51 二次函数以及二次函数的图像和性质(解析版)
二次函数的图像和性质(共82张PPT)
y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像
二次函数的图象和性质课件
解决实际问题
实际应用场景
二次函数在许多实际问题中都有应用,如物体运动、经济 活动等。通过建立数学模型,我们可以利用二次函数来描 述和解决这些实际问题。
实际问题的求解策略
对于实际问题,我们通常需要结合二次函数的性质和实际 问题的特点来制定求解策略。这可能包括分析函数的单调 性、最值、零点等。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的最值点即为顶点。对于一般形式的二次函数y=ax^2+bx+c,其顶点的x坐标为-b/2a,y坐 标为c-b^2/4a。Biblioteka 二次函数的对称轴总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是由二次函数的最值性质决定的,对称轴上 方的函数值与对称轴下方的函数值相等。
二次函数图象的绘制
01
02
03
步骤一
确定二次函数的表达式, 例如 $f(x) = ax^2 + bx + c$。
步骤二
选择一个或多个点,代入 二次函数表达式中,计算 出对应的y值。
步骤三
在坐标系上标出这些点, 通过这些点绘制出二次函 数的图象。
二次函数图象的形状
形状特征一
二次函数图象是一个抛物 线。根据a的值(正或负) ,抛物线开口向上或向下 。
二次函数的图象和性质课 件
• 二次函数的基本概念 • 二次函数的图象 • 二次函数的性质 • 二次函数的解析式 • 二次函数的应用
01
二次函数的基本概念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
二次函数的图象和性质(解析版)
第04讲 二次函数的图象和性质(重点题型方法与技巧)目录类型一:二次函数的定义 类型二:二次函数的图象与性质 类型三:二次函数的解析式 类型四:二次函数的平移问题类型一:二次函数的定义函数y =ax 2+bx +c 为二次函数的前提条件是a ≠0.在解二次函数的相关问题时,一定不能忽视“二次项系数不为0”这一隐含条件,尤其是二次项系数含字母的二次函数,应特别注意.典型例题例题1.(2022·浙江丽水·九年级期中)下列函数中,是二次函数的是( ) A .y =21x +x +1 B .y =x 2-(x +1)2C .y =-12x 2+3x +1 D .y =3x +1【答案】C 【详解】A. y =21x +x +1,不是二次函数,故该选项不正确,不符合题意; B. y =x 2-(x +1)221x ,不是二次函数,故该选项不正确,不符合题意;C. y =-12x 2+3x +1,是二次函数,故该选项正确,符合题意;D. y =3x +1,不是二次函数,故该选项不正确,不符合题意; 故选C点评:例题1考查了二次函数的定义,掌握二次函数的定义是解题的关键.根据二次函数的定义逐项分析即可,二次函数的定义:一般地,形如2y ax bx c =++(a b c 、、是常数,0a ≠)的函数,叫做二次函数.例题2.(2022·安徽宿州·九年级期末)如果()()221y m x m x =-+-是关于x 的二次函数,则m 的取值范围是( )A .1m ≠B .2m ≠C .2m ≠且1m ≠D .全体实数【答案】B【详解】∵()()221y m x m x =-+-是关于x 的二次函数,∴20m -≠, ∴2m ≠, 故选B .点评:例题2主要考查了二次函数的定义,正确把握二次函数的定义是解题的关键.例题3.(2022·全国·九年级课时练习)下列实际问题中的y 与x 之间的函数表达式是二次函数的是( ) A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m 【答案】D【详解】A.由题得:3y x =,不是二次函数,故此选项不符合题意; B.由题得:108y x =,不是二次函数,故此选项不符合题意; C.由题得:86y x=,不是二次函数,故此选项不符合题意; D.由题得:214y x π=,是二次函数,故此选项符合题意. 故选:D .点评:例题3考查二次函数的定义,形如2(0)y ax bx c a =++≠的形式为二次函数,掌握二次函数的定义是解题的关键.根据题意,列出关系式,即可判断是否是二次函数.例题4.(2021·广西南宁·九年级期中)若12m y x x -=+是关于x 的二次函数,则m =_______ 【答案】3【详解】解:∵函数12m y x x -=+是关于x 的二次函数, ∴12m -=, 解得:3m =. 故答案为:3.点评:例题4考查了二次函数的定义,一般地,形如y=ax2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数.例题5.(2021·北京市宣武外国语实验学校九年级期中)某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x ,那么十月份医用防护服的产量y (万件)与x 之间的函数表达式为______. 【答案】()2501=+y x【详解】解:十月份医用防护服的产量y (万件)与x 之间的函数表达式为 ()2501=+y x故答案为:()2501=+y x点评:例题5考查的是列二次函数关系式,掌握“两次变化后的量=原来量⨯(1+增长率)2”是解本题的关键.某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x ,则九月份的产量为()501x +万件,十月份医用防护服的产量为()2501x +万件,从而可得答案.例题6.(2021·全国·九年级专题练习)已知函数()()221y m m x mx m =-+++,m 是常数.()1若这个函数是一次函数,求m 的值;()2若这个函数是二次函数,求m 的值.【答案】(1)1m =;()20m ≠且1m ≠.【详解】(1)依题意得200m m m ⎧-=⎨≠⎩∴010m m m ==⎧⎨≠⎩或 ∴1m =;()2依题意得20m m -≠,∴0m ≠且1m ≠.点评:例题6主要考查了一次函数及二次函数的定义,关键是掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1;二次函数y=ax2+bx+c 的定义条件是a≠0,b 、c 为常数,自变量的最高次数是2.同类题型演练1.(2022·全国·九年级单元测试)下列函数中,是二次函数的是( )A .2832y x x =++B .81y x =+C .8y x=D .28y x =【答案】A【详解】A 、2832y x x =++是二次函数,符合题意; B 、81y x =+是一次函数,不合题意; C 、8y x=是反比例函数,不合题意; D 、28y x =不是二次函数,不合题意; 故选A .2.(2021·河南·油田十中九年级阶段练习)若函数()1334m y m x x -=++-是二次函数,则m 的值为( )A .-3B .3或-3C .3D .2或-2【答案】C【详解】解:∵函数()1334m y m x x -=++-是二次函数,∴12m -=且m +3≠0, 解得:m =3, 故选:C .3.(2022·全国·九年级课时练习)下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );②圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);③物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值);④导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个 B .2个C .3个D .4个【答案】C【详解】形如y=ax 2+bx+c (a 、b 、c 是常数且a≠0)的函数是二次函数,由二次函数的定义可得②③④是二次函数,故选C .4.(2022·全国·九年级课时练习)已知函数y =(m ﹣2)x 2+mx ﹣3(m 为常数). (1)当m _______时,该函数为二次函数; (2)当m _______时,该函数为一次函数. 【答案】 ≠2 =2【详解】解:(1)∵函数y =(m ﹣2)x 2+mx ﹣3为二次函数, ∴m ﹣2≠0, ∴m ≠2.( 2 )∵函数y =(m ﹣2)x 2+mx ﹣3为一次函数, ∴m ﹣2=0,m ≠0, ∴m =2.故答案为:(1)≠2;(2)=25.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.【答案】2105607350y x x =-+-【详解】解:由题意得:每件商品的盈利为:()21x -元, 所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-6.(2022·全国·九年级课时练习)根据下面的条件列出函数解析式,并判断列出的函数是否为二次函数: (1)如果两个数中,一个比另一个大5,那么,这两个数的乘积p 是较大的数m 的函数;(2)一个半径为10cm 的圆上,挖掉4个大小相同的正方形孔,剩余的面积S (cm 2)是方孔边长x (cm )的函数;(3)有一块长为60m 、宽为40m 的矩形绿地,计划在它的四周相同的宽度内种植阔叶草,中间种郁金香,那么郁金香的种植面积S (cm 2)是草坪宽度a (m )的函数. 