高三数学一轮复习 第五节 三角函数的图像和性质(一)教案 新人教版

合集下载

高三数学一轮复习 第5讲三角函数的图像与性质教案 人教大纲版

高三数学一轮复习 第5讲三角函数的图像与性质教案 人教大纲版

第5讲 三角函数的图像与性质★知 识 梳理正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质:(1)定义域:都是R (2)值域:都是[-1,1] 对于sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1; 对于cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。

(3)周期性:①sin y x =、cos y x =的最小正周期都是2π②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω= (4)奇偶性与对称性:正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2x k k Z ππ=+∈;余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴是直线()x k k Z π=∈ (5)单调性:sin y x =在区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦单调递减; cos y x =在[]()2,22k k k Z ππππ++∈上单调递增,在区间[]()2,2k k k Z πππ+∈上单调递减,。

(6)正切函数tan y x =的图象和性质: (1)定义域:{|,}2x x k k Z ππ≠+∈。

(2)值域是R ,在上面定义域上无最大值也无最小值; (3)周期性:周期是π.(4)奇偶性与对称性:奇函数,对称中心是,02k π⎛⎫⎪⎝⎭()k Z ∈, (5)单调性:正切函数在开区间(),22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭内都是增函数。

三角函数的图象与性质教案

三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。

2. 学会绘制和分析三角函数的图象。

3. 掌握三角函数的周期性、奇偶性、单调性等性质。

4. 能够应用三角函数的性质解决问题。

二、教学内容1. 三角函数的定义和基本性质。

2. 三角函数的图象绘制方法。

3. 三角函数的周期性性质。

4. 三角函数的奇偶性性质。

5. 三角函数的单调性性质。

三、教学重点与难点1. 三角函数的定义和基本性质的理解。

2. 三角函数图象的绘制和分析。

3. 三角函数周期性、奇偶性、单调性的理解和应用。

四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。

2. 利用数学软件或图形计算器进行图象绘制和分析。

3. 引导学生通过观察、分析和归纳三角函数的性质。

4. 利用例题和练习题巩固所学知识。

五、教学安排1. 第一课时:三角函数的定义和基本性质。

2. 第二课时:三角函数的图象绘制方法。

3. 第三课时:三角函数的周期性性质。

4. 第四课时:三角函数的奇偶性性质。

5. 第五课时:三角函数的单调性性质。

六、教学目标1. 理解正弦函数、余弦函数的周期性。

2. 学会应用周期性解决实际问题。

3. 掌握正弦函数、余弦函数的相位变换。

七、教学内容1. 正弦函数、余弦函数的周期性。

2. 周期性在实际问题中的应用。

3. 正弦函数、余弦函数的相位变换。

八、教学重点与难点1. 周期性的理解和应用。

2. 相位变换的理解和应用。

九、教学方法1. 通过实例讲解周期性在实际问题中的应用。

2. 利用数学软件或图形计算器进行相位变换的演示。

3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。

十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。

2. 第七课时:周期性在实际问题中的应用。

3. 第八课时:正弦函数、余弦函数的相位变换。

十一、教学目标1. 理解正切函数的图象和性质。

2. 学会应用正切函数解决实际问题。

3. 掌握正切函数的周期性和奇偶性。

高三数学一轮复习三角函数的图像与性质教案

高三数学一轮复习三角函数的图像与性质教案

三角函数的图像与性质先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。

6.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;8.求三角函数的周期的常用方法:经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。

9.五点法作y =A sin (ωx +ϕ)的简图: 五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。

