二次函数 初高中知识衔接
初高中数学衔接知识归纳有哪些
初高中数学衔接知识归纳有哪些很多新高一的同学,暑假里都忙着“衔接”,步入高中,无论是学习方法还是知识难度都有了很大的改变,大家都想趁着暑假来全方位提升自己,让这一级台阶迈得更稳。
以下是店铺分享给大家的初高中数学衔接知识归纳,希望可以帮到你!初高中数学衔接知识归纳1. 立方和与差的公式这部分内容在初中教材中已删去不讲,但进入高中后,它的运算公式却还在用。
比如说:2. 因式分解十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到。
3. 二次根式中对分子、分母有理化这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化。
4. 二次函数二次函数的图象和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容。
二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。
5. 根与系数的关系(韦达定理)在初中,我们一般会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不再学习,但是高考中又会出现这一类型的考题,因此建议:(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;(2)掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式这里指“对称式”)的值,能构造以实数p,q 为根的一元二次方程。
6. 图象的对称、平移变换初中只作简单介绍,而在高中讲授函数后,对其图象的上、下;左、右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心、外心、内心等)和定理(如平行线分线段比例定理,射影定理,圆幂定理等),初中生大都没有学习,而高中教材多常常要涉及。
初高中知识衔接(二次函数、方程、不等式)
初高中衔接二次函数方程不等式一、明确复习目标1.掌握二次函数的图象和性质;2.掌握一元二次函数、方程、不等式的关系;3.会讨论二次方程实根分布和二次不等式的解;4.会运用数形结合、分类讨论、函数与方程以及等价转化等重要的数学思想分析解决有关二次的问题。
二.建构知识网络1.二次函数的三种表达式:一般式:;顶点式:;零点式:2.二次函数图象抛物线的开口方向,对称轴:,顶点:,最值:,单调区间:,3.二次函数在闭区间上,必有最大值和最小值,当含有参数时,要按对称轴相对于区间的位置进行讨论。
4.一元二次函数、方程、不等式之间的关系5.一元二次方程实根分布的讨论(1) 利用函数的图象、性质;(2) 利用韦达定理、判别式。
三、双基题目练练手1.已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是A.f(1)≥25B.f(1)=25 ( )C.f(1)≤25D.f(1)>252.二次函数y=x2-2(a+b)x+c2+2ab的图象的顶点在x轴上,且a、b、c 为△ABC的三边长,则△ABC为 ( )A.锐角三角形B.直角三角形C.钝角三D.等腰三角形3.如果函数f(x)=x+bx+c对于任意实数t,都有f(2+t)=f(2-t),那么( )A. f(2)<f(1)<f(4)B. f(1)<f(2)<f(4)C. f(2)<f(4)<f(1)D. f(4)<f(2)<f(1)二、填空题4.函数f(x)=2x2-6x+1在区间[-1,1]上的最小值是______,最大值是________.5.已知函数,则的单调递增区间为简答1-4、ABA; 4、-3 9; 5、;1.对称轴 ≤-2m≤-16,∴f(1)=9-m≥25.2.顶点为(a+b,c2-a2-b2),由已知c2-a2-b2=0.∴Rt△3.对称轴为x=2;四、经典例题做一做【例1】已知方程(1)都小于零; (2)都小于1;(3); (4)(5)恰有一根在(1,2)区间内。
初高中衔接二次函数专题
3 二次函数 基础知识1.二次函数的三种表示方式: (1)一般式:y=ax 2 +bx+c ;(2)顶点式:y=a(x-m)2 +n (常用,便于求最值、画图); (3)交点式: y=a(x-x 1 )(x-x 2 ) (△≥0时) .2.若函数y=f(x)的对称轴是x=h,则对f(x)定义域内的任意x,都有f(h+x)=f(h-x);反之也成立。
3.二次方程根的分布问题,限制条件较多时可用相应抛物线位置,限制条件较少时可用韦达定理解决。
4.二次函数的最值问题(1)二次函数2(0)y ax bx c a =++≠的最值.二次函数在自变量x 取任意实数时的最值情况:当0a >时,函数在2bx a=-处取得最小值244ac b a -,没有最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a -,没有最小值.求二次函数最大值或最小值的步骤:第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. (2)求二次函数在某一范围内的最值.二次函数在某区间上的最值须用配方法,含字母的函数最值可借助图象分析。
如:求2y ax bx c =++在m x n ≤≤(其中m n <)的最值的步骤: 第一步:先通过配方,求出函数图象的对称轴:0x x =;第二步:讨论:(请同学们画出图像理解)(1)若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①0x m <,即对称轴在m x n ≤≤的左侧; ②0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③0x n >,即对称轴在m x n ≤≤的右侧。
(2) 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①02m nx +≤,即对称轴在m x n ≤≤的中点的左侧;②02m nx +>,即对称轴在m x n ≤≤的中点的右侧。
初高中数学衔接知识复习二次函数
初、高中数学衔接知识复习:二次函数一.要点回顾1. 二次函数y =ax 2+bx +c (a ≠0)配方得:y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a 224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以由函数y =ax 2的图象作左右平移、上下平移而得到。
2.二次函数y =ax 2+bx +c (a ≠0)的性质:[1] 当a >0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最小值 .[2] 当a <0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最大值 .3.二次函数的三种表示方式[1]二次函数的三种表示方式:(1).一般式: ; (2).顶点式: ; (3).交点式: . 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.2 二次函数图像的变换----------平移二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( )(A )y =2x 2 (B )y =2x 2-4x +2(C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的(3)把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为 ( )(A )y = (x +1)2+1 (B )y =-(x +1)2+1(C )y =-(x -3)2+4 (D )y =-(x -3)2+二.题型演练例1.抛物线()21252y x =--+的顶点坐标是_________,对称轴是_________,开口向_____,当x =_______时,y 有最______值,最大值为 ________。
专题05 二次函数的三种表示方式-2019年初升高数学衔接必备教材(解析版)
专题05二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3).(1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根.【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3)9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上,∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴ +2m n =﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1);(2)4. 【解析】(1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为, 抛物线的解析式为; (2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积, 抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】 已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式;⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】(1)21322y x x =-++ ()21232y x x =--- ()2121132y x x =--+-- ()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦ ()21122y x =--+ (2)∵()21122y x =--+ ∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式.【答案】二次函数的解析式为y=﹣2(x+1)2+2.【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6,解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4);(3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点.(1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式.【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=, ∵a =﹣1<0,∴二次函数的图象开口向下,∵x <0时,y 随x 的增大而增大, ∴312m -≥0, 解得m ≥13, (2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0),∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63.18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3.(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3∴, ∴, ∴函数y 1的表达式为y =3x 2﹣3x ﹣2;(2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。
基于数学核心素养的初高中知识衔接探究——以“二次函数、二次方程、二次不等式”为例
基于数学核心素养的初高中知识衔接探究——以“二次函数、二次方程、二次不等式”为例1 问题提出在读学生、毕业生经常问“高中学函数有什么用,日常买个水果又用不到函数,小学知识就够了,为什么还要学这么多函数来折磨我们!”初中数学直观、具体,高中数学抽象,由初中学段步入高中学段,学生有很多方面不适应:由直观向抽象过渡的不适应,由自然语言表达向图形语言、符号语言表达转换的不适应,课堂容量激增的不适应,思维方式的不适应等,造成高中数学学习困难。
教师应针对这这些不适应帮助学生完成从初中数学到高中数学学习的过渡,包括知识与技能、方法与习惯、能力与态度等万面。
这些方面是高中数学核心素养集中体现。
2 数学核心素养高中数学课程以学生发展为本,落实立德树人根本任务,培育科学精神和创新意识,提升数学学科核心素养。
高中数学课程面向全体学生,实现: 人人都能获得良好的数学教育,不同的人在数学上得到不同的发展[1]。
2016年以来,“核心素养”为教育界关注的焦点。
“数学核心素养”也备受瞩目,数学核心素养包含数学思维方式、数学关键能力以及通过数学活动进行人格养成等三个部分。
教师特别关注的“数学关键能力”则归纳为数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六个方面。
这些数学核心素养既有独立性,又相互交融,形成一个有机整体。
“数学核心素养”的界定反映了数十年我国对数学教育目标的共识[2]。
史宁中教授:数学教育的终极目标会用数学的眼光观察现实世界;会用数学的思维思考现实世界;会用数学的语言表达现实世界[3]。
在教学中,根据具体情境抽象出数学模型,也就是用数学的眼光观察世界,这是教学上的难点。
前面学生提出的问题“高中学函数有什么用,日常买个水果又用不到函数,小学知识就够了,为什么还要学这么多函数来折磨我们!”反映出学生不能用数学的眼光观察世界。
回答这一问题引用实例:如果你们家是卖文具的,假如一本精美手账本进价40元,定价为60元,每周可以卖出300本,如果每涨价1元,每周少卖10本;每降价1元,每周可多卖20本。
衔接2二次函数
m2 3
是二次函数, 且图像开
口向上,则 m 的值为_
5 二次函数 y ax bx c 的顶点
2
坐标为(0,3) ,且经过点(-2,-1) , 则其解x bx c 的图象如图 例 1 二次函数
1 所示,则下列结论正确的是( A. a 0,b 0,c 0 B. a 0,b 0,c 0 C. a 0,b 0,c 0 D. a 0,b 0,c 0 图1
D
y ax b 体验 2 已知二次函数 与
2
y 3x 4 的图象关于 x 轴对称,
2
则a
,b
例 2 已知二次函数 y=ax +bx+c 的图象 与 x 轴交于 A(1,0),B(3,0)两点, 与 y 轴交于点 C (0,3),则二次函数 的解析式是 .