【答案】(1)p = m 2﹣5m ,是二次函数 (2)S =100π﹣4x 2,是二次函数(3)S =4a 2﹣200a +2400;是二次函数【详解】(1)解:这两个数的乘积p 与较大的数m 的函数关系为:p =m (m ﹣5)=m 2﹣5m ,是二次函数; (2)解:剩余的面积S (cm 2)与方孔边长x (cm )的函数关系为:S =100π﹣4x 2,是二次函数;(3)解:郁金香的种植面积S (cm 2)与草坪宽度a (m )的函数关系为:S =(60﹣2a )(40﹣2a )=4a 2﹣200a +2400,是二次函数;7.(2019·湖北·黄州区宝塔中学九年级阶段练习)已知函数()()24323mm y m x m x +-=++++(其中0x ≠).()1当m 为何值时,y 是x 的二次函数?()2当m 为何值时,y 是x 的一次函数?【答案】()1当m 为2时,y 是x 的二次函数;()2当m 为3-117-±121-±y 是x 的一次函数.【详解】()1根据题意得30m +≠且242m m +-=,解得2m =, 即当m 为2时,y 是x 的二次函数;()2当30m +=时,即3m =-时,y 是x 的一次函数;当240m m +-=且20m +≠时,y 是x 的一次函数,解得117m -±=; 当241m m +-=且320m m +++≠时,y 是x 的一次函数,解得121m -±=; 即当m 为3-117-±121-±时,y 是x 的一次函数. 类型二:二次函数的图象与性质二次函数的解析式中,a 决定抛物线的形状和开口方向,h 、k 仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a 必相等.典型例题例题1.(2022·浙江湖州·九年级期末)对于二次函数y =x 2-4x -1的图象,下列叙述正确的是( ) A .开口向下B .对称轴为直线x =2C .顶点坐标为(-2,-5)D .当x ≥2时,y 随x 增大而减小【答案】B【详解】解:∵224125y x x x =--=--(), ∴该函数图象开口向上,对称轴为直线2x =,顶点坐标为(2,-5), ∴当2x ≥时,y 随x 的增大而增大,故选项B 符合题意, 故选:B .点评:例题1考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答. 例题2.(2021·天津市晟楷中学九年级阶段练习)抛物线()2235y x =--的顶点坐标是( ) A .(3,5)-- B .(3,5)- C .(3,5)- D .(3,5)【答案】C【详解】解:抛物线()2235y x =--的顶点坐标是()3,5-,故选:C .点评:例题2考查了求抛物线的顶点坐标,解题的关键是熟练掌握抛物线的顶点坐标的求法.例题3.(2022·甘肃·张掖市第一中学九年级期末)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)20a b -<;(4)0a b c ++<.你认为其中错误的有( )A .2个B .3个C .4个D .1个【答案】D【详解】解:(1)根据图示知,该函数图象与x 轴有两个交点, ∴240b ac ∆=->; 故本选项正确;(2)由图象知,该函数图象与y 轴的交点在点(0,1)以下, ∴1c <;故本选项错误; (3)由图示,知对称轴12bx a=->-;又函数图象的开口方向向下, ∴0a <,∴2b a -<-,即20a b -<, 故本选项正确;(4)根据图示可知,当x =1,即0y a b c =++<,∴0a b c ++<;故本选项正确;综上所述,其中错误的是(2),共有1个; 故选:D .点评:例题3主要考查二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题的关键.由抛物线与x 轴交点情况判断24b ac -与0的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及a 的范围推理2a b -的符号,根据当x =1的函数值判断a b c ++的符号.例题4.(2022·全国·九年级专题练习)若点A (﹣1,y 1)、B (1,y 2)、C (4,y 3)为二次函数y =﹣x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是____(用“>”号连接). 【答案】y 2>y 3>y 1【详解】解:∵二次函数y =﹣x 2+4x +5中a =﹣1, ∴函数图象开口向下,∵y =﹣x 2+4x +5=﹣(x ﹣2)2+9, ∴函数的对称轴为直线x =2,∵A (﹣1,y 1)、B (1,y 2)、C (4,y 3),∴A 点到对称轴的距离为3,B 点到对称轴的距离为1,C 点到对称轴的距离为2, ∴y 2>y 3>y 1, 故答案为:y 2>y 3>y 1.点评:例题4考查了二次函数的图象性质,由解析式求出对称轴是解题关键.求出函数的对称轴为直线x =2,由于函数开口向下,则函数图象上的点离对称轴越远所对应的函数值越小,由此即可求解. 例题5.(2021·福建漳州·模拟预测)已知抛物线25y x bx =-++与x 轴交于A ,B 两点. (1)若抛物线的对称轴是直线x =2. ①求抛物线的解析式;②对称轴上是否存在一点P ,使点B 关于直线OP 的对称点B '恰好落在对称轴上.若存在,请求出点P 的坐标;若不存在,请说明理由.(2)当b ≥4,0≤x ≤2时,函数y 的最大值满足5≤y ≤13,求b 的取值范围. 【答案】(1)①245y x x =-++;②存在,点P (2,217)或P (2,2217-) (2)4≤b ≤6【详解】(1)解:①抛物线25y x bx =-++的对称轴为直线()212b bx =-=⨯-,抛物线的对称轴是直线x =2, ∴22b=,解得b =4, ∴抛物线的解析式为245y x x =-++; ②存在.理由如下:抛物线的对称轴与x 轴交于点C ,若点P 在x 轴上方,点B 关于OP 对称的点B '在对称轴上,连结OB ′、PB ,则OB '=OB ,PB '=PB ,如图所示:对于245y x x =-++,令y =0,则2450x x -++=,即2450x x --=, 解得125,1x x ==-, ∴A (﹣1,0),B (5,0), ∴OB '=OB =5,∴在Rt B OC '∆中,90B CO '∠=︒,5,2OB OC '==,则22225221B C B O OC ''--= ∴(21B ',设点P (2,m ),由22BP B P '=,得()2222921mm +=-,即(22921m m +=,解得217m =, ∴P (2221), 同理,当点P 在x 轴下方时,P (2,221, 综上所述,点P (2,2217)或P (2,217-; (2)解:∵抛物线25y x bx =-++的对称轴为直线2bx =, ∴当b ≥4时,22bx =≥, ∵抛物线开口向下,在对称轴左边,y 随x 的增大而增大, ∴当0≤x ≤2时,取x =2,y 有最大值,即y =﹣4+2b +5=2b +1,∵5≤y≤13,∴5≤2b+1≤13,解得2≤b≤6,又∵b≥4,∴4≤b≤6.点评:例题5考查二次函数的综合应用,涉及到二次函数的图像与性质,勾股定理的应用,轴对称性质,二次函数最值问题,二次函数增减性应用等知识点,解题的关键是熟练掌握二次函数的图像与性质、轴对称性质等相关知识,灵活运用数形结合思想、分类讨论思想解决问题.(1)①根据抛物线的对称轴公式即可求出解析式;②如图,若点P在x轴上方,点B关于OP对称的点B'在对称轴上,连接OB′、PB,根据轴对称的性质得到OB'=OB,PB'=PB,求出点B的坐标,利用勾股定理得到B′(2,21),再根据PB'=PB,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当b≥4时,确定对称轴的位置,再结合开口方向,确定当0≤x≤2时,函数的增减性,从而得到当x=2时,函数取最大值,再根据函数值y的最大值满足5≤y≤13,列出不等式解答即可.同类题型演练1.(2022·全国·九年级课时练习)下列关于二次函数y=2x2的说法正确的是()A.它的图象经过点(-1,-2)B.它的图象的对称轴是直线x=2C.当x<0时,y随x的增大而增大≤≤2时,y有最大值为8,最小值为0D.当-1x【答案】D【详解】解:二次函数y=2x2,当x=-1时,y=2,故它的图象不经过点(-1,-2),故选项A不合题意;二次函数y=2x2的图象的对称轴是直线y轴,故选项B不合题意;当x<0时,y随x的增大而减小,故选项C不合题意;二次函数y=2x2,在-1≤x≤2的取值范围内,当x=2时,有最大值8;当x=0时,y有最小值为0,故选项D 符合题意;故选:D.2.(2021·江苏·南通市八一中学九年级阶段练习)抛物线2314y x的顶点坐标是()A.(1,4)B.(1,﹣4)C.(﹣1,4)D.(﹣1,﹣4)【详解】解:根据题意得:抛物线2314y x 的顶点坐标是(﹣1,﹣4).故选:D3.(2021·福建·平潭翰英中学九年级期中)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )A .①②B .①③④C .②③④D .①④【答案】B【详解】解:∵函数图象与x 轴有两个交点, ∴方程ax 2+bx +c =0有两个不相等的实数根, ∴b 2−4ac >0, ∴4ac −b 2<0, 故①正确;∵函数图象与x 轴的一个交点的横坐标在0至1之间, ∴函数图象与x 轴的另一个交点的横坐标在-2至-3之间, 由图象可知:当x =−2时,y >0, ∴4a −2b +c >0, ∴4a +c >2b , 故②错误; ∵12ba-=-, ∴b =2a ,∵当x =1时,y <0, ∴a +b +c <0,∴102b bc ++<,3b +2c <0,∵由函数图象可知x =−1时,该二次函数取得最大值, ∴a −b +c >am 2+bm +c (m ≠−1), ∴m (am +b )<a −b , 故④正确;∴正确的有①③④三个, 故选:B .4.