相似三角形的性质练习题
相似三角形的性质及应用练习题1
相似三角形的性质及应用练习卷一、填空题1.已知两个相似三角形的相似比为3, 则它们的周长比为;2.若△ABC∽△A′B′C′, 且, △ABC的周长为12cm, 则△A′B′C′的周长为;3、如图1, 在△ABC中, 中线BE、CD相交于点G, 则= ;S△GED: S△GBC= ;4.如图2, 在△ABC中, ∠B=∠AED, AB=5, AD=3, CE=6, 则AE= ;5.如图3, △ABC中, M是AB的中点, N在BC上, BC=2AB, ∠BMN=∠C, 则△∽△ ,相似比为 , = ;6、如图4, 在梯形ABCD中, AD∥BC, S△ADE: S△BCE=4: 9, 则S△ABD: S△ABC= ;7、如图5, 在△ABC中, BC=12cm, 点D、F是AB的三等分点, 点E、G是AC的三等分点, 则DE+FG+BC= ;8、两个相似三角形的周长分别为5cm和16cm, 则它们的对应角的平分线的比为;9、两个三角形的面积之比为2: 3, 则它们对应角平分线的比为 , 对应边的高的比为;对应边的中线的比周长的比10、已知有两个三角形相似, 一个边长分别为2、3、4, 另一个三角形最长边长为12, 则x、y的值为;二、选择题11.下列多边形一定相似的为()A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形12、在△ABC中, BC=15cm, CA=45cm, AB=63cm, 另一个和它相似的三角形的最短边是5cm, 则最长边是()A.18cmB.21cmC.24cmD.19.5cm13、如图, 在△ABC中, 高BD.CE交于点O, 下列结论错误的是()A.CO·CE=CD·CA B、OE·OC=OD·OBC.AD·AC=AE·AB D、CO·DO=BO·EO14.已知, 在△ABC 中, ∠ACB=900, CD ⊥AB 于D, 若BC=5, CD=3, 则AD 的长为( )A.2.25B.2.5C.2.75D.315.如图, 正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A.D 在PQ 、PR 上, 则PA :PQ 等于( )A.1:B.1: 2C.1: 3D.2: 316.如图, D 、E 分别是△ABC 的边AB 、AC 上的点, = =3,且∠AED=∠B, 则△AED 与△ABC 的面积比是( )A 、1: 2B 、1: 3C 、1: 4D 、4: 9三、解答题17、如图, 已知在△ABC 中, CD=CE, ∠A=∠ECB, 试说明CD2=AD ·BE 。
相似三角形性质的练习题
相似三角形性质的练习题相似三角形的性质是指两个三角形的对应角度相等,对应边长成比例。
本题考查的是对相似三角形的判断,需要根据勾股定理求出各个三角形的边长,然后比较是否成比例,最终得出相似的三角形是①和③。
2.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB解答】解:根据相似三角形的性质,如果两个三角形相似,则对应角度相等,对应边长成比例。
因此,我们只需要判断哪个条件不满足这个性质即可。
A选项∠B=∠C,这个条件是成立的,因为它是由题目中给出的△ABC是等腰三角形推出的。
B选项∠ADC=∠AEB,这个条件也是成立的,因为它是由题目中给出的CD与BE相交于点O推出的。
C选项BE=CD,AB=AC,这个条件也是成立的,因为它是由题目中给出的D、E分别是AB、AC上两点,CD与BE相交于点O推出的。
D选项AD:AC=AE:AB,这个条件不成立,因为题目中没有给出这个条件,也无法由其他条件推出。
因此,选D。
3.下列说法中,错误的是()A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似 C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似解答】解:A选项两个全等三角形一定是相似形是正确的,因为全等三角形的对应角度和对应边长都相等,符合相似三角形的定义。
B选项两个等腰三角形一定相似也是正确的,因为等腰三角形的底角相等,而顶角也相等,符合相似三角形的定义。
C选项两个等边三角形一定相似也是正确的,因为等边三角形的三个角都相等,而三个边长也相等,符合相似三角形的定义。
D选项两个等腰直角三角形一定相似是错误的,因为等腰直角三角形的底角相等,但是顶角不相等,不符合相似三角形的定义。
因此,选D。
4.如图,△ACD和△ABC相似需具备的条件是()A. B. C.AC2=AD•AB D.CD2=AD•BD解答】解:根据相似三角形的定义,△ACD和△ABC相似需要满足两个条件:对应角度相等,对应边长成比例。
专题27.22 相似三角形的性质(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识
专题27.22 相似三角形的性质(培优篇)(专项练习)一、单选题1.如图,在平面直角坐标系中,已知点A 坐标(0,3),点B 坐标(4,0),将点O 沿直线34y x b =-+对折,点O 恰好落在∠OAB 的平分线上的O’处,则b 的值为( )A .12B .65C .98D .15162.如图,CD 是ABC 的高,2CD AD BD M =⋅,是CD 的中点,BM 交AC 于,E EF AB ⊥于F .若164,5EF CE ==,则AB 的长为( )A .485B .383C .413D .4153.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 的距离的最小值是( )A .43B .1C .56D .654.如图,四边形ABCD 中,AB BC ⊥,AD CD ⊥,AB BC =,若2AD =,1CD =,则BD 的值为( )AB .2CD .5.如图,点E 从矩形ABCD 的顶点B 出发,沿射线BC 的方向以每秒1个单位的速度运动,过E 作EF ∠AE 交直线DC 于F 点,如图2 是点E 运动时CF 的长度y 随时间t 变化的图象,其中M 点是一段曲线(抛物线的一部分)的最高点,过M 点作MN ∠y 轴交图象于N 点,则N 点坐标是( )A .(5,2)B .(2)C .(2+2)D .(2+,2)6.如图,在直角坐标系xOy 中,A (﹣4,0),B (0,2),连结AB 并延长到C ,连结CO ,若∠COB∠∠CAO ,则点C 的坐标为( )A .(1,52)B .(43,83)C D7.如图,四边形ABCD 是边长为2的菱形,且有一个内角为72°,现将其绕点D 顺时针旋转得到菱形A 'B 'C 'D ,线段AB 与线段B 'C '交于点P ,连接BB '.当五边形A 'B 'BCD 为正五边形时,BPAP即长为( )A.1B C1D8.如图,将一个面积为24的正方形纸片沿图中的3条裁切线剪开后,恰好能拼成一个邻边不相等的矩形.若裁切线AB的长为6,则裁切线CD的长是()A.2B.6-C.D.49.如图,将矩形ABCD折叠,使点D落在AB上点D′处,折痕为AE;再次折叠,使点C落在ED′上点C′处,连接FC′并延长交AE于点G.若AB=8,AD=5,则FG长为()A.B C.203D.410.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,延长AH交CD于点P,若AP HF⊥,10AP=,则小正方形边长GF的长是()A .52B .C .3 D二、填空题11.如图,在△ABC 中,D 为BC 中点,将△ABD 沿AD 折叠得到△AED ,连接EC ,已知BC =6,AD =2,且S △CDE =2710,则点A 到DE 的距离为 _________.12.如图,E 、F 、G 、H 分别为矩形ABCD 的边AB 、BC 、CD 、DA 的中点,连接AC 、HE 、EC 、GA 、GF ,已知AG ∠GF ,AC =AB 的长为___.13.在平面直角坐标系中,如图,3==OB AB ,点(,0),33-<+A a a 点C 在y 轴上且OC OA =,连接BC .现给出以下结论:∠连接AC ,则AC =; ∠OAB 的周长是一个固定值; ∠BC 的最小值为1;∠当BC 取最小值时,OA其中正确的是_________(写出所有正确结论的序号)14.如图,在平面直角坐标系中,点A (0,1),点B 为直线y=12x 上的一个动点,∠ABC =90°,BC =2AB ,则OC 的最小值为____.15.已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.16.将矩形OABC 如图放置,O 为坐标原点,若点A (﹣1,2),点B 的纵坐标是72,则点C 的坐标是_________.17.如图,矩形ABCD 中,3AB =,4BC =.矩形ABCD 绕着点A 旋转,点B 、C 、D 的对应点分别是点B '、C '、D ,如果点B '恰好落在对角线BD 上,连接DD ',DD '与B C ''交于点E ,那么DE =___________.18.如图,正方形ABCD 的边长为2,E 是AB 的中点,连接ED ,延长EA 至F ,使EF =ED .以线段AF 为边作正方形AFGH ,点H 落在AD 边上,连接FH 并延长,交ED 于点M,则DMDE的值为_____.三、解答题19.已知矩形ABCD,点E在AD边上,连接BE、BD,∠BED=2∠BDC,BE=25,BC =32,则CD的长度为______.20.在正方形ABCD中,P为AB边上一点,将△BCP沿CP折叠,得到△FCP.(1)如图1,延长PF交AD于E,求证:EF=ED;(2)如图2,DF,CP的延长线交于点G,求DFAG的值.21.如图,在Rt∠ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿CB向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.求:(1)当t=3秒时,这时,P ,Q 两点之间的距离是多少? (2)若∠CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与∠ABC 相似?22.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:EG DG -=.23.