配方法解一元二次方程导学案

合集下载

用公式法+配方法求解一元二次方程 导学案

用公式法+配方法求解一元二次方程  导学案

3 用公式法求解一元二次方程第1课时1.会用配方法解一般的字母系数的一元二次方程,掌握ax2+bx+c=0(a≠0)形式的方程的解法.2.知道一元二次方程的求根公式,会用公式法解一元二次方程.3.重点:一元二次方程的求根公式.知识点一阅读教材本课时“例题”前面的内容,完成下列问题.用配方法解方程ax2+bx+c=0(a≠0).两边都除以一次项系数a,得x2+x+=0.1.为什么可以两边都除以一次项系数a?a≠0.配方:加上再减去一次项系数一半的平方,x2+x+()2-+=0,即 (x+)2-=0,(x+)2=.2.现在可以两边开平方吗?不可以,因为不能保证≥0.3.什么情况下≥0?并完成后面的解答过程.∵a≠0,∴ 4a2>0,要使≥0,只要使b2-4ac≥0即可.4.用配方法解ax2+bx+c=0(a≠0),两边直接开平方可得x= ,这个式子称为一元二次方程的求根公式.【归纳总结】一般地,对一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是知识点二阅读教材本课时“例题”及其后面的内容,完成下列问题.1.在例题第(2)小题中,方程变形为一般形式是为确定a、b、c的值.2.公式法解一元二次方程的一般步骤:(1)化简:把方程化为一般形式,从而确定a、b、c的值;(2)定根:求出b2-4ac的值,并与0比较大小,判断方程是否有根;(3)代值:在b2-4ac≥0的前提下,把a、b、c的值代入求根公式x=,计算后得到方程的根.3.若b2-4ac <0,则求根公式无意义,即一元二次方程无实数根.【归纳总结】一元二次方程ax2+bx+c=0(a≠0)的根可以由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母“Δ”表示.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.互动探究一:若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是(A )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断互动探究二:方程x(x+3)=14的解是(B)A.x=B.x=C.x=D.x=互动探究三:已知k≠1,一元二次方程(k-1)x2+kx+1=0有实数根,则k的取值范围是(D)A.k≠2B.k>2C.k<2且k≠1D.k为一切不是1的实数互动探究四:关于x的一元二次方程ax2-3x-2=0有实数根,求a的取值范围.解:当a≠0时,Δ=9+8a≥0,有实数根,解得a≥-,又∵ax2-3x-2=0是一元二次方程,∴a≠0.即a≥-且a≠0.第2课时1.通过一元二次方程的建模过程,体会方程的解必须符合实际意义,增强用数学的意识,巩固用配方法解一元二次方程.2.判断一元二次方程的根符合代数意义的同时是否符合实际意义.3.重点:一元二次方程的根是否符合实际意义.知识点阅读教材本课时“习题2.6”之前的内容,完成下列问题.1.如图所示的是小明设计的方案,其中花园四周小路的宽度都相等.(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?(16-2x)(12-2x)=×16×12.(2)一元二次方程的解是什么?x1=2,x2=12.(3)(16-2x)和(12-2x)分别表示矩形花园的长和宽,则x的取值范围是什么?解得x<6,又x>0,所以x的取值范围是0<x<6.(4)这两个解虽然都符合代数意义,但x= 12不符合实际意义.2.小亮的设计方案如图所示,其中花园每个角上的扇形都相同.(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?πx2=×16×12.(2)一元二次方程的解是什么?x1=,x2=-.(3)符合x>0的实际意义的解是多少?x1=.3.小颖设计的方案如下:在矩形的四个角上建造花园,中间用互相垂直且宽度相同的两条通路隔开.请你帮她求出通路的宽.解:设通路的宽为x m.根据题意列方程:(16-x)(12-x)=×16×12,解得x1=4,x2=24.当x= 24时,24-x<0,所以不符合题意,舍去.【归纳总结】对于方程ax2+bx+c=0(a≠0),若Δ>0,则方程的两根x1、x2都符合代数意义,但在实际的一元二次方程应用中,符合代数意义的根不一定符合实际意义.互动探究一:如图①,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为 1 米.图①图②互动探究二:在一幅长80 cm,宽50 cm的长方形风景画的四周镶一条宽度均匀的金色纸边,制成一幅长方形挂图(如图②),若整幅挂图的面积为5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是(80+2x)(50+2x)=5400.