一元二次方程导学案
2022年人教版《一元二次方程(导学案)》精品学案
第二十一章一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.2的平方的长方形?解:设长方形的长为xx)m.根据题意,得xx)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2x=±2.即方程的另一个根为-2.角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法、角平分线的性质1.(二)能力训练要求1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.角平分线的性质1.教学难点角的平分线的性质1教学方法引导发现、讲练结合法.教具准备多媒体课件教学过程一.提出问题,创设情境问题:图中哪条线段的长可以表示点P 到直线l 的距离 ?导入新课,明确学习目标如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?二.合作交流 探究新知探究1想一想:下图是一个平分角的仪器,其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明它的道理吗? 教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC 的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实就是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 分别在△CAD 和△CAB 中,那么证明这两个三角形全等就可以了.[生3]我们看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC ≌△ADC (SSS ).所以∠CAD=∠CAB .即射线AC 就是∠DAB 的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.试一试:老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).点拨:1.在上面作法的第二步中,去掉“大于12MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.探究2:做一做1[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对. [师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.做一做2角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢?证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.学生通过讨论作出下列概括:∵ OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.三、用一用:1、如图,△ABC的角平分线BM、CN相交于点P.此例放到第二课时讲求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.巩固所学及时点拨四.丰收乐园学生充分交流、各抒己见教后反思:本节知识的应用主要存在以下问题:1、对距离把握不到位,点到直线的垂线段长才叫距离2、不会直接使用角平分线的性质,而是使用全等将性质再证一3、采用角平分线性质解题强调三个条件。
一元二次方程全章导学案(不分版本,通用)
一元二次方程全章导学案(不分版本,通用)初三数学备课组备课时间:上课时间:课型:任课班级:主备人:导学案:一元二次方程研究目标:1.理解方程是数学模型,能够将实际问题转化为一元二次方程;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项。
研究重点:由实际问题列出一元二次方程和一元二次方程的概念。
研究过程:活动一:知识链接(5分钟)1.下列方程中是一元二次方程的是:1) 2x+3x=9,(2) (x+1)(x-1)=0,(3) 2y^2=0,(4) 2x+3/x-1=0。
5) 3m=2,(6) 2x^2+3y-5=0.2.把方程(2y-1)(2y+1)=1 化为一般形式为:ax^2+bx+c=0;其二次项系数是a,一次项系数是b,常数项是c。
3.若(m-3)x^n-2+3nx+3=0 是关于x的一元二次方程,则m=?n=?4.下面哪些数是方程x^2-x-6=0 的根?-4,-3,-2,-1,1,2,3,4.活动二:自主交流探究新知(25分钟)1.自学教材P17-19,回答以下问题:1) 一元二次方程的定义:只含有一个求知数(一元),并且求知数的最高次数是2(二次)的方程,叫做一元二次方程。
2) 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax^2+bx+c=0,其中a≠0,这种形式叫做一元二次方程的一般形式。
其中a是二次项系数,b是一次项系数,c是常数项。
注意:方程ax^2+bx+c=0 只有当a≠0 时才叫一元二次方程,如果a=0,b≠0 时就是一元一次方程了。
所以在一般形式中,必须包含a≠0这个条件。
活动五:拓展延伸(独立完成3分钟,班级展示2分钟)2.二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。
1.当a不等于0时,关于x的方程a(x^2+x)=3x^2-(x+1)是一元二次方程。
2.一元二次方程的解是方程中使等号左右两边值相等的未知数的值。
一元二次方程(导学案)
21.1一元二次方程(1)学习目标:1.理解一元二次方程的概念,根据一元二次方程的一般式,确定各项系数;2.灵活应用一元二次方程的概念解决有关问题;3.理解一元二次方程的解的概念,并能解决相关问题 .学习重点:一元二次方程的相关概念及应用.学习难点:一元二次方程的相关概念及应用.【回顾旧知】问题:什么是一元一次方程?练习:1.下列方程是一元一次方程的有 .(填序号)(1)123-=+x x ; (2) x y x 25-=+; (3)0542=--x x ; (4)123=+x ; (5)()为常数m mx 02=+; (6)322=+y x . 2.若()031=++m x m 是一元一次方程,则m= .【探究新知】一.一元二次方程的定义和一般形式定义: . 一般形式: .【注】:例1:判断下列方程是不是一元二次方程,如果不是,请说明理由.(1)12-=x ; (2)01=+xy ; (3)3212=+x x ; (4)()1232-=+x x x x ; (5)()21x x x =+; (6)()为常数m x mx 012=++.【注意】: .练习:1.若关于x 的方程2232x x mx =+是一元二次方程,则m .2.若关于x 的方程()04222=-+--x x m m 是一元二次方程,则m = .例2:把方程()()12323=-+y y 化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.练习: 把下列方程化成一元二次方程的一般形式,并写出它的二次项、一次项和常数项.(1)()0122=--x x ; (2)()()()1313322-+=+x x x变式训练:已知一元二次方程()()01142=++-+c x b x 化成一般形式为02342=++x x , 若a,b,c 是直角三角形的三边长,试求a 的值.二.一元二次方程的解(根)定义: . 例3: 若关于x 的一元二次方程()045222=-+++m x x m 有一个根为0=x ,求m 的值.练习:1.方程01242=-+x x 的根为 ( )A. -2B. 2或 -6C. 6D. -2或62.若()0≠=c c x 是关于x 的一元二次方程02=++c bx x 的根,则=+b c . 例4:若m 是方程012=-+x x 的根,(1)=--m m 222 ;(2)=-m m 1 ; (3)求2017223++m m 的值.练习:已知a 是方程0120182=+-x x 的一个根,求12018201722++-a a a 的值.【总结归纳】本节课主要学习了哪些内容?你有什么收获?还有哪些困惑?【当堂检测】1.已知方程:①;0322=-x ②;1112=-x ③;0131212=+-y y ④;022=++c y ay ⑤;5)3)(1(2+=-+x x x ⑥.02=-x x 其中是一元二次方程的有 (只需填序号).2.若方程2243x x mx =-+是关于x 的一元二次方程,则m 的取值范围是 .3.方程x x 212=-化成一般形式为 , 二次项系数为 , 一次项系数为 ,常数项为 ;4.已知关于x 的方程01322=+-kx x 有一个根为2,则k 的值是 .5.若a 是方程0152=+-x x 的一个根,求221aa +的值.。
人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系
第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x xx x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相1232课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a ,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+-= 22ba-=.b a =- 1222b b x x a a•-+-⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1. ;-3.2. 1 ; -2.1161.3c x a 116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。
