向量a与b反向,且a b>,则向量a+b与向量a的方向可能相同(D)向量a与b反向,且a b<,则向量a+b与向量a的方向可能相同理解向量的概念,掌握向量的几何表示,了解共线向量②向量的线性运算《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过实例,掌握向量加、减法的运算,并理解其几何意义.②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.③了解向量的①如:若向量a表示向东走了2km,b表示向南走了1km,则a-b表示___________.已知下列各式①AB BC CA++;②AB MB BO OM+++;③OA OB BO CO+++;④AB AC BD CD-+-;①掌握向量的加法与减法,并理解其几何意义.②掌握实数与向量的积的运算,理解两个向量共线的充要条件.③会进行向量的线性运算.线性运算性质及其几何意义.其中结果为零向量的个数为()(A)1(B)2(C)3(D)4②已知向量a,b满足AB =a+2b,BC =-5a+6b,CD =7a-2b,则一定共线的三点是()(A)A,B,D (B)A,B,C(C)B,C,D (D)A,C,D③如:在ABC∆中,D,F分别是AB,AC的中点,BF与CD交于O,设AB =a,AC =b,用a,b表示向量AO.③平面向量的基本定理及坐标表示《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加、减与数乘运算.④理解用坐标表示的平面向量共线的条件.①如:某人在静水中游泳,速度为每小时3km,水流的速度为每小时4km,如果他要垂直游到对岸,则他的实际速度是多少?②如:已知平行四边形ABCD的三个顶点坐标分别为A(-2,1),B(3,4),C(-1,3),则顶点D的坐标为___________.③如:已知(0,1)A,(3,4)B-且点C在AOB∠的平分线上,若2OC=,则向量OC=_________.④已知向量(,12)OA k=,(4,5)OB=,(,10)OC k=-且A,B,C三点共线,则k=_________.①了解平面向量的基本定理②理解平面向量的坐标的概念③掌握平面向量的坐标运算④理解两个向量共线的充要条件④平面向量的数量积《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.②体会平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.①如:用两根夹角为120角的等长的绳子悬挂一个灯具,若灯具的重量为10N,则每根绳子的拉力大小是_________.②如:已知点(0,1)A-,(2,2)B,(4,6)C-,则AB在AC上的投影的值为_________.③如:a=(-3,2),b=(-4,k),若(5a-b)⋅(3a-b)=55,求实数k的值.④如:两单位向量a,b的夹角为60,则两向量p=2a+b与q=3a+2b的夹角为_________.换垂直的题①明确平面向量数量积的定义、数学表达式及其几何意义②明确向量b在向量a的方向上的投影③掌握数量积的公式,能进行数量积的运算④明确两向量夹角的意义,掌握两向量垂直的充要条件,能用两种形式表示向量垂直的充要条件.⑤向量的应用《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算如图,在平行四边形ABCD中,13DE DC=,AE与BD交于F,用向量的方法证明:14DF DB=.掌握平面两点间的距离公式、掌握线段的定比分点和中点坐标公式、平移公式,并能熟练运用,会用平面向量数量积处理长度、角度等有关问题能力和解决实际问题的能力.ABCD E F实际问题如:一条河的两岸平行,河的宽度为0.4km ,一艘船从一岸边的A 处出发驶向对岸,已知船速为15kmv h =,水速为23kmv h =,欲使航行最短,则所用时间为_________.(2)本单元变化之处①删繁就简,降低了知识的难度 ②调整章节,凸显了知识的框架 ③贴近生活,重视了知识的应用 (3)人教B 版向量一章的教材特点强调向量法的基本思想,明确向量运算及运算律的核心地位向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决.另外,向量及其运算(运算律)与几何图形 的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示.例如,平行四边形是表示向量加法和减法的几何模型,而向量的加法及其交换律(=+a b b +a )又可以表示平行四边形的性质(在平行四边形AB ∥CD 中,AD ∥BC ,AB ∥CD ,ABD ∆≌CBD ∆).这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起.几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.如果把解析几何的方法简单地表述为 [形到数]——[数的运算]——[数到形], 则向量方法可简单地表述为[形到向量]——[向量的运算]——[向量和数到形].教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”.为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语.说明:由于我们按照必修1,必修4的顺序进行教学,因此向量法这种解决问题的方法就显得尤其重要,他为今后学习解析法奠定了基础。

平面向量基本定理(教学设计)

平面向量基本定理(教学设计)