(2021·黑龙江·肇源县第五中学九年级期中)已知抛物线21y x x =--与经过点(m ,1),则代数式m ²-m +2019的值为_____. 【答案】2021【详解】解:∵抛物线2=1y x x +-经过点(,1)P m ∴21=1m m --,即22m m -=∴²2019m m -+=2+2019=2021. 故答案为:2021.5.(2022·全国·九年级课时练习)已知点A (-1,y 1),B (2 ,y 2),C (5,y 3)在二次函数y =x 2﹣6x +c 的图象上,则y 1, y 2, y 3的大小关系是_____________ (按照从小到大用<连接). 【答案】231y y y <<【详解】解:∵二次函数y =x 2-6x +c 中a =1>0, ∴抛物线开口向上,有最小值. ∵63221b x a -=-=-=⨯, ∴离对称轴水平距离越远,函数值越大, ∵3(1)5332-->->-, ∴231y y y <<; 故答案为:231y y y <<.6.(2022·福建三明·九年级期末)平面直角坐标系中,抛物线221y x ax a -++-=(a 为常数)的顶点为A . (1)当抛物线经过点(1,2),求抛物线的函数表达式;(2)求顶点A 的坐标(用含字母a 的代数式表示),判断顶点A 是在x 轴上方还是下方,并说明理由; (3)当x ≥0时,抛物线221y x ax a -++-=(a 为常数)的最高点到直线y =3a 的距离为5,求a 的值. 【答案】(1)241y x x =-+-(2)()2,1a a a -+,顶点A 在x 轴上方,理由见解析(3)222+-1【详解】(1)解:当抛物线221y x ax a -++-=(a 为常数)经过点(1,2), ∴2121a a =-++-, 整理得2a =.将2a =代入221y x ax a -++-=中, ∴抛物线的函数表达式为241y x x =-+-;(2)解:∵抛物线221y x ax a -++-=(a 为常数)的顶点为A , ∴()2221b ax a a =-=-=⨯-, 将x a =代入221y x ax a -++-=中, 得到222211y a a a a a =-++-=-+,∴顶点为A 的坐标为()2,1a a a -+;顶点A 在x 轴上方,理由如下:∵2213124a a a ⎛⎫-+=-+ ⎪⎝⎭,2102a ⎛⎫-≥ ⎪⎝⎭,∴2314a a -+≥, ∴顶点A 在x 轴上方.(3)解:由(2)可知,抛物线221y x ax a -++-=的对称轴为x a =,顶点坐标为()2,1a a a -+,①当0a >时,对称轴在y 轴右侧,如图所示,∵x ≥0时图象的最高点是顶点()2,1a a a -+,且最高点到直线y =3a 的距离为5,∴2135a a a -+-=,即2415a a -+=,若2415a a -+=,解得12222,222a a =+=-(不合题意,舍去), 若2415a a -+=-,()222a -=-,原方程无解; ②当0a =时,对称轴是y 轴,如图所示,∵x ≥0时图象的最高点是顶点0,1,最高点到直线y =3a 的距离不可能为5, ∴此种情况不存在;③当0a <时,对称轴在y 轴左侧,如图所示,∵x ≥0时图象的最高点是()0,1a -,且最高点到直线y =3a 的距离为5, ∴135a a --=,解得1a =-. 综上所述,a 的值为222+或-1.类型三:二次函数的解析式用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立条件,根据不同条件选择不同的设法:(1)设一般式:y =ax 2+bx +c (a ≠0),若已知条件是图象上的三个点,则设所求二次函数为y =ax 2+bx +c ,将已知条件代入解析式,得到关于a ,b ,c 的三元一次方程组,解方程组求出a ,b ,c 的值,解析式便可得出. (2)设顶点式:y =a (x -h )2+k ,若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为y =a (x -h )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式.(3)设交点式:y =a (x -x 1)(x -x 2)(a ≠0),若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为y =a (x -x 1)(x -x 2),将第三个点的坐标(m ,n )(其中m ,n 为已知数)或其他已翻条件代入,求出待定系数a ,最后将解析式化为一般形式.典型例题例题1.(2021·江苏·九年级专题练习)已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是( ). A .23(1)2y x =-+- B .23(1)2y x =+- C .23(1)2y x =--- D .23(1)2=--y x【答案】C【详解】解:设该抛物线解析式是:y =a (x -1)2﹣2(a ≠0). 把点(0,-5)代入,得 a (0-1)2﹣2=-5, 解得a=-3.故该抛物线解析式是23(1)2y x =---. 故答案选:C点评:例题1主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式. 例题2.(2020·内蒙古·乌海市海南区教育局教研室九年级期中)若抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( ) A .y=4(x -2)2 -3 B .y=-2(x -2)2+3C .y=-2(x -2)2-3D .y= -225(x -2)2+3 【答案】B【详解】∵抛物线的顶点为(2,3), ∴设抛物线的解析式为y=a (x -2)2+3, ∵经过点(3,1), ∴代入得:1=a (3-2)2+3, 解得:a=-2, 即y=-2(x -2)2+3, 故选B .点评:例题2考查了求抛物线的解析式的应用,解题的关键是注意抛物线解析式的设法.设抛物线的解析式为y=a (x-2)2+3,把点(3,1)代入得出1=a (3-2)2+3,求出a 即可.例题3.(2020·吉林·九年级阶段练习)将二次函数2y x x =+的图象沿x 轴翻折后,所得图象的函数解析式是( ) A .2y x x =+ B .2y x xC .2y x x =-+D .2y x x =--【答案】D【详解】∵2211()24y x x x =+=+-,∴二次函数2y x x =+的图象顶点坐标为(-12,-14),∴将二次函数2y x x =+的图象沿x 轴翻折后,所得图象的顶点坐标为(-12,14),且图形开口方向相反,开口大小相等,故a=1,∴翻折后图象的函数解析式为2211()24x y x x =-++=--,故选:D.点评:例题3考查翻折的性质,求函数解析式,将二次函数的一般形式化为顶点式.先求出二次函数2y x x =+的图象顶点坐标,利用翻折得到所得函数的顶点坐标为(-12,14),a=1,由此得到函数的解析式. 例题4.(2022·湖北襄阳·九年级期末)已知一个二次函数的图象开口向上,顶点坐标为()0,5-,那么这个二次函数的解析式可以是________.(只需写一个). 【答案】25y x =-(答案不唯一)【详解】解:∵二次函数的图象开口向上, ∴二次函数()()20=-+≠y a x h k a 中0a >, ∵顶点坐标为()0,5-,∴这个二次函数的解析式可以是25y x =- 故答案为:25y x =-(答案不唯一)点评:例题4主要考查了待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.根据二次函数的图象开口向上,可得0a >,再由顶点坐标为()0,5-,即可求解例题5.(2022·河南新乡·九年级期末)小刚在用描点法画抛物线C 1:2y ax bx c =++时,列出了下面的表格:x … 0 1 2 3 4 … y…36763…请根据表格中的信息,写出抛物线C 1的解析式:______. 【答案】243y x x =-++【详解】解:把(0,3)(1,6)(2,7)代入y =ax 2+bx +c 中得: 36427c a b c a b c ⎧⎪++⎨⎪++⎩===, 解得:143a b c -⎧⎪⎨⎪⎩===,∴抛物线C 1的解析式为:y =-x 2+4x +3, 故答案为:y =-x 2+4x +3.点评:例题5考查了二次函数的性质,待定系数法求二次函数解析式,解题的关键是准确熟练地进行计算. 例题6.(2022·河北·保定市清苑区北王力中学九年级期末)在下图的平面直角坐标系中,已知抛物线22y x mx =-与x 轴的一个交点为A (4,0).(1)求抛物线的表达式及顶点B 的坐标;(2)将05x ≤≤时函数的图象记为G ,点P 为G 上一动点,求P 点纵坐标的取值范围;(3)在(2)的条件下,若经过点C (4,-4)的直线0y kx b k =+≠()与图象G 有两个公共点,结合图象直接写出b 的取值范围.【答案】(1)24y x x =-,B (2,-4) (2)45P y -≤≤ (3)40b -<≤【详解】(1)解:∵A (4,0)在抛物线22y x mx =-上 ∴1680m -=,解得2m =.∴24y x x =-,即()224y x =-- ∴顶点坐标为B (2,-4). (2)解:如图所示, 当2x =时,y 有最小值-4; 当5x =时,y 有最大值5∴点P 纵坐标的P y 的取值范围是45P y -≤≤.(3)解:如图所示: b 的取值范围为−4<b ≤0,直线0y kx b k =+≠()与图象G 有两个公共点.