如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC=,求:CE BC的值;(3)求证:PF EQ=.24.【操作发现】如图∠,在正方形ABCD中,点N、M分别在边BC、CD上,连结AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而得DM+BN=MN.【实践探究】(1)在图∠条件下,若CN=3,CM=4,则正方形ABCD的边长是.(2)如图②,点M、N分别在边CD、AB上,且BN=DM.点E、F分别在BM、DN 上,∠EAF=45°,连接EF,猜想三条线段EF、BE、DF之间满足的数量关系,并说明理由.【拓展】(3)如图∠,在矩形ABCD中,AB=3,AD=4,点M、N分别在边DC、BC上,连结AM,AN,已知∠MAN=45°,BN=1,求DM的长.参考答案1.D【分析】假设直线与∠OAB的平分线交x轴点C,交y轴于D,易求得OA=3,OB=4,AB=5,OD=b,且直线与AB平行,利用角平分线性质可得35OC OACB AB==,再由平行线分线段成比例得,OD OC OA AB =即3353b =+,解得98b =,结合图象,1928﹤b ﹤,利用排除法即可得到答案.解:假设直线与∠OAB 的平分线交x 轴点C ,交y 轴于D ,如图:∠A(0,3),B(4,0),∠OA=3,OB=4,AB=5,且直线AB 斜率等于34-,由直线34y x b =-+知OD=b ,且直线与AB 平行,∠AC 平分∠OAB, ∠35OC OA CB AB ==, ∠直线与AB 平行, ∠,OD OC OA AB=即3353b =+,解得98b =, 结合图象直线34y x b =-+的位置,b 的范围为1928﹤b ﹤,利用排除法, 故选D.【点拨】本题考查了角平分线的性质和平行线分线段成比例,利用假设法和排除法解答是选择题的一种技巧.2.C 【分析】延长BC 交FE 的延长线于点H ,推出4EF EH ==,通过证明ACDCBD ,得出90ECH ∠=︒,继而得出 2.4CH =,再证明AEF HEC ,得出5AE =,再证明HECABC ,从而得出答案.解:延长BC 交FE 的延长线于点H ,∠,EF AB CD AB ⊥⊥∠//CD FH ∠,DM BM CM BM EF BE EH BE == ∠DM CM EF EH= ∠M 是CD 的中点∠DM CM =∠4EF EH ==∠ACD CBD∠A BCD ∠=∠∠90BCD ACD ∠+∠=︒∠90ACB ∠=︒∠90ECH ∠=︒∠222CH CE EH +=∠ 2.4CH =∠AEF HEC ∠,AE EF A EHC EH CE=∠=∠ ∠5AE =∠AC AE CE =+∠8.2AC =∠90,ACB HCE EHC A ∠=∠=︒∠=∠∠HEC ABC ∠HE HC AB AC=∠4 2.48.2 AB=∠413 AB=故选:C.【点拨】本题考查的知识点是相似三角形的判定及性质,作出辅助线后多次利用相似三角形的性质得出CH、AE的值是解此题的关键.3.D【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF FC=,故此点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FP AB⊥时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.解:如图所示:当//PE AB.由翻折的性质可知:2PF FC==,90FPE C∠=∠=︒.//PE AB,90PDB∴∠=︒.由垂线段最短可知此时FD有最小值.又FP为定值,PD∴有最小值.又A A∠=∠,ACB ADF∠=∠,AFD ABC∴∆∆∽.∠AF DF AB BC=,∠CF=2,AC=6,BC=8,∠AF=4,AB10,∠即4108DF=,∠ 3.2 DF=.3.22 1.2PD DF FP∴=-=-=.故选:D.【点拨】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.4.C【分析】延长AD、BC交于点E,过点D作DF⊥BE,垂足为F,如图所示,易发现ABE CDE,通过对应边成比例,可求解出DE、CE,再利用ABE DFE即可求出DF、BF.解:延长AD、BC交于点E,过点D作DF⊥BE,垂足为F,如图所示,AB BC⊥,AD CD⊥,90ABE CDE∴∠=∠=︒,AC AB BC∴===,又,E E ABE CDE∠=∠∴,DE CE CDBE AE AB∴==,设DE=x,CE=y,2yx===+整理可得关于x,y的二元一次方程组,⎧=⎪=,解得3xy=⎧⎪⎨=⎪⎩,90,,ABE DFE E E∠=∠=︒∠=∠ABE DFE∴,35DF CE DE AB BE AE ∴===33225555DF AB BF BE ∴=====BD ∴=故选C.【点拨】利用三角形相似,找到边与边的比例关系,可以求出未知边长,再利用勾股定理即可求解.5.D【分析】当点E 运动到C 点位置时,0FC =,则4BC =,当E 点运动到BC 中点位置时,2FC =,即2CD =,证明ABE ECF ∽△△,当F 在DC 的延长线上时,且2FC =,根据相似三角形的性质求得BE 的长,即可求得点N 的横坐标解:根据函数图象可知,当点E 运动到C 点位置时,0FC =,则4BC =,当E 点运动到BC 中点位置时,2FC =,即2CD =,AE EF ⊥∠90AEB FEC ∠+∠=︒四边形ABCD 是矩形90B ∴∠=︒90AEB BAE ∴∠+∠=︒FEC BAE ∴∠=∠90ECF ABE ∠=∠=︒∴ABE ECF ∽△△,M N 的纵坐标相等,则当F 在DC 的延长线上时,2FC =,BE t =,4EC t =-,AB EC BE FC=, 即242t t -=解得12t =,22t =-即点N 的坐标为(2,2)故选:D【点拨】本题考查了动点问题函数图象,相似三角形的性质与判定,从函数图像获取信息是解题的关键.6.B解:根据相似三角形对应边成比例,由∠COB∠∠CAO求出CB、AC的关系AC=4CB,从而得到13CBAB=,过点C作CD∠y轴于点D,然后求出∠AOB和∠CDB相似,根据相似三角形对应边成比例求出CD=43、BD=23,再求出OD=83,最后写出点C的坐标为(43,83).故选:B.【点拨】本题考查了相似三角形的性质,坐标与图形性质,主要利用了相似三角形对应边成比例,求出13CBAB=是解题的关键,也是本题的难点.7.B【分析】先计算得出∠CDC'=∠ADA'=∠ADC'=36°,得到点C'在对角线BD上,再证明△BDA∠∠BAC',求得BP= C'A= C'B1,进一步计算即可求解.解:连接BC',AC',如图:∠五边形A'B'BCD为正五边形,∠∠CDA '=()521805-⨯︒=108°, ∠菱形ABCD 绕点D 顺时针旋转得到菱形A 'B 'C 'D ,且∠ADC =72°,∠∠A 'DC '=∠ADC =72°,∠∠CDC '=∠ADA '=108°-72°=36°,∠∠CDC '=∠ADA '=∠ADC '=36°,∠点C '在对角线BD 上,∠ABC '=36°,由旋转的性质知AD =AB = DC '=2,∠∠DC 'A =∠DAC '=72°,∠∠C 'AB =36°,∠C 'A = C 'B ,设C 'A = C 'B =x ,则BD = x +2,∠∠BDA =∠BAC '=36°,∠△BDA ∠∠BAC ',∠DA :AC '=BD :BA ,即2:x =( x +2):2,整理得:x 2+2x -4=0,解得x 1,(负值已舍)∠∠C 'BP =36°,∠BC 'P =72°,∠∠C 'PB =72°,∠BP = C 'A = C 'B 1,∠AP =3∠BP AP == 故选:B .【点拨】本题考查了正多边的性质,菱形的性质,相似三角形的判定和性质,二次根式的混合运算,解题的关键是学会利用参数构建方程解决问题.8.A【分析】画出裁切后的矩形,再利用相似求解即可.解:如图所示,四边形ABQN 是裁切后的矩形:∠ABG AHN HEQ ∠=∠=∠,CD QE =,6AB NQ ==∠ABGAHN HEQ ∠,,AH AN AN NH AB AG HQ QE== ∠正方形HFG 的面积是24∠AH AG === ∠4AN =∠NH∠6HQ NQ NH =-=-=解得2CD QE ==故选:A .【点拨】本题考查相似三角形的判定与性质、矩形的性质,解题的关键是正确的画出裁切后拼成的矩形.9.C【分析】过点G 作GI ∠AB ,GH ∠ED ',垂足分别为I 、H ,由折叠的性质可得C ′E =5-4=1,在Rt △EFC ′中,设FC′=x,则EF=3-x,由勾股定理得:12+(3-x)2=x2,解得:x=53,再证明△BC′D'∠∠C′GH,设C′H=3m,则GH=4m,C′G=5m,则HD'=GI=AI=4-3m,ID'=5-(4-3m)=1+3m=GH=4m,可得到C′G=5m=5,从而解决问题.解:由折叠的性质得,∠AD'E=∠D=90°,AD=AD',又∠∠DAB=90°,∠四边形ADED'是矩形,∠AD=AD',∠四边形ADED'是正方形,过点G作GI∠AB,GH∠ED',垂足分别为I、H,∠AD'ED是正方形,∠AD=DE=ED'=AD'=5,BC=BC′=5,∠C=∠BC′F=90°,FC=FC′,∠D'B=EC=8-5=3,在Rt∠C′BD'中,C′D'=4,∠C′E=5-4=1,在Rt∠EFC′中,设FC′=x,则EF=3-x,由勾股定理得:12+(3-x)2=x2,解得:x=53,∠∠BC′D'+∠GC′H=90°,∠GC′H+∠C′GH=90°,∠∠BC′D'=∠C′GH,又∠∠GHC′=∠BD'C′=90°,∠∠BC′D'∠∠C′GH,∠C′H:GH:C′G=BD':C′D':BC′=3:4:5,设C′H=3m,则GH=4m,C′G=5m,∠HD'=GI=AI=4-3m,ID'=5-(4-3m)=1+3m=GH=4m,解得:m=1,∠C′G=5m=5,∠FG=203;故选:C.【点拨】本题主要考查了矩形的性质,正方形的判定与性质,翻折的性质,勾股定理,相似三角形的判定与性质等知识,作辅助线构造三角形相似是解题的关键.10.B【分析】过点E作EM∠AB于点M,证明∠AED∠∠HMD,可得DH MH DMAD AE DE==,由MH∠DP,可得32AH AMHP DE==,从而可得结论.