21.2 降次——解一元二次方程(1) 导学案
21.2 降次——解一元二次方程(第1课时)学习目标1. 能根据平方根的意义解形如x 2=p 及ax 2+p=0的一元二次方程2. 能运用开平方法解形如(mx +n)2=P 的方程3.体会“降次”、“整体”的数学思想教学过程一、情境引入问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1:本题的等量关系是什么?思考2:设正方体的棱长为xdm ,请列出方程并化简.思考3:你能求出方程的解?理由是什么?思考4:问题答案是什么?二、探索新知1.下列各数是否有平方根,如果有请求出该数的平方根?1, 9, 3, 0, -42.你能根据平方根的意义求出下列方程的解?思考:方程x 2=P (P 为常数)的解有几种情况利用平方根的意义直接开平方求一元二次方程的根的方法叫做直接开平方法.三、课堂练习x 2=1 x 2=9 x 2=3 x 2=0 x 2=−4四、变式练习思考:上面解方程过程中体现了那些思想方法?归纳:直接开平方法有几个关键步骤?五、拓展练习六、课堂小结通过本节课学习你收获那些知识?体会到什么思想方法?你还有那些体验?七、课后作业见精准作业单 (1) x 2=7;(2) x 2+2009=0.变式1:2x 2=1 (2x)2=1 变式2:变式3:(x −1)2=9 变式4:(2x −1)2=9 变式5:3(2x −1)2=9 1. 若x 2-2xy +y 2=4,则x -y 的值为( ) 2. A .2 B .-2 C .±2 D .不能确定 2.若实数a ,b 满足(a 2+b 2-3)2=25,则a 2+b 2的值为( ) 3.A .8 B .8或-2 C .-2 D .283.若代数式2x 2+3与2x 2-4的值互为相反数,则x = .。
一元二次方程导学案
第23章一元二次方程的概念导学案【教学目标】了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念; 应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型, 模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.【重难点】1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念.【学法指导】小组交流,合作探究,班级展示。
【学习过程】一、学案自学:我一定能行!复习引入1.自学课本,用笔在书上记下疑惑摘要。
2.自我检测(要求:独立思考,尝试解决,记下疑惑,生成问题)学生活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸, 两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈, 那么门的高和宽各是多少?如果假设门的高为x 尺, 那么, 这个门的宽为_______ 尺, 根据题意, 得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、质疑探究,合作交流学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3) 都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程, 经过整理, 都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x) ( 5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)= 1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、拓展延伸,超越自我例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17 ≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.四、自悟自得,反思提升本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0) 和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.五、附:【当堂检测题】六、课后反思【当堂检测题】一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-5 x =0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、 一次项系数和常数项分别为().A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1B.p>0C.p≠0D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?。
九年级数学导学案-一元二次方程
九年级数学导学案——一元二次方程§2.1.1一元二次方程(一) 导学案【学习目标】1.会根据具体问题列出一元二次方程。
通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,培养把文字叙述的问题转换成数学语言的能力。
2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力。
3.会说出一元二次方程的一般形式,会把方程化为一般形式。
【学习重难点】重点:一元二次方程的概念难点:如何把实际问题转化为数学方程【学法指导】通过具体问题列出方程,化简方程,分析方程特点,抽象、归纳出一元二次概念和一般形式。
【知识链接】1.什么是一元一次方程?什么是二元一次方程?【问题导学】自学课本31页至32页内容,独立思考解答下列问题:1.情境问题:列方程解应用题:一个面积为120 m2的矩形苗圃,它的长比宽多2m。
苗圃的长和宽各是多少?解:设____________________, 列方程得:_________________你能将方程化成ax2+bx+c=0的形式吗?2.阅读课本P32,思考下列问题:1)什么是一元二次方程?2)什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?3.课前小练:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。
(1)3x2=5x-1 (2)(x+2)(x-1)=6 (3)4-7x2=0【合作探究】1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?如果设花边的宽为xm ,那么地毯中央长方形图案的长为__________m ,宽为___________m ,根据题意,可得方程_____________。
化成一般形式得_______________。
2)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。
一元二次方程导学案
《《一元二次方程》(1)》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:
《《一元二次方程》(2)》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:
《《用直接开平方法解一元二次方程》》导学案导学案序号:课型:总课时:分课时:主备人:审核人:
《《用配方法解一元二次方程》》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:
的方法,叫做配方法。
,把化为来解。
、方程二次项系数不是时,可让方程的,将方程的二次项系数化
、用配方法解二次项系数是1的一元二次方程的一般步骤是:
;
《《用公式法解一元二次方程》》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:。
一元二次方程导学案
能使一元一次方程左右两边相等的未知数的值
通过回顾一元一次方程的概念,理解“元”和“次”的含义,有助于学生类比一元二次方程的概念,从而充满探究的欲望和浓厚的兴趣
活动
一:
创设
情境
导入
新课
【课堂引入】
问题1:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?
一元二次方程导学案
教学活动
教学
步骤
师生活动
设计意图
回顾
学生完成下列题目,教师指导学生复习一元一次方程的相关知识:
一元一次方程的知识:
1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.
2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.
请口答下面问题:
(1)方程①②③中未知数的个数各是多少?___________
(2)它们的最高次数分别是几次?_________
方程①②③的共同特点是:这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____(二次)的方程.