互动探究三:如图,利用一面长25 m的墙,用50 m长的篱笆,围成一个长方形的养鸡场.怎样才能围成一个面积为300 m2的长方形养鸡场?解:(1)设养鸡场的宽为x m,则长为(50-2x)m.由题意列方程,得x(50-2x)=300,解得x1=10,x2=15.当x1=10时,50-2x=30>25不合题意,舍去;当x2=15时,50-2x=20<25符合题意.答:当宽为15 m,长为20 m时可围成面积为300 m2的长方形养鸡场.互动探究四:小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,他的说法对吗?请说明理由.解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x ) cm.由题意得x2+( 10-x )2=58 .解得x1=3,x2=7.4×3=12,4×7=28.所以小林应把绳子剪成 12 cm和28 cm的两段.( 2 )假设能围成.由(1)得,x2+( 10-x )2=48 .化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0 ,所以此方程没有实数根,所以小峰的说法是对的.2 用配方法求解一元二次方程1.会用直接开平方法解形如(x+m)2=n(n≥0)的方程.2.会用配方法解一元二次方程,知道配方法的解题步骤.3.重点:会用配方法解一元二次方程.【旧知回顾】若一个数的平方等于4,则这个数是±2 ,若一个数的平方等于7,则这个数阅读教材本课时“议一议”,完成下列问题.1.根据平方根的定义填空:如果方程能够化成x2=n(n≥0)或(x+m)2=n(n≥0)的形式,那么x=±或x+m= ±.2.你会解下列一元二次方程吗?试一试.(1)x2=5;(2)2x2+3=5;(3)x2+2x+1=5;(4)(x+6)2+72=102.(1)x1=,x2=-;(2)x1=1,x2=-1;(3)x1=-1,x2=--1;(4)x1=-6,x2=--6.【归纳总结】在解上面方程的过程中,都可以将方程转化为(x+m)2=n的形式,它的一边是阅读教材本课时第一个“做一做”与“例1”,完成下列问题.1.填上适当的数,使下列等式成立.(1)x2+12x+ 36=(x+6)2;(2)x2-2x+ 1=(x- 1)2;(3)x2+8x+ 16=(x+ 4)2.2.上面等式的左边,常数项和一次项系数有什么关系?常数项等于一次项系数的一半的平方.3.用配方法解一元二次方程的步骤:(1)将方程化为一般形式;(2)将常数项移到等号的右阅读教材本课时“例2”,完成下列问题.1.在“例2”中,第一步的作用是什么?把二次项的系数化为1.2.如果第二步移项,第三步配方,能得到方程(x+)2=吗?试一试.可以.第一步:两边都除以3,得x2+x-1=0,第二步:移项,得x2+x=1,第三步:配方,得x2+x+()2=1+()2,(x+)2=.3.完成教材本课时第二个“做一做”.当h=10时,10=15t-5t2,解这个方程,得t1=1,t2=2.因此在1秒或2秒时,小球才能达到10 m高.【归纳总结】用配方法解二次项系数不为1的一元二次方程的步骤:(1)将方程化为一般形式,化二次项系数为1,即方程两边同时除以二次项系数;(2)配方;(3)移项,使方程变形为(x+m)2=n的形式;(4)利用直接开平方解方程即可.互动探究一:关于x的方程x2=m的解为(D)A.B.-C.±D.当m≥0时,x=±,当m<0时,方程没有实数根互动探究二:运用直接开平方法解方程:(2x-3)2=(x+2)2.解:2x-3=x+2或2x-3=-(x+2)∴x1=5,x2=.【方法归纳交流】原方程可看作(x+m)2=n的形式,运用直接开平方就可将原方程转化为两个一元一次方程,即可求解.互动探究三:用配方法证明x2-4x+5的值不小于1.证明:x2-4x+5=x2-4x+4+1=(x-2)2+1,∵无论x取何值,(x-2)2≥0,∴(x-2)2+1≥1,即x2-4x+5的值不小于1.互动探究四:如图,在一块长92 m,宽60 m的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为885 m2的6个矩形小块,水渠应挖多宽?解:设水渠的宽度为x m.(92-2x)(60-x)=885×6.解得x1=105(不合题意,舍去),x2=1,∴x=1.答:水渠的宽度为1 m.*互动探究五:如果多项式P=2a2-8ab+17b2-16a+4b+1999,那么P可以等于800吗?解:P=2a2-8ab+17b2-16a+4b+1999=(a2-16a+64)+(b2+4b+4)+(a2-8ab+16b2)+1931=(a-8)2+(b+2)2+(a-4b)2+1931.∵(a-8)2和(b+2)2和(a-4b)2均为非负数,∴P不能等于800.【方法归纳交流】最值问题在下册将会细讲,此处带星号稍作了解.求代数式的最值问题,需要先配方,然后再利用平方数的非负性去判断最值的情况.见《导学测评》P12。