解:∠∠ADE∠∠DCH∠∠CBG∠∠BAF,∠AE=DH,DE=CH,∠四边形GFEH是正方形,∠EH=EF=HG=GF,∠HF A=45°=∠EHF,∠AP∠HF,∠∠F AH=∠AFH=45°=∠AHE,∠AH=FH,AE=HE,∠AF=2AE,设AE=a,则AF=DE=2a,如图过点H作HM∠AD于M,∠,AD=∠∠DMH=∠AED=90°,∠ADE=∠MDH,∠∠AED∠∠HMD,∠DH MH DM AD AE DE==,∠MH,DM=,∠AM AD DM=-==,∠AD∠CD,∠MH∠DP,∠ 32AH AM HP DE ==, ∠AP =10,∠AH =6,∠EH =GF ,故选:B .【点拨】本题考查了正方形的性质,勾股定理,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.11. 【分析】过点E 作EF ∠BC 于F ,AG ∠DE 于G ,AH ∠BC 于H ,由将△ABD 沿AD 折叠得到△AED ,可得,BD DG BDA EDA =∠=∠,可证AH AG =,由D 为BC 中点,BC =6,可求132BD ED DC BC ====,由S △CDE =2710,可求95EF =,在Rt △EDF 中,由勾股定理125DF ,可求FC =35,在Rt △ECF 中,由勾股定理EC ==,可证AHD EFC ∆∆∽,可得AD AH EC EF = ,可求AH =即可 解:过点E 作EF ∠BC 于F ,AG ∠DE 于G ,AH ∠BC 于H ,∠将△ABD 沿AD 折叠得到△AED ,∠,BD DG BDA EDA =∠=∠,∠AD 为∠BDE 的平分线,∠EF ∠BC 于F ,AG ∠DE 于G ,∠AH AG =,∠D 为BC 中点,BC =6,∠132BD ED DC BC ====, ∠S △CDE =2710, ∠112732210DCE S DC EF EF ∆=⋅=⨯⨯=, ∠95EF =, 在Rt △EDF中,由勾股定理125DF =,∠FC =DC -DF =3-12355=, 在Rt △ECF中,由勾股定理EC =∠DE =DC , ∠DEC DCE ∠=∠,由外角性质,22BDE DEC DCE DCE BDA ∠=∠+∠=∠=∠, ∠DCE BDA ∠=∠,90AHD EFC ∠=∠=︒,∠AHD EFC ∆∆∽,∠AD AHEC EF =95AH=,∠AH =, ∠AG=AH =,.【点拨】本题考查折叠性质,角平分线性质,三角形面积,勾股定理,相似三角形判定与性质,掌握折叠性质,角平分线性质,三角形面积,勾股定理,相似三角形判定与性质,利用辅助线画出准去图形是解题关键.12.【分析】如图,连接BD .由∠ADG ∠∠GCF ,设CF =BF =a ,CG =DG =b ,可得AD GC =DGCF,推出2=a bb a,可得b a ,在Rt ∠GCF 中,利用勾股定理求出b ,即可解决问题; 解:如图,连接BD .∠四边形ABCD 是矩形,∠∠ADC =∠DCB =90°,AC =BD =∠CG =DG ,CF =FB , ∠GF =12BD∠AG ∠FG , ∠∠AGF =90°,∠∠DAG +∠AGD =90°,∠AGD +∠CGF =90°, ∠∠DAG =∠CGF , ∠∠ADG ∠∠GCF ,设CF =BF =a ,CG =DG =b , ∠AD GC =DGCF, ∠2=a b b a, ∠b 2=2a 2, ∠a >0.b >0, ∠b,在Rt ∠GCF 中,3a 2=3, ∠a =1,∠AB =2b =故答案为【点拨】本题考查三角形中位线定理、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.∠∠∠【分析】∠利用勾股定理计算出AC的长,进行判断;∠表示出∠OAB的周长即可判断;∠利用图形变形,将BC放在三角形中根据三角形的三边关系进行判断;∠利用三垂直模型及三角形相似求出OA的长即可.解:∠∠A(a,0),OA=OC,a,∠AC∠C△OAB=OA+AB+OB=a∠3﹣a<∠C△OAB不是一个固定值,故∠错误;∠如图,将∠OBC绕点O顺时针旋转90°,得到∠ODA,则OB=OD,BC=AD,∠BOD=90°,∠BD4,在∠ABD中,AD>BD﹣AB,当B,A,D三点共线时,AD最短,即BC最短,此时BC=DA﹣AB=4﹣3=1,故∠正确;∠如图,当B,A,D三点共线时,作BE,DF垂直于x轴,垂足为E,F,则∠OEB =∠DFO =90°,∠1+∠2=90°, 又∠BOD =∠2+∠3=90°, ∠∠1=∠3, 又OB =OD ,∠∠BOE ∠∠ODF (AAS ),设B (x ,y ),则DF =OE =x ,OF =BE =y ,且x 2+y 2=()2=8, 由BE ∠x 轴,DF ∠x 轴得BE ∠DF , ∠∠ADF ∠∠ABE , ∠=DF ADBE AB,即13x y =,∠y =3x ,把y =3x 代入x 2+y 2=(2=8得, x 2+9x 2=8,解得x =(负值舍去),∠y =由∠ADF ∠∠ABE 得,13AF AD AE AB ==, ∠AE =3AF ,即a ﹣x =3(y ﹣a ), a ﹣x =3y ﹣3a ,∠a 35544x y +===即OA =故∠正确.故答案为:∠∠∠.【点拨】本题考查勾股定理,相似以及两点间的距离公式,熟练掌握勾股定理是解题关键.14【分析】分析求OC最小即求AC最小,求AC最小即求AB最小,根据点到直线的距离公式求AB最小,继而代换求出OC最小.解:连接OC,在∠AOC中,OC<OA+AC或OC>AC-OA故求OC最短,即求AC最短由题意知:∠ABC=90 ,BC=2AB且点A(0,1),设AB=m,BC=2m,AC=根据点到直线的距离可知,m最小= 1255.此时AB∠直线y=12x,点C在直线上作BD∠OA与点D,在∠ABD和∠BOD中(DOB AOBDBO OAB公共角)∠∠DOB∠∠OBA∠12 OD OB BD AB又.【点拨】本题主要考查了点到直线的距离公式及三角形相似的性质,正确掌握点到直线的距离公式及三角形相似的性质是解题的关键.15【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,ABF BHE ∠=∠,则ABF EHF ∆∆∽,即可解决问题.解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形, 又EDC ∆是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,EHD DBC ∠=∠,9045ABF FBD DBC DBC ∠=︒-∠-∠=︒-∠ 45BHE EHD ∠=︒-∠ABF BHE ∴∠=∠ //AB HE ∴AFB HFE ∠=∠, ABF EHF ∴∆∆∽,∴==-AB AF AFEH EF AE AF, 2AE =∴35=AF ∴=,【点拨】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.16.(3,32)【分析】过点A 作AD ∠x 轴,垂足为D ,过点B 作BF ∠x 轴,垂足为F ,过点C 作CG ∠x 轴,垂足为G ,过点B 作BE ∠CG ,交GC 的延长线于点E ,通过证明△ADO ∠△CEB ,△ADO ∠△OGC 即可.解:过点A 作AD ∠x 轴,垂足为D ,过点B 作BF ∠x 轴,垂足为F ,过点C 作CG ∠x 轴,垂足为G ,过点B 作BE ∠CG ,交GC 的延长线于点E ,∠四边形BFGE 是矩形,∠ADO =∠CBE =90°, ∠BF =EG ,∠四边形OABC 是矩形, ∠OA =CB ,∠BCO =90°,∠∠AOD =90°-∠COG =∠GCO =90°-∠BCE =∠CBE , ∠∠ADO ∠∠CEB ,∠ADO ∠∠OGC , ∠AD =CE ,AD DOOG CG=, ∠点A (﹣1,2),点B 的纵坐标是72,∠AD =CE =2,BF =EG =72,CG =EG -CE =72-2=32,∠2132OG =,解得OG =3,故点C 的坐标为(3,32),故答案为:(3,32).【点拨】本题考查了矩形的性质,三角形全等的判定和性质,三角形相似的判定和性质,坐标与线段的关系,熟练掌握矩形的性质,三角形的全等与系数是解题的关键.17.2120【分析】过A 点作AF ∠BD ,交BD 于点F ,利用勾股定理求出BD =5,在根据是矩形ABD 的面积求出AF ,进而可求出 1.8BF B F '==,进而求出BD ',再证明AB F B ED ''△∽△,即有AF B FB D DE''=,DE 可求. 解:过A 点作AF ∠BD ,交BD 于点F ,如图,∠矩形中AB =3,BC =AD =4,∠BAC =90°,∠5BD =, ∠1122ABDAB AD B SD AF ⨯⨯=⨯⨯=, ∠342.45AB AD AF BD ⨯⨯===,∠ 1.8BF =,根据旋转可知:AB AB '=,90ABC AB C '∠=∠=,AD AD =', ∠AF BD ⊥,∠ 1.8BF B F '==,即 3.6BB BF B F ''=+=, ∠5 3.6 1.4B D BD BB ''=-=-=,根据旋转可知:AB AB '=,AD AD =',BAB DAD ''∠=∠,∠根据两个等腰三角形中顶角相等,则其底角也相等,即ABD ADD '∠=∠, ∠90ABD ADB ∠+∠=︒,∠90ADB ADD BDD ∠+∠==∠'',∠90AB F DB E ''∠+∠=,90B ED DB E ''∠+∠=, ∠AB F DEB ''∠=∠, ∠90AFB B DE ''∠=∠=, ∠AB F B ED ''△∽△, ∠AF B F B D DE ''=, ∠2.4 1.81.4DE=, ∠2120DE =, 故答案为:2120. 【点拨】本题考查了旋转的性质,矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定与性质,求出BD '是解答本题的关键.18【分析】过点M 作MN ∠AD 于点N ,根据勾股定理可得DE =EF AFGH 是正方形,可得AF =AH =EF ﹣AE 1,根据//MN AE ,可得∠DMN ∠∠DEA ,所以MN DN DMAE DA DE==,即12MN DN ==MN =NH =x ,则DN =2x ,DM ,再根据DN +NH =AD ﹣AH ,列式)3213x =-=求出x 的值,进而可以解决问题.