点评:例题6主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.关键是利用数形结合的思想把代数和几何图形结合起来.(1)根据待定系数法可求抛物线的表达式及顶点D 的坐标;(2)根据二次函数的增减性和对称性可求P 点纵坐标P y 的取值范围; (3)先画出函数图象,再结合图象写出b 的取值范围.同类题型演练1.(2022·全国·九年级专题练习)已知抛物线与二次函数y =2x 2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为( ) A .y =﹣2(x ﹣1)2 +2021B .y =2(x ﹣1)2 +2021C .y =﹣2(x +1)2+2021D .y =2(x +1)2+2021【答案】C【详解】解:∵抛物线的顶点坐标为(﹣1,2021), ∴设抛物线的解析式为y =a (x +1)2+2021,∵抛物线y =a (x +1)2+2021与二次函数y =2x 2的图象的开口大小相同,开口方向相反, ∴a =﹣2,∴抛物线的解析式为y =﹣2(x +1)2+2021. 故选:C .2.(2022·全国·九年级专题练习)抛物线()()213y x x =+-关于y 轴对称后所得到的抛物线解析式为( ) A .()()213y x x =-+- B .()()213y x x =-- C .()()213y x x =-+ D .()()213y x x =--+【答案】C【详解】∵拋物线()()()2213=2-1-8y x x x =+-,∴顶点坐标为(1,-8),关于y 轴对称后顶点坐标为(-1,-8),且开口向上, ∴该抛物线的解析式为()()()221-823-1y x x x =+=+; 故选:C .3.(2021·江苏·九年级专题练习)已知点()2,3在抛物线22y ax ax c =-+上,则下列四个点中,一定也在该抛物线上的是( ) A .()0,3 B .()0,3-C .()3,2D .()2,3--【答案】A【详解】解:将点(2,3)代入抛物线22y ax ax c =-+, 可得y=c=3, ∴223y ax ax =-+. 当x=0时,y=c=3;当x=3时,y=9a -6a+3=3a+3; 当x=-2时,y=4a+4a+3=8a+3;故(0,3)一定在该抛物线上, 故选:A .4.(2021·山东·威海市实验中学九年级期末)抛物线2y ax bx =+经过点A (2,0),该抛物线顶点在直线2y x =-+上,则该抛物线解析式为______. 【答案】22y x x =-+【详解】∵抛物线2y ax bx =+经过点()0,0 ,A (2,0), ∴顶点横坐标为1, ∵顶点在直线y =-x +2上, ∴y =-1+2=1, ∴顶点坐标(1,1),∵y =ax 2+bx 过点A (2,0),(1,1),∴1420a b a b +=⎧⎨+=⎩,∴12a b =-⎧⎨=⎩,∴22y x x =-+. 故答案为:22y x x =-+.5.(2022·全国·九年级专题练习)如图1,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(x ,y )的坐标值:x … ﹣1 0 1 2 3 … y…343…则这条抛物线的解析式为_______. 【答案】2y x 2x 3=-++【详解】根据表格可得到点(-1,0)、(0,3)、(3,0) 设抛物线的解析式为(1)(3)y a x x =+- 将(0,3)代入解析式得33a =- 解得1a =-∴解析式为2(1)(3)23y x x x x =-+-=-++故答案为:2y x 2x 3=-++.6.(2021·黑龙江·肇源县第五中学九年级期中)如图,抛物线2y ax bx c =++(a ≠0)与直线y =x +1相交于A (-1,0),B (4,n )两点,且抛物线经过点C (5,0).(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E ,设点P 的横坐标为m .①求线段PE 长的最大值,并求此时P 点坐标;②是否存在点P 使BEC △为等腰三角形?若存在,请直接写出m 的值;若不存在,请说明理由. 【答案】(1)245y x x =-++ (2)①PE 有最大值254,点P 的坐标为335,24⎛⎫⎪⎝⎭;②存在,413或0或34 【详解】(1)解:由题意,抛物线2y ax bx c =++的解析式可化为(1)(5)y a x x =+-, 将点()4,B n 代入直线1y x =+ 得:415n =+=,将点(4,5)B 代入(1)(5)y a x x =+- 得:(41)(45)5a +⨯-=, 解得1a =-,则抛物线的解析式为2(1)(5)45y x x x x =-+-=-++, 即245y x x =-++;(2)①由题意:设2(,45)P m m m -++,(,1)E m m +, 点P 在点E 的上方,则()2223254513424PE m m m m m m =-++-+=-++=-⎫ ⎪⎭+⎛⎝-∵ -1<0∴当m =32时,PE 有最大值,最大值为254当m =32时,235454m m -++=,此时点P 的坐标为(32,354);②存在,m 的值为4130或34.(4,5),(5,0),(,1)B C E m m +,222(54)(05)26BC ∴=-+-=,2222(4)(15)2(4)BE m m m =-++-=-,22222(5)(10)(5)(1)CE m m m m =-++-=-++,由等腰三角形的定义,分以下三种情况:(ⅰ)当BC BE =时,BEC △为等腰三角形,则22BC BE =,即22(4)26m -=, 解得413m =413m =(ⅰ)当BC CE =时,BEC △为等腰三角形,则22BC CE =,即22(5)(1)26m m -++=, 解得0m =或4m =(舍去);(ⅰ)当BE CE =时,BEC △为等腰三角形,则22BE CE =,即2222(4)(5)(1)m m m -=-++,解得34m =;综上,m 的值为4130或34.类型四:二次函数的平移问题(1)抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. (2)涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x -h )2+k 的形式.(3)抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =ax 2+k 的顶点是(0,k ),y =a (x -h )2的顶点是(h ,0),y =a (x -h )2+k 的顶点是(h ,k ).我们只需在坐标系中画出这几个顶点,即可轻松地看出平移的方向.(4)抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典型例题例题1.(2021·黑龙江·兰西县第三中学九年级期中)将抛物线2y x 向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是( )A .2(2)1y x =++B .2(2)1y x =+-C .22()1y x =-+D .2(2)1y x =--【答案】C 【详解】∵抛物线2y x 的顶点坐标为(0,0),∴2yx 向右平移2个单位,再向上平移1个单位后的图象的顶点坐标为(2,1),∴得到新抛物线的解析式是22()1y x =-+, 故选:C .点评:例题1考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.例题2.(2022·内蒙古赤峰·九年级期末)将抛物线()2325y x =++向下平移1个单位,再向右平移两个单位后的顶点坐标是( ) A .(-4,4) B .(0,4) C .(0,6) D .(-4,-6)【答案】B【详解】解:将抛物线()2325y x =++向下平移1个单位,再向右平移两个单位后的解析式为: ()232251,y x =+-+- 即234,y x =+∴抛物线的顶点坐标为:()0,4, 故选:B点评:例题2考查二次函数图象的平移,解题关键是掌握二次函数图象的平移规律,掌握二次函数的顶点式.例题3.(2021·湖北·襄阳市樊城区青泥湾中学九年级阶段练习)要得到抛物线22(4)1y x =-+,可以将抛物线22y x =( )A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度 【答案】C【详解】解:∵y =2(x -4)2+1的顶点坐标为(4,1),y =2x 2的顶点坐标为(0,0), ∴将抛物线y =2x 2向右平移4个单位,再向上平移1个单位,可得到抛物线y =2(x -4)2+1.故选:B .点评:例题3考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标. 例题4.(2022·天津滨海新·九年级期末)抛物线()223y x =+-可以由抛物线2y x 先向左平移2个单位,再向下平移___________个单位得到的. 【答案】3 【详解】解:抛物线2y x 向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:()223y x =+-. 故答案为:3.点评:例题4考查的是二次函数的图象平移变换,熟知函数图象平移变换的法则是解答此题的关键. 例题5.(2022·江苏·九年级专题练习)已知抛物线2(1)y a x h =-+,经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式. 【答案】(1)14a h =⎧⎨=-⎩;(2)242y x x =-+【详解】(1)解:将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩,∴1a =,4h =-;(2)解:∵原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+;点评:例题5考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键同类题型演练1.(2021·福建·平潭翰英中学九年级期中)将抛物线y = x 2先向左平移5个单位,再向下平移4个单位,得到新抛物线的解析式是( ) A . y =()25x +-4 B . y =()25x ++4 C . y =()25x --4 D . y =()25x -+4【答案】A。