《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。

平面向量基本定理是本节的重点也是本节的难点。

平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。

实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。

二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。

三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。

本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。

新课标数学必修4第2章平面向量教案

新课标数学必修4第2章平面向量教案

第二章平面向量第1课时平面向量的实际背景及基础概念【知识与技能】1.理解平面向量、有向线段的概念,掌握向量的几何表示;2.掌握向量的模、零向量、单位向量、平行向量、相等向量共线向量等概念3.会辨认图形中的相等向量;4.清楚认识现实生活中的向量和数量两个不同概念,把握其本质区别,提高辨识能力. 【过程与方法】向量的概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量关系的运算.向量不同于数量,它是一种新的量,既有大小又有方向,关于数量的运算在向量范围内不一定适用.因此,本章在介绍向量概念时,说明了向量与数量的区别.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本节是本章的入门课,概念较多,但难度不大.可根据在原有的位移、力等物理概念来学习向量的概念,结合图形来区分平行向量、相等向量、共线向量等概念.一、教学目标1.理解向量、零向量、单位向量、相等向量的意义,并能用数学符号表示向量;2.理解向量的几何表示,会用字母表示向量;3.了解平行向量、共线向量、和相等向量的意义,并会判断向量的平行、相等、共线;4.通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生进行唯物辩证思想.二、教学重点⑴向量的概念,相等向量的概念,向量的几何表示.⑵向量是一种新的量,其特征有两个:既有大小,又有方向.让学生认识到方向性的存在是认识向量概念的关键,还要让学生理解向量和数量的区别联系,建立一种新的量的思维体系.⑶相等向量只与方向、大小有关,与位置没有关系,进一步理了解学习的向量是自由向量,为以后运用向量解决平面数形问题奠定基础.三、教学难点⑴向量概念的理解.由于向量是一种新的量,与以前的数量是不同的体系,两者之间既有联系又有区别;⑵引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量.对于它们要抓住本质特征,让学生在比较中找出相近概念的区别与联系,而且由于向量同时具有几何图象的特征,在学习时还要在图形中辩清它们相等、平行,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份、地位和作用.四、教学具准备直尺、投影仪.五、教学过程㈠设置情境问:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标?答:不能,因为没有给定发射的方向.问:现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向?答:力、速度、加速度等有大小也有方向,温度和长度只有大小没有方向.㈡向量的概念:力、速度、加速度等也是既有大小也有方向的量,我们把既有大小又有方向的量叫做向量.数学中用点表示位置,用射线表示方向.常用一条有向线段表示向量.在数学中,通常用点表示位置,用射线表示方向.(1)意义:既有大小又有方向的量叫向量。

北师大版高中高二数学必修4《平面向量》教案及教学反思

北师大版高中高二数学必修4《平面向量》教案及教学反思

北师大版高中高二数学必修4《平面向量》教案及教学反思一、前言本文是结合北师大版高中高二数学必修4的平面向量教学内容,为教师提供了相应的教案和教学反思,主要包括教学目的、教学重点、难点、教学过程、教学方法、教师工作和学生工作的要求等。