解:如图,过点M 作MN ∠AD 于点N ,∠正方形ABCD 的边长为2,E 是AB 的中点, ∠AD =AB =2,AE =1,∠EAD =90°,∠DE EF = ∠四边形AFGH 是正方形,∠AF =AH =EF ﹣AE 1, ∠∠AHF =∠NHM =45°, ∠MN =NH , ∠//MN AE , ∠∠DMN ∠∠DEA , ∠MN DN DMAE DA DE ==, ∠12MN DN == 设MN =NH =x ,则DN =2x ,DM , ∠DN +NH =AD ﹣AH ,∠)3213x =-=∠DM =,∠DM x DE ==【点拨】此题考察了正方形的性质和三角形相似的知识,解决本题的关键是找到相似三角形得出线段之间的关系.19.24【分析】过E 作EF ∠BD 于F ,根据矩形的性质得到∠C =∠ADC =90°,于是得到∠ADB +∠BDC =90°,根据已知条件推出180°-∠AEB =2(90°-∠ADB ),得到∠AEB =2∠EDB ,根据等腰三角形的性质得到BF =12BD ,由平行线的性质得到∠ADB =∠DBC ,等量代换得到∠EBF =∠DBC ,推出∠EBF ∠∠DBC ,根据相似三角形的性质,求得BD =40,由勾股定理即可得到结论.解:过E 作EF BD ⊥于F ,∠四边形ABCD 是矩形,∠90C ADC ∠=∠=︒,∠2BED BDC ∠=∠,∠()180290AEB ADB ︒-∠=︒-∠,∠2AEB EDB ∠=∠,∠,AEB ADB EBD ∠=∠+∠,∠EDB EBD ∠=∠,∠BE DE =, ∠12BF BD =, ∠AD BC ∥,∠ADB DBC ∠=∠,∠EBF DBC ∠=∠,∠EBF DBC ∽△△,BD BC∠2222253240BD BC BE =⋅=⨯⨯=,∠40BD =,∠24CD .故答案为:24.【点拨】本题考查了矩形的性质,相似三角形的判定和性质,平行线的性质,外角的性质,正确的作出辅助线构造相似三角形是解题的关键.20.(1)证明见解析(2【分析】(1)连接CE ,通过全等三角形的判定,得到Rt △CFE∠Rt △CDE ,进而得出结论; (2)连接BG 、BF 、BD ,作CH∠DF ,垂足为H .依据△CFG∠∠CBG ,可得GF=GB ,进而得出△GBF 是等腰直角三角形,故BF BG .再判定△BGA∠∠FBD ,即可得到DF BF AG BG= 解:(1)如图1,连接CE ,∠四边形ABCD 是正方形,∠BC=CD ,∠B=∠D=90°.∠∠PBC 和△FPC 关于PC 对称,∠BC=CF ,∠B=∠PFC=90°.∠∠EFC=90°.∠∠EFC=∠D=90°,CF=CD .∠CE=CE,∠Rt△EFC∠Rt△DFC(HL).∠EF=ED.(2)如图2,连接BG、BF、BD,作CH∠DF,垂足为H.∠四边形ABCD是正方形,∠BC=CD.∠CH∠DF,∠∠HCF=12DCF ∠,∠∠PBC和△FPC关于PC对称,∠BC=CF,∠FCG=∠BCG.∠EB∠CG.又∠CG=CG,∠∠CFG∠∠CBG.∠GF=GB.∠∠HCF=12DCF∠,∠FCG=∠BCG=12BCF∠,∠∠HCK=12BCD∠=45°.∠∠PFH=135°.∠∠GFB=45°.∠∠GBF=45°.∠∠GBF是等腰直角三角形.∠BF=.∠∠ABD=45°,∠∠GBA=∠FBD.∠BG BF AB BD=, ∠∠BGA∠∠FBD .∠DF BF AG BG== 【点拨】本题主要考查了全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造等腰直角三角形,全等三角形以及相似三角形,利用相似三角形的对应边成比例得出结论.21.(1)10cm ;(2)2204=-S t t ;(3)t =3或t =4011 【分析】(1)在Rt∠CPQ 中,当t=3秒,可知CP 、CQ 的长,运用勾股定理可将PQ 的长求出;(2)由点P ,点Q 的运动速度和运动时间,又知AC ,BC 的长,可将CP 、CQ 用含t 的表达式求出,代入直角三角形面积公式CPQ S =12CP×CQ 求解; (3)应分两种情况:当Rt∠CPQ∠Rt∠CAB 时,根据CP CQ CA CB=,可将时间t 求出;当Rt∠CPQ∠Rt∠CBA 时,根据CP CQ CB CA =,可求出时间t . 解:由题意得AP=4t ,CQ=2t ,则CP=20﹣4t ,(1)当t=3秒时,CP=20﹣4t=8cm ,CQ=2t=6cm ,由勾股定理得10cm =;(2)由题意得AP=4t ,CQ=2t ,则CP=20﹣4t ,因此Rt∠CPQ 的面积为S=()21204t 22042t t t -⨯=-; (3)分两种情况:∠当Rt∠CPQ∠Rt∠CAB 时,CP CQ CA CB =,即204t 2t 2015-=, 解得:t=3秒;∠当Rt∠CPQ∠Rt∠CBA 时,CP CQ CB CA=,即204t 2t 1520-=, 解得:t=4011秒.因此t=3秒或t=4011秒时,以点C 、P 、Q 为顶点的三角形与∠ABC 相似 【点拨】本题主要考查了相似三角形性质以及勾股定理的运用,在解第三问时应分两种情况进行求解防止漏解或错解,注意方程思想与分类讨论思想的应用是解此题的关键.22.(1)见解析;(2;(3)见解析 【分析】(1)由矩形的形及已知证得∠EAF∠∠DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论;(2)设AE=x ,利用矩形性质知AF∠BC ,则有EA AF EB BC=,进而得到x 的方程,解之即可;(3)在EF 上截取EH=DG ,进而证明∠EHA∠∠DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得∠HAG 为等腰直角三角形,即可得证结论.解:(1)∠四边形ABCD 是矩形,∠∠BAD=∠EAD=90º,AO=BC ,AD∠BC ,在∠EAF 和∠DAB , AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩,∠∠EAF∠∠DAB(SAS),∠∠E=∠BDA ,∠∠BDA+∠ABD=90º,∠∠E+∠ABD=90º,∠∠EGB=90º,∠BG∠EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x ,∠AF∠BC ,∠E=∠E ,∠∠EAF∠∠EBC , ∠EA AF EB BC =,又AF=AB=1, ∠11x x x=+即210x x --=,解得:x =x =(舍去) 即; (3)在EG 上截取EH=DG ,连接AH ,在∠EAH 和∠DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩,∠∠EAH∠∠DAG(SAS),∠∠EAH=∠DAG ,AH=AG ,∠∠EAH+∠DAH=90º,∠∠DAG+∠DAH=90º,∠∠HAG=90º,∠∠GAH 是等腰直角三角形,∠222AH AG GH +=即222AG GH =,,∠GH=EG -EH=EG -DG ,∠EG DG -=.【点拨】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.23.(1)见解析;(2)38;(3)见解析 【分析】(1)由旋转知∠PBQ 为等腰直角三角形,得到PB=QB ,∠PBQ=90°,进而证明∠APB∠∠CQB 即可;(2)设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,又∠ABC 为等腰直角三角形,所以BC=2AC ,,再证明∠BQE∠∠BCQ ,由此求出BE ,进而求出CE:BC 的值;(3)在CE 上截取CG ,并使CG=FA ,证明∠PFA∠∠QGC ,进而得到PF=QG ,然后再证明∠QGE=∠QEG 即可得到QG=EQ ,进而求解.解:∠四边形ABCD 为正方形,∠AB=BC ,∠ABC=90°,∠BP 绕点B 顺时针旋转90︒到BQ ,∠BP=BQ ,∠PBQ=90°,∠∠ABC -∠PBC=∠PBQ -∠PBC,∠∠ABP=∠CBQ ,在∠APB 和∠CQB 中,=⎧⎪∠=∠⎨⎪=⎩AB BC ABP CBQ BP QB ,∠∠APB∠∠CQB(SAS),∠AP=CQ .(2) 设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,∠ABC 为等腰直角三角形,AC , 在Rt∠PCQ中,由勾股定理有:=PQ ,且∠PBQ 为等腰直角三角形,∠==BQ , 又∠BCQ=∠BAP=45°,∠BQE=45°,∠∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ ,∠∠BQE∠∠BCQ , ∠=BQ BE BC BQ,x ,∠CE=BC -,∠3:8=CE BC , 故答案为:38.(3) 在CE 上截取CG ,并使CG=FA ,如图所示:∠∠FAP=∠GCQ=45°,且由(1)知AP=CQ ,且截取CG=FA ,故有∠PFA∠∠QGC(SAS),∠PF=QG ,∠PFA=∠CGQ ,又∠∠DFP=180°-∠PFA ,∠QGE=180°-∠CGQ ,∠∠DFP=∠QGE ,∠DA //BC ,∠∠DFP=∠CEQ ,∠∠QGE=∠CEQ ,∠∠QGE 为等腰三角形,∠GQ=QE ,故PF=QE .【点拨】本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE 上截取CG ,并使CG=FA 这条辅助线.24.(1)6;(2)222EF BE FD =+,见解析;(3)2【分析】(1)根据旋转的性质证明∠ABE∠∠ADM 得到BE=DM ,又由∠ABE=∠D=90°,AE=AM ,∠BAE=∠DAM ,证出∠EAM=90°,得出∠MAN=∠EAN ,再证明∠AMN∠∠EAN (SAS ),得出MN=EN 最后证出MN=BN+DM .