1.一元二次方程的定义:__________________________________________
课题
21.1一元二次方程
授课人
徐庆宏
教
学
目
标
知识技能
1.理解一元二次方程的概念;
2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;
一元二次方程导学案
一元二次方程导学案第1课时一元二次方程一、学习目标1.理解一元二次方程的概念;2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式;3.会判断一元二次方程的二次项系数、一次项系数和常数项;4.理解一元二次方程根的概念.二、知识回顾1.多项式3x2y-2x-1是三次二项式,其中最高次项是3x2y ,二次项系数为0 ,一次项系数为-2 ,常数项是-1 .2.含有未知数的等式叫方程,我们学过的方程类型有:一元一次方程、二元一次方程、分式方程等.三、新知讲解1.一元二次方程的概念等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2 (二次)的方程,叫做一元二次方程.概念解读:(1)等号两边都是整式;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成ax2+bx+c=0(a≠0)的形式,这种形式叫做一元二次方程的一般形式.其中ax2 是二次项,a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项.概念解读:(1)“a≠0”是一元二次方程一般形式的重要组成部分. 如果明确了ax +bx+c=0是一元二次方程,就隐含了a≠0这个条件;(2)二次项系数、一次项系数和常数项都是在一般形式下定义的,各项的系数包括它前面的符号.3.一元二次方程的根的概念使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根..概念解读:(1)一元二次方程可能无解,但是有解就一定有两个解;(2)可用代入法检验一个数是否是一元二次方程的解.四、典例探究1.根据定义判断一个方程是否是一元二次方程【例1】(2015浠水县校级模拟)下列方程是一元二次方程的是()A.x2+2x﹣y=3 B. C.(3x2﹣1)2﹣3=0 D. x2﹣8= x总结:一元二次方程必须满足四个条件:是整式方程;含有一个未知数;未知数的最高次数是2;二次项系数不为0.练1(2015科左中旗校级一模)关于x的方程:(a ﹣1) +x+a2﹣1=0,求当a= 时,方程是一元二次方程;当a= 时,方程是一元一次方程.2.把一元二次方程化成一般形式(写出其二次项系数、一次项系数和常数项)【例2】(2014秋忠县校级期末)一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是;它的二次项系数是,一次项系数是,常数项是.总结:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)(1)特别要注意a≠0的条件;(2)在一般形式中,ax2叫二次项,bx叫一次项,c 是常数项,其中a,b,c分别叫二次项系数、一次项系数和常数项.练2将方程x(x-1)=5(x-2)化为一元二次方程的一般形式,并写出二次项系数、一次项系数和常数.练3(2014东西湖区校级模拟)将一元二次方程4x2+5x=81化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是()A.5,81 B.5,﹣81 C.﹣5,81 D.5x,﹣81 3.根据一元二次方程的根求参数【例3】(2015临淄区校级模拟)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为()A.1 B.0 C.1或2 D.2总结:使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根.一元二次方程可能无解,但是有解就一定有两个解.可用代入法检验一个数是否是一元二次方程的解.已知一元二次方程的一个解,将这个解直接代入原方程,原方程仍然成立,由此可求解原方程中的字母参数.若二次项系数含有字母参数,求出的字母参数值要保证二次项系数不为0.这一步容易被忽略,谨记.练4(2014绵阳模拟)若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a= .练5(2015绵阳)关于m的一元二次方程 nm2﹣n2m ﹣2=0的一个根为2,则n2+n﹣2= .五、课后小测一、选择题1.(2015春莒县期中)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x+y=2 C.x2+3y﹣5=0 D.x2﹣1=02.(2014泗县校级模拟)方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个 B.2个 C.3个 D.4个3.(2014秋沈丘县校级期末)要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠﹣1 D.a≠3且b≠﹣1且c≠04.(2015石河子校级模拟)把方程x(x+2)=5(x ﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,25.(2015石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0 B.﹣ C. D.0或,6.(2014祁阳县校级模拟)已知x=3是关于方程3x2+2ax﹣3a=0的一个根,则关于y的方程y2﹣12=a的解是()A. B.﹣C.± D.以上答案都不对7.(2014秋南昌期末)关于x的方程(k+2)x2﹣kx﹣2=0必有一个根为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2二、填空题8.(2015东西湖区校级模拟)已知(m﹣2)x2﹣3x+1=0是关于x的一元二次方程,则m的取值范围是.9.(2014秋西昌市校级期中)方程2x2﹣1= 的二次项系数是,一次项系数是,常数项是. 10.(2015厦门校级质检)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是.三、解答题11.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.(1)5x2=3x;(2)(﹣1)x+x2﹣3=0;(3)(7x﹣1)2﹣3=0;(4)(﹣1)( +1)=0;(5)(6m﹣5)(2m+1)=m2.12.(2015春亳州校级期中)已知关于x的方程(m ﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解..(2015春嵊州市校级月考)已知,下列关于x的一元二次方程(1)x2﹣1=0 (2)x2+x﹣2=0 (3)x2+2x﹣3=0 …(n)x2+(n﹣1)x﹣n=0(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.(2)请指出上述几个方程的根有什么共同特点,写出一条即可..关于y的方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为多少.典例探究答案:【例1】【解析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:A、方程含有两个未知数,故选项错误;B、不是整式方程,故选项错误;C、含未知数的项的最高次数是4,故选项错误;D、符合一元二次方程的定义,故选项正确.故选:D.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含有一个未知数且未知数的最高次数是2.练1.【解析】根据一元二次方程和一元一次方程的定义进行解答.解:依题意得,a2+1=2且a﹣1≠0,解得 a=﹣1.即当a=﹣1时,方程是一元二次方程.当a2+1=0或a﹣1=0即a=1时,方程是一元一次方程.故答案是:﹣1;1.点评:本题考查了一元二次方程和一元一次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.【例2】【解析】将方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2.故答案为:5x2+8x﹣2=0,5,8,﹣2点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在解题过程中容易忽视的地方.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.练2.【解析】将一元二次方程化为一般形式,主要包括几个步骤:去括号、移项、合并同类项.去括号,得x2-x=5x-10.移项、合并同类项,得x2-6x+10=0.其中二次项系数是1,一次项系数为-6,常数项为10.练3.【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,其中a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.解:一元二次方程4x2+5x=81化成一般式为4x2+5x﹣81=0,二次项系数,一次项系数,常数项分别为4,5,﹣81,故选:B.点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【例3】【解析】把方程的一个根0直接代入方程即可求出m的值.解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,解方程得:m1=1(舍去),m2=2,∴m=2,故选:D.