二、教学目的1.了解平面向量的概念、性质和运算法则。

2.学习线性运算、数量积和向量积的定义、性质和运算法则。

3.通过实例计算向量的长度、在坐标系中的表示、平移、旋转等问题。

三、教学重点和难点1.教学重点1.向量的概念、性质和运算法则。

2.学习线性运算、数量积和向量积的定义、性质和运算法则。

3.能计算向量的长度、在坐标系中的表示、平移、旋转等问题。

2.教学难点1.向量的概念与初学者的数学思维的转换。

2.向量积的概念和运算需要一定的几何直观,较为抽象。

四、教学过程1.引入通过展示一个向量的示意图,让学生从图像上感受到向量的呈现方式,并讨论其特点。

2.【课堂互动】概念阐释让学生从示意图中认识向量的本质,理解向量的基本性质,引领学生明确向量的基本概念。

3.【实际应用】例题分析让学生通过实际的应用例子,来理解向量的一些具体应用,引领学生掌握向量的定义、性质和运算法则。

4.【例题解答】计算练习让学生通过例题练习,来计算向量的长度、在坐标系中的表示、平移、旋转等问题,巩固向量的计算方法。

5.【探究优化】性质讨论通过讨论向量的性质和运算法则,引领学生建立起向量的几何直观,从而更好地掌握计算过程。

五、教学方法1.教师工作1.运用多媒体工具和真实的案例方法,让学生更直观地理解向量的定义和运算法则。

2.通过设计不同难度的例子,巩固学生对向量的理解能力,引导学生在思考的同时发现规律。

2.学生工作1.课前预习教材,为课堂中的学习打下基础。

2.积极参与实物示例和实际的应用例子讨论,从中理解向量的特点及其解析方法。

3.认真完成课堂上各种类型的练习。

六、教学反思1.教育是不断变革和发展的,时刻驱使我们教师不断地改革教育方法,使学生更好的掌握知识,发展他们的潜能。

(完整版)高中数学必修4第二章平面向量教案完整版

(完整版)高中数学必修4第二章平面向量教案完整版

第1课时§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... A(起点)B(终点)aOABaaa bb b7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.第2课时§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +b=+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到A BCa +ba +baa b b abb aan 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = aOabBa ba -b作法:在平面内取一点O , 作= a , = b 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1︒AB 表示a - b .强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图较繁,但最后作图可统一.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a.2)若a ∥b , 如何作出a - b ?2.3平面向量的基本定理及坐标表示第4课时§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λO ABa B’b-b bBa + (-b )a b a -bA ABBB’Oa -b a a bbO AOBa -ba -b BA O-ba ρ=2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量第5课时§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x . 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定.设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 二、讲解新课:a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中b ρ≠a ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ρ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (b ρ≠0)01221=-=⇔y x y x ba λ§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0. ⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两C个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅c a = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |. 4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a ba ⋅5︒ |a ⋅b | ≤ |a ||b |第8课时二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )C证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2第9课时三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | C5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。

高中数学必修4《平面向量的线性运算》教案

高中数学必修4《平面向量的线性运算》教案

高中数学必修4《平面向量的线性运算》教案一、教学目标1.理解向量的加、减、数乘运算及其物理意义。

2.掌握平面向量的线性运算方法。

3.能够应用向量的线性运算解决实际问题。

二、教学重点平面向量的线性运算。

三、教学难点向量线性运算一个实际问题的解决。

四、教学方法讲授法,示范法,练习法,问题解决法。

五、教学工具黑板、多媒体投影仪等。

六、教学过程1.引入教师引导学生回忆已学过的向量概念以及向量的模、方向和共面等概念。

2.新课讲解(1)向量加法。

如果 $\vec {AB}$ 和 $\vec {BC}$ 表示两个向量,那么它们的和为 $\vec {AB} + \vec {BC} = \vec {AC}$,如图所示:向量和的性质:①结合律:$(\vec a+\vec b)+\vec c=\vec a+(\vec b+\vec c)$②交换律:$\vec a+\vec b=\vec b+\vec a$③零向量的性质:$\vec a+\vec 0=\vec a$(2)向量减法。

如果 $\vec {AB}$ 和 $\vec {AC}$ 表示两个向量,那么它们的差为 $\vec {AB}-\vec {AC} = \vec {CB}$,如图所示:向量差的性质:$\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$(3)向量数乘。

如果 $\vec a$ 表示一个向量,$\lambda$ 表示一个标量,那么$\vec a$ 与 $\lambda$ 的积为 $\lambda \vec a$,如图所示:向量数乘的性质:①交换律:$\lambda \vec a=\vec a \lambda$②系数倍数的分配律:$(k+l)\vec a=k\vec a+l\vec a$③数乘的分配律:$k(\vec a+\vec b)=k\vec a+k\vec b$(4)向量共线和平行。

向量 $\vec a$ 和 $\vec b$ 共线的充要条件是 $\vec a = \lambda \vec b (\lambda \in R)$;向量 $\vec a$ 和 $\vec b$ 平行的充要条件是 $\vec a \times \vec b =\vec 0$(叉乘得到的是一个向量,如果结果为 $\vec 0$ 说明它们是平行的),或者 $\vec a\cdot\vec b=|\vec a|\cdot|\vec b|$。

高中数学平面向量教学教案

高中数学平面向量教学教案

高中数学平面向量教学教案一、教学目标:1. 理解平面向量的定义和性质;2. 掌握平面向量的表示及运算规则;3. 能够进行平面向量的计算和应用;4. 能够解决与平面向量相关的问题。