在Rt∠CMN 中,由勾股定理计算即可得到正方形的边长;(2 )先根据旋转的性质证明∠AEG ∠∠AEF (SAS ),再证明∠GBE=90°,再根据勾股定理即可得到;(3)在AB 上截取AP ,在BC 上截取BQ ,使AP =AB=BQ =3,连结PQ 交AM 于点R ,得到ABQP 为正方形,再根据操作发现以及勾股定理即可得到答案;(1)解:∠四边形ABCD 是正方形,∠AB=CD=AD ,∠BAD=∠C=∠D=90°,由旋转得:∠ABE∠∠ADM ,∠BE=DM ,∠ABE=∠D=90°,AE=AM ,∠BAE=∠DAM ,∠∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∠∠MAN=45°,∠∠EAN=90°-45°=45°,∠∠MAN=∠EAN ,在∠AMN 和∠EAN 中,AM AE MAN EAN AN AN ⎧⎪∠∠⎨⎪=⎩==∠∠AMN∠∠EAN (SAS ),∠MN=EN .∠EN=BE+BN=DM+BN ,∠MN=BN+DM .在Rt∠CMN 中,5MN = ,则BN+DM=5,设正方形ABCD 的边长为x ,则BN=BC -CN=x -3,DM=CD -CM=x -4,∠x -3+x -4=5,解得:x=6,即正方形ABCD 的边长是6;故答案为:6;(2)数量关系为:222EF BE FD =+,证明如下:将∠AFD 绕点A 顺时针旋转90°,点D 与点B 重合,得到∠ABG ,连结EG .由旋转的性质得到:AF=AG ,DAF BAG ∠=∠又∠∠EAF =45°,∴904545GAE ∠=︒-︒=︒,且AE=AE ,∠∠AEG ∠∠AEF (SAS ),从而得EG =EF .(全等三角形对应边相等),又∠BN =DM ,BN∠DM ,∠四边形DMBN 是平行四边形(一组对边平行且相等的四边形是平行四边形), ∠DN∠BM ,∠AND ABM ∠=∠ (两直线平行,同位角相等),∠90AND ADN ∠+∠=︒,∠90ABG ABM ∠+∠=︒(等量替换),即:∠GBE=90°,则222EG BE GB =+,∠222EF BE FD =+;(3)在AD 上截取AP ,在BC 上截取BQ ,使AP =AB=BQ =3,连结PQ 交AM 于点R ,易证ABQP 为正方形,由操作与发现知:PR +BN =RN .设PR =x ,则RQ =3﹣x ,RN =1+x ,QN =3-1=2在Rt∠QRN 中,由勾股定理得:222RN NQ RQ =+,即222(1)2(3)x x +=+-解得:x =32, ∠PR =32∠PQ ∠DC ,∠∠APR ∠∠ADM , ∠PR AP DM AD= (相似三角形对应边成比例) ∠3234DM = ∠DM =2;【点拨】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和由勾股定理得出方程是解题的关键.。
(1503)相似三角形性质专项练习30题(有答案)
相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q 从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF 和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案:1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=,即=,解得x=, 即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=ACFC 即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,, 即, 解得:t=;当△APQ ∽△ACB 时,, 即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP ∽∠APB ,∴∠APB=∠ACP=120°;(2)∵△ACP ∽△PDB ,∴AC :PD=PC :BD ,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm221.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。
相似三角形练习题及答案
相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。
相似三角形具有相同的形状,但是尺寸不同。
理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。
下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。
练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。
若DE = 9cm,求DF和EF的长度。
练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。
练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。
练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。
点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。
求△ADE和△ABC的周长比。
练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。
答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。
设DF = x,EF = y。
根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。
练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。
设PR = x。
根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。
练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。
相似三角形性质与判定专项练习30题(有答案)
相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。
证明:=。
当GC⊥BC时,证明:∠BAC=90°。
2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。
证明:AC^2=AF•AD。
联结EF,证明:AE•DB=AD•EF。
3.在三角形ABC中,PC平分∠ACB,PB=PC。
证明:△APC∽△ACB。
若AP=2,PC=6,求AC的长。
4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。
证明:△ABF∽△EAD。
若AB=4,∠BAE=30°,求AE的长。
5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。
证明:AB•BC=AC•CD。
6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。
说明AF•BE=2S的理由。
7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。
若AE=CF,证明:AF=BE,并求∠APB的度数。
若AE=2,试求AP•AF的值。
若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。
8.在钝角三角形ABC中,AD,BE是边BC上的高。
证明。
9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。
证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。
10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。
12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。
三角形相似性质练习题
三角形相似性质练习题一、选择题1. 若两个三角形的两边之比相等,且夹角相等,那么这两个三角形()。
A. 全等B. 相似C. 不一定全等D. 不一定相似2. 在ΔABC中,若AB=6cm,AC=8cm,且∠A=30°,在ΔDEF中,若DE=12cm,DF=16cm,且∠D=30°,则ΔABC与ΔDEF()。
A. 全等B. 相似C. 不一定全等D. 不一定相似3. 下列关于相似三角形的性质,错误的是()。
A. 对应角相等B. 对应边成比例C. 周长成比例D. 面积相等二、填空题1. 若两个三角形的三个角分别相等,则这两个三角形()。
2. 在ΔABC中,若AB=5cm,AC=7cm,且ΔABC∽ΔDEF,若DE=10cm,则DF的长度为()cm。
3. 若两个相似三角形的面积比为9:16,则它们的边长比为()。
三、解答题1. 在ΔABC中,AB=6cm,AC=8cm,∠A=45°,在ΔDEF中,DE=12cm,DF=16cm,求∠D的度数,并判断ΔABC与ΔDEF是否相似。
2. 已知ΔABC与ΔDEF相似,且AB=4cm,BC=6cm,AC=8cm,DE=3cm,求DF的长度。
3. 在ΔABC中,∠A=60°,∠B=70°,AB=5cm,AC=8cm,求ΔABC的面积。
4. 证明:若两个三角形的两边成比例,且这两边的夹角相等,则这两个三角形相似。
5. 在ΔABC中,AB=5cm,AC=7cm,∠A=45°,在ΔDEF中,DE=10cm,DF=14cm,求∠D的度数,并判断ΔABC与ΔDEF是否相似。
四、判断题1. 如果两个三角形的两边和它们的夹角分别相等,那么这两个三角形一定相似。
()2. 两个相似三角形的面积比等于它们对应边长比的平方。
()3. 任意两个等腰三角形都是相似的。
()4. 如果两个三角形的周长比是2:3,那么它们的面积比也是2:3。
相似三角形性质专题(附答案