点评:本题考查了一元二次方程的解,解题的关键是直接把方程的一根代入方程,此题比较简单,易于掌握.练4.【解析】将一根0代入方程,再依据一元二次方程的二次项系数不为零,问题可求.解:∵一根是0,∴(a+1)×(0)2+4×0+a2﹣1=0 ∴a2﹣1=0,即a=±1;∵a+1≠0,∴a≠﹣1;∴a=1.练5.【解析】先根据一元二次方程的解的定义得到4 n﹣2n2﹣2=0,两边除以2n得n+ =2 ,再利用完全平方公式变形得到原式=(n+ )2﹣2,然后利用整体代入的方法计算.解:把m=2代入 nm2﹣n2m﹣2=0得4 n﹣2n2﹣2=0,所以n+ =2 ,所以原式=(n+ )2﹣2=(2 )2﹣2=26.故答案为:26.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.课后小测答案:一、选择题1.【解析】根据一元二次方程的定义进行判断.解:A、当a=0时,该方程不是关于x的一元二次方程,故本选项错误;B、该方程中含有2个未知数,且未知数的最高次数是1,它属于二元一次方程,故本选项错误;C、该方程中含有2个未知数,且未知数的最高次数是2,它属于二元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选:D.点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【解析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选:B.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.3.【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.4.【解析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,故选:D.点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.6.【解析】由于x=3是关于x的方程3x2+2ax﹣3a=0的一个根,根据方程解的含义,把x=3代入原方程,即可解出a的值,然后再解出关于y的方程的解.解:∵x=3是关于x的方程3x2+2ax﹣3a=0的一个根,∴3×32+2a×3﹣3a=0,解得:a=﹣9,则关于y的方程是y2﹣12=﹣9,解得y= .故选:C.点评:本题考查一元二次方程解的含义,解题的关键是确定方程中待定系数的值.7.【解析】分别把x=1、﹣2、﹣2代入(k+2)x2﹣kx﹣2=0中,利用一元二次方程的解,当k为任意值时,则对应的x的值一定为方程的解.解:A、当x=1时,k+2﹣k﹣2=0,所以方程(k+2)x2﹣kx﹣2=0必有一个根为1,所以A选项正确;B、当x=﹣1时,k+2+k﹣2=0,所以当k=0时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣1,所以B选项错误;C、当x=2时,4k+8﹣2k﹣2=0,所以当k=﹣3时,方程(k+2)x2﹣kx﹣2=0有一个根为2,所以C选项错误;D、当x=﹣2时,4k+8+2k﹣2=0,所以当k=﹣1时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣2,所以D选项错误.故选A.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.二、填空题8.【解析】根据一元二次方程的定义得到m﹣2≠0,然后解不等式即可.解:根据题意得m﹣2≠0,所以m≠2.故答案为:m≠2.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.9.【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.解:方程2x2﹣1= 化成一般形式是2x2﹣﹣1=0,二次项系数是2,一次项系数是﹣,常数项是﹣1.点评:要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号10.【解析】根据一元二次方程的解的定义得到m2﹣2m=2,再变形2m2﹣4m+2010得到2(m2﹣m)+2010,然后利用整体代入的方法计算.解:根据题意得m2﹣2m=2,所以2m2﹣4m+2010=2(m2﹣m)+2010=2×2+2010=2014.故答案为2014.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题11.【解析】各项方程整理后,找出二次项系数,一次项系数,以及常数项即可.解:(1)方程整理得:5x2﹣3x=0,二次项系数为5,一次项系数为﹣3,常数项为0;(2)x2+(﹣1)x﹣3=0,二次项系数为1,一次项系数为﹣1,常数项为﹣3;(3)方程整理得:49x2﹣14x﹣2=0,二次项系数为49,一次项为﹣14,常数项为﹣2;(4)方程整理得: x2﹣1=0,二次项系数为,一次项系数为0,常数项为﹣1;(5)方程整理得:11m2﹣4m﹣5=0,二次项系数为11,一次项系数为﹣4,常数项为﹣5.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【解析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;(2)分别将m的值代入原式求出即可.解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.点评:此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.13.【解析】(1)利用因式分解法分别求出方程(1)、方程(2)、方程(3)的根,根据以上3个方程的根,可猜测方程(n)的根;(2)观察即可得出上述几个方程都有一个公共根是1.解:(1)(1)x2﹣1=0,(x+1)(x﹣1)=0,x+1=0,或x﹣1=0,解得x1=﹣1,x2=1;(2)x2+x﹣2=0,(x+2)(x﹣1)=0,x+2=0,或x﹣1=0,解得x1=﹣2,x2=1;(3)x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0,或x﹣1=0,解得x1=﹣3,x2=1;…猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;(2)上述几个方程都有一个公共根是1.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的解法.14.【解析】令y=1,即可确定出方程的二次项的系数,一次项的系数与常数项的和.解:令y=1,得到m﹣n﹣p=0,则方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为0.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.。
九年级上册《实际问题与一元二次方程》导学案
九年级上册《实际问题与一元二次方程》导学案一、学习目标1、经历用一元二次方程解决实际问题的过程,体会一元二次方程是刻画现实世界数量关系的有效模型。
2、能够根据实际问题中的数量关系,列出一元二次方程,并求解。
3、能检验所得的解是否符合实际意义,从而解决实际问题。
二、学习重点与难点1、重点(1)会用列一元二次方程的方法解决有关实际问题。
(2)掌握运用一元二次方程解决实际问题的一般步骤。
2、难点将实际问题转化为数学问题,找出等量关系,列出一元二次方程。
三、知识回顾1、一元二次方程的一般形式:$ax^2 + bx + c = 0$($a≠0$),其中$a$、$b$、$c$分别是二次项系数、一次项系数和常数项。
2、一元二次方程的解法:(1)直接开平方法:形如$(x + m)^2 = n$($n≥0$)的方程,可以直接开平方求解。
(2)配方法:通过配方将方程化为$(x + m)^2 = n$的形式,再开平方求解。
(3)公式法:对于一元二次方程$ax^2 + bx + c = 0$($a≠0$),其解为$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。
(4)因式分解法:将方程化为两个一次因式的乘积等于0 的形式,从而求解。
四、新课导入在我们的生活中,有许多实际问题可以用一元二次方程来解决。
例如,增长率问题、面积问题、利润问题等。
下面我们就一起来学习如何用一元二次方程解决这些实际问题。
五、例题讲解(一)增长率问题例 1:某工厂去年的利润(总产值总支出)为 200 万元,今年总产值比去年增加了 20%,总支出比去年减少了 10%,今年的利润为 780万元。
去年的总产值、总支出各是多少万元?设去年的总产值为$x$万元,总支出为$y$万元,则有:总产值总支出=利润去年:$x y = 200$今年:$(1 + 20\%)x (1 10\%)y = 780$整理得:$\begin{cases}x y = 200 \\ 12x 09y = 780\end{cases}$由第一个方程得:$x = 200 + y$将其代入第二个方程得:$12(200 + y) 09y = 780$$240 + 12y 09y = 780$$03y = 540$$y = 1800$将$y = 1800$代入$x = 200 + y$得:$x = 200 + 1800 = 2000$答:去年的总产值为 2000 万元,总支出为 1800 万元。
新人教版第二十一章一元二次方程全章导学案