2
体验 3 二次函数 y 3x 4 与一次函数 y x b 只有唯一公共点,则 b
2
已知抛物线 y=x -2x-8. (1)试说明该抛物线与 x 轴一定有 两个交点. (2)若该抛物线与 x 轴的两个交点 分别为 A、B(A 在 B 的左边),且点 P 为 抛物线在 x 轴下方上的任意一点, 求 △ABP 的面积的最大值.
2
)
体验 1
物体在地球的引力作用下做自由下
1 2
2
落运动, 它的运动规律可以表示为: s= gt . 其中 s 表示自某一高度下落的距离,t 表示 下落的时间, g 是重力加速度.若某一物体从 一固定高度自由下落,其运动过程中下落的 距离 s 和时间 t 函数图象大致为( )
s s s s O O t O t O t t
2 若函数 y=4x +1 的函数值为 5, 则自变 量 x 的值应为( ) A.1 B.-1
初高中二次函数衔接内容
1、二次函数的定义定义: y=ax ² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式练习:1、y=-x ²,y=2x ²-2/x ,y=100-5 x ²,y=3 x ²-2x ³+5,其中是二次函数的有____个。
2.当m_______时,函数y=(m+1)χ - 2χ+1 是二次函数?2、二次函数的图像及性质例2:已知二次函数(1)求抛物线开口方向,对称轴和顶点M 的坐标。
(2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。
(3)x 为何值时,y 随的增大而减少,x 为何值时,y 有最大(小)值,这个最大(小)值是多少?(4)x 为何值时,y<0?x 为何值时,y>0?抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+c(a>0)y=ax 2+bx+c (a<0)由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而减小. .在对称轴的左侧,y 随着x 的增大而增大. 在.⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线mm -223212-+=x x y【考题1】(2009、贵阳).抛物线y =-4(x +2)2+5的对称轴是______ 【考题2】(2009、宁安)函数y= x 2-4的图象与y 轴的交点坐标是( ) A.(2,0) B.(-2,0) C.(0,4) D.(0,-4)【考题3】(2009、贵阳)已知抛物线21(4)33y x =-- 的部分图象(如图1-2-1),图象再次与x轴相交时的坐标是( ) A .(5,0) B.(6,0) C .(7,0) D.(8,0)【考题4】(深圳)二次函数c bx ax y ++=2图像如图所示,若点A(1,1y ),B(2,2y )是它的图像上两点,则1y 与2y 的大小关系是()A.1y <2y B.1y =2y C.1y >2y D.不能确定练习1.抛物线y=x 2-4x +5的顶点坐标是( ) A .(-2,1) B .(-2,-1) C .(2,l ) D .(2,-1)2.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x =-3,顶点坐标为(3,5) B .开口向下,对称轴x =3,顶点坐标为(3,5) C .开口向上,对称轴x =-3,顶点坐标为(-3,5) D .开口向上,对称轴x =-3,顶点(-3,-5)3.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )A . 4=x B. 3=x C. 5-=x D. 1-=x4.已知二次函数c bx ax y ++=21(a ≠0)与一次函数y 2=kx+m(k ≠0)的图象相交于点A (-2,4),B(8,2),如图1-2-7所示,能使y 1>y 2成立的x 取值范围是_______三.二次函数的图象与系数的关系1、a 的符号:a 的符号由抛物线的开口方向决定.抛物线开口向上,则a >0;抛物线开口向下,则a <0.2、b 的符号由对称轴决定,若对称轴是y 轴,则b=0;若抛物线的顶点在y 轴左侧,顶点x=-3yO的横坐标-2b a <0,即2ba>0,则a 、b 为同号;若抛物线的顶点在y 轴右侧,顶点的横坐标-2b a >0,即2ba<0.则a 、b 异号.间“左同右异”. 3.c 的符号:c 的符号由抛物线与y 轴的交点位置确定.若抛物线交y 轴于正半,则c >0,抛物线交y 轴于负半轴.则c <0;若抛物线过原点,则c=0.4.△的符号:△的符号由抛物线与x 轴的交点个数决定.若抛物线与x 轴只有一个交点,则△=0;有两个交点,则△>0.没有交点,则△<0 .5、a+b+c 与a -b+c 的符号:a+b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(1,a+b+c )的纵坐标,a -b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(-1,a -b +c )的纵坐标.根据点的位置,可确定它们的符号.【考题1】(2009、潍坊)已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0 C .a <0,b >0,c >0 D .a >0,b <0,c >0【考题2】(2009、天津)已知二次函数c bx ax y ++=2(a≠0)且a <0,a -b+c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤0 【考题3】(2009、重庆)二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,c a )在( )A .第一象限B .第二象限C .第三象限D .第四象限练习1.已知函数c bx ax y ++=2的图象如图1-2-11所示,给出下列关于系数a 、b 、c 的不等式:①a <0,②b <0,③c >0,④2a +b <0,⑤a +b +c >0.其中正确的不等式的序号为___________-2.已知抛物线c bx ax y ++=2与x 轴交点的横坐标为-1,则a +c=_________.四、抛物线解析式的三种方法的互相转化1、一般式:已知抛物线上的三点,通常设解析式为________________ y=ax2+bx+c(a ≠0)2,顶点式:已知抛物线顶点坐标(h, k ),通常设抛物线解析式为_______________求出表达式后化为一般形式. y=a(x-h)2+k(a ≠0)3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_____________ 例 将下列二次函数的解析式转化成其他两种形式 (1)y =x 2-x -6· (2)y =21x 2+3 x +256二次函数与一元二次方程的关系一元二次方程根的情况与b ²-4ac 的关系我们知道:代数式b2-4ac 对于方程的根起着关键的作用.二次函数y=ax ²+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax ²+bx +c=0的解。
对初高中函数教学衔接问题的探讨——以二次函数为例
-057-2021年第12期︵总第264期︶教学案例JIAOXUE ANLI引 言函数概念是中学数学中一个十分重要的基本概念,在整个中学阶段的数学学习中起着非常重要的作用。
在初中阶段,学生只需了解函数的基本概念及基本性质,如单调性、奇偶性、周期性等即可。
而不同于初中函数的学习,高中阶段,学生要学习函数的概念、定义域、函数解析式等更加抽象的内容。
函数的基本性质也需要在任意函数中体现出来,而并不只局限于某一特殊函数[1]。
正是这些严密抽象的数学语言、多变丰富的表达方式,使得函数成为刚步入高中阶段的学生最难理解与掌握的内容。
因此,要想做好高中函数的入门教学工作,教师就要处理好二次函数的教学衔接工作。
本文主要从初高中二次函数的教学差异着手,提出了初高中二次函数教学衔接的具体建议。
一、初高中二次函数教学差异(一)要求不同初中对二次函数的要求相对较低,只要求学生了解常量与变量的含义,能从变量的角度来理解二次函数的概念,能通过描点、画图掌握二次函数的性质,熟练掌握二次函数的顶点、函数的对称轴、有无最值的求解即可。
高中对二次函数的要求则相对较高,要求学生学会用集合对应的语言来刻画二次函数,并且此阶段学习的二次函数更加抽象、复杂。
对于二次函数解析式和最值的考查,在初中的教学中,教师往往会通过以下例题引入。
例1:已知抛物线y =ax 2+bx +c 经过A (-1,10),B (1,4),C (2,7)三点。
(1)求该抛物线的解析式;(2)利用配方法或公式法求该抛物线的顶点坐标和对称轴。
解:(1)由已知的三点,可得关于a ,b ,c 的三元一次方程组解这个方程组,得a =2,b =-3,c =5.所求二次函数是y =2x 2-3x +5(2)根据公式法,对称轴,顶点坐标是,则y =2x 2-3x +5的对称轴为34,顶点坐标为.而在高中数学教学中,例题的难度会增加很多。
例2:已知f (x )=ax 2-2x +1,若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式.解:因为,由13≤a ≤1,得1≤1a ≤3,所以.当1≤1a ≤2,即12≤a ≤1时,M (a )=f (3)=9a -5,故;当2≤1a≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故.所以由以上例题可知,初中求解二次函数的解析式一般是用待定系数法,求顶点或顶点坐标一般也采用配方法或者公式法;而学习高中二次函数,要求学生能够熟练地应用配方法讨论函数的对称轴及最值问题,理解不同形式的最值、单调性问题,掌握所应用的数形结合思想、分类讨论思想及化归与转化的数学思想。
二次函数的简单应用- 初升高数学衔接(解析版)
二次函数的简单应用- 初升高数学衔接(解析版)高中必备知识点1:平移变换问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.典型考题【典型例题】如图,抛物线经过两点,顶点为D.求a和b的值;将抛物线沿y轴方向上下平移,使顶点D落在x轴上.求平移后所得图象的函数解析式;若将平移后的抛物线,再沿x轴方向左右平移得到新抛物线,若时,新抛物线对应的函数有最小值2,求平移的方向和单位长度.【答案】将抛物线向左平移个单位长度或向右平移个单位长度.【解析】代入,得:,解得:.,抛物线顶点D的坐标为.将抛物线沿y轴平移后,顶点D落在x轴上,平移后的抛物线的顶点坐标为,平移后的抛物线为,即.若将抛物线向左平移个单位长度,则新抛物线的解析式为,时,新抛物线对应的函数有最小值2,新抛物线必过点,,解得:舍去;若将抛物线向右平移个单位长度,则新抛物线的解析式为,时,新抛物线对应的函数有最小值2,新抛物线必过点.,解得:舍去.将抛物线向左平移个单位长度或向右平移个单位长度.【变式训练】已知抛物线,把它向上平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若是直角三角形,那么原抛物线应向上平移几个单位?【答案】向上平移3个单位.【解析】由题意知,必为等腰直角三角形,设平移后的抛物线为,则,代入抛物线方程得:,舍去.所以向上平移3个单位.【能力提升】已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的项点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.【答案】(1)y=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)图象向下平移1个单位得到:y=(x﹣1)2.