相似三角形的性质专题练习(附答案)1.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC= .2.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是3.已知在△ABC中,AB=20,AC=12,BC=16,点D是射线BC上的一点(不与端点B重合),连接AD,如果△ACD与△ABC相似,那么BD= .4.如图,长方形ABCD中,AB=4,AD=3,E是边AB上一点(不与A、B重合),F是边BC上一点(不与B、C重合).若△DEF和△BEF是相似三角形,则CF= .5.如图,正方形ABCD的边长是2,E为BC的中点,点M、N分别在CD和AD上,且MN=1,当DM= 时,△ABE与以D、M、N为顶点的三角形相似.如图,D是等边△ABC的边BC上一动点,ED∥AC交AB于点E.DF⊥AC交AC于点F,DF=3,若△DCF与E、F、D三点组成的三角形相似,则BD的长等于1.解:∵Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴AB=10,∵D 是AB 边的中点,∴CD=BD=AB 21=5 ∵以D 、C 、P 为顶点的三角形与△ABC 相似, ∴∠DPC=90°或∠CDP=90°, (1)若∠DPC=90°,则DP ∥AC ,∴21==BC BP AB BD ∴BP=421=BC ,则PC=4; (2)若∠CDP=90°,则△CDP ∽△BCA ,∴1085,PC AB PC BC CD ==即,∴PC=425. ∴PC=4或425 2.解:根据△B′FC 与△ABC 相似时的对应情况,有两种情况:①△B′FC ∽△ABC 时,BC CF AB F B =', 又因为AB=AC=6,BC=8,B'F=BF ,所以886'BF F B -=, 解得BF=724; ②△B′CF ∽△BCA 时,CACF BA F B =', 又因为AB=AC=6,BC=8,B'F=CF ,BF=B′F ,又BF+FC=8,即2BF=8,解得BF=4.故BF 的长度是4724或. 3.解:解:①若点D 在线段BC 上,∵△ACD ∽△BCA ,∴AC CD BC AC =,即121612CD =, 解得:CD=9,则BD=BC-CD=16-9=7;②若点D 在线段BC 的延长线上当△D AC ∽△ABC 时,则AC CD BC AC =,即121612CD =, 解得:CD=9,则BD=BC+CD=16+9=25; 当△ACD ∽△ACB 时,则BC CD AC AC =, 即BCCD =1212,∴CD=16, 则BD=BC+CD=16+16=32.故答案为:7或25或32.4.解::①如图1,∠DEF=90°时,设AE=x ,则BE=4-x ,易求△ADE ∽△BEF ,∴EF DE BE AD =,即EFDE x =-43, ∵△DEF 和△BEF 是相似三角形, ∴△DEF 和△ADE 是相似三角形,∴ADAE EF DE AE AD EF DE ==或 ∴343343x x x x =-=-或, 整理得,6x=12或x 2-4x+9=0(无解),解得x=2,∴BE=4-2=2,BF 223=,解得BF=34,CF=3-34=35;②如图2,∠DFE=90°时,设CF=x ,则BF=3-x ,易求△BEF ∽△CFD ,∴EF DF BF DC =,即EF DF x =-34,∵△DEF 和△BEF 是相似三角形,∴△DEF 和△DCF 是相似三角形,∴DCCF EF DF CF DC EF DF ==或,即434434x x x x =-=-或, 整理得,8x=12或x 2-3x+16=0(无解),综上所述,CF 的值为5/3或3/25.答案自己给出6.解:∵ED ∥AC 交AB 于点E ,△ABC 是等边三角形, ∴△BDE 是等边三角形,∠FDC=30°,当△DCF ∽△EFD , ∴∠FED=∠FDC=30° ∴DE=3333tan ==∠FED DF ,∴BD=DE=3;当△DCF ∽△FED ,∴∠EFD=∠FDC=30°,∴BD=DE =DF•tan ∠A=1.故答案为:1或3.7.在Rt △ABC 中,∠A=90°,AB=3cm ,AC=4cm ,以斜边BC 上距离B 点3cm 的点P 为中心,把这个三角形按逆时针方向旋转90°到Rt △DEF ,则旋转前后两个直角三角形重叠部分的面积为 1.44 cm 2.解:根据旋转的性质可知,△PSC ∽△RSF ∽△RQC ∽△ABC ,△PSC ∽△PQF ,∵∠A=90°,AB=3cm ,AC=4cm ,∴BC=5,PC=2,S △ABC =6,∵S △PSC :S △ABC =1:4,即S △PSC =23, ∴PS=PQ=23, ∴QC=27, ∴S △RQC :S △ABC =QC 2:BC 2,∴S △RQC =50147, ∴S RQPS =S △RQC -S △PSC =1.44cm 2.。
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB :DE =1:2,那么下列等式一定成立的是 A .BC :DE =1:2B .△ABC 的面积:△DEF 的面积=1:2 C .∠A 的度数:∠D 的度数=1:2D .△ABC 的周长:△DEF 的周长=1:2 【答案】D2.如图,AB 、CD 、EF 都与BD 垂直,且AB =1,CD =3,那么EF 的长是A .13B .23 C .34D .45【答案】C【解析】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF , ∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF DF AB DB =,EF BF CD BD =,∴EF EF DF BFAB CD DB BD+=+=1. ∵AB =1,CD =3,∴13EF EF +=1,∴EF =34.故选C .3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=23AB=23CD,∵AB∥CD,∴EFFC=BEDC=23,故选B.4.已知:如图,E是ABCD的边AD上的一点,且32AEDE=,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cmC.6cm D.9cm【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴BC BF ED DF=,∵32AEDE=,∴设AE=3k,DE=2k,则AD=BC=5k,52BC BFED DF==,∵BF=15cm,∴DF=25BF═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9C.3:1 D.1:3【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63°B.72°C.73°D.83°【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A.32B.1C.12D.23【答案】C【解析】∵E为AB中点,∴AE=12AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴AE ADAC AB,∴12AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是12,∴两个三角形的面积比是14,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】65或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,△ABC 和△A 1B 1C 1的相似比为k .求证:111ABC A B C S S △△=k 2;证明:作AD ⊥BC 于D ,A 1D 1⊥B 1C 1于D 1,∵△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应, ∴∠B =∠B 1,∵AD 、A 1D 1分别是△ABC ,△A 1B 1C 1的高线, ∴∠BDA =∠B 1D 1A 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B =k , ∴111ABC A B C S S △△=11111212BC AD B C A D ⋅⋅⋅⋅=k 2.13.如图所示,Rt △ABC ∽Rt △DFE ,CM 、EN 分别是斜边AB 、DF 上的中线,已知AC =9cm ,CB =12cm ,DE =3cm .(1)求CM 和EN 的长; (2)你发现CMEN的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt △ABC 中,AB =22AC CB +=22912+=15,∵CM 是斜边AB 的中线, ∴CM =12AB=7.5, ∵Rt △ABC ∽Rt △DFE , ∴DE DF AC AB =,即319315DF==, ∴DF =5,∵EN 为斜边DF 上的中线,∴EN =12DF =2.5; (2)∵7.532.51CM EN ==,相似比为9331AC DE ==,∴相似三角形对应中线的比等于相似比.14.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC 、CD 、BD 之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且AD =CD ,则∠ACB =__________°. (2)如图2,在△ABC 中,AC =2,BC 2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD的长.【解析】(1)当AD=CD时,如图,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)由已知得AC=AD=2,∵△BCD∽△BAC,∴BCBA=BDBC,设BD=x2)2=x(x+2),∵x>0,∴x3–1,∵△BCD∽△BAC,∴CD BDAC BC=32,∴CD 312-×62.故答案为:96.。
(05)相似三角形性质专项练习30题(有答案)