2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案

2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案

2用配方法求解一元二次方程第1课时 用配方法解二次项系数为1的一元二次方程 导学案学习目标1、会用配方法解二次项系数为1的一元二次方程,探究配方法的意义。

2、通过以前所学的开平方方法,初步了解配方法;3、牢记配方法的一般步骤.学习过程一.复习回顾:1.利用直接开平方法解下列方程(1)9x 2=1 (2)(x+3)2=52.能利用直接开平方法求解的一元二次方程具有什么特征?3.下列方程能用直接开平方法来解吗?(1)x 2+12x+36=9(2)x 2+6x-15=0二.新课学习:1.例题练习交流探讨并回答问题:(1)你会如何解此方程:x 2-6x-40=0 呢?移项,得 x 2-6x= 40方程两边都加上32(一次项系数一半的平方),得x 2-6x+32=40+32即 (x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x 1=10,x 2=-4(2)做一做,填一填(1)x 2+2x+ =(x+ )2(2)x 2-8x+ =(x- )2(3)y 2+5y+ =(y+ )2(4)y 2-21y+ =(y- )2问题:你能从中总结出什么规律吗?2、例题学习并思考下列问题:例1: 用配方法解方程:x 2+12x-15=0解:移项得x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x 1=651-;x 2=-651-(1)配方法的特点?(2)配方法的步骤?三.尝试应用:1、用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 2、用配方法把方程210x x +-=化为21()2x m +=,则m= .3、用配方法解方程:x 2-23x+118=0;四.自主总结:1、配方法:通过配成 的方法得到了一元二次方程的根,这种解一元二次方程的方法称为 .2、用配方法解一元二次方程的步骤::把常数项移到方程的右边;:方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式:根据平方根意义,方程两边开平方;:解一元一次方程;:写出原方程的解.五.达标测试一、选择题1.用配方法解方程x 2+4x+1=0,配方后的方程是( )A .(x+2)2=3B .(x-2)2=3C .(x-2)2=5D .(x+2)2=52.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=23.用配方法将代数式a 2+4a-5变形,结果正确的是( )A. (a+2)2-1B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9 二、填空题4.填上适当的数,使下面各等式成立:(1)x 2+3x+_______=(x+________)2;(2)_______-3x+14=(3x_______)2; (3)4x 2+_____+9=(2x________)2; (4)x 2-px+_______=(x-_______)2;(5)x 2+b a x+_______=(x+_______)2.5.x 2x+_____=(x-______)2.6.在横线上填上适当的数或式,使下列等式成立:(1)x 2+px+________=(x+_______)2;(2)x 2+b ax+_________=(x+_______)2 三、解答题7.用配方法解方程:(1)x 2+4x-3=0(2)x 2﹣4x+1=0.达标测试答案:一、选择题1.A .【解析】试题分析:移项得,x 2+4x=-1,配方得,x 2+4x+22=-1+4,(x+2)2=3,故选A .2.B 【解析】原方程化为22441,(2)1,x x x -+=-=故选B3.D 【解析】a 2+4a-5=a 2+4a+4-4-5=(a+2)2-9,故选D .二、填空题 4.(1)93,42;(2)9x 2,12-;(3)12x ,+3;(4)2,42p p ;(5)22,42b b a a5.12;2 【解析】试题分析:根据常数项等于一次项系数一半的平方,即可得到结果。