【解析】(1)y=x(x﹣2)+2=x2﹣2x+2=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)∵将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,∴图象向下平移1个单位得到:y=(x﹣1)2.高中必备知识点2:对称变换在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题.典型考题【典型例题】如图,抛物线y=ax²-2x+c(a≠0)与x轴,y轴分别交于点A,B,C三点,已知点(-2,0),C(0,-8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EB直线EP折叠,使点B 的对应点B'落在抛物线的对称轴上,求点P的坐标;【答案】(1)y=x2﹣2x﹣8;D(1,﹣9);(2)P().【解析】(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=﹣8.∴抛物线的解析式为y=x2﹣2x﹣8.∵y=(x﹣1)2﹣9,∴D(1,﹣9).(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0).∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0).∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线.∴∠BEP=45°.设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x=或x=.∵点P在第四象限,∴x=.∴y=.∴P().【变式训练】已知二次函数的图象的顶点坐标为(3,-2),且与y轴交于(0,).(1)求函数的解析式;(2)若点(p,m)和点(q,n)都在该抛物线上,若p>q>5,判断m和n的大小.【答案】(1)y=(x-3)2-2.(2)m>n.【解析】(1)由题意设函数的解析式为y=a(x-3)2-2,根据题意得9a-2=解得a=,所以函数解析式是y=(x-3)2-2.(2)因为a=>0,所以抛物线开口向上,又因为二次函数的对称轴是直线x=3.所以当x>3时,y随x增大而增大,因为p>q>5>3,所以m>n.【能力提升】已知抛物线经过点(1,-2).(1)求的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【答案】(1)a=-1;(2)y1<y2.【解析】(1)、∵抛物线经过点(1,-2),∴,解得a=-1;(2)、∵函数的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.高中必备知识点3:分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.典型考题【典型例题】函数1()01xf xx-⎧⎪=⎨⎪+⎩)0()0()0(<=>xxx,则))1((ff的值是___.【答案】0 【解析】∵函数f(x)100010x xxx x-⎧⎪==⎨⎪+⎩,>,,<,∴f (1)=1﹣1=0, f (f (1))=f (0)=0. 故答案为:0.【变式训练】已知函数,若,则_________.【答案】【解析】,故,填.【能力提升】函数__________.【答案】1. 【解析】 由题意得.故答案为:1.专题验收测试题1.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B 【解析】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2, 解得,AB=5cm . 下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=;当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B . 故选:B .2.如图,在四边形ABCD 中,AD ∥BC ,DC ⊥BC ,DC =4cm ,BC =6cm ,AD =3cm ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA ﹣AD ﹣DC 运动到点C ,点Q 以1cm /s 的速度沿BC 运动到点C ,设P ,Q 同时出发xs 时,△BPQ 的面积为ycm 2.则y 与x 的函数图象大致是( )A.B.C.D.【答案】B【解析】作AE⊥BC于E,根据已知可得,AB2=42+(6﹣3)2,解得,AB=5cm.当0≤x≤2.5时:P点由B到A,△BPQ的面积从小到大,且达到最大此时面积=12×2.5×4=5cm2.当2.5≤x≤4时,即P点在AD上时,1422y x x=⨯=,且增大值为:21448cm2⨯⨯=;当4≤x≤6时,即P点从D到C时,y=1(122)2x x⋅-=﹣x2+6x.故符合y与x的函数图象大致是B.故选B.3.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E,设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.【答案】D【解析】解:如图,连接DE ,∵△PC′D 是△PCD 沿PD 折叠得到, ∴∠CPD =∠C′PD , ∵PE 平分∠BPC′, ∴∠BPE =∠C′PE , ∴∠EPC′+∠DPC′=12×180°=90°, ∴△DPE 是直角三角形,∵BP =x ,BE =y ,AB =3,BC =5,∴AE =AB ﹣BE =3﹣y ,CP =BC ﹣BP =5﹣x , 在Rt △BEP 中,PE 2=BP 2+BE 2=x 2+y 2,在Rt △ADE 中,DE 2=AE 2+AD 2=(3﹣y )2+52, 在Rt △PCD 中,PD 2=PC 2+CD 2=(5﹣x )2+32, 在Rt △PDE 中,DE 2=PE 2+PD 2, 则(3﹣y )2+52=x 2+y 2+(5﹣x )2+32, 整理得,﹣6y =2x 2﹣10x , 所以y =21533x x -+(0<x <5), 纵观各选项,只有D 选项符合. 故选:D .4.某种圆形合金板材的成本y (元)与它的面积(cm 2)成正比,设半径为xcm ,当x =3时,y =18,那么当半径为6cm 时,成本为( ) A .18元 B .36元C .54元D .72元【答案】D 【解析】解:根据题意设y =k πx 2, ∵当x =3时,y =18, ∴18=k π•9,则k=2π,∴y=kπx2=2π•π•x2=2x2,当x=6时,y=2×36=72,故选:D.5.把一个足球垂直于水平地面向上踢,该足球距离地面的高度(米)与所经过的时间(秒)之间的关系为. 若存在两个不同的的值,使足球离地面的高度均为(米),则的取值范围()A.B.C.D.【答案】C【解析】∵a≥0,由题意得方程10t-t2=a有两个不相等的实根∴△=b2-4ac=102+4××a>0得0≤a<50又∵0≤t≤14∴当t=14时,a=h=10×14-×142=42所以a的取值范围为:42≤a<50故选:C.6.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=-6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米【答案】C【解析】解:把t=,s=6代入s=-6t2+bt得,6=-6×+b×,解得,b=15∴函数解析式为s=-6t2+15t=-6(t-)2+,∴当t=时,s取得最大值,此时s=,故选:C.7.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A.1 B.C.2﹣D.2+【答案】A【解析】设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D连接AB,AC,∵y=(x﹣2)2﹣1,∴顶点A(2,﹣1),AD=n﹣(﹣1)=n+1∵直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B、C,∴(x﹣2)2﹣1=n,化简,得x2﹣4x+2﹣2n=0,x1+x2=4,x1x2=2﹣2n,∴BC=|x1﹣x2|=,∵点B、C关于对称轴直线AD对称,∴D为线段BC的中点,∵△ABC是等腰直角三角形,∴AD=BC,即BC=2AD=2(n+1),∴(2+2n)=(n+1)2,化简,得n2=1,∴n=1或﹣1,n=﹣1时直线y=n经过点A,不符合题意舍去,所以n=1.故选:A.8.如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.20m C.15m D.22.5m【答案】C【解析】根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则,解得:,所以x=-=15(m).故选C.9.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】解:由题意,抛物线的解析式为y=at(t-9),把(1,8)代入可得a=-1,∴y=-t2+9t=-(t-4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③.故选B.10.某一型号飞机着陆后滑行的距离S(单位:米)关于滑行的时间t(单位:秒)之间的函数解析式是S =﹣1.5t2+60t,则该型号飞机着陆后滑行()秒才能停下来.A.600 B.300 C.40 D.20【答案】D【解析】解:由题意,s=﹣1.5t2+60t,=﹣1.5(t2﹣40t+400﹣400)=﹣1.5(t﹣20)2+600,即当t=20秒时,飞机才能停下来.故选:D.11.如图是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处双测P处,仰角分别为α、β,且tanα=12,tanβ=23,以O为原点,OA所在直线为x轴建立直角坐标系.P点坐标为_____;若水面上升1m,水面宽为_____m.【答案】33,2⎛⎫⎪⎝⎭; 22 【解析】解:(1)过点P 作PH ⊥OA 于H ,如图. 设PH =3x , 在Rt △OHP 中, ∵tanα=PH 1OH 2=, ∴OH =6x . 在Rt △AHP 中, ∵tanβ=32PH AH =, ∴AH =2x ,∴OA =OH +AH =8x =4, ∴x =12, ∴OH =3,PH =23, ∴点P 的坐标为(3,23); 故答案是:(3,23); (2)若水面上升1m 后到达BC 位置,如图,过点O (0,0),A (4,0)的抛物线的解析式可设为y =ax (x ﹣4),∵P (3,23)在抛物线y =ax (x ﹣4)上, ∴3a (3﹣4)=23,解得a =﹣12,∴抛物线的解析式为y =﹣12x (x ﹣4).当y =1时,﹣12x (x ﹣4)=1,解得x 1=2+2,x 2=2﹣2,∴BC =(2+2)﹣(2﹣2)=22. 故答案是:22.12.某一房间内A 、B 两点之间设有探测报警装置,小车(不计大小)在房间内运动,当小车从AB 之间经过时,将触发报警.现将A 、B 两点放置于平面直角坐标系xOy 中(如图)已知点A ,B 的坐标分别为(0,4),(5,4),小车沿抛物线y =ax 2-2ax -3a 运动.若小车在运动过程中只触发一次报警,则a 的取值范围是______【答案】a <-43或a >13【解析】解:抛物线y=ax 2-2ax-3a=a (x+1)(x-3),∴其对称轴为:x=1,且图象与x 轴交于(-1,0),(3,0). 