相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC 相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD 与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C 出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q 从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案: 1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=, 即=,解得x=,即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=AC FC即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,,即,解得:t=;当△APQ ∽△ACB 时,,即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP∽∠APB,∴∠APB=∠ACP=120°;(2)∵△ACP∽△PDB,∴AC:PD=PC:BD,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm ∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm2 21.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。
相似三角形的判定与性质(六大类型)(题型专练)(原卷版)
专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A.B.C.D.2.(2022秋•道外区期末)下列三角形一定相似的是()A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③5.(2022秋•襄都区校级期末)下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是()A.B.C.2D.3 7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是()A.2:3B.4:9C.9:4D.16:81 8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是()A.1B.2C.3D.49.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为cm2.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE =4,则BC=.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为cm2.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.。
相似三角形性质练习题
相似三角形性质练习题相似三角形是初中数学中的重要概念,它与几何图形的比例关系密切相关。
通过研究相似三角形的性质和定理,可以帮助我们解决一些实际问题。
本文将通过一些练习题来加深对相似三角形性质的理解。
题目一:已知△ABC和△DEF为相似三角形,且AB=6cm,BC=8cm,AC=10cm,DE=9cm,EF=12cm,求DF的长度。
解析:由于△ABC与△DEF相似,所以对应边的比例相等。
设DF=x,则有:AB/DE = BC/EF = AC/DF代入已知值,得到:6/9 = 8/12 = 10/x通过交叉相乘,得到:6x = 90解方程,得到:x = 15所以,DF的长度为15cm。
题目二:已知△ABC与△DEF相似,且AB=12cm,BC=16cm,AC=20cm,DE=6cm,EF=8cm,求△ABC的面积与△DEF的面积的比值。
解析:由于△ABC与△DEF相似,所以对应边的比例相等。
设△ABC的面积为S1,△DEF的面积为S2,则有:S1/S2 = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2代入已知值,得到:S1/S2 = (12/6)^2 = (16/8)^2 = (20/DF)^2化简,得到:S1/S2 = 4^2 = 2^2 = (20/DF)^2解方程,得到:S1/S2 = 16 = 4/(DF/20)^2化简,得到:S1/S2 = 16 = (20/DF)^2开方,得到:S1/S2 = 4 = 20/DF解方程,得到:DF = 5所以,△ABC的面积与△DEF的面积的比值为4:1。
通过以上两道练习题,我们可以看到相似三角形的性质在解决实际问题中起到了重要的作用。
相似三角形的性质不仅仅局限于边长的比例关系,还包括角度的对应关系。
在解决实际问题时,我们可以利用这些性质来推导出所需的未知量。
除了上述练习题外,还有很多与相似三角形性质相关的题目可以练习。
例如,可以通过已知两个相似三角形的面积比和一个三角形的面积求另一个三角形的面积,或者通过已知两个相似三角形的面积比和一个三角形的边长求另一个三角形的边长等等。
相似三角形测试题及答案
相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。
以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。
答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。
答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。
答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。
答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。
已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。
因此,AC = 6.25cm。
8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。
已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。
相似三角形试题及答案
相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。
答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。
答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。
答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。
这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。
四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。
答案:首先,利用余弦定理计算BC的长度。
根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。
代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。
然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。
7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。
答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。
相似三角形性质完整的题型+答案
相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。
2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。
3、性质定理2:相似三角形的周长比等于相似比。
4、性质定理3:相似三角形的面积比等于相似比的平方。
二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000__m2。
变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。
A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。
(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。
变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。
(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。
(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。
例题:如图,已知DE//BC,AD:DB=2:3,那么S△ADE:S△ECB= 4:15。
变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。
A.12cm 2B.15cm 2C.24cm 2D.54cm 2 答案:D 。
例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求:(1)S △AOD :S △BOC 的值; (2)S △AOB :S △AOD 的值。
答案:(1)9:25 (2)5:3。
24.5相似三角形的性质(全)
∠ABC的平行线BE⊥AD于E,且 DE 1
求
S ABE
AE 2
S四边形BCDE
24.5(4)
例1
在ABC中,AB AC 10, BC 16,点P和D分别 在BC和AC上,BP 12, APD B,求CD的长
A
D
B
P
C
例2 如图,△ABC是一块锐角三角形余料,边 BC=120mm,高AD=80mm,要把它加工成正方 形零件,使正方形的一边在BC上,其余两个顶 点分别在AB、AC上,这个正方形零件的边长是 多少?