《解一元二次方程——配方法》 导学案

《解一元二次方程——配方法》 导学案

《解一元二次方程——配方法》导学案一、学习目标1、理解配方法的概念,掌握用配方法解一元二次方程的步骤。

2、会用配方法解数字系数的一元二次方程。

3、通过配方法的探究,培养逻辑思维能力和运算能力。

二、学习重点用配方法解一元二次方程。

三、学习难点配方的过程和技巧。

四、知识回顾1、一元二次方程的一般形式:$ax^2 + bx + c = 0$($a≠0$)。

2、完全平方公式:$(a ± b)^2 = a^2 ± 2ab + b^2$。

五、探究新知(一)什么是配方法我们知道,形如$(x + m)^2 = n$($n≥0$)的方程可以直接用开平方法求解。

那么,对于一般形式的一元二次方程$ax^2 + bx + c =0$($a≠0$),能否通过变形转化为$(x + m)^2 = n$的形式呢?配方法就是通过变形将一元二次方程转化为$(x + m)^2 = n$的形式来求解的方法。

(二)用配方法解方程的步骤以方程$x^2 + 6x 7 = 0$为例:1、移项:把常数项移到方程右边,得到$x^2 + 6x = 7$。

2、配方:在方程两边加上一次项系数一半的平方,即加上$(\frac{6}{2})^2 = 9$,得到$x^2 + 6x + 9 = 7 + 9$,即$(x + 3)^2 = 16$。

3、开方:方程两边开平方,得到$x + 3 = ±4$。

4、求解:解这两个一元一次方程,得到$x_1 = 1$,$x_2 =-7$。

(三)典型例题例 1:用配方法解方程$x^2 4x 1 = 0$解:移项,得$x^2 4x = 1$配方,得$x^2 4x + 4 = 1 + 4$,即$(x 2)^2 = 5$开方,得$x 2 = ±\sqrt{5}$解得$x_1 = 2 +\sqrt{5}$,$x_2 = 2 \sqrt{5}$例 2:用配方法解方程$2x^2 + 3x 2 = 0$解:方程两边同时除以 2,得$x^2 +\frac{3}{2}x 1 = 0$移项,得$x^2 +\frac{3}{2}x = 1$配方,得$x^2 +\frac{3}{2}x +(\frac{3}{4})^2 = 1 +(\frac{3}{4})^2$,即$(x +\frac{3}{4})^2 =\frac{25}{16}$开方,得$x +\frac{3}{4} = ±\frac{5}{4}$解得$x_1 =\frac{1}{2}$,$x_2 =-2$六、课堂练习1、用配方法解方程$x^2 + 8x + 7 = 0$2、用配方法解方程$3x^2 6x + 1 = 0$七、课堂小结1、配方法的概念。

《一元二次方程的解法—配方法(2)》导学案

《一元二次方程的解法—配方法(2)》导学案

第3课时一元二次方程的解法一、知识目标1、会用配方法二次项系数不为1的一元二次方程.2、经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义。

3、在用配方法解方程的过程中,体会转化的思想。

重点:使学生掌握用配方法解二次项系数不为1的一元二次方程 难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式二、知识准备1、用配方法解下列方程:(1)x 2-6x-16=0; (2)x 2+3x-2=0;2、请你思考方程x 2-25x+1=0与方程2x 2-5x+2=0有什么关系三、学习内容如何解方程2x 2-5x+2=0点拨:对于二次项系数不为1的一元二次议程,我们可以先将两边同时除以二次项系数,再利用配方法求解四、典型例题例1、解方程:01832=++x x例2、-01432=++x x五、知识梳理1、对于二次项系数不为1的一元二次方程,用配方法求解时要注意什么2、用配方法解一元二次方程的步骤是什么系数化一,移项,配方,开方,解一元二次方程六、达标检测1、填空:(1)x 2-31x+=(x-)2, (2)2x 2-3x+=2(x-)2. (3)a 2+b 2+2a-4b+5=(a+)2+(b-)22、用配方法解一元二次方程2x 2-5x-8=0的步骤中第一步是。