二次函数图像的性质与解析
二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。
2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。
二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。
2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。
3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。
4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。
三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。
2.求对称轴:对称轴为x=h。
3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。
4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。
四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。
2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。
3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。
五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。
二次函数的图像和性质(共48张PPT)
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0
二次函数的解析式与图像性质
二次函数的解析式与图像性质二次函数是高中数学中的重要内容,它的解析式和图像性质在数学中有着广泛的应用。
本文将探讨二次函数的解析式及其相关的图像性质,帮助读者更好地理解和运用二次函数。
1. 二次函数的解析式二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于零。
a决定了二次函数的开口方向,正值表示开口向上,负值表示开口向下。
b和c则分别表示二次函数在x轴和y轴上的截距。
解析式中的a、b、c的值可以通过二次函数的特点来确定。
首先,二次函数的顶点坐标为(-b/2a, f(-b/2a))。
其次,二次函数的对称轴为x = -b/2a。
最后,二次函数的判别式Δ = b^2 - 4ac可以用来判断二次函数的解的情况。
当Δ大于零时,二次函数有两个不相等的实根;当Δ等于零时,二次函数有两个相等的实根;当Δ小于零时,二次函数无实根。
2. 二次函数的图像性质二次函数的图像是一条平滑的曲线,其形状由a的正负值决定。
当a大于零时,曲线开口向上;当a小于零时,曲线开口向下。
二次函数的顶点是曲线的最低点或最高点,也是对称轴的交点。
顶点的横坐标为-x = -b/2a,纵坐标为f(-b/2a)。
通过顶点的坐标,我们可以得到曲线的最值。
当a 大于零时,曲线的最小值为f(-b/2a);当a小于零时,曲线的最大值为f(-b/2a)。
除了顶点和对称轴,二次函数的图像还与x轴和y轴有关。
当二次函数与x轴相交时,即为二次函数的实根。
根据判别式Δ的值,我们可以判断二次函数与x轴的交点情况。
当Δ大于零时,曲线与x轴有两个不相等的交点;当Δ等于零时,曲线与x轴有两个相等的交点;当Δ小于零时,曲线与x轴没有交点。
二次函数与y轴的交点为常数项c,即函数在x=0时的值。
这个交点可以用来确定曲线与y轴的位置。
3. 二次函数的应用二次函数的解析式和图像性质在数学中有着广泛的应用。
在物理学中,二次函数可以用来描述抛物线运动的轨迹。
二次函数的图像与性质
二次函数的图像与性质在我们学习数学的过程中,二次函数是一个非常重要的概念。
它不仅在数学领域有着广泛的应用,在实际生活中,比如物理、经济等方面也经常能看到它的身影。
今天,咱们就来好好聊聊二次函数的图像与性质。
二次函数的一般形式是 y = ax²+ bx + c(其中 a、b、c 是常数,且a ≠ 0)。
当 a > 0 时,函数图像开口向上;当 a < 0 时,函数图像开口向下。
这就好像一个碗,如果开口向上,就能往里装东西;开口向下,东西就容易掉出来。
先来说说二次函数图像的对称轴。
对称轴的方程是 x = b / 2a 。
这条对称轴把二次函数的图像分成了两个对称的部分,就像镜子里的反射一样。
比如说,对于函数 y = x² 2x + 1 ,其中 a = 1 ,b =-2 ,那么对称轴就是 x =(-2) /(2×1) = 1 。
接下来看看顶点。
顶点就是二次函数图像的最高点或者最低点。
当a > 0 时,顶点是图像的最低点;当 a < 0 时,顶点是图像的最高点。
顶点的坐标可以通过把对称轴的 x 值代入函数中求得。
还是以 y = x²2x + 1 为例,对称轴 x = 1 ,把 x = 1 代入函数,得到 y = 1² 2×1 +1 = 0 ,所以顶点坐标就是(1, 0) 。
再说说二次函数的截距。
当 x = 0 时,y = c ,这个 c 就是函数在y 轴上的截距。
比如函数 y = 2x²+ 3x 1 ,这里的 c =-1 ,也就是说函数图像与 y 轴的交点是(0, -1) 。
二次函数的图像还与判别式Δ = b² 4ac 有着密切的关系。
如果Δ> 0 ,函数图像与 x 轴有两个交点;如果Δ = 0 ,函数图像与 x 轴有一个交点;如果Δ < 0 ,函数图像与 x 轴没有交点。
比如说,对于函数 y = x² 2x 3 ,其中 a = 1 ,b =-2 ,c =-3 ,那么Δ =(-2)² 4×1×(-3) = 16 > 0 ,所以函数图像与 x 轴有两个交点。
二次函数的图象、解析式和性质
二次函数的系数与图象的关系
二次函数的解析式为y=ax^2+bx+c,其中a、b、c为系数 a的符号决定了抛物线的开口方向,a>0时开口向上,a<0时开口向下 a的绝对值决定了抛物线的开口大小,|a|越大,开口越小 b和c决定了抛物线的位置,b和c的值越大,抛物线越往y轴正方向移动
二次函数的开口大小与二次项系数的关系
XX
二次函数的图象、解析式和性质
单击添加副标题
汇报人:XX
目录
01
单击添加目录项标题
02
03
二次函数的解析式
04
二次函数的图象 二次函数的性质
01
添加章节标题
02
二次函数的图象
二次函数的标准形式
二次函数的一般形式为y=ax^2+bx+c 二次函数的标准形式是y=ax^2+c,其中a和c是常数,且a≠0 二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下 二次函数的顶点坐标为(0,c),对称轴为y轴
b和c决定了抛物线的位置,其中 b和c的值可以根据具体的函数表 达式来确定。
添加标题
添加标题
添加标题
添加标题
a的符号决定了抛物线的开口方向, 当a>0时,抛物线开口向上;当 a<0时,抛物线开口向下。
二次函数的顶点坐标可以通过配 方的方法求得,顶点的横坐标为 x=-b/2a,纵坐标为y=(4acb^2)/4a。
感谢观看
汇报人:XX
二次函数的开口方向
二次函数的一般形式为y=ax^2+bx+c,其中a决定了开口方向 当a>0时,开口向上 当a<0时,开口向下 开口方向与函数的极值和最值有关
二次函数图像与性质解析版版
二次函数的图像及性质知识点1.二次函数的定义:形如的函数叫二次函数。
限制条件(1)自变量的最高次数是;(2)二次项系数。
2.二次函数的解析式(表达式)——三种形式,重点是前两种。
(1)一般式:;(2)顶点式:y=a(x-h)2+k(a≠0),此时二次函数的顶点坐标为(,),对称轴是。
注意:顶点形式的最大优点是直接从解析式看出顶点坐标和对称轴,比较方便。
离开它用一般形式也可以。
※(3)交点式(两点式):设x1、x2是抛物线与x轴的两个交点的横坐标,则y=a(x-x1)(x-x2)此时抛物线的对称轴为直线x=221xx+。
注意:(1)当顶点在X轴上(即抛物线与X轴只有一个交点(0,x1))时,函数表达式为。
这个交点是抛物线的什么点?(2)是不是任意一个二次函数都可以写成交点形式?在什么条件下才有交点式?(3)利用这种形式只是解决相关问题要简便一些,直接用一般形式也可以。
实际上利用一般形式和顶点坐标公式可以解决二次函数的多数问题。
▲三种二次函数的解析式的联系:针对一般形式而言,顶点式:y=a(x-h)2+k(a≠0)中,h= ;k= 。
当Δ=b2-4ac 时,才有两根式。
3、二次函数y=ax2+bx+c(a≠0)的图象与性质 ----抛物线的特征---待定系数a,b,c的作用二次函数y=ax2+bx+c(a≠0)的图象是一条线,它是一个对称图形,抛物线与对称轴的交点叫抛物线的点。