当抛物线过点(0,4)时,代入解析式得4=-3a , ∴a=43-,由对称轴为x=1及图象与x 轴交于(-1,0),(3,0)可知,当a <43-时,抛物线与线段AB 只有一个交点;当抛物线过点(5,4)时,代入解析式得25a-10a-3a=4,∴a=13,同理可知当a >13时,抛物线与线段AB 只有一个交点. 故答案为:a <43-或a >13.13.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是___m2.【答案】300.【解析】如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴矩形区域ABCD的面积S=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则S=﹣x2+30x(0<x<40);∵S=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,S有最大值,最大值为300m2.故答案为:300.14.某民房发生火灾.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D处喷出,水流正好经过E,F.若点B和点E、点C和点F的离地高度分别相同,现消防员将水流抛物线向上平移5m,再向左后退_____m,恰好把水喷到F处进行灭火.【答案】5【解析】由图可知:A(0,21.2),B(0,9.2),C(0,6.2),D(0,1.2),∵点B和点E、点C和点F的离地高度分别相同,∴E(20,9.2),设AE的直线解析式为y=kx+b,,∴,∴y=﹣x+21.2,∵A,E,F在同一直线上.∴F(25,6.2),设过D,E,F三点的抛物线为y=ax2+bx+c,∴,∴,水流抛物线向上平移5m,设向左退了m米,∴D(0,6.2),设平移后的抛物线为,经过点F,∴m=5或m=﹣25(舍),∴向后退了5米.故答案为5.15.某网店销售某种商品,成本为30元/件,当销售价格为60元件/时,每天可售出100件,经市场调查发现,销售单价每降1元,每天销量增加10件.当销售单价为__________元时,每天获取的利润最大.【答案】50【解析】解:设当销售单价为x元时,每天获取的利润为y元,则y=(x-30)[100+10(60-x)]=-10x2+1000x-21000=-10(x-50)2+4000,∴当x=50时,y有最大值,且为4000,故答案为:50.16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为.由此可知,铅球推出的距离是__________m.【答案】10【解析】在中,当,解得(舍去).即铅球推出的距离是10m.故答案为:1017.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.【答案】(1)详见解析;(2)详见解析;(3)经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.【解析】解:(1)图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发,图②表示批发量高于60kg的该种水果,可按4元/kg批发;(2)由题意得:5(2060)4(60)m mwm m≤≤⎛=<⎝,函数图象如图所示.由图可知批发量超过60时,价格在4元中,所以资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果;(3)设日最高销售量为xkg(x>60),日零售价为p,设x=pk+b,则由图②该函数过点(6,80),(7,40),代入可得:x=320﹣40p,于是p=32040x-,销售利润y=x(32040x-﹣4)=﹣140(x﹣80)2+160当x=80时,y最大值=160,此时p=6,即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.18.某商品现在的售价为每件30元,每星期可卖出160件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出2件.已知商品的进价为每件10元.(1)在顾客得到实惠的情况下,如何定价商家才能获得4200元的利润?(2)如何定价才能使利润最大?【答案】(1)在顾客得到实惠的情况下,售价为40(80舍)元时商家才能获得4200元的利润;(2)售价为60元时利润最大为5000元.【解析】(1)设商品的涨价x元,由题意得:(30+x-10)(160-2x)=4200,整理得:x2-60x+500=0,解得:x=10或50,故为尽可能让利于顾客并使每周利润为4200元,取x的值为10,所以,在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)由题意得:y=(30+x-10)(160-2x)=-2x2+120x+3200,=-2(x-30)2+5000∵-2<0,∴当x=30时,y取得最大值,此时y=5000(元),即当售价为60元时,会获得每周销售最大利润,每周最大销售利润为5000元.19.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【答案】(1)花园的面积为192m 2,x 的值为12m 或16m ;(2)x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)当x =28﹣a 时,函数有最大值,y=﹣(14﹣a )2+196.【解析】解:(1)依题意得 S =x (28﹣x ),当S =192时,有S =x (28﹣x )=192,即x 2﹣28x +192=0,解得:x 1=12,x 2=16,答:花园的面积为192m 2,x 的值为12m 或16m ;(2)由题意可得出:S =x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196,答:x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)依题意得:286x a x -≥⎧⎨≥⎩, 解得:6≤x ≤28﹣a ,S =x (28﹣x )=﹣x 2+28x =﹣(x ﹣14)2+196,∵a =﹣1<0,当x ≤14,y 随x 的增大而增大,又6≤x ≤28﹣a ,∴当x =28﹣a 时,函数有最大值,∴y =﹣(28﹣a ﹣14)2+196=﹣(14﹣a )2+196.20.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】试题分析:(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.试题解析:(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得解得∴y=-2x+80.(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.21.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系;(2)写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;(3)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(4)你认为每天赢利900元,是牛奶销售中的最大利润吗?为什么?【答案】(1)y=﹣3x+240;(2)w=﹣3x2+360﹣9600;(3)50;(4)不是,理由见解析.【解析】(1)y=30+3(70﹣x)=﹣3x+240;(2)w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600;(3)当w=900时,(x﹣40)(﹣3x+240)=900整理得:x2﹣120x+3500=0∴x1=50,x2=70,∵要使顾客得到实惠,∴x=70舍去∴每箱价格定为50元;(4)由w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600得w=﹣3(x﹣60)2+1200w最大=1200(元)∴赢利900元不是销售的最大利润.22.(本题满分10分)我市某高科技公司生产一种矩形新型材料板,其长宽之比为3∶2,每张材料板的成本c与它的面积成正比例。
初高中数学中函数的衔接问题
谈谈初高中数学中函数的衔接问题摘要:函数是高中数学研究的重点,在研究高中函数知识之前,把初中学的函数,尤其是二次函数问题,进行补充性的学习,对高中知识做好渗透工作,为学生进一步学习函数打好基础。
关键词:数学;函数;衔接函数思想是高中数学中的一种重要思想,它具有很强的抽象性和实用性。
一直以来都是高中数学研究的重点。
可是我们的学生在初中阶段接触的函数思想很有限,到了高中以后,直接对函数进行研究,这样一来学生觉得很费力,所以在研究高中知识之前,有必要把初中学过的函数——一次函数、反比例函数、二次函数再进行一下补充性的学习,对高中的知识做好渗透工作,这样一来对学生进一步学习函数会有相当大的好处。
一、定义域的认识在初中的教学中,已给出了函数的概念,对于定义域的认识学生还不是很清楚,我们都知道函数有三要素,就是定义域、值域、对应法则。
研究函数必须在定义域优先的情况下去研究,所以对定义域的认识就显得尤为重要了。
为了让学生尽快明白函数的定义域是什么,不妨直白地告诉他们,就是自变量的取值范围。
针对具体函数:y=2x+3来说吧,就是这里x的取值,这里的x取值没有特别要求,所以可以取到全体实数,所以此函数的定义域就为r。
而如果题目交待,在x大于零时,研究函数y=2x+3,此时的函数定义域就不是全体实数,而是(0,+∞),这里需要说明的是,给出一个函数,如果没有特别说明的话,就是自然定义域(所谓自然定义域,就是能使函数有意义的所有自变量的取值),如果有说明的,按照说明给出定义域。
再比如函数y=2/x的定义域为(-∞,0)∪(0,+∞),这里的自变量的取值就是自然取值。
所以,在对具体函数进行研究时,一定要注意题目隐含的条件,不要把函数的定义域找错。
二、利用熟悉的函数图像渗透函数单调性一次函数是学生接触的第一个函数,也是最简单的函数。
不妨就先利用此类函数,说明一下函数的单调性问题。
就还用函数y=2x+3来说明吧。
此函数学生很容易能画出函数图像,就它的图像进行一下说明,这里的函数图像从左到右是从低到高的,也就是说,这里的y的取值是随x的增大而增大的。
初高中教材衔接之因式分解与二次函数
11.若
分别是一元二次方程
的两根,求值:
(1)
.
14
欢迎加入新高一学习资料分享群,群号码:530390668
专题四 一元二次方程根与系数的关系
一元二次方程
由配方法可化为
,
因为
,所以
,所以方程是否有解就取决于
与 0的大小关系了。因此
我们把
叫做一元二次方程
的根的判别式,通常用“△ 来表
示。当△>0时,方程有两个不等的实数根;当△=0时,方程有两个相等的实数根;当△ <0时,方程没有实数根。而且无论是判别式还是方程的根的值都是由一元二次方程
12
欢迎加入新高一学习资料分享群,群号码:530390668
1.用适当的方法解下列方程:
(1)
(2)
(3)
(4)
(5) 2.解下列关于 的方程 (1)
(6) (2)
1.方程
的根是( )
A.5
B.-5
C.5或-5
D.5或 0
2.多项式 A.3或 7
的值等于 11,则 的值为( )
B.-3或 7
C.3或-7
(2) 由思考我们可以得到下列公式 立方差公式
立方和公式 逆过来我们又得到了一组公式
例1. 化简:
1
欢迎加入新高一学习资料分享群,群号码:530390668
分析:根据和的立方公式把
展开,化简即可
解:
例 2.当
时,求
的值。
解:
=
例 3.化简
解:法一:
法二:
利用完全平方公式展开得到
例 4.已知 解:∵ ∴