3、方程2(x+4)2-10=0的根是.4、用配方法解方程2x 2-4x+3=0,配方正确的是()+4=3+4 B. 2x 2-4x+4=-3+4 +1=23+1 D. x 2-2x+1=-23+1 5、用配方法解下列方程:(1)04722=--t t ;(2)x x 6132=-(3)x x 10152=+(4) 3y 2-y-2=06、已知(a+b)2=17,ab=3.求(a-b)2的值.七、学习反馈:1、本节课有困惑的题目是:2、本节课的学习收获是:。

数学九年级上册《配方法(1)》导学案

数学九年级上册《配方法(1)》导学案

数学九年级上册《配方法(1)》导学案设计人:王审核人:【学习目标】1、初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如x2=p(p≥0)或(mx+n)2=p(p≥0)的方程2、灵活应用直接开平方法解一元二次方程,体会换元的数学思想及类比的学习方法。

3、理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法;使学生了解转化的思想在解方程中的应用。

【学习重点】掌握用直接开平方法解一元二次方程的步骤。

【学习难点】理解并应用直接开平方法解特殊的一元二次方程。

【学习方法】通过自学明白如何用直接开平方法解一元二次方程,以及应用直接开平方法解一元二次方程应满足什么条件。

研学中通过释疑解难灵活运用所学知识解答相应题目,明确考点,学以致用。

自学阅读课本第5页至第6页练习部分,完成下列问题:1.问题1中的方程x2=5等号左边是什么,等号右边是什么?2、解方程x2=5时方程两边同时经过什么运算?用这种方法解一元二次方程的依据是什么?3、解方程(x+3)2=5运用了什么数学思想和数学学习方法?4.完成课本第5页练习我自学中的困惑:研学1.将自学内容中的收获与困惑与同伴交流。

2.能力提升形如x2=p(p≥0)或(mx+n)2=p(p≥0)的方程有几个解?中考聚焦(2011年柳州中考试题)解方程:x2-4=0示学展示一:展示自学部分问题较多的题目。

展示二:展示研学能力提升。

检学必做题:解下列方程:(1)(x+2)2 =3 (2)(2x+3)2-5=0选做题1、已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,则m、n必须满足的条件是()A n=0B m、n异号C n是m的整数倍D m、n同号2、一个正方形的面积是100cm2,求这正方形的边长是多少?小结1、本节课我的收获:2、本节课的优秀小组:优秀个人:3.本节课用到了哪些数学思想方法?课时作业1、若x2-6x+p=(x+q)2,那么p、q的值分别是().A.p=9,q=3 B.p=9,q=-3 C.p=-9,q=3 D.p=-9,q=-32、方程x2+4=0的根为().A.2 B.-2 C.±2 D.无实数根。

用配方法解一元二次方程(3)

用配方法解一元二次方程(3)