不过这个结论成立的条件是自变量的取值范围是。
(1)形状----开口大小。
由决定,越大,开口越。
(2)开口方向:由决定。
当a>0时,函数开口方向向;当a<0时,函数开口方向向;(3)对称轴:直线x= ;注意:一次函数的图象是直线,但直线的解析式不一定是一次函数。
例如与坐标轴平行(垂直)的直线的解析式是X=K,或Y=K,它们为什么不是一次函数呢?▲(4)顶点坐标公式:(,);利用顶点坐标公式的注意事项:当求得顶点横坐标后,可以用纵坐标公式,也可以不用纵坐标公式,而直接将横坐标代入哪里求得纵坐标。
二次函数的图像与性质
二次函数的图像与性质二次函数是中学数学中的重要内容之一,它在数学中有着广泛的应用。
本文将围绕二次函数的图像与性质展开讨论,帮助读者更好地理解和应用二次函数。
1. 二次函数的基本形式二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
其中,a决定了二次函数的开口方向,正值表示开口向上,负值表示开口向下;b决定了二次函数的对称轴位置,对称轴的方程为x = -b/2a;c决定了二次函数与y轴的交点。
2. 二次函数的图像特点(1)开口方向:根据a的正负值可以判断二次函数的开口方向,a>0时开口向上,a<0时开口向下。
(2)对称轴:对称轴是二次函数图像的一条特殊直线,其方程为x = -b/2a。
对称轴将图像分为两个对称的部分。
(3)顶点:二次函数图像的最高点或最低点称为顶点,顶点的横坐标为对称轴的横坐标,纵坐标可以通过代入计算得到。
(4)零点:二次函数与x轴的交点称为零点,即函数值为0的点。
零点可以通过求解二次方程ax^2 + bx + c = 0得到。
3. 二次函数的平移通过对二次函数进行平移,可以改变其图像的位置。
平移的方式有两种:平移横坐标和平移纵坐标。
(1)平移横坐标:将二次函数的横坐标都加上一个常数h,可以使得图像向左平移h个单位;将横坐标都减去一个常数h,可以使得图像向右平移h个单位。
(2)平移纵坐标:将二次函数的纵坐标都加上一个常数k,可以使得图像向上平移k个单位;将纵坐标都减去一个常数k,可以使得图像向下平移k个单位。
4. 二次函数的最值二次函数的最值即为顶点的纵坐标,最大值对应开口向下的二次函数,最小值对应开口向上的二次函数。
最值可以通过求解二次函数的顶点坐标得到。
5. 二次函数的应用二次函数在现实生活中有着广泛的应用。
例如,抛物线的形状可以用二次函数来描述,因此可以应用于物体的抛射运动问题;二次函数也可以用于建模和预测,如根据历史数据拟合二次函数,预测未来的趋势。
二次函数的图像与性质
06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式
二次函数的性质及其图象
象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题
得
4a 2b 4 36a 6b 0
,解得
a
1 2
;
b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<
二次函数的图象和性质
二次函数的图象和性质
汇报人:XX
目录
CONTENTS
01 添加目录标题
02 二次函数的图象
03 二次函数的性质
04 二次函数的应用
添加章节标题
二次函数的图象
二次函数的标准形式
二次函数的一 般形式为
y=ax^2+bx+ c
二次函数的标 准形式是
y=ax^2+c, 其中a和c是常
数,且a≠0
二次函数的对称性
二次函数图像的 对称轴是直线 x=-b/2a
二次函数图像的 顶点坐标为(b/2a, f(-b/2a))
二次函数图像的对 称性取决于系数a 的符号,当a>0时, 图像开口向上,具 有最小值;当a<0 时,图像开口向下, 具有最大值
二次函数图像的 对称性可以通二次函数的开 口方向:向上 或向下决定了 函数的最大值
或最小值
二次函数的顶 点:顶点的横 坐标为对称轴, 纵坐标为最大
值或最小值
二次函数的开口 大小:开口大小 决定了函数在最 大值或最小值附
近的波动幅度
二次函数的系数: 系数的大小决定 了函数在最大值 或最小值附近的
波动频率
感谢您的耐心观看
汇报人:XX
经济中的成本 与收益分析
生活中的最优 化问题
科学实验的数 据分析
利用二次函数解决实际问题的方法和步骤
建立数学模型:根据实际问题,将问题抽象为二次函数模型。 求解函数:利用二次函数的性质和公式,求解函数的最值或零点。 实际应用:将求解的结果应用到实际问题中,解决实际问题。 验证结果:对求解的结果进行验证,确保其在实际问题中的可行性和正确性。
常见二次函数问题的解题思路
高中教材知识点:二次函数的图像与性质
高中教材知识点:二次函数的图像与性质一、知识点介绍二次函数是高中阶段数学学习的重要内容之一,它是一种关于自变量的二次多项式函数。
了解二次函数的图像与性质对于理解函数的变化规律和应用具有重要意义。
本文将详细介绍高中教材中二次函数的图像与性质,包括基本定义、图像特点、性质及常见的例题解析。
二、基本定义1. 二次函数:二次函数是一个关于自变量x 的函数,一般可以表示为f(x) = ax^2 + bx + c,其中a、b、c 是实数且 a ≠0。
2. 二次函数的图像:二次函数的图像是平面直角坐标系中的一条曲线,通常是开口向上或向下的抛物线。
三、图像特点1. 抛物线的开口方向:二次函数中的系数a 决定了抛物线的开口方向。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2. 邻域与单调性:二次函数的图像在抛物线的开口处有一个顶点,抛物线在这个顶点的邻域内是单调递增或单调递减的。
四、性质1. 零点与因式分解:二次函数的零点是方程f(x) = 0 的解,可以通过因式分解或求根公式来得到。
2. 对称性:二次函数的图像关于顶点对称。
即,若(h, k) 是抛物线的顶点,则点(2h, k) 也在抛物线上。
3. 最值:当抛物线开口向上时,最小值为顶点的纵坐标;当抛物线开口向下时,最大值为顶点的纵坐标。
五、例题解析1. 图像特点例题:题目:根据二次函数的表达式f(x) = 2x^2 - 3x + 1,确定该二次函数的开口方向和顶点。
解析:根据系数 a 的值,可以确定开口方向。
由题目中的系数可知 a = 2,因此抛物线开口向上。
顶点可以通过求解抛物线的顶点坐标得到。
根据顶点公式,顶点的横坐标为x = -b/2a,纵坐标为f(x) = f(-b/2a)。
代入系数的值,得到顶点的坐标为(-(-3)/2(2), f(-(-3)/2(2))) = (3/4, 13/8)。
2. 性质应用例题:题目:已知二次函数f(x) = ax^2 + bx + c,其图像与x 轴交于两点,且顶点的纵坐标为4。
二次函数的图像和性质总结
二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。
二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。
下面将对二次函数的图像和性质进行详细总结。
一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。
3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。
4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。
5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。
二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。
2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
二次函数的图像和性质
二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。
二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。
3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。
顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。
三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。
2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。
3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。
4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。
四、应用二次函数在几何、物理、经济等领域有着广泛的应用。
例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。
结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。
希望本文的介绍能帮助读者更好地掌握二次函数的知识。
(完整版)二次函数图象和性质知识点总结
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
二次函数的图像和性质
二次函数的图像和性质二次函数是高中数学中常见的一种函数类型,其图像呈现出特定的形状和性质。
本文将介绍二次函数的图像特点,探讨二次函数的性质以及解释这些性质的意义。
一、二次函数的图像特点1. 平移和伸缩:二次函数的图像可以通过平移和伸缩来改变其位置和形状。