二.典例分析考点一:三角函数的定义域与值域典题导入(1)(2013·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( )A . B.⎣⎢⎡⎦⎥⎤-54,-1 C.⎣⎢⎡⎦⎥⎤-54,1D.⎣⎢⎡⎦⎥⎤-1,54(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈,画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1.(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎢⎡⎦⎥⎤0,π2,试求其值域.解:令t =sin x ,则t ∈.∴y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54.∴y ∈.∴函数的值域为.由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1. (1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z ⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2k ∈Z .利用数轴可得 函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3. 答案:(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <π2,或π≤x ≤4 (2)B考点二:三角函数的单调性典题导入(2012·华南师大附中模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求:(1)函数的周期;(2)求函数在上的单调递减区间.由y =sin ⎝ ⎛⎭⎪⎫π3-2x 可化为y =-sin ⎝ ⎛⎭⎪⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .从而x ∈时, y =sin ⎝ ⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤-π,-7π12,⎣⎢⎡⎦⎥⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z . (2)f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递增,所以f ⎝ ⎛⎭⎪⎫π7<f ⎝ ⎛⎭⎪⎫π6,而c =f ⎝ ⎛⎭⎪⎫π3=2sin2π3=2sin π3=f (0)<f ⎝ ⎛⎭⎪⎫π7, 所以c <a <b .答案:(1)⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z (2)B考点三:三角函数的周期性与奇偶性典题导入(2012·广州调研)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),给出下面四个命题:①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,故④正确.综上可知,选C.C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|; (3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2013·青岛模拟)下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2(2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝ ⎛⎭⎪⎫-π8,0B .(0,0)C.⎝ ⎛⎭⎪⎫-18,0D.⎝ ⎛⎭⎪⎫18,0 解析:(1)选A 对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝ ⎛⎭⎪⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a=2π,故f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π4.将x =-18代入得函数值为0.板书设计 三角函数的图像与性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间3.函数Bx A y ++=)sin(ϕω),(其中00>>ωA 4.对称轴与对称中心 5.五点法作图教学三角函数的图像与性质是三角函数的重点知识之一,复习时,要让学生熟练记忆三角函数的图。