二、配方法:用配方法解方程 ;然后将二次项系数化为 1:
项系数的一半的平方:
初高中数学衔接知识(二次函数)
∴可设二次函数为 y a(x 3)(x 1) (a 0) ,即 y ax2 2ax 3a .
顶点的纵坐标为 12a2 4a2 4a , 4a
∵二次函数图象的顶点到 x 轴的距离为 2,∴| 4a | 2 a 1 . 2
∴二次函数的表达式为 y 1 x2 x 3 或 y 1 x2 x 3 .
当 x b 时,函数取最大值 y 4ac b2 .
2a
4a
2019年8月6日星期二
一、二次函数 y ax2 bx c (a 0) 的图像和性质
【例 1】 请您求出二次函数 y 3x2 6x 1的图象的开口方向、对称轴方程、顶点坐标、最大值 (或最小值),并指出当 x 取何值时, y 随 x 的增大而增大(或减小),并画出该函数的图象.
二、二次函数的三种表示方式
1.一般式: y ax2 bx c (a 0) . 2.顶点式: y a(x h)2 k(a 0) ,顶点坐标是 (h, k) . 3.交点式: y a(x x1)(x x2 ) (a 0) ,其中 x1, x2 是二次函数图象与 x 轴交点的横坐标.
2
2
2
2
说明:在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.
通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点
式来求二次函数的表达式?
2019年8月6日星期二
方法探究
二次函数表达式的求法 根据已知条件确定二次函数表达式,一般用待定系数法,选 择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与x轴两交点坐标,宜选用交点式.
2019年初升高数学衔接辅导之二次函数y=ax2+bx+c的图像和性质(含答案)
04二次函数y =ax 2+bx +c 的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2高中必备知识点2:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.52.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣23.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y 3的大小关系为( ). A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 16.下列函数是二次函数的是( ). A .y =2x B .y =1x+x C .y =x +5D .y =(x +1)(x ﹣3)7.下列对二次函数2y x x =-的图象的描述,正确的是( ) A .经过原点 B .对称轴是y 轴 C .开口向下D .在对称右侧部分是向下的8.已知函数y =(x ﹣a )(x ﹣b )(其中a >b )的图象如图所示,则函数y =ax +b 的图象大致是( )A .B .C .D .9.如图,已知抛物线y =ax 2+bx +c 经过点(﹣1,0),以下结论:①2a +b >0;②a +c <0;③4a +2b +c >0;④b 2﹣5a 2>2a c .其中正确的是( )A .①②B .③④C .②③④D .①②③④10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),B(4,0),与直线y=32x﹣3交于点C(0,﹣3),直线y=32x﹣3与x轴交于点D.(1)求该抛物线的解析式(2)点P是抛物线上第四象限上的一个动点连接PC,PD,当△PCD的面积最大时,求点P的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin∠BEO最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.专题04二次函数y=ax2+bx+c的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【答案】C【解析】由图象可得,,,故错误,当时,,故正确,当时,,由得,,则,得,故正确,,得,故正确,故选:C.【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【答案】C【解析】A、a=-2<0,抛物线开口向下,当x=0时,y有最大值是0,故该选项正确;B、二次函数y=4x2中,当x>0时,y随x的增大而增大,故该选正确;C、因为|2|>|-1|>|-0.5|,所以,y=2x2的图象开口最小,y=-0.5x2的图象开口最大,故该选错误;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,故该选正确.故选C.【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【答案】A【解析】∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是y=x2,故选A.高中必备知识点2:二次函数图像的平移变换函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y=2(x+1)2+1与y=2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y=2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)y =x 2﹣4(2)当m =3时,以点A ,N ,E ,M 为顶点的四边形是矩形 【解析】(1)∵抛物线C 1的顶点为(0,4), ∴沿x 轴翻折后顶点的坐标为(0.﹣4),∴抛物线C 2的函数表达式为y =x 2﹣4;(2)存在连接AN ,NE ,EM ,MA ,依题意可得:M (﹣m ,4),N (m ,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【答案】(1)A(-2,0),B(3,5),C(8,10);(2)先将向右平移5个单位,再向上平移5个单位得到;(3)P(0,).【解析】(1)M1:y=x2-4与x轴的负半轴相交于点A,∴A(-2,0),∵AB=BC,C(8,m),∴,设AB直线解析式为y=kx+b,∵y=x2-4与相交于点A和B,∴m=10,∴B(3,5),C(8,10);(2)∵抛物线M1平移得到抛物线M2,∴a=1,∵B(3,5),C(8,10)在抛物线y=x2+bx+c上,∴y=x2-10+26=(x-5)2+1,由M1平移得到抛物线M2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B关于y轴的对称点B',连接CB'与y轴的交点即为P,∴B'(-3,5),设直线B'C的直线解析式为y=mx+n,.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)把x=﹣2代入y=﹣x2+2x+3得y=﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.5【答案】C【解析】的对称性,逐一判断.【详解】根据图表,抛物线与x轴的一个交点为(﹣2,0),∴①正确;根据图表,抛物线与y轴交与(0,6),②正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x=,∴③正确;设抛物线经过点(x,0),∴x=解得:x=3∴抛物线一定经过(3,0),④正确;在对称轴左侧,y随x增大而增大,∴⑤错误,故选C.2.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣2【答案】B【解析】由题意可知,当P在M点时,x1有最小值﹣4,∵M的坐标分别为(﹣1,2),∴x2=2;∴x2与对称轴的距离是3;当P在N点时,x2有最大值,∵N的坐标分别为(1,2),∴x2的最大值为4.故选B.3.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④【答案】C【解析】∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y=2x=1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.【答案】C【解析】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y3的大小关系为( ).A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【答案】B【解析】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.6.下列函数是二次函数的是( ).A .y =2xB .y =1x +xC .y =x +5D .y =(x +1)(x ﹣3)【答案】D【解析】解:A 、y =2x ,是一次函数,故此选项错误;B 、y =1x +x ,不是整式,故此选项错误;C 、y =x +5,是一次函数,故此选项错误;D 、y =(x +1)(x ﹣3),是二次函数,故此选项正确.故选:D .7.下列对二次函数2y x x =-的图象的描述,正确的是()A .经过原点B .对称轴是y 轴C .开口向下D .在对称右侧部分是向下的【答案】A【解析】解:A 、当x =0时,y =x 2﹣x =0,∴抛物线经过原点,选项A 正确;B 、∵122ba -=, ∴抛物线的对称轴为直线12x =,选项B 不正确;C 、∵a =1>0,∴抛物线开口向上,选项C 不正确;D 、∵a >0,抛物线的对称轴为直线12x =, ∴当12x >时,y 随x 值的增大而增大,选项D 不正确.故选:A .8.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b的图象大致是()A.B.C.D.【答案】C【解析】解:∵y=(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,∵抛物线的开口向上知二次项系数>0,与y轴的交点为在y轴负半轴上,∴ab<0,∵对称轴在y轴的右侧,二次项系数大于0,∴﹣(a+b)>0.∴a+b<0,∵a>b,∴a>0,b<0,∴y=ax+b的图象是C选项,故选:C.9.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c >0;④b2﹣5a2>2a c.其中正确的是( )A .①②B .③④C .②③④D .①②③④【答案】B【解析】 解:由图象可知a <0,0<﹣2b a <1, ∴b <﹣2a ,∴2a +b <0,所以①错误; ∵﹣2b a>0,a <0, ∴b >0,当x =﹣1时,y 1=a ﹣b +c =0,∴a +c =b >0,所以②错误;∵当x =2时,y >0,∴4a +2b +c >0﹣﹣﹣﹣②,所以③正确;∵过(﹣1,0),代入得a ﹣b +c =0,∴b 2﹣2ac ﹣5a 2=(a +c )2﹣2ac ﹣5a 2=c 2﹣4a 2=(c +2a )(c ﹣2a )又∵4a +2b +c >04a +2(a +c )+c >0即2a +c >0①∵a <0,∴c >0则c ﹣2a >0②由①②知(c +2a )(c ﹣2a )>0,所以b 2﹣2ac ﹣5a 2>0,即b 2﹣5a 2>2ac ,所以④正确. 