x21.1 一元二次方程一、一元二次方程问题1 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?问题 2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?思考:方程①②的共同特点是:这些方程的两边都是_________,方程中含有_______未知数(一元),并且未知数的最高次数是_____. 归纳:1.一元二次方程定义:2. 一元二次方程的一般形式: 二、应用举例:例:1.将方程(82)(52)18x x --=化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2.下列方程是一元二次方程的是有 : (1),(2)(x+1)(x-1)=0, (3),(4)01122=-+xx ,(5), (6)05322=-+y x3. 若21(3)50m m x x -+-=是关于x 的一元二次方程,求m 的值.4.若033)3(2=++--nx x m n 是关于x 的一元二次方程,则( ).A m≠0,n=3B m≠3,n=4C m≠0,n=4D m≠3,n≠0 5.已知:关于x 的方程()()021122=-++-x k x k .(1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.6.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: ⑴4个完全相同的正方形的面积之和是25,求正方形的边长x; ⑵一个长方形的长比宽多2,面积是100,求长方形的长x ;⑶把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x 。
三.一元二次方程的解一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_______________的值。
用因式分解法求解一元二次方程导学案
用因式分解法求解一元二次方程导学案一、学习目标1、理解因式分解法解一元二次方程的原理。
2、掌握用提公因式法、公式法(平方差公式、完全平方公式)进行因式分解,从而求解一元二次方程。
3、能根据方程的特点,灵活选择合适的因式分解方法求解。
二、重点难点1、重点掌握用因式分解法解一元二次方程的步骤。
能熟练运用因式分解法解一元二次方程。
2、难点如何观察方程的特点,选择合适的因式分解方法。
理解因式分解法与一元二次方程的根的关系。
三、知识回顾1、一元二次方程的一般形式:$ax^2 + bx + c = 0$($a \neq 0$)。
2、因式分解的方法:提公因式法:$ma + mb + mc = m(a + b + c)$平方差公式:$a^2 b^2 =(a + b)(a b)$完全平方公式:$a^2 + 2ab + b^2 =(a + b)^2$ ,$a^2 2ab + b^2 =(a b)^2$四、新课导入我们已经学习了直接开平方法、配方法和公式法来求解一元二次方程。
今天,我们将学习一种新的方法——因式分解法。
思考:如果一个一元二次方程可以变形为两个一次因式的乘积等于零的形式,那么这两个一次因式的值分别为零,从而可以得到方程的解。
这就是因式分解法求解一元二次方程的基本原理。
五、探究新知1、示例 1解方程:$x^2 3x = 0$分析:方程左边可以提公因式$x$,得到$x(x 3) = 0$则$x = 0$或$x 3 = 0$解得$x_1 = 0$,$x_2 = 3$2、示例 2解方程:$x^2 4 = 0$分析:方程左边可以使用平方差公式因式分解,得到$(x + 2)(x 2) = 0$则$x + 2 = 0$或$x 2 = 0$解得$x_1 =-2$,$x_2 = 2$3、示例 3解方程:$x^2 6x + 9 = 0$分析:方程左边可以使用完全平方公式因式分解,得到$(x 3)^2 = 0$则$x 3 = 0$解得$x_1 = x_2 = 3$六、方法总结用因式分解法解一元二次方程的一般步骤:1、将方程右边化为零。
《一元二次方程的解法》 导学案
《一元二次方程的解法》导学案一、学习目标1、理解一元二次方程的概念,掌握一元二次方程的一般形式。
2、熟练掌握直接开平方法、配方法、公式法和因式分解法解一元二次方程。
3、能根据方程的特点,灵活选择合适的解法,提高解题能力。
二、学习重难点1、重点(1)一元二次方程的四种解法。
(2)选择合适的方法解一元二次方程。
2、难点(1)配方法的理解和运用。
(2)公式法中求根公式的推导和应用。
三、知识回顾1、什么是方程?含有未知数的等式叫做方程。
2、我们学过哪些方程?一元一次方程、二元一次方程等。
四、一元二次方程的概念1、定义:只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。
2、一般形式:$ax^2 + bx + c = 0$($a≠0$),其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。
五、一元二次方程的解法1、直接开平方法(1)适用条件:方程形如$x^2 = p$($p≥0$)或$(x + m)^2 = n$($n≥0$)。
(2)解法:对于$x^2 = p$,直接开平方得$x = ±\sqrt{p}$;对于$(x + m)^2 = n$,开平方得$x + m = ±\sqrt{n}$,即$x = m ±\sqrt{n}$。
例如:解方程$x^2 = 9$,解得$x = ±3$;解方程$(x 2)^2 =16$,$x 2 = ±4$,$x = 2 ± 4$,即$x_1 = 6$,$x_2 =-2$。
2、配方法(1)步骤:①移项:把常数项移到方程右边;②二次项系数化为 1:方程两边同时除以二次项系数;③配方:方程两边同时加上一次项系数一半的平方;④写成完全平方式:$(x + m)^2 = n$的形式;⑤直接开平方求解。
例如:解方程$x^2 + 4x 5 = 0$移项得:$x^2 + 4x = 5$二次项系数化为 1 得:$x^2 + 4x + 4 = 5 + 4$配方得:$(x + 2)^2 = 9$开平方得:$x + 2 = ±3$解得:$x_1 = 1$,$x_2 =-5$3、公式法(1)求根公式:对于一元二次方程$ax^2 + bx + c =0$($a≠0$),其求根公式为$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。
人教版九年级数学上册《一元二次方程》导学案:一元二次方程的根与系数的关系
人教版九年级数学上册《一元二次方程》导学案 21.2.4 一元二次方程的根与系数的关系【学习目标】1.掌握一元二次方程两根的和、两根的积与系数的关系;2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数;3.会利用根与系数的关系求关于两根代数式的值.2.如果方程ax 2+bx +c =0(a ≠0)有两个实数根21,x x ,那么21x x +=____,21x x ⋅=____.3.方程0252=+-x x 有两个实数根21,x x ,则21x x +=____,21x x ⋅=____.4.已知α,β是一元二次方程0252=--x x 的两个实数根,则α2+αβ+β2的值为 ( )A. -1B. 9C. 23D. 27 【典型例题】知识点 一元二次方程的根与系数的关系1.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1+x 2>0 B .x 1+x 2<0 C .x 1•x 2>0 D. x 1•x 2<02.设21,x x 是方程0352=-+x x 的两个根,则2221x x +的值是 ( ) A.19 B.25 C.31 D.303.设21,x x 是方程020242=--x x 的两个根,则=+-221312024x x x . 4..已知方程x 2-12x+m=0的一个根是另一个根的2倍,则m=_________。
5.关于x 的方程0832=-+mx x 有一个根是-4,求另一个根及m 的值.【巩固训练】1.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( ) A.7- B.3- C.7 D.32.如果关于x 的方程2x 2-5x +m =0的两个实数根互为倒数,那么m 的值为( ) A.12B.-12C.2D.-23.已知a,b 是关于x 的一元二次方程01nx x 2=-+的两实数根,则式子baa b +的值是( )A.2n 2+B.2n 2+-C.2n 2-D.2n 2-- 4.以3和—2为根的一元二次方程是( )A.06x x 2=-+B.06x x 2=++C.06x x 2=--D.06x x 2=+-5.已知方程012=-+x x 的两根分别为21x ,x ,则)12)(12x 222121-+-+x x x (的值为( )A. -1B.—2C. 1D. 26.如果n m ,是两个不相等的实数,且满足32=-m m ,32=-n n ,那么代数式=++-2024222m mn n .7.已知关于x 的方程 (1)当m= 时,此方程的两根互为相反数 (2)当m= 时,此方程的两根互为倒数 8.不解方程,求下列方程的两根x 1、x 2的和与积.⑴ 01562=--x x ⑵09732=-+x x ⑶ 2415x x =-【拓展延伸】9.若n m ,是方程0720152=++x x 的两个根,求()()820166201422++++n n m m 的值.012)1(2=-++-m x m x。
人教版九年级数学上册 21.1一元二次方程 导学案
分析:设切去的正方形的边长为 x cm,则盒底的长为 100-2x,宽为 50-2x. 得方程(100-2x)·(50-2x)=3 600, 整理得 4x2-300x+1 400=0.化简,得 x2-75x+350=0.