高三数学一轮复习 第五节 三角函数的图像和性质(一)教案 新

高三数学一轮复习 第五节   三角函数的图像和性质(一)教案 新

芯衣州星海市涌泉学校第5课三角函数的图像和性质〔一〕【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.理解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像;3.理解函数的周期性,体会三角函数是描绘周期变化现象的重要函数模型. 【根底练习】 1.简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),那么该简谐运动的最小正周期T =_____6____;初相ϕ=__________.2.三角方程2sin(2π-x)=1的解集为_______________________.3.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如下列图,那么函数表达式为 ______________________.4.其中是函数y =π⎤⎥⎦5.要得到函数y cos x ⎛= ⎝【范例解析】 例1.函数()f x〔Ⅱ〕说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到.分析:化为sin()A x ωϕ+形式.x②③ ④ 6π{2,}3x x k k Z ππ=±∈)48sin(4π+π-=x y π6解:〔I 〕由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x .列表,取点,描图:x83π-8π-8π83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是: 〔Ⅱ〕解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12〔纵坐标不变〕,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍〔横坐标不变〕,得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12〔纵坐标不变〕,得到sin 2y x =的图像,再把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍〔横坐标不变〕,得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.例2.正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示.〔1〕求此函数的解析式1()f x ;〔2〕求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ;〔3〕作出函数12()()y f x f x =+的图像的简图.分析:识别图像,抓住关键点.-2 2x =8xyO解:〔1〕由图知,A =,22(62)16πω=⨯+=,8πω∴=,即sin()8y x πϕ=+.将2x=,y =代入,得sin()4πϕ+=,解得4πϕ=,即1()sin()84f x x ππ=+.〔2〕设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''',得8,2.x xy y '+⎧=⎪⎨⎪'=⎩解得16,.x x y y '=-⎧⎨'=⎩代入1()sin()84f xx ππ''=+中,得2()sin()84f x x ππ=-.〔3〕y =点求ϕ.例3.OA 与地面垂直,以OA 〔1〕求h 〔2〕设从OA 开始转动,经过t 秒到达OB ,求h 与t 间关系的函数解析式. 分析:理解题意,建立函数关系式.解:〔1〕由作图,过点O 作地面平行线ON ,过点B 作ON 的垂线BM 角ON 于M 点,当2πθ>时,2BOM πθ∠=-,0.8 4.8sin() 5.62h OA BM πθ∴=++=-+,经历证当02πθ≤≤,上述关系也成立.综上, 4.8sin() 5.62hπθ=-+.〔2〕因为点A 在圆O 上逆时针运动的速度是30π,所以t 秒转过的弧度数为30t π.4.8sin() 5.6302h t ππ∴=-+,[0,)t ∈+∞. 点评:此题关键是理解题意,抽象出详细的三角函数模型,再运用所学三角知识解决,答复实际问题. 【反响演练】第9题1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点 ①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕; ②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕; ③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕; ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕.其中,正确的序号有_____③______. 2.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移________个单位长度.3.假设函数()2sin()f x x ωϕ=+,x ∈R 〔其中0ω>,2ϕπ<〕的最小正周期是π,且(0)3f =,那么ω=__2____;ϕ=__________. 4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________.5.以下函数:①sin 6y x π⎛⎫=+ ⎪⎝⎭;②sin 26y x π⎛⎫=- ⎪⎝⎭;③cos 43y x π⎛⎫=- ⎪⎝⎭;④cos 26y x π⎛⎫=- ⎪⎝⎭.其中函数图象的一部分如右图所示的序号有_____④_____.6.设函数2()3cos sin cos f x x x x a ωωω=++〔其中0,a R ω>∈〕,且()f x 的图像在y 轴右侧的第一个最高点的横坐标是6π.那么ω=_________. 7.要得到cos 2y x =的图像,只要把sin(2)3y x π=-的图像向____左___平移_________个单位即可. 8.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,那么k 的取值范围是__________.9.如图,函数2sin()y x πφ=+,x R ∈,(其中02πφ≤≤)的图象与3π 3π5,44ππ⎛⎫ ⎪⎝⎭第5题12512π13k <<y 轴交于点〔0,1〕.设P 是图象上的最高点,M ,N 是图象与x 轴的交点,那么PM 与PN 的夹角余弦值为_________.10.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω〔1〕求这段时间是是的最大温差; 〔2〕写出这段时间是是的函数解析式.解:〔1〕由图示,这段时间是是的最大温差是201030=-℃〔2〕图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω= 由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y 〔]14,6[∈x 〕11.函数f(x)=A 2sin ()x ωϕ+(A>0,ω>0,0<ϕ<2π),且y=f(x)的最大值为2,其图象相邻两对称轴间的间隔为2,并过点〔1,2〕. 〔1〕求ϕ;〔2〕计算f(1)+f(2)+…+f(2008). 解:〔1〕由题意得2A =,()1cos(22)f x x ωϕ∴=-+,又24T πω==,∴4πω=,代入点〔1,2〕,得ϕ=4π;〔2〕由〔1〕得:()sin12f x x π=+,(1)(2)(3)(4)4f f f f +++=(1)(2)(2008)2008f f f ∴+++=.12.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π.〔1〕求θ和ω的值;第10题1517yx 3OPA第12题〔2〕点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.解:〔1〕将0x=,y =代入函数2cos()y x ωθ=+得cos θ=因为02θπ≤≤,所以6θπ=. 又因为该函数的最小正周期为π,所以2ω=,因此2cos 26y x π⎛⎫=+ ⎪⎝⎭.〔2〕因为点02A π⎛⎫⎪⎝⎭,,00()Q x y ,是PA 的中点,0y =所以点P 的坐标为022x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-=⎪⎝⎭ 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或者者0513466x ππ-=. 即023x π=或者者034x π=.。