二、教学内容:1. 平面向量的定义;2. 平面向量的性质;3. 平面向量的表示方法;4. 平面向量的运算规则;5. 平面向量的应用。

三、教学步骤:第一步:导入1. 通过举例引入平面向量的定义,让学生了解平面向量的概念;2. 引导学生思考平面向量的性质,为后续学习打下基础。

第二步:讲解1. 讲解平面向量的表示方法,包括向量的坐标表示、向量的模、方向角等;2. 讲解平面向量的加法、减法、数乘等运算规则,并通过示例演示。

第三步:练习1. 给学生一些基础的练习题,让他们掌握平面向量的运算方法;2. 引导学生进行一些应用题,让他们应用所学知识解决实际问题。

第四步:总结1. 总结平面向量的定义、性质和运算规则,加深学生对知识点的理解;2. 引导学生思考平面向量的重要性和应用范围。

四、教学评价:1. 学生能够准确理解平面向量的定义和性质;2. 学生能够熟练掌握平面向量的表示方法和运算规则;3. 学生能够灵活运用平面向量解决实际问题。

五、拓展延伸:1. 让学生进行更复杂的平面向量运算和问题求解;2. 引导学生探讨平面向量在几何问题中的应用。

六、作业安排:1. 完成课堂练习题;2. 完成书上相关练习;3. 找出一些实际问题,利用平面向量进行求解。

七、课后反思:1. 总结课堂教学的不足之处;2. 整理学生提出的问题和反馈意见,及时调整教学方法。

3. 为下堂课的教学做好备课工作。

高中数学必修4第二章平面向量教案完整版

高中数学必修4第二章平面向量教案完整版

srofdoog§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面1e 2e 内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2a a1e 2e (1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量a1e 2e 二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为x y i j 基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得a x y …………yj xi a +=○1我们把叫做向量的(直角)坐标,记作),(y x a …………),(y x a =○2其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做向量的坐标表示.与x a x y a y ○2相等的向量的坐标也为.a ),(y x 特别地,,,.)0,1(=i )1,0(=j )0,0(0=如图,在直角坐标平面内,以原点O 为起点作,则点的位a OA =A 置由唯一确定.a 设,则向量的坐标就是点的坐标;反过来,点的坐标yj xi OA +=OA ),(y x A A 也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一),(y x OA 对实数唯一表示.2.平面向量的坐标运算(1)若,,则,),(11y x a =),(22y x b =b a +),(2121y y x x ++=ba -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为、,则i j b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即,同理可得b a +),(2121y y x x ++=b a -),(2121y y x x --=(2) 若,,则),(11y x A ),(22y x B ()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.=-=( x 2, y 2) -(x 1,y 1)= (x 2- x 1, y 2- y 1)AB OB OA (3)若和实数,则.),(y x a =λ),(y x a λλλ=实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为、,则,即i j a λ)(yj xi +=λyj xi λλ+=),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入:1.平面向量的坐标表示分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平x y i j a 面向量基本定理知,有且只有一对实数、,使得x y yjxi a +=把叫做向量的(直角)坐标,记作),(y x a ),(y x a =其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,x a x y a y ,,.)0,1(=i )1,0(=j )0,0(0=2.平面向量的坐标运算若,,),(11y x a =),(22y x b =则,,.b a +),(2121y y x x ++=b a -),(2121y y x x --=),(y x a λλλ=e bn garego c aCaeC≠0a。

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。

高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。

会用基底表示平面内任一向量。

2、掌握向量夹角的定义以及两向量垂直的定义。

学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。

如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。

活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。

因为OC=OM+ON,所以c=6 e1+6e2。

向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。

活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。

《平面向量》说课稿9篇平面向量的说课

《平面向量》说课稿9篇平面向量的说课

《平面向量》说课稿9篇平面向量的说课下面是我收集的《平面向量》说课稿9篇平面向量的说课,供大家参阅。

《平面向量》说课稿1说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

一、背景分析1、学习任务分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。

本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。

其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。

同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

2、学生情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。

这为学生学习数量积做了很好的铺垫,使学生倍感亲切。

但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。

高中数学必修四《平面向量基本定理》教学设计

高中数学必修四《平面向量基本定理》教学设计

§2.3.1—1 平面向量基本定理一、教学目标1、知识与技能目标:⑴掌握平面向量基本定理.⑵理解如何用一组基底表示平面内的任意向量.⑶掌握向量夹角的概念与向量垂直.2、过程与方法目标:⑴能根据所学的知识探究平面向量基本定理.⑵体会如何用一组基底表示平面内的任意向量.3、情感、态度、价值观目标:⑴在轻松愉快的环境中学习数学.⑵在积极主动的氛围中学习数学.⑶能与同学交流、合作、探讨解决问题.二、教学重难点1、教学重点:⑴平面向量基本定理.2、教学难点:⑴理解平面向量基本定理:用一组基底表示平面的任意向量..三、教学方法与教具1、教学方法:讲练结合法.2、教具:几何画板课件.四、学情分析这一节内容是向量坐标的基础,也是我认为向量中最难理解的一个内容,其练习也是向量中比较难的。