A.9
B.3
C.0
D.﹣3
4.方程 4x2=81-9x 化成一般形式后,二次项的系数为 4,它的一次项是( )
A.9
B.-9x
C.9x
D.-9
5.把一元二次方程 (x + 3)2 = x (3x −1) 化成一般形式,正确的是( )
A. 2x2 − 7x − 9 = 0 B. 2x2 − 5x − 9 = 0 C. 4x2 + 7x + 9 = 0 D. 2x2 − 6x −10 = 0
15.已知 a 是一元二次方程 x2 − 2x − 5 = 0 的一个解,则 2a2 − 4a +1 = _____.
【课前预习】
【参考答案】
1.D 2.C 3.D 4.C 5.A 6.B 7.C 8.D 9.D 10.B
【课后练习】
1.C 2.B 3.C 4.C 5.D 6.C 7.B 8.C 9.C 10.D
D.10
4.若 a 是方程 x2 − x −1 = 0 的一个根,则 −a3 + 2a + 2020 的值为( )
A.2020
B. −2020
C.2019
D. −2019
初中数学《一元二次方程》导学案
21.1一元二次方程一、本节知识点讲解【知识点1】一元二次方程1.一元二次方程的定义:方程等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程的一般形式:20(0)ax bx c a++=≠其中2ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根。
【题型1】一元二次方程的定义【例1】(2022春•香坊区期末)下列方程是一元二次方程的是()A.x2−2x=0B.3x+1=7x C.a2﹣2a=0D.2x﹣5=y【变式1】(2022春•惠山区期末)下列方程中是一元二次方程的是()A.2x﹣1=0B.3x+x2=7C.x2﹣2x﹣3=0D.x+y=6【变式2】(2022春•滨江区期末)下列方程中,属于一元二次方程的是()A.﹣3x=0B.1x2+1x−2=0C.x3+x2=1D.x2+2x=2x2﹣1【变式3】(2022春•宁波期末)下列方程中,属于一元二次方程的是()A.x﹣2y=1B.x2﹣2x+1=0C.x2﹣2y+4=0D.x2+3=2 x【例2】(2022春•通州区期末)若关于x的方程(a﹣1)x2+x=0是一元二次方程,则a的范围是()A.a=1B.a>1C.a≠1D.a<1【变式1】(2022春•琅琊区校级月考)若(m+3)x|m|﹣1﹣(m﹣3)x﹣5=0是关于x的一元二次方程,则m的值为()A.3B.﹣3C.±3D.±2【变式2】(2021秋•文山市期末)已知关于x的方程(m﹣2)x|m|﹣3x﹣4=0是一元二次方程,则()A.m≠±2B.m=﹣2C.m=2D.m=±2【变式3】(2021秋•望城区期末)若关于x的方程(m−2)x m2−2+4x−7=0是一元二次方程,则m的值为()A.m≠2B.m=±2C.m=﹣2D.m=2【小结】【题型2】一元二次方程的一般形式【例1】(2022春•乐清市期末)把一元二次方程x(2x﹣1)=x﹣3化为一般形式,正确的是()A.2x2+3=0B.2x2﹣2x﹣3=0C.2x2﹣x+2=0D.2x2﹣2x+3=0【变式1】(2022春•琅琊区校级月考)将一元二次方程(x+3)(2x﹣1)=﹣4化为一般形式,结果是()A.2x2+5x﹣7=0B.2x2+5x+1=0C.2x2﹣5x+1=0D.x2﹣7x﹣1=0【变式2】(2021秋•兰山区期末)把方程x2﹣3(x+1)=2x化成一般形式正确的是()A.x2﹣x﹣3=0B.x2+x+3=0C.x2﹣5x﹣3=0D.x2﹣x+3=0【变式3】(2022春•蜀山区期末)方程x(2x﹣5)=4x﹣10化为一元二次方程的一般形式是()A.2x2﹣9x+10=0B.2x2﹣x+10=0C.2x2+14x﹣10=0D.2x2+3x﹣10=0【例2】(2022春•通州区期末)一元二次方程x2﹣3x﹣4=0的二次项系数、一次项系数、常数项分别是()A.1,3,﹣4B.0,3,4C.0,﹣3,4D.1,﹣3,﹣4【变式1】(2021秋•临邑县期末)方程x2﹣5x﹣2=0的二次项系数、一次项系数和常数项分别是()A.1,﹣5,﹣2B.1,5,2C.1,5,﹣2D.0,﹣5,﹣2【变式2】(2022春•金华月考)一元二次方程x2+4x=3的二次项系数、一次项系数及常数项之和为()A.8B.﹣1C.0D.2【变式3】(2021秋•双牌县期末)若关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0的常数项等于0,则m的值为()A.0B.3C.﹣3D.﹣3或3【小结】【题型3】一元二次方程的解(2022春•荣昌区校级期末)若x=1是关于x的一元二次方程mx2﹣nx﹣2=0的一个根,则m﹣n+2021【例1】的值为()A.2020B.2022C.2023D.2026【变式1】(2022春•连江县期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2b﹣2a 的值是()A.﹣1B.﹣2C.1D.2【变式2】(2021秋•莆田期末)已知关于x的一元二次方程x2+3x﹣m=0的一个根是x=2,则m的值为()A.﹣10B.﹣2C.2D.10【变式3】(2021秋•覃塘区期末)已知x=﹣1是一元二次方程x2+2mx+m=0的一个实数根,则m的值为()A.﹣1B.0C.1D.2【小结】二、当堂检测1.(2022春•岳麓区校级期末)下列关于x的方程是一元二次方程的是()A.ax2+bx+c=0B.x2=0C.x2+2x=1x D.x2+y2=02.(2022春•道外区期末)下列方程中,是关于x的一元二次方程的是()A.πx=6B.x−3x=2C.xy=1D.x2+5x=63.(2022春•泰兴市期末)若关于x的方程(a﹣1)x2=2为一元二次方程,则a满足()A.a=1B.a≠1C.a=0D.a≠04.(2021秋•江油市期末)已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是()A.﹣1B.2C.﹣1或3D.35.(2022春•道外区期末)将方程3x2+1=6x化成一元二次方程的一般形式,正确的是()A.3x2﹣6x+1=0B.3x2+6x+1=0C.3x2+6x﹣1=0D.3x2﹣6x﹣1=06.(2022春•嘉兴期末)把一元二次方程(x+1)(x﹣1)=3x化成一般形式,正确的是()A.x2﹣3x﹣1=0B.x2﹣3x+1=0C.x2+3x﹣1=0D.x2+3x+1=07.(2022春•泗阳县期末)一元二次方程x2+4x﹣3=0的一次项系数、二次项系数、常数项的和是()A.1B.8C.7D.28.(2022•凤山县模拟)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值()A.1B.1或2C.2D.±19.(2022•白银模拟)已知m是一元二次方程x2﹣2x﹣2=0的一个根,则代数式2m2﹣4m+2018的值为()A.2020B.2021C.2022D.202310.(2022春•琅琊区校级月考)若x=﹣1是一元二次方程x2﹣mx﹣2m﹣4=0的一个解,则m的值是()A.﹣3B.3C.﹣1D.−5 3三、家庭作业1.(2022春•铁岭月考)下列方程是一元二次方程的是( )A .3x ﹣2=0B .x 2﹣3=5C .x +y 2=4D .1x +x 2=12.(2021秋•文山市期末)已知关于x 的方程(m ﹣2)x |m |﹣3x ﹣4=0是一元二次方程,则( )A .m ≠±2B .m =﹣2C .m =2D .m =±23.