故选:B .10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】 解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0,∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ), ∴﹣b 2a -=﹣2,244ac b a-=﹣9a , ∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以②结论正确,5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0,故③结论错误,∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0),∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论④正确,若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则122x x +=﹣2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =1的两根分别为x 3,x 4,则342x x +=﹣2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8,故结论⑤错误,故选:A .11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.【答案】y =(x ﹣3)2﹣4【解析】解:y =x 2﹣2x ﹣3的顶点是(1,﹣4),(1,﹣4)关于x =2的对称点是(3,﹣4),y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为y =(x ﹣3)2﹣4,故答案为:y =(x ﹣3)2﹣4.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.【答案】(2,5)【解析】解:∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2,∴当x =2时,y =ax 2+bx +c =5,∴抛物线的顶点坐标是(2,5).故答案为:(2,5).13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 【答案】12 -2x , 1 【解析】∵y =ax 2+bx +c (a ,b ,c 是常数且a ≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项∴21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1. 故答案是:12; -2x;1. 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)【答案】①③【解析】解:①∵图象与x 轴的交点A ,B 的横坐标分别为﹣1,3,∴AB =4,∴对称轴x =﹣b 2a =1, 即2a +b =0.故选项正确;②由抛物线的开口方向向上可推出a >0,而﹣b 2a=1, ∴b <0,∵对称轴x =1,∴当x =1时,y <0,∴a +b +c <0.故选项错误;③要使△ABD 为等腰直角三角形,必须保证D 到x 轴的距离等于AB 长的一半; D 到x 轴的距离就是当x =1时y 的值的绝对值.当x =1时,y =a +b +c ,即|a +b +c |=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=12,c=﹣32,故选项正确.故答案为:①③.15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.【答案】y=(x+2)2+1或y=x2+2x+5.【解析】∵y=x2+2x+3=(x+1)2+2,∴抛物线y=x2+2x+3先向左平移1个单位,再向下平移1个单位,平移后的函数关系式是:y=(x+2)2+1或y=x2+2x+5.故答案为:y=(x+2)2+1或y=x2+2x+5.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.【答案】4.【解析】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.【答案】(1)证明见解析;(2)m的值为-4或3;(3)a的值是±8.【解析】(1)证明:令y=0,a(x-m)2-a(x-m)=0,△=(-a)2-4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,解得x1=m,x2=m+1,∵x12+x22=25,∴m2+(m+1)2=25,解得m1=-4,m2=3.故m的值为-4或3;(3)解:∵x1=m,x2=m+1,∴AB=(m+1)-m=1,y=a(x-m)2-a(x-m)=a(x-m-12)2-4a,△ABC的面积=12×1×|-4a|=1,解得a=±8.故a的值是±8.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则4 30 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y =﹣2×2+6=2, ∴点P 的坐标为(2,2).19.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0),B (4,0),与直线y =32x ﹣3交于点C (0,﹣3),直线y =32x ﹣3与x 轴交于点D . (1)求该抛物线的解析式(2)点P 是抛物线上第四象限上的一个动点连接PC ,PD ,当△PCD 的面积最大时,求点P 的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin ∠BEO 最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【答案】(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,)或(﹣2,﹣. 【解析】解:(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8),即﹣8a =﹣3,解得:a =38, 则函数的表达式为:233384y x x =--;(2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD =22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值, 此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4,∴HF =,过点E 的坐标为(﹣2,﹣;同样当点E 在x 轴的上方时,其坐标为(﹣2,;故点E 的坐标为(﹣2,2,﹣).20.已知抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,作PF ⊥x 轴,垂足为F ,交AQ 于点N .(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM的函数解析式为y=32x+32.∵D为AC的中点,∴D(﹣12,1).设直线AC的解析式为y=kx+2,将点A的坐标代入得:﹣k+2=0,解得k=2,∴AC的解析式为y=2x+2.设直线DE的解析式为y=﹣12x+c,将点D的坐标代入得:14+c=1,解得c=34,∴直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围. 【答案】(1)y =x ﹣2,y =12-x 2+32+1;(2)a <12;(3)m <﹣2或m >0. 【解析】(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx +n 经过点(2,0), ∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =n 2m-, ∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限, ∴m >0, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ), ∴k =mh 2+nh +1,且h =n 2m-,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>0.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)点P的坐标是(﹣1,4)或(﹣2,3);(3)存在,CQ【解析】解:(1)∵直线y=13x+1与x轴交点为A,∴点A的坐标为(﹣3,0),∵抛物线的对称轴为x=﹣1,∴点C的坐标为(1,0),∵抛物线y=﹣x2+bx+c与x轴分别交于点A、C,。
二次函数的最值问题--初升高数学衔接课程 (教师版含解析)
第7章 二次函数的最值问题【知识衔接】————初中知识回顾————二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少. 二次函数的最值 一般二次函数求最值根据最值公式计算即可,或把对称轴代入表达式,对应的函数值就是最值。
————高中知识链接————给定自变量取值范围求二次函数的最值①如果给定的范围在对称轴的一侧,只需要计算两个端点的函数值,两个值中最大的为最大值,最小的为最小值。
②如果给定的范围包含对称轴,需要计算两个端点的函数值和顶点的纵坐标,三个值中最大的为最大值,最小的为最小值。
具体归纳如下:1、一元二次函数)0(2≠++=a c bx ax y044,02min<-=>••a a b ac y a 时,ab ac y 442max -=2、一元二次函数)0()(2>++==a c bx ax x f y 在区间[m,n]上的最值。
1°当m ab<-2 ,)()(),()(min max m f x f n f x f ==2°当22n m a b m +≤-≤,a b ac x f n f x f 44)(),()(2min max -==3°当n ab n m ≤-<+22时, a bac x f m f x f 44)(),()(2min max -==4°n ab>-2时, )()(),()(min max n f x f m f x f ==3、一元二次函数)0()(2<++==a c bx ax x f y 在区间[m,n]上的最值类比2可求得。