里辛一中“分层互助”导学案
初 三 数学 课题: 用配方法解一元二次方程(3) 备课时间:2017-12-08 课堂寄语: 数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供 了无可置疑的可靠保证,没有数学,它们无法达到这样的可靠程度。 学习 1、会用配方法解二次项系数不是 1 的一元二次方程 目标 2、通过用配方法解一元二次方程,把一元二次方程转化为一元一次方程,体会 转化的数学思想 重难点 用配方法解一元二次方程
跟踪训练:课本随堂练习第 1 题 (1)x2-3x+1=0 (2)2x2+6=7x
(3)3x2-9x+2=0
(4)2x2+3x-2=0
三、 【自主学习】 自学课本第 48 页的“做一做”并完成随堂练习第 2 题 做一做:
随堂练习:
从 最 简 单 的 做 宁 起 可 少 些 但 要 好 些
, !
四、 【自我测评】
4 x-2=0 应把它先变形为( ) . 3 1 8 2 1 8 1 10 A. (x- )2= B. (x- )2=0 C. (x- )2= D. (x- )2= 3 9 3 3 9 3 9 2、下列方程中,一定有实数解的是( ) . 1 A.x2+1=0 B. (2x+1)2=0 C. (2x+1)2+3=0 D. ( x-a)2=a 2 2 2 2 3、已知 x +y +z -2x+4y-6z+14=0,则 x+y+z 的值是( ) A.1 B.2 C.-1 D.-2 2 4、如果 16(x-y) +40(x-y)+25=0,那么 x 与 y 的关系是________ 5、用配方法解方程:2x2+1=3x

配方法2导学案

配方法2导学案

学习课题:配方法解一元二次方程(2)执教:陈珧学习目标:1、会用配方法解数字系数的一元二次方程;2、能将配方法具体化,概括出解方程的具体操作过程;3、体验配方法解方程的整个过程,体会转化、化归的数学思想。

重点:用配方法解数字系数的一元二次方程;难点:配方的过程。

阅读教材:P31-P34导学过程 一:知识链接1,在横线内填上恰当的数(相信自己)总结:如何确定所填数? 2,利用直接开平方法解下列方程(大胆试试)(1)x ²=25 (2)(x+3)²=25 (3)x ²+6x+9=25总结:1、直接开平方法适用于:方程左边是 的形式,而右边是一个 。

2、直接开方法的核心是: 即将 方程转化为 方程 二:自主学习,合作探究★问题:家有一底为正方形蓄水池,计划拓展水池的面积,使一边长度增加6m ,面积达到16m ²,你知道蓄水池原边长多少吗?222222____)(_____)3(_____)(____21)2(_____)(_____2)1(+=++-=+-+=++x px x y y y x x x,分析:设水池宽为xm,则长为 m,于是:=16即思考:该方程能否直接开平方?★自学P32-P33,各组内合作交流,共同探究形成解下列方程的方法探究:方程x²+6x-16=0的解法。

①移项得 x2+6x=___ _.②于是 x2+6x+_ _=16+__ _,则()2=___ _.③∴ x+3=___ _.④故原方程的解是x1=___ __,x2=___ __.学生交流:1、能否说出以上各步要点?2、第二步为什么加9,可以加其他数吗?3、什么是配方法?配方的关键是什么?4、配方法解一元二次方程的步骤是:①②③④★巩固训练:用配方法解方程x2-8x+9=0.(所有同学共同完成)移项得 x2-8x=___ _.于是 x2-8x+_ _=-9+__ _,则()2=___ _.∴ x-4=___ _.故原方程的解是x1=___ __,x2=___ __.三:组内互助,人人过关★先独立完成,再组内互查互纠,发现错误用配方法解以下方程(1)x²-6x-7=0 (2)x²+3x+1=0(3)2x²+6x+2=0 (4)x²-4x+6=0学生交流:四:反思小结1、配方法就把是把方程的左边化成一个含未知数的,右边是一个,再运用直接平方求出方程的解。