1.某时刻量得一棵树 AB 在地面上的影子长 BE=30
米,同时测得在 BE 方向上竖起的一根与地面垂
直的标杆 CD 的影长DF 为 3 米,已知标杆高
DC=2 米,则树 AB 的高度是
.
A
C
B
D EF
2.竿高1.5米,影长1米,同一时刻, 某塔影长20米,则塔高是_________米.
2.△ABC中,DE∥BC,EF∥AB,已知
拓展
如图,在⊿ABC中,矩形DEFG的一边DE在BC上, 点G、F分别在AB、AC上,AH是BC边上的高,AH 与GF相交于K,GF=18,EF=10,BC=48.
⑴求AH的长;
⑵若设EF=x,矩形EFGD的周长为y.写出y与x的函
数关系式,并写出x的取值范围.
A
G
K
F
B
D
H
E
C
例3 如图,△ABC中,DE//FG//BC,点 DE、FG把△ABC的面积分成三等分,已知 BC=12cm,求FG的长.
练习3 如图△ABC中,DE//FG//BC, 且AD=DF=BF.
求S△ADE:S四边形DFGE:S四边形BFCG
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.6 相似三角形的性质同步课堂检测学
考试总分: 120 分考试时间: 120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1m,继续往前走3m到达E处时,测得影子EF的长为2m,他的身高是1.5m,那么路灯A的高度AB=( )
A.8m
B.7.2m
C.6m
D.4.5m
2.如图,在△ABC中,若DE // BC,AD:BD=1:2,若△ADE的面积等于2,则△ABC的面
积等于()
A.6
B.8
C.12
D.18
3.如图,△ABC中,DE // BC,如果AD=1,DB=2,那么DE
BC
的值为()
A.2 3
B.1
4
C.1
3
D.1
2
4.如图,在Rt△ABC中,∠ACB=90∘,CD是AB边上的高,AC=6,AB=9,则AD=( )
A.2
B.3
C.4
D.5
5.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()
A.10
B.11
C.12
D.13
6.两个相似三角形的面积之比为2:1,则这两个三角形的周长比为()
A.1:2
B.2:1
C.√2:1
D.4:1
7.一个三角形的三边分别为3,4,5,另一个与它相似的三角形中有一条边长为6,则这个
三角形的周长不可能是()
A.72
5
B.18
C.48
D.24
8.一个△ABC的面积被平行于它的一边BC的两条线段三等分,如果BC=12cm,则这两条
线段中较长的一条是()
A.8cm
B.6cm
C.4√3cm
D.4√6cm
9.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为
AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;
②DE
DA =3
4
;③AC⋅BE=12;④3BF=4AC,其中结论正确的个数有()
A.1个
B.2个
C.3个
D.4个
10.如图,D、E分别是△ABC边AB、BC上的点,DE // AC,若S△BDE:S△CDE=1:3,则DE
AC
的值为()
A.√3
3B.1
2
C.1
3
D.1
4
二、填空题(共 10 小题,每小题 3 分,共 30 分)
11.相似三角形的判定方法
(1)若DE // BC(A型(图1)和X型(图2))则________.
(2)射影定理:若CD为Rt△ABC斜边上的高(双直角图形)图3则Rt△ABC∽Rt△ACD∽
Rt△CBD且AC2=________,
CD2=________,BC2=________.
12.如图,AB⊥AC,AD⊥BC,已知AB=6,BC=9,则图中线段的长
BD=________,AD=________,AC=________.
13.若△ABC∽△A′B′C′,且AB
A′B′=3
4
,△ABC的周长为12cm,则△A′B′C′的周长为________cm.
14.如图,已知AE // BC,AC,BE交于点D,若AD
DC =2
3
,则DE
BE
=________.
15.在△ABC中,D、E分别在AB、AC上,AD=3,BD=2,AC=10,EC=4,则
S△ADE:S△ABC=________.
16.在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,
简记为P(l x),(x为自然数).
(1)如图①,∠A=90∘,∠B=∠C,当BP=2PA时,P(l1)、
P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2 // AC),
此外还有________条.
(2)如图②,∠A=90∘,∠B=∠C,当BP
BA
=________时,P(l x)截得的三角形面积为△ABC面
积的1
9
.
17.如图,在△ABC中,AC=BC=2,∠C=90∘,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为________.
18.已知:如图,在△ABC中,∠ACB=90∘,CD⊥AB,垂足是D,BC=√6,BD=1.求AD=________.
19.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是________.
20.若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=________cm.
三、解答题(共 6 小题,每小题 10 分,共 60 分)
21.如图,已知D,E分别是△ABC的AB,AC上的一点,DE // BC,AB=7,AD=2,DE=4,求BC的长.
22.已知在△ABC中,AD平分∠BAC,EM是AD的中垂线,交BC延长线于E,求证:DE2= BE⋅CE.
23.如图所示,在△ABC中,点D是AB上一点,连接CE,△ABC∽△ACD且AD=4,BD= 5.求△ACD与△ABC的相似比.
24.如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,连接DE,试判断△ADE与△ABC是否相似,并说明理由?
25.如图,在Rt△ABC中,∠ABC=90∘,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.
(1)证明:BE2=AE⋅DE;
(2)若AB
BC =BD
DC
=1,AF
FC
=________;并说明理由.
答案
1.C
2.D
3.C
4.C
5.D
6.C
8.D
9.C
10.D
11.△ADE ∽△ABCAB ⋅ADAD ⋅BDAB ⋅BD
12.42√53√5
13.16
14.25
15.9:25
16.113或3√32. 17.√23 18.5
19.1:9
20.8
21.解:∵D 、E 分别是△ABC 的AB 、AC 边上的点,DE // BC , ∴△ADE ∽△ABC ,
∵AD:AB =2:7,
∴DE:BC =2:7,
∴BC =14.
22.证明:
连接AE ,
∵EM 是AD 的中垂线,
∴EA =ED ,
∴∠EDA =∠EAD ,
且∠EDA =∠B +∠BAD ,∠EAD =∠DAC +∠CAE , ∴∠CAE =∠B ,且∠AEC =∠BEA ,
∴△AEC ∽△BEA ,
∴AE BE =EC
AE
,
∴AE2=BE⋅CE,
∴DE2=BE⋅CE.
23.解:∵△ABC∽△ACD,
∴AC AB =AD
AC
,
∵AD=4,BD=5,
∴AC2=AB×AD=36,则AC=6,
故△ACD与△ABC的相似比为:6
9=2
3
.
24.解:相似.理由如下:
∵在△ABC中,BD,CE分别是AC,AB边上的高,∴∠AEC=∠ADB=90∘,
∵∠A=∠A,
∴△ACE∽△ABD,
∴AE AD =AC
AB
,
即AE
AC =AD
AB
,
∵∠A是公共角,
∴△ADE∽△ABC.
25.2.
26.BA线段BC线段AB。