【经典题型】初中经典题型1.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 .【答案】152.2.已知当x 1=a ,x 2=b ,x 3=c 时,二次函数21y x mx 2=+对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是 . 【答案】5m >2-.3.已知二次函数2y x bx c =++(b ,c 为常数). (Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式; (Ⅲ)当c=b 2时,若在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【答案】(Ⅰ)二次函数取得最小值-4. (Ⅱ)542++=x x y 或542+-=x x y .(Ⅲ)772++=x x y 或1642+-=x x y .(Ⅲ)当c=b 2时,二次函数的解析式为22b bx x y ++=,它的图象是开口向上,对称轴为2bx -=的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b-<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b-≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b ->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式.(Ⅲ)当c=b 2时,二次函数的解析式为22b bx x y ++=.它的图象是开口向上,对称轴为2bx -=的抛物线. ①若2b-<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大,故当x=b 时,2223b b b b b y =+⋅+=为最小值.∴2132=b ,解得 71=b ,72-=b (舍去).②若b≤2b-≤b+3,即-2≤b≤0, 当x=2b -时,22243)2()2(b b b b b y =+-⋅+-=为最小值.∴21432=b ,解得 721=b (舍去),722-=b (舍去).高中经典题型1.二次函数213222y x x =-++的图象如图所示,当﹣1≤x≤0时,该函数的最大值是( )A .3.125B .4C .2D .0【答案】C .2.已知函数()42f x x x x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81 【解析】根据题意, ()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知, 126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅ ()()2111166x x x x =⋅-⋅-+= ()22116x x -+=()22139x ⎡⎤--+⎣⎦, ()()21123,398,9x x <<∴--+∈, ()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81. 3.已知函数,其中为常数.(1)若函数在区间上单调递减,求实数的取值范围; (2)若,都有,求实数的取值范围.【答案】(1)(2)【解析】分析:(1)根据二次函数性质得对称轴不在区间 内,解不等式可得实数的取值范围,(2) 根据二次函数图像得得在x 轴上方,即,解得实数的取值范围.详解:(1)因为开口向上,所以该函数的对称轴是因此,解得所以的取值范围是. (2)因为恒成立,所以,整理得解得因此,的取值范围是.4.如图,抛物线21251233y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC 上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )A .(4,3)B .(5,3512)C .(4,3512) D .(5,3) 【答案】C .【分析】连接PC 、PO 、P A ,设点P 坐标(m ,21251233m m -++),根据S △P AC =S △PCO +S △POA ﹣S △AOC 构建二次函数,利用函数性质即可解决问题.【解析】连接PC 、PO 、P A ,设点P 坐标(m ,21251233m m -++) 令x =0,则y =53,点C 坐标(0,53),令y =0则212501233x x -++=,解得x =﹣2或10,∴点A 坐标(10,0),点B 坐标(﹣2,0),∴S △P AC =S △PCO +S △POA ﹣S △AOC =21511251510()10232123323m m m ⨯+⨯⨯-++-⨯⨯=25125(5)1212m --+,∴x =5时,△P AC 面积最大值为12512,此时点P 坐标(5,3512).故选C .【实战演练】————先作初中题 —— 夯实基础————A 组1.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或3 【答案】B .【分析】由解析式可知该函数在x =h 时取得最小值1、x >h 时,y 随x 的增大而增大、当x <h 时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.2.一次函数与二次函数交于x轴上一点,则当时,二次函数的最小值为( )A.15 B.-15 C.16 D.-16【答案】D【解析】分析:首先根据一次函数得出与x轴的交点坐标,从而得出二次函数的解析式,根据二次函数的增减性得出函数的最值.详解:根据一次函数解析式可得与x轴的交点坐标为(-5,0),将(-5,0)代入二次函数可得:25-10-b=0,解得:b=15,∴二次函数的解析式为:,∴在中当x=-1时,函数的最小值为-16,故选D.点睛:本题主要考查的是二次函数的性质以及一次函数与x轴的交点坐标问题,属于中等难度题型.解决这个问题的关键就是得出一次函数与x轴的交点,从而得出二次函数解析式.3.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________【答案】0或4【解析】分析:根据二次函数的图像和解析式,判断出函数的最值的自变量x的值,然后根据m的范围求出m的值即可.详解:令y=5,可得x2-2x-3=5,解得x=-2或x=4所以m-2=-2,m=4即m=0或4.故答案为:0或4.点睛:此题主要考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图像直接得出,第二种配方法,第三种公式法,此题关键是根据最值构造一元二次方程求解.4.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为______.【答案】8【解析】分析:当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD 间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.详解:当点C横坐标为−3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选:D.点睛:本题主要考查二次函数的性质,待定系数法求二次函数的解析式,用直接开平方法解一元二次等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键.5.已知二次函数,当时,函数值的最小值为,则的值是________.【答案】或【解析】分析:将二次函数配方成顶点式,分m<-1、m>2和-1≤m≤2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得.详解:y=x²−2mx=(x−m)²−m²,①若m<−1,当x=−1时,y=1+2m=−2,解得:m=−;②若m>2,当x=2时,y=4−4m=−2,解得:m=<2(舍);③若−1⩽m⩽2,当x=m时,y=−m2=−2,解得:m=或m=−<−1(舍),∴m的值为−或,故答案为:−或.点睛:本题主要考查了二次函数的最值,根据二次函数的增减性分类讨论是解答本题的关键.6.若实数a,b满足a+b2=1,则2a2+7b2的最小值是_____.【答案】2【解析】分析:根据得到代入所求式子,用配方法即可求出最小值.详解:∵∴,∴∵∴∴当,即b=0时,的值最小.∴最小值是2.7.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.【答案】(1)3(2)-15(3)m=2,n=-3【解析】分析:(1)根据一次函数与x轴的交点,求出A点的坐标,然后把A点坐标和m的值代入可求出n 的值;(2)表示出二次函数的对称轴,由m的值以及二次函数的图像与性质得到二次函数的最值;(3)根据函数的对称轴的位置,分类讨论即可求出m、n的值.详解:(1)当y=x+3=0时,x=﹣3,∴点A的坐标为(﹣3,0).∵二次函数y=x2+mx+n的图象经过点A,∴0=9﹣3m+n,即n=3m﹣9,∴当m=4时,n=3m﹣9=3.(2)抛物线的对称轴为直线x=﹣,当m=﹣2时,对称轴为x=1,n=3m﹣9=﹣15,∴当﹣3≤x≤0时,y随x的增大而减小,∴当x=0时,二次函数y=x2+mx+n的最小值为﹣15.(3)①当对称轴﹣≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x2+mx+n的最小值为0,∴此情况不合题意;②当﹣3<﹣<0,即0<m<6时,如图2,有,解得:或(舍去),∴m=2、n=﹣3;③当﹣≥0,即m≤0时,如图3,有,解得:(舍去).综上所述:m=2,n=﹣3.点睛:此题主要考查了二次函数与一次函数的综合,正确判断二次函数的对称轴,以及函数的图像与性质,利用二次函数的图像与性质判断其最值是关键,解题时应用到分类讨论思想和方程思想.8.如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.学科-网【答案】(1);(2)最大值为;(3)符合条件的点的坐标为或.【解析】分析:(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)由于二次项系数a=-<0,所以抛物线有最大值,最大值为,代入计算即可;(3)先将点D(2,m)代入(1)中所求的抛物线的解析式,求出m的值,得到点D的坐标,然后假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,再分三种情况进行讨论:①PB=PD;②BP=BD;③DP=DB;每一种情况都可以根据两点间的距离公式列出关于y的方程,解方程即可.详解:(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得,解得:,所以此抛物线的解析式为y=-x2+x+4;(2)∵y=-x2+x+4,a=-<0,∴抛物线有最大值,最大值为;(3)∵点D(2,m)在抛物线y=-x2+x+4上,∴m=-×22+2+4=4,∴D(2,4),∵B(4,0),∴BD=.假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:①如果PB=PD,那么42+y2=22+(y-4)2,解得y=,所以P1(0,);②如果BP=BD ,那么42+y 2=20,解得y=±2(负值舍去),所以P 2(0,2);③如果DP=DB ,那么22+(y-4)2=20,解得y=0或8,y=0不合题意舍去,y=8时,(0,8)与D ,B 三点共线,不合题意舍去;学=科网综上可知,所有符合条件的P 点的坐标为P 1(0,),P 2(0,2).点睛:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,抛物线的最值的求法,等腰三角形的性质等知识,难度适中.运用分类讨论、方程思想是解题的关键.————再战高中题 —— 能力提升————B 组1、函数242-+-=x x y 在区间]4,1[上的最小值是( )A 、-7B 、-4C 、-2D 、2 2、已知函数322+-=x x y 在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A 、),1[+∞B 、[0,2]C 、[1,2]D 、]2,(-∞ 3、如果函数c bx x x f ++=2)(对任意实数都有)2()2(t f t f -=+,那么( )A 、)4()1()2(f f f <<B 、)4()2()1(f f f <<C 、)1()4()2(f f f <<D 、)1()2()4(f f f <<4、若0,0≥≥y x ,且12=+y x ,那么232y x z +=的最小值为( )A 、2B 、43C 、32D 、05、设21,,x x R m ∈是方程01222=-+-m mx x 的两个实数根,则2221x x +的最小值是 。
基于数学核心素养下初高中衔接之二次函数的教学策略
初高中衔接教学的具体策略说一说.