一般二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为常数。
当a>0时,图像开口向上,当a<0时,图像开口向下。
参数b控制了二次函数图像的水平位置,参数c则控制了图像的垂直位置。
2. 对称性:二次函数的图像具有关于直线x = -b / (2a)的对称性。
这条直线称为二次函数的对称轴。
对称轴将图像分成两个完全对称的部分。
3. 顶点:二次函数图像的最高点或最低点称为顶点。
对于开口向上的二次函数,顶点是图像的最低点,对于开口向下的二次函数,顶点是图像的最高点。
顶点的坐标为(-b / (2a), f(-b / (2a)))。
4. 零点:二次函数与x轴交点的坐标称为零点。
零点是二次函数的解,即f(x) = 0的解。
二次函数可以有两个、一个或零个零点,取决于判别式D = b^2 - 4ac的值。
二、二次函数的性质1. 单调性:开口向上的二次函数在对称轴的两侧是单调递增的,开口向下的二次函数在对称轴的两侧是单调递减的。
对于开口向上的二次函数,当x趋于正无穷时,函数值也趋于正无穷;当x趋于负无穷时,函数值也趋于负无穷。
对于开口向下的二次函数,情况相反。
2. 极值:二次函数的最小值(开口向上)或最大值(开口向下)即为顶点的纵坐标,其横坐标为对称轴的横坐标。
3. 范围和值域:对于开口向上的二次函数,其值域为[y, +∞),其中y为顶点的纵坐标;对于开口向下的二次函数,其值域为(-∞, y],其中y为顶点的纵坐标。
4. 最大值或最小值:当a>0时,开口向上的二次函数不存在最小值;当a<0时,开口向下的二次函数不存在最大值。
二次函数基本概念_图像及性质
二次函数基本概念,图像及性质定义:一般地,如果 yax2bx c( a,b,c 是常数, a0),那么 y叫做 x 的二次函数 .yOx函数 y ax22.二次bx c的结构特征:⑴等号左边是函数,右边是关于自变量 x的二次式, x的最高次数是 2.⑵ a,b ,c是常数, a 是二次项系数, b 是一次项系数, c 是常数项. 3.二次函数的基本形式2(1)二次函数基本形式:yax的性质: a 的绝对值越大,抛物线的开口越小。
a的 符开口方向顶点坐标对 称性质号轴x 0 时, y随 x 的增大而增大; x 0a 0向上0,0y 轴 时, y随 x的增大而减小; x 0 时,y有最小值 0.x 0时,y随 x的增大而减小;x 0a 0向下0 ,0y 轴 时, y随 x的增大而增大; x 0 时,y有最大值.(2)y ax 2 c的性质:上加下减。
开a 的 口顶 点 对 称符号方 坐标性质轴向向0,cx 0时,y随 x 的增大而增大;x0 时, y 随 x 的ay 轴上时,y有最小值 c.增大而减小;x向0 ,cx 0时,y随 x 的增大而减小;x0 时, y随 x 的y 轴a 0下增大而增大;x时,y有最大值 c.2(3)y a x h的性质:结论:左加右减。
开 对口a顶 点 性质方 称坐标向 轴向 h ,0xh时,y随 x 的增大而增大; xh时,y随 x的增大a 0上X=hh时,y有最小值 0.x向 h ,0xh时,y随 x的增大而减小; xh时,y随 x的增大a 0下X=hh时,y有最大值 0.x2(4) y a x hk的性质:开 对a 的 口顶 点性质符号方 称 坐标向 轴向 h ,kx h 时, y随 x 的增大而增大; xh 时, y 随a 0上X=hx的增大而减小;x h时, y 有最小值 k.向 h ,kx h时,y随 x的增大而减小;xh 时, y随a 0下X=hx的增大而增大;x h时, y 有最大值 k.4.二次函数由特殊到一般,可分为以下几种形式: ①⑤y ax 2;② y ax2k ;③ ya x h 2;④ y a x h2k ;yax2bx c .函数解析式开口方向对称轴顶点坐标y ax2x0 (y轴)( 0,0)y ax2k x0 (y轴)(0,k)当a0 时h2x( h ,0)y a x h开口向上y a x h 2k当 a0x h(h,k)时y ax2bx c 开口向下x b b4ac b 22a( 2a,4a)5.二次函数图像与性质:函二次函数数y ax2bx c(a, b, c是常数, a 0)a>0a<0yy 图像( 1)抛物线开口向上,并向(1)抛物线开口向下,并向下无限延上无限延伸;伸;b b( 2)对称轴是x=2a ,顶( 2)对称轴是x=2a,顶点坐标是b b4ac b 2点坐标是(2a ,( 2a , 4a);4ac b2b 4a);( 3)在对称轴的左侧,即当 x<2a 时,( 3)在对称轴的左侧,即当y 随 x 的增大而增大;在对称轴的右侧,性b b质x< 2a时, y 随 x 的增大而即当 x>2a时,y 随 x 的增大而减小,减小;在对称轴的右侧,即简记左增右减;b b当 x>2a时, y 随 x 的增大( 4)抛物线有最高点,当x=2a 时,而增大,简记左减右增;4ac b 2( 4)抛物线有最低点,当 x=y最大值4a by 有最大值,2a时, y有最小值,y最小值4ac b 2 4a6.用待定系数法求二次函数的解析式(1)一般式:yax2bxc.已知图像上三点或三对x、y的值,通常选择一般式 .(2)顶点式:ya x h 2k.已知图像的顶点或对称轴,通常选择顶点式.( 3 )交点式:已知图像与x 轴的交点坐标x1、 x2,通常选用交点式:y a x x1 x x 2 .7.求抛物线的顶点、对称轴的方法b2b2y ax2bx4acc a x(1)公式法:2a4a,(b4ac b2b ,)x∴顶点是2a4a,对称轴是直线2a .2(2)配方法:运用配方的方法,将抛物线的解析式化为y a x hk 的形式,得到顶点为 ( h , k ),对称轴是直线x h .8. 二次函数yax2bx c 中,a,b, c的作用(1)a决定开口方向及开口大小,这与y ax2中的 a 完全一样.( 2)b和a共同决定抛物线对称轴的位置.由于抛物线 y ax2bxc的对称xb2a ,轴是直线(3)c的大小决定抛物线y ax2bx c与y轴交点的位置 .9.二次函数与x轴的交点情况判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x 轴上)0抛物线与 x轴相切;③没有交点0抛物线与 x 轴相离.10教材分析课时规划教学目标分析教学思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022学年九年级数学下册同步课堂专练(苏科版)5.1二次函数以及二次函数的图像和性质二次函数的概念一般地,形如y=ax 2+bx+c (a≠0,a, b, c 为常数)的函数是二次函数.若b=0,则y=ax 2+c ; 若c=0,则y=ax 2+bx ; 若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c (a ≠0)是二次函数的一般式.【同步练习】一、单选题1.若2(1)3y k xk k kx =+-+-是二次函数,则k 的值为( ) A .1- B .2-C .2D .1-和2【答案】C【详解】2(1)3y k xk k kx =+-+-是二次函数,210,2,k k k +≠⎧∴⎨-=⎩解得2k =或1k =-(舍去). 2.下列函数是二次函数的是( ) A .2y ax bx c =++B .()22212y x x x =--+C .2yxD .2131y x x=+- 【答案】C 【详解】0a =时,2y ax bx c =++不是二次函数,A 不符合题意;()222122y x x x x =--+=-,不是二次函数,B 不符合题意;2yx 是二次函数,C 符合题意;括号右边有分式,不是二次函数,D 不符合题意.3.已知抛物线2y ax bx c =++(其中a ,b ,c 为常数,且0a ≠),乐老师在用描点法画其图象时,列出如下表格,根据该表格,下列判断中不正确的是( )A .0a <B .一元二次方程250++-=ax bx c 没有实数根C .当3x =时,2y =-D .当12x >时,y 随x 的增大而减小 【答案】D【详解】逐项分析如下:4.二次函数的部分图象如图所示,对称轴是1x =-,则这个二次函数的表达式为( )A .2y x 2x 3=-++B .223y x x =++B .C .223y x x =-+-D .223y x x =--+【答案】D 【详解】由图象知抛物线的对称轴为直线1x =-,设抛物线解析式为()21y a x c =++,将()3,0-、()0,3代入,得403a c a c +=⎧⎨+=⎩,解得14a c =-⎧⎨=⎩,则抛物线解析式为()221423y x x x =-++=--+.5.二次函数()()21234y a x a x a =---+-的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线2y kx =-与新图象恰有三个公共点时,则k 的值不可能...是( ) A .1- B .2-C .1D .2【答案】D 【详解】∵二次函数与x 轴有两个交点,则()()()2234140a a a ---->,解得78a >,∵1a ≠,∴最小整数可取2a =,则二次函数解析式为2y x x 2=--.令220y x x =--=,解得1x =-或2x =,∴二次函数与x 轴的交点为()1,0-和()2,0.将图象在x 轴上方的部分翻折后如解图所示,直线2y kx =-经过新图象与y 轴的交点.当直线经过点()1,0-、()2,0及与抛物线在12x -<<之间只有一个交点时,抛物线与直线恰好有三个公共点.①当直线过点()1,0-时,则2k =-;②当直线过点()2,0时,1k =;③当直线与新图象在12x -<<之间只有一个交点时,222x x kx --=-,则有10k +=,解得1k =-;综上所述,k 的值不能是2.6.