(2021春•全椒县期中)关于x 的一元二次方程(m ﹣2)x 2﹣5x +m 2﹣4=0的常数项为0,则m 的值是( )A .0B .±2C .2D .﹣24.(2021秋•新洲区期中)将方程3x (x ﹣1)=5(x +2)化成一元二次方程的一般形式后,一次项系数是( )A .3B .﹣8xC .﹣8D .﹣105.(2022•新化县模拟)若a 是x 2﹣3x ﹣2022=0的一个根,则a 2﹣3a +1的值是( )A .2020B .2021C .2022D .20236.(2021秋•武夷山市期末)已知x =2是方程x 2﹣2x +c =0的一个根,则实数c 的值是( )A .﹣1B .0C .1D .27.(2021秋•丰台区期末)若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个解为x =0,那么m 的值是( )A.﹣1B.0C.1D.1或﹣1二.填空题(共5小题)8.(2022春•碑林区校级期末)若关于x的方程(m﹣3)x|m﹣1|+5x﹣3=0是一元二次方程,则m的值为.9.(2021秋•祁阳县期末)若(2﹣a)x a2−2−5=0是一元二次方程,则a=.10.(2022春•台江区校级期末)将方程(3x﹣2)(x+1)=8x﹣3化成一元二次方程的一般形式为.11.(2022春•沙坪坝区校级期末)已知关于x的一元二次方程x2﹣x+2m=0的一个根是2,则m2=.12.(2022•长沙县一模)如果m是方程x2﹣3x﹣4=0的一个根,那么代数式3m2﹣9m的值为.21.1一元二次方程一、本节知识点讲解【知识点1】一元二次方程4.一元二次方程的定义:方程等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一元二次方程导学案
4.1一元二次方程主备人: 班级 : 使用人:【目标导航】1、经历由实际问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界的有效数学模型;2、了解一元二次方程的概念和它的一般形式ax 2+bx+c= 0(a≠0),正确理解和掌握一般形式中的a≠0,“项”和“系数”等概念;会根据实际问题列一元二次方程;【学习重点】一元二次方程的概念及它的一般形式和用一元二次方程的有关概念解决问题。
【学习难点】建立一元二次方程的数学模型。
【学习过程】预习填空:1、只含有 未知数,并且未知数的 方程叫做一元二次方程。
2、一元二次方程的一般形式是 。
3、方程的解是使方程左右两边 。
预习思考:方程2x ²-3x-1=0是已学过的一元一次方程吗?课堂学习一、磨刀不误砍柴工,上新课之前先来热一下身吧!1、下列方程:(1)x 2-1=0; (2)4 x 2+y 2=0; (3)(x-1)(x-3)=0; (4)xy+1=3. (5)3212=-x x其中,一元二次方程有( ) A .1个 B .2个 C .3个 D .4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项 ,二次项系数 ,一次项 ,一次项系数 ,常数项 。
二、牛刀小试正当时,课堂上我们来小试一下身手!3、小区在每两幢楼之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?4、一个数比另一个数大3,且两个数之积为10,求这两个数。
5、下列方程中,关于x 的一元二次方程是( ) A.3(x+1)2= 2(x+1) B .05112=-+x xC.ax 2+bx+c= 0D.x 2+2x= x 2-1 6、把下列方程化成ax 2+bx+c= 0的形式,写出a 、b 、c 的值:(1)3x 2= 7x-2 (2)3(x-1)2 = 2(4-3x)8、若关于的方程(a-5)x ∣a ∣-3+2x-1=0是一元二次方程,求a 的值?三、新知识你都掌握了吗?课后来这里显显身手吧!9、一个正方形的面积的2倍等于15,这个正方形的边长是多少?10、一块面积为600平方厘米的长方形纸片,把它的一边剪短10厘米,恰好得到一个正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1课时) 一元二次方程学习目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
难点:准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
导学流程:一、自学课本18页走问题1和问题2二、探究新知1、根据题意列出方程:(1)、一个正方形的面积的2倍等于50,这个正方形的边长是多少? (2)、一块面积是150cm 2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述两个方程以及①②两个方程的结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义三、展示反馈:1、判断下列方程是否为一元二次方程。
(6)ax 2+bx +c =02、(1)、只含有 个未知数,并且未知数的最高次数是 ,这样的 方程,叫做一元二次方程。
(2)、一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。
例题 : 将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
(1)8142=x (2))2(5)1(3+=-x x x巩固练习:教材第19页练习 四、归纳小结1、本节课我们学习了哪些知识?2、确定一元二次方程的项及系数时要注意什么? 五、达标测评:A 组1、判断下列方程是否是一元二次方程;(1)0233122=--x x ( )(2)0522=+-y x ( )(3) 02=++c bx ax ( ) (4)07142=+-xx ( )2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4.3、判断下列方程后面所给出的数,那些是方程的解; (1))()(1412+=+x x x ±1 ±2;(2)0822=-+x x ±2, ±4B 组:1、把方程p q nx mx nx mx -=++-22 ()0≠+n m 化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项。
2、要使02)1()1(1=+-+++x k x k k 是一元二次方程,则k=_______.3、已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值。
六、拓展提高:1、已知关于x 的方程1222-=--x kx x k )(。
问 (1)当k 为何值时,方程为一元二次方程? (2)当k 为何值时,方程为一元一次方程?七、小结与作业(2课时) 一元二次方程的解法学习目标:初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如2x =a(a ≥0)或(mx+n )2=a(a ≥0)的方程;会用因式分解法(提公因式法、公式法)解某些一元二次方程;难点:掌握用直接开平方法和因式分解法解一元二次方程的步骤。
