多元统计分析的重点和内容和方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、什么是多元统计分析
多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法
1、简化数据结构(降维问题)
将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析
(2)因子分析
(3)对应分析等
2、分类与判别(归类问题)
对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:
1、X1:每千居民拥有固定电话数目
2、X2:每千人拥有移动电话数目
3、X3:高峰时期每三分钟国际电话的成本
4、X4:每千人拥有电脑的数目
5、X5:每千人中电脑使用率
6、X6:每千人中开通互联网的人数
3、变量间的相互联系
一是:分析一个或几个变量的变化是否依赖另一些变量的变化。(回归分析)
二是:两组变量间的相互关系(典型相关分析)
4、多元数据的统计推断
点估计
参数估计区间估计
统u检验
计参数t检验
推F检验
断假设相关与回归
检验卡方检验
非参秩和检验
秩相关检验
1、假设检验的基本原理
小概率事件原理
小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。反证法思想是先提
出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。 2、假设检验的步骤 (1)提出一个原假设和备择假设
例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。这种原
假设也称为零假设( null hypothesis ),记为 H 0 。
2.1 均值向量的检验
1、正态总体均值检验的类型
根据样本对其总体均值大小进行检验( One-Sample T Test ) 如妇女身高的检验。
根据来自两个总体的独立样本对其总体均值的检验( Indepent Two-Sample T Test ) 如两个班平均成绩的检验。
配对样本的检验( Pair-Sample T Test ) 如减肥效果的检验。
多个总体均值的检验 A 、总体方差已知 用u 检验,检验的拒绝域为
即 B 、总体方差未知
用样本方差 代替总体方差 ,这种检验叫t 检验.
(2)根据来自两个总体的独立样本对其总体均值的检验
目的是推断两个样本分别代表的总体均数是否相等。其检验过程与上述两种t 检验也没有大的差别,只
是假设的表达和t 值的计算公式不同。 两样本均数比较的t 检验,其假设一般为:
12
{
}W z u α-
=>112
2
{}
W z u
z
u
αα
-
-
=<->或2
s
2σ
Ⅲ 0μμ= 0μμ< α--<1u z )1(1--<-n t t α
H0:µ1=µ2,即两样本来自的总体均数相等.
H1:µ1>µ2或µ1<µ2,即两样本来自的总体均数不相等,检验水准为0.05。
计算t统计量时是用两样本均数差值的绝对值除以两样本均数差值的标准误。
相应的假设检验问题为:
H0:μ1=μ2
H1: μ1大于μ2
μ1 为第一组的总体均值,而μ2 为第二组的总体均值。
用SPSS 处理数据:
Spss 选项:Analyze—Compare Means —Independent-Samples T Test
3、配对样本的检验(paired samples )
(针对同样的样本)考察实验前后样本均值有无差异。能够很好地控制非实验因素对结果的影响注意:实验前后两个样本两个样本并不独立
注意:同一样本实验前后并不独立,但不同样本之间却相互独立。
配对样本的检验实际上是用配对差值与总体均数“0”进行比较,即推断差数的总体均数是否为“0”。故其检验过程与依据样本均数推断总体均数大小的t检验类似,即:
A、建立假设
H0:µd=0,即差值的总体均数为“0”,H1:µd>0或µd<0,即差值的总体均数不为“0”,检验水平为α。
B. 计算统计量
进行配对设计t检验时t值为差值均数与0之差的绝对值除以差值标准误的商,其中差值标准误为差值标准差除以样本含量算术平方根的商。
C. 确定概率,作出判断
以自由度v(对子数减1)查t界值表,若P<α,则拒绝H0,接受H1,若P>=α,则还不能拒绝H0。
例4:要比较50个人在减肥前和减肥后的重量。这样就有了两个样本,每个都有50个数目。
这里不能用前面的独立样本均值差的检验;这是因为两个样本并不独立。
每一个人减肥后的重量都和自己减肥前的重量有关。但不同人之间却是独立的。令减肥前的重量均值为μ1 ,而减肥后的均值为μ2 ;这样所要进行的检验为:
H0:μ1=μ2
H1:μ1大于μ2