九年级数学上册《用配方法求解一元二次方程》教案、教学设计

九年级数学上册《用配方法求解一元二次方程》教案、教学设计
2.提高作业:设计一些需要综合运用配方法的题目,让学生在解决实际问题的过程中,进一步提高配方法的应用能力。此类题目可以涉及物理、几何等学科的实际问题,以增强学生的跨学科思维能力。
-鼓励学生在解题过程中,尝试不同的解题方法,培养创新思维和灵活运用知识的能力。
3.拓展作业:针对学有余力的学生,布置一些具有挑战性的题目,如涉及一元二次方程的根与系数关系的研究,或是一些开放性问题,激发学生的探究欲望和深入学习兴趣。
-鼓励学生提出不同的解题思路和方法,培养学生的创新思维和数学思维能力。
四、教学内容与过程
(一)导入新课
在导入新课时,我将利用学生已有的数学知识,通过以下方式激发学生的学习兴趣:
1.提问方式:复习一元二次方程的常见求解方法,如因式分解、公式法等,让学生回顾这些方法的原理和应用。
2.创设情境:以生活中的实际问题பைடு நூலகம்例,如“小明在计算一块矩形菜地的面积时,发现菜地的长度比宽度多2米,且面积是20平方米,请问他应该如何计算菜地的长度和宽度?”引导学生思考如何用已学的数学知识解决该问题。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习一元二次方程的积极性。
2.培养学生勇于探索、克服困难的意志品质,增强学生解决问题的自信心。
3.引导学生体会数学在解决实际问题中的应用价值,提高学生的数学素养。
4.培养学生的团队合作意识,让学生在合作中学会互相尊重、互相帮助。
本章节将通过生动的实例、丰富的教学活动,引导学生掌握配方法求解一元二次方程的知识与技能,培养学生在解决问题过程中的思维方法和情感态度,使学生在轻松愉快的氛围中学习数学,提高数学素养。
3.例题讲解:选取具有代表性的例题,逐步讲解如何运用配方法求解一元二次方程,让学生跟随解题过程,加深理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.代数式 的值为0,则x的值为________.
5.已知(x+y)(x+y+2)—8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.(这种方法叫换元法)
6、用配方法解方程:
(1)x2+8x-2=0 (2)3x2-5x-6=0.
原方程的解是x1=_____,x2=_1.
方程左边配方,得x2+3x+( )2=-1+____,
即_____________________
所以__________________
原方程的解是x1=____________;x2=___________.
总结规律
1、请说出完全平方公式
我们知道,形如 的方程,可变形为 ,再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如 的一类方程(注意其中二次项的系数为1),化为上述形式求解呢?这正是我们这节课要解决的问题.
2、配方、填空:
(1) +6x+( )=(x+ ) ;
(2) —8x+( )=(x—) ;
(3)x2-8x+( )=(x- )2;
(4)x2+ x+( )=(x+ )2;
填完后,想一想你所填写的常数项与一次项系数有什么关系吗?说出你的想法。
的是().
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1
C.x2+8x+42=1 D.x2-4x+4=-11
3.方程x2+4x-5=0的解是________.
(3) +8x-2=0(4) -5x-6=0.
2、用配方法解下列方程:
(1) (2)
这两道题与上面例1中的两道题有何区别?请与同伴讨论如何解决这个问题?
四、分层训练
1.将二次三项式x2-4x+1配方后得().
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确
(3)2x2-x=6(4)x2+px+q=0(p2-4q≥0).
二、自主学习
例1:用配方法解下列方程
(1)x2-6x-7=0; (2)x2+3x+1=0.
解(1)移项,得x2-6x=____.
方程左边配方,
得x2-6x+__2=7+___,(即方程两边同时加上)
(__)2=___.
所以x-3=____.
用配方法解二次项系数是1的一元二次方程?有哪些步骤?
1、
2、
3、
4、
上面,我们把方程 -6x—7=0变形为(x—3)2=16,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.
注意到第一步在方程两边同时加上了一个数后,左边可以用完全平方公式从而转化为用直接开平方法求解。
三、合作探究
7、已知 ,a,b为实数,求ab的值。
8、x2-4x+y2+6y+13=0,求x-y的值。
9、若a、b、c是 的长,且满足 你能用配方法判断出这个三角形的形状吗?
10、已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
1、用配方法解下列方程:
(1) -6x-7=0;(2) +3x+1=0.
课题:《配方法》解一元二次方程
授课教师:祝向奎
学科组长:
教研组长:
学习目标:
1、理解配方法的含义.
2、把一元二次方程转化为 ,熟练地用配方法解一元二次方程。
3.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能。
学习重点:
用配方法解数字系数的一元二次方程
学习难点:
配方的过程
学习过程:
一、课前预习
11、已知代数式x2-5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?




相关文档
最新文档