导学流程:自主教材20页:试一试 解下列方程,并说明你所用的方法 (1)x 2=4; (2)x 2-1=0;解:x=____ 解: 左边用平方差公式分解因式,得 x =____ ______________=0,必有 x -1=0,或______=0, 得x 1=___,x 2=_____.精讲点拨:(1)这种方法叫做直接开平方法. (2)这种方法叫做因式分解法. 合作交流(1) 方程x 2=4能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式?(2) 方程x 2-1=0能否用直接开平方法来解?要用直接开平方法解,首先应将它化成什么形式? 课堂练习 反馈调控1.试用两种方法解方程x 2-900=0.(1)直接开平方法 (2) 因式分解法2.解下列方程:直接开平方法(1)x 2-2=0; (2)16x 2-25=0.解(1)移项,得x 2=2. (2) 移项,得_________. 直接开平方,得2±=x . 方程两边都除以16,得______ 所以原方程的解是 直接开平方,得x =___.21-=x ,22=x . 所以原方程的解是 x 1=___,x 2=___. 3.解下列方程:因式分解法(1)3x 2+2x =0; (2)x 2=3x .解(1)方程左边分解因式,得________ (2)原方程即_________=0. 方程左边分解因式,得________=0. 方程左边分解因式,得_________=0. 所以 ______,或_________ 所以 ______,或_________ 原方的解是x 1=___,x 2=______ 原方程的解是x 1=___,x 2=______总结归纳:用直接开平方法解一元二次方程步骤是:(1)(2);用因式分解法解一元二次方程的步骤是:(1)(2);巩固提高解下列方程:(1)(x+1)2-4=0;(2)12(2-x)2-9=0.分析:两个方程都可以转化为()2=a的形式,从而用直接开平方法求解. 解:(1)原方程可以变形为(_____)2=____,(2)原方程可以变形为________________________,有________________________.所以原方程的解是x1=________,x2=_________.课堂小结今天学会了解怎样的一元二次方程?步骤是什么?它们之间有何联系与区别?达标测评(A组)1、解下列方程:(1)x2=169;(2)45-x2=0;(3)12y2-25=0;(4)x2-2x=0;(5)(t-2)(t +1)=0;(6)x(x+1)-5x=0.(7) x(3x+2)-6(3x+2)=0.(B组)2、小明在解方程x2=3x时,将方程两边同时除以x,得x=3,这样做法对吗?为什么会少一个解?3、构造一个以2为根的关于x 的一元二次方程。
小结与作业:(3课时)一元二次方程的解法学习目标:初步掌握用直接开平方法解一元二次方程,会用直接开平方法和因式分解法解形如()2=a (a≥0);难点:整体意识在解方程主中的培养和应用导学流程:用直接开平方法解一元二次方程步骤是:(1)(2);用因式分解法解一元二次方程的步骤是:(1)(2);试一试解下列方程,并说明你所用的方法(1)x2=10;(2)x2-25=0;解:x=____ 解: 左边用平方差公式分解因式,得x=____ ______________=0,例题1:解下列方程:(1)(x+1)2-4=0;(2)12(2-x)2-9=0.分析:两个方程都可以转化为()2=a的形式,从而用直接开平方法求解. 解:本题还有其他解法吗?例题2:解下列方程:十字相乘法分解因式(1)x2-2x- 15 =0;(2)x2-7x+12=0;总结归纳:1、整体意识在解方程主中的应用2、十字相乘法分解因式的要点达标测评一、解下列方程:1、(x-2)2-9=02、(x+2)2-16=03、(1-3x)2=14、(2x+3)2-25=05、(x-1)2-18=06、(x-3)2-12=0二、解下列方程:(1)2x+2x-3=0 (2) 2x-5x+6=0 (3)2x+2x-8=0 (4) 2x-5x-14=0 (5)2x-5x-6=0 (6)2x+8x-9=0小结与作业:(3课时)配方法学习目标:掌握用配方法解一元二次方程; 重点:配方的过程。
自主学习自学教科书例4,完成填空。
精讲点拨上面,我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的________式,右边是一个_______常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法. 练一练 :配方.填空:(1)x 2+6x +( )=(x + )2; (2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2;从这些练习中你发现了配常数有什么特点?(1)________________________________________________ (2)________________________________________________ 合作交流用配方法解下列方程:(1)x 2-6x -7=0; (2)x 2+3x +1=0.解(1)移项,得x 2-6x =____.方程左边配方,得x 2-2·x ·3+__2=7+___, 即 (______)2=____. 所以 x -3=____.原方程的解是 x 1=_____,x 2=_____. (2)移项,得x 2+3x =-1.方程左边配方,得x 2+3x +( )2=-1+____, 即 _____________________ 所以 ___________________原方程的解是: x 1=______________x 2=___________ 总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤? (1)把常数项 移到等号右边 ;(2) 两边都加上一次项系数的一半的平方;(3) 左边配成完全平方后,用直接开平方法解方程 。
深入探究用配方法解下列方程:(1)032=2x3+x-121x(2)042=--x这两道题与例5中的两道题有何区别?请与同组讨论如何解决这个问题?课堂小结你今天学会了用怎样的方法解一元二次方程?有哪些步骤?达标测评(A)用配方法解方程:(1)x2+8x-2=0 (2)x2-5x-6=0. (3)2x2-x=6(4)(4)x2+px+q=0(p2-4q≥0).(5)4x2-6x+()=4(x-)2=(2x-)2.拓展提高已知代数式x2-5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?(4课时)公式法学习目标:会用公式法解简单系数的一元二次方程;重点:用公式法解简单系数的一元二次方程; 难点:推导求根公式的过程。
导学流程:用配方法解一元二次方程的步骤有哪些? 用配方法解方程3x 2-6x-8=0;推导公式用配方法解一元二次方程ax 2+bx +c =0(a ≠0).因为a ≠0,方程两边都除以a ,得_____________________=0.移项,得 x 2+abx =________, 配方,得 x 2+ab x +______=______-ac ,即 (____________) 2=___________因为 a ≠0,所以4 a 2>0,当b 2-4 ac ≥0时,直接开平方,得 _____________________________.所以 x =_______________________ 即 x =_________________________由以上研究的结果,得到了一元二次方程ax 2+bx +c =0的求根公式:精讲点拨的值,直接求得方程的解,合作交流b 2-4 ac 为什么一定要强调它不小于0呢?如果它小于0会出现什么情况呢? 展示反馈学生在合作交流后展示小组学习成果。