学生们对于不共线两个向量能表示平面内所有向量这点感到十分头疼,在没有直观展示之前,大部分学生都是对概念得过且过,听不懂不要紧,会做题就行,针对这个难点,我专门制作了几何画板课件来展示两个不共线向量如何表示平面内所有向量,这种直观地展示应该能让学生易于接受和理解.教学过程<一> 平面向量基本定理<二> 基底与夹角<三> 课堂练习1、设O 点是平行四边形ABCD 两对角线的交点,下列向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①与;②与BC ;③CA 与DC ;④OD 与OB . A.①② B.①③ C.①④ D.③④2、若向量a 与b 的夹角为 60,则向量a -与b -的夹角是 A. 60 B. 120 C. 30 D. 1503、已知M 、N 是ABC ∆的一边BC 上的两个三等分点,若a AB =,b AC =,则=MN4、已知向量1e 、2e 不共线,实数x 、y 满足212136)32()43(e e e y x e y x +=-+-,则y x -的值为<四> 课堂小结今天我们学习的内容有:1、平面向量基本定理,它告诉我们:一个平面内,给我两个不共线的向量1e 、2e ,两个系数1λ、2λ,那么这个平面内的任意向量,我都能用它们表示出来.2、基底:只要两个向量不共线,它们就能作为一组基底.3、夹角:注意夹角的形成,必须共起点,还要注意夹角的范围.<五> 课后作业测评:68页例1和活学活用;69页第5题<六> 教学反思本节课学生对于平面向量基本定理掌握得比较好,感觉绝大部分学生已经直观地看到并理解了平面内两个不共线的向量如何表示平面内的所有向量,唯一不足的是对于两个系数1λ、2λ的唯一性讲解得不是特别透彻,学生们还存在疑惑,这点有待改进.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容: §2.1平面向量的实际背景及基本概念
教学目标 1. 了解向量的物理背景及在物理中的意义
2. 理解向量、零向量、单位向量、相等向量的概念,会用字母表示向量,能
读写已知图中的向量;
3. 掌握向量的几何表示,明确向量的长度、零向量、单位向量的几何意义; 4.了解共线向量、平行向量的概念,会根据图形判定是否平行、共线、相等.
本节重点
向量的概念、相等向量的概念、向量的几何表示等 本节难点
向量的概念 教学模式
教学过程 主 要 内 容 及 板 书
摘要与反思
一、提出问题,引入新课: (1)我们已学了哪些既有大小又有方向的量?(2)角的正弦线、余弦线、正切线是怎样的图形? 强调已学的位移、力、速度、加速度及三角函数线等都是既有大小又有方向的量.这种量就是我们本章所要研究的向量.
1.向量:既有大小,又有方向的量;
2.数量:只有大小,没有方向的量。

二、新课教学
(1)有向线段及有关概念
一般,在线段AB 的两个端点中,规定一个顺序,
终点B
一个为起点,一个为终点,我们就说线段AB 具有方
向,具有方向的线段叫做有向线段. 起点A
以A 为起点,B 为终点的有向线段,记作AB ,线段AB 的长度也叫做有向线段.有向线段的三要素:起点、方向、长度. (2)向量的表示及模的概念
①表示:向量通常用一条有向线段来表示,也可以用字母,,等来表示,或用表示有向线段的起点和终点的字母表示,如.
②模:有向线段的长度表示向量的大小,也就是向量的长度(或称模),
摘要与反思 主 要 内 容 及 板 书
③零向量:长度为0的向量叫做零向量,记作;
④单位向量:长度等于1个单位长度的向量,叫做单位向量.
(3)平行向量(共线向量)与相等向量的概念 ①平行向量:方向相同或相反的非零向量,叫做平行向量. 如图中,,,就是一组平行向量,记作 ∥∥.
任作一条与所在直线平行的直线l ,在l 上取一点O,则可在l 上分别作出===,,.这就是说,任一组平行向量都可移到同一直线上,因此,平行向量也叫做共线向量.
规定:与任一向量平行.
②相等向量:长度相等且方向相同的向量,叫做相等向量.
(4)例题与练习
例1(课本P84例1)
例2(课本P85例2)
例3.有两个长度相等的向量,在什么情况下,这两个向量一定相等? 解:有下列两种情况之一,这两个向量一定相等.
①两个长度相等的向量,方向也相同;②两个向量的长度都为零. 练习:
1.课本P86,练习1,2,3,4
2.回答下列问题
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量一定不平行吗? (不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任何向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
(平行(或共线向量)
3.下列各种情况中,向量的终点各构成什么图形?
(1) 把所有单位向量平移到同一个起点.(一个半径为1的圆)
(2) 把平行于某一直线的所有单位向量平移到同一个起点.(两个点) (3) 把平行于某一直线的所有向量平移到同一个起点.(一条直线)
三.小结:
作 业
P86 习题 2.1/A 组5;B 组2
a
b
c a
b
c。

相关文档
最新文档