已知抛物线()20y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A .当2x <时,y 随x 增大而增大B .0a b c ++<C .抛物线过点(-4,0)D .420a b c ++=【答案】B 【详解】∵抛物线()20y ax bx c a =++≠的对称轴为直线2x =且开口向上,∴当2x <时,y 随x 增大而减小,故选项A 错误;设抛物线与x 轴另一交点为()1,0x ,∴1422x +=,解得10x =,∴该抛物线过点(0,0),∴当1x =时,0y a b c =++<,故选项B 正确;当4x =-时,0y >,故选项C 错误;由题图可知,当2x =时,420y a b c =++<,故选项D 错误.7.一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 与x 之间满足的函数关系是( )A .正比例函数B .反比例函数C .一次函数D .二次函数【答案】D 【详解】解:由题意得,222(2)24y x x x =+-=+y ∴与x 之间满足的函数关系是二次函数,故选:D .8.下列各式中,是二次函数的是( )A .2y ax bx c =++B .y =C .22y x x =+D .221y x =+【答案】C 【详解】解:A 、当a =0时,2y ax bx c =++不是二次函数,故不符合题意;B 、y =C 、22y x x =+,是二次函数,故符合题意;D 、221y x =+,变形可得y =,不是二次函数,故不符合题意; 故选C . 二、填空题9.将长为20cm 的铁丝首尾相连围成扇形(忽略铁丝的粗细),扇形面积为()2cm y 、扇形半径为()cm x 且010x <<,则y 与x 之间的函数关系式为______________________________.【答案】210y x x =-+ 【详解】扇形的面积公式:12S lr =扇,其中l 为扇形的弧长,r 为扇形半径, 由题意得:扇形的弧长为()202cm x -,则()12022y x x =-, 即210y x x =-+,故答案为:210y x x =-+.10.在平面直角坐标系xOy 中,横、纵坐标都是整数的点叫做整点,记函数()20y x a a =-+>的图象在x轴上方的部分与x 轴围成的区域(不含边界)为W .当2a =时,区域W 内的整点个数为________,若区域W 内恰有7个整点,则a 的取值范围是________.【答案】1 34a <≤ 【详解】当2a =时,函数22y x =-+,函数与坐标轴的交点坐标分别为()0,2,(,,函数22y x =-+的图象在x 轴上方的部分与x 轴围成的区域中,点()0,1在W 区域内.∴此时在区域W 内的整点个数为1个;当()0,2是顶点时,在W 区域内只有1个整数点;当3a =时,在W 区域内有4个整数点()()()()1,1,1,1,0,2,0,1-,边界上有3个整数点()()()0,3,1,2,1,2-;当4a =时,在W 区域内有7个整数点()()()()()()()1,1,1,1,0,2,0,1,0,3,1,2,1,2--;∴区域W 内恰有7个整点时34a <≤.11.二次函数()22y x m =-+中,当3x <-时,y 随x 的增大而增大,当3x >-时,y 随x 的增大而减小,则m =________,此时,该函数的图象的顶点坐标为________,当x =________时,y 取最______值,最值为________.【答案】3 ()3,0- -3 大 0 【详解】∵抛物线()22y x m =-+的开口向下,对称轴为直线x m =-,当3x <-时,y 随x 的增大而增大,当3x >-时,y 随x 的增大而减小,∴抛物线的对称轴为直线3x =-,∴3m =,∴抛物线的解析式为()223y x =-+,∴抛物线的顶点坐标为()3,0-,当3x =-时,y 取最大值,最大值为0.12.定义()()11a a b a b b a b ⎧-≤⎪⊗=⎨->⎪⎩,比如,422⊗=,151⊗=.若实数k 满足2(1)10k x x ⎡⎤⊗+-=⎣⎦,并且这个关于x 的方程有两个不相等的实数解,则k 的取值范围是__________.【答案】1k 或1143k <【详解】解:当x 2-(x+1)≤1时,即-1≤x ≤2时,方程2(1)10k x x ⎡⎤⊗+-=⎣⎦为kx 2-1=0.∴21x k=, 当x 2-(x+1)>1时,即x <-1或x >2时,方程变为k (x+1)-1=0, ∴1+1x k=, 当x=2时由21x k =得出1k=4, 当x=2时由1+1x k =得出1k=3, 当x=-1时21x k=得出k=1, ∵关于x 的方程2(1)10k x x ⎡⎤⊗+-=⎣⎦有两个不相等的实数解,∴函数图象有两个不同的交点,如图所示∴1k 或1143k <故答案为:1k 或1143k <.三、解答题13.如图,抛物线24y x x m =-+与x 轴相交于点A ,B (点A 在点B 左侧),抛物线的对称轴直线1l 垂直平分线段MN ,MN 的左端点M 的坐标为()0,1-,过MN 的右端点N 作2//l y 轴,分别交抛物线于点C ,交双曲线(0,0)ky k x x=>>于点P ,且12MN PN ⋅=.(1)求抛物线的对称轴直线1l ,并用含有m 的代数式表示抛物线的顶点坐标;(2)求双曲线的解析式;(3)若点(),12Q n m +为抛物线上一点,当6AB =时,求点Q 到直线2l 的距离;(4)若在直线1l 右侧的区域内(包含直线1l ),抛物线与双曲线交点的纵坐标为()001y y >,且抛物线与线段MN 没有交点,直接写出m 的取值范围.【答案】(1)对称轴直线1l 的解析式为2x =,抛物线的顶点坐标为()2, 4m -;(2)8(0)y x x=>;(3)2或6;(3)34m <<或311m -<<- 【详解】(1)抛物线的对称轴直线1l 的解析式为4221x -=-=⨯ 把2x =代入抛物线解析式,得2242484y m m m =-⨯+=-+=-,∴抛物线的顶点坐标为()2, 4m -;(2)∵直线1l 垂直平分线段MN ,直线1l 的解析式为2x =,点M 的坐标为()0, 1-, ∴2204MN =⨯-=,∴点N 的坐标为()41-,,直线2l 的解析式为4x = ∵12MN PN ⋅=,∴3PN =, ∴()4,31P -,即()4,2P .把()4,2P 代入ky x=,得428k =⨯=, ∴双曲线的解析式为8(0)y x x=>;(3)∵抛物线与x 轴相交于点A 、B ,对称轴直线1l 的解析式为26x AB ==,,∴66((2),0),((2),0)22A B --+,即()()1,05,0A B -,.把()1,0A -代入24y x x m =-+,得140m ++=,解得 5m =-,∴抛物线解析式为245125127y x x m =--+=-+=,把(),7Q n 代入245y x x =--,得2 4 57n n --=,解得126 2n n ==-, ∴Q 点的坐标为()6,7或()2,7-,∴点Q 到直线2l 的距离为642-=或 2 46--=; (4) 34m <<或311m -<<-【解法提示】假设1y =,则代入8y x=,得8x =,∵80k =>,∴y 随x 的增大而减小,当01y >时,08x <把()8,1代入抛物线解析式,得28481m -⨯+=,解得31m =-结合抛物线图象可知,抛物线向上平移才能符合题意,∴当01y >时,31m >-抛物线与线段MN 没有交点时,有以下两种情况:①如解图①,抛物线顶点()2,4m -在线段MN 上时,可得41m -=-,解得3m =,∵抛物线与x 轴有两个交点, ∴令240x x m -+=可得241640b ac m -=->,解得4m <∴34m <<例题解图①②如解图②,当抛物线经过点M ,N 时,可得1m =-,结合31m >-,得311m -<<-综上可得,m 的取值范围为34m <<或311m -<<-例题解图②14.如图,二次函数y=ax 2+4x +c 的图象与一次函数y=x -3的图象交于A 、B 两点,点A 在y 轴上,点B 在x 轴上,一次函数的图象与二次函数的对称轴交于点M .(1)求a 、c 的值和点M 的坐标;(2)点P 是该二次函数图象上A 、B 两点之间的一动点,点P 的坐标为(x ,n )(0< x < 3),m=PM 2,求m 关于n 的函数关系式,并求当n 取何值时,m 的值最小,最小值是多少?【答案】(1)a =-1,c =-3, M (2,-1);(2)当n =-12时,m 有最小值,最小值为74. 【详解】(1)把0x =代入3y x =-,得3y =-,即()03A -,, 把0y =代入3y x =-,得30x -=,解得3x =,即()30B ,, 又∵()0,3A -、()3,0B 在二次函数24y ax x c =++的图象上,∴39430c a c =-⎧⎨+⨯+=⎩,解得13a c =-⎧⎨=-⎩,∴二次函数解析式为243y x x =-+-,()224321y x x x =-+-=--+,把2x =代入3y x =-,得1y =-,∴点M 的坐标为()21-,; (2)如图,由(1)知二次函数对称轴为直线2x =,过点P 作PN 垂直直线2x =于点N ,则21PN x MN n =-=+,,∴()()2222221m PM PN MN x n ==+=-++, ∵点P 在抛物线上,∴()221x n --+=,∴()221x n -=-, ∴()2221117()224m n n n n n =-++=++=++, ∵03x <<,抛物线顶点坐标为(2,1),∴31n -<<,∴当12n =-时,m 有最小值,最小值为74.。