一、引导学生绘制二次函数的图像,提高学生的作图能力
先让学生画出该二次函数图像,对于第( 1) 小题,教师
可以这样提问:“ f( x) > 0 对应的函数图像是哪部分?” 引导
学生看出是 x 轴上方的图像,接下来教师问:“ x 轴上方的图
了.这种方式培养了学生的直观想象能力,渗透了数形结合
的思想,这些数学思想是高中数学重要的核心素养.
高一新生经历上述知识的衔接过程,基本掌握了二次
函数的基本特征和二次函数图像的画法,深刻认识并理解
二次函数图像的应用,为后续解决有关二次函数的问题提
供了坚实 的 基 础, 下 面 对 这 些 问 题 从 两 个 方 面 进 行 分 类
除了教学内容的衔接,还要注重培养学生学习方式、学习习
惯、学习能力和学习兴趣.
教师在初高中数学衔接教学时以衔接内容为载体给学
生渗透数形结合的思想和分类与整合的思想,可以培养他
们数学运算能力、逻辑推理能力和直观想象能力,这样慢慢
培养学生在遇到问题时选择合适的思想和方法进行解决的
能力,学生掌握好数学思想和方法,比死记硬背形式化的数
函数的最大与最小值,接着提问:“ 那怎么从函数图像得到
我们学校生源是属于中山市二类,所以高一新生大部分学
函数的最大与最小值呢?” 引导学生从 x 的取值范围找到对
生不会画二次函数的图像,更可笑的是居然还又一部分学
应的函数图像,再把对应的函数图像投影到 y 轴,图像最低
生把二次函数的图形画成直线,真是让人啼笑皆非啊! 因
所以该题同时提高了学生的数学运算能力,这些都是数学
核心素养至关重要的组成部分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数
二次函数y =ax 2
+bx +c 的图象和性质
作图(1)2x y = (2) 2x y -= (3) 322-+=x x y
问题1 函数y =ax 2与y =x 2
的图象之间存在怎样的关系?
22从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2
的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.
通过上面的研究,我们可以得到以下结论:
二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.
问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系? 利用几个特殊的函数图象之间的关系来研究它们之间的关系,可以作出函
数y =2(x +1)2+1与y =2x 2
的图象(如图2所示),从函数不难发现,只要把
函数y =2x 2
的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.
通过上面的研究,我们可以得到以下结论:
二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.
由上面的结论,我们可以得到研究二次函数y =ax 2
+bx +c (a ≠0)的图象的方法:
由于y =ax 2
+bx +c =a (x 2
+b x a
)+c =a (x 2
+
b x a
+
22
4b
a
)+c -
2
4b
a
2
2
4()24b b ac
a x a a -=+
+
,
所以,y =ax 2
+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象
作左右平移、上下平移得到的,于是,二次函数y =ax 2
+bx +c (a ≠0)具有下列性质:
(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为2
4(,
)
24b ac b a
a
--
,对称轴为直线x =-
2b a
;当x <2b a
-
时,y 随着x 的增大而减小;当x
>2b a
-时,y 随着x 的增大而增大;当x =
2b a
-
时,函数取最小值y =2
44ac b a -. (2)当a <0时,函数y =ax 2
+bx +c 图象开口向下;顶点坐标为2
4(,)24b
ac b
a a
--
,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b
a
-时,y 随着
x 的增大而减小;当x =2b
a
-
时,函数取最大值y =
2
44ac b
a
-.
上述二次函数的性质可以分别通过图3和图4直观地表示出来.因此,在解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.
图2
图1
函数y =ax 2
+bx +c 图象作图要领:
(1) 确定开口方向:由二次项系数a 决定
(2) 确定对称轴:对称轴方程为a
b x 2-
=
(3) 确定图象与x 轴的交点情况(解的个数)
(4) 确定图象与y 轴的交点情况,令x=0得出y=c ,所以交点坐标为(0,c ) (5) 由以上各要素出草图。
例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.
例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售销售价应定为多少元?此时每天的销售利润是多少?
例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到
函数y =x 2
的图像,求b ,c 的值.
例4 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值. 练 习
1.选择题:
(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x
(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )
(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题 (1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = .
(2)已知二次函数y =x 2
+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;
当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象.(1)y =x 2-2x -3; (2)y =1+6 x -x 2.
4.已知函数y =-x 2
-2x +3,当自变量x 在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:
(1)x ≤-2;(2)x ≤2;(3)-2≤x ≤1;(4)0≤x ≤3.
二次函数的三种表示方式
二次函数可以表示成以下两种形式:
图3
图4
1.一般式:y=ax2+bx+c(a≠0);
2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).
3.交点式:y=a(x-x1) (x-x2) (a≠0),x1,x2是函数图象与x轴交点的横坐标.例1 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点
(3,-1),求二次函数的解析式.
例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.
例 3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.
练习
1.选择题:
(1)函数y=-x2+x-1图象与x轴的交点个数是()(A)0个(B)1个(C)2个(D)无法确定
(2)函数y=-1
2
(x+1)2+2的顶点坐标是()
(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2) 2.填空:
(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式
可设为y=
a≠0) .
(2)二次函数y x轴两交点之间的距离为.3
(1)图象经过点(1,-2),(0,-3),(-1,-6);
(2)当x=3时,函数有最小值5,且经过点(1,11);
(3)函数图象与x轴交于两点(1-2,0)和(1+2,0),并与y轴交于(0,-2).二次函数的简单应用
一、函数图象的平移变换与对称变换
1.平移变换
例求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:
(1)向右平移2个单位,向下平移1个单位;
(2)向上平移3个单位,向左平移2个单位.
2.对称变换
例求把二次函数y=2x2-4x+1的图象关于下列直线对称后所得到图象对应的函数解析式:(1)直线x=-1;(2)直线y=1.
二、分段函数
一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.
例3 在国内投递外埠平信,每封信不超过20g付邮资80分,超过20g不超过40g付邮资160分,超过40g不超过60g付邮资240分,依此类推,每封x g(0<x≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象.
例4 如图5所示,在边长为2的正方形ABCD的边上有一个动点P,从点
A出发沿折线ABCD移动一周后,回到A点.设点A移动的路程为x,ΔPAC 的面积为y.
(1)求函数y的解析式;(2)画出函数y的图像;(
3)求函数y的取值范围.
C
P 图5。