高考数学一轮复习第三章第五讲三角函数的图象与性质课件

高考数学一轮复习第三章第五讲三角函数的图象与性质课件
由于 f(x)=tan 2x-π4的最小正周期为π2,故排除 D.故选 C.
答案:C
2.(考向 2)若函数 f(x)=sin ωx+4π(ω>0)在π2,π上单调递增, 则 ω 的取值范围是( )
A.12,54
B.12,34
C.0,
1 4
D.(0,2]
解析:∵函数 f(x)=sin ωx+π4(ω>0)在π2,π上单调递增, 则 ω·π2+π4≥-π2+2kπ,且 ω·π+π4≤π2+2kπ,k∈Z, 求得 4k-32≤ω≤2k+14,取 k=0,得-32≤ω≤14. ∵ω>0,∴可得 ω 的取值范围为0,41.故选 C. 答案:C
考点一 三角函数的定义域
1.(2023 年金牛区校级月考)函数 y=tan2x-π4的定义域为
()
A.xx≠kπ+π2,
k∈Z
B.xx≠k2π+ 83π,k∈Z
C.xx≠2kπ+π2,
k∈Z
D.xx≠2kπ+38π,
k∈Z
解析:由题意,得 2x-π4≠kπ+π2,k∈Z,解得 x≠k2π+83π,k∈Z, 故定义域为xx≠k2π+ 83π,k∈Z.故选 B.
正数;若 A<0,借助导公式 sin α=-sin (α±π)或 cos α=-cos (α±π)
将 A 化为正数. (2)根据 y=sin x 和 y=cos x 的单调区间列不等式求解.
[例 3]函数 f(x)=3sin 23π-2x的一个单调递减区间是(
)
A.71π2,1132π
B.1π2,71π2
2.正弦、余弦、正切函数的图象与性质(下表中 k∈Z)
函数
y=sin x
y=cos x
y=tan x

高三数学一轮复习:三角函数的图像与性质(一)(教案)

高三数学一轮复习:三角函数的图像与性质(一)(教案)

第一课时三角函数的图像与性质(一)(教案)【复习目标】【知识与技能】1.了角正弦、余弦、正切、余切函数的图像,会用“五点法”画正弦、余弦函数的简图.2.掌握三角函数的性质,包括:定义域、值域、单调性、奇偶性、周期性.【过程与方法】通过三角函数图像记忆和应用三角函数的有关性质,强化数形结合的思想方法.【情感态度与价值观】体会三角是解决数学问题的一样工具,熟练三角比公式,理解三角函数的意义,为今后的数学其余知识领域的学习创造有利条件,培养研究数学问题的意识与体验.【教学重点、难点】正弦、余弦、正切函数的图像与性质【教学过程】【知识梳理】【基础练习】1.函数xxx y sin 1cos sin 22+=的值域是(C )A .),4(+∞-B .),1[+∞-C .]21,4(- D .]21,4[-2.函数sin 1log (cos )2x y x =+([02])x π∈,的定义域是(B )A .2{|0}3x x π<<B .2{|0}32x x x ππ<<≠,且C .5{|0}6x x π<<D .5{|0}62x x x ππ<<≠,且3.给出下列命题:(D )①x y sin =与x y sin =的图像关于y 轴对称; ②)cos(x y -=与x y cos =的图像相同;③x y sin = 与)sin(x y -=的图像关于y 轴对称; ④x y cos =与)cos(x y -=的图像关于y 轴对称;其中正确命题的序号是A .①②B .③④C .①③D .②④4.函数123log cos(2)2y x π⎡⎤=-⎢⎥⎣⎦的单调减区间是3,,24k k k Z ππππ⎛⎤++∈ ⎥⎝⎦ 5.函数()sin (0)f x a x b a =+<的最大值为2,最小值为4-,则点(,)a b 是(3,1)--.6.已知()sin 1f x ax b x =++,若(5)7f =,则(5)f -=5-.7.若函数()f x的定义域是1[]2,则函数(sin )f x 的定义域是 54[2,2][2,2],3663k k k k k Z ππππππππ-++++∈ 8.已知关于x 的方程222sin cos 2sin 0x x x m -++=有实数解,则实数m 的取值范围是443m -≤≤ . 【典型例题】【例1】求下列函数的定义域(1)y =解:sin cos 0)02244522445|22,44x x x k x k k x k x k x k k Z πππππππππππππ-≥⇒-≥⇒≤-≤+⇒+≤≤+⎧⎫+≤≤+∈⎨⎬⎩⎭定义域(2)y =解:sin 02222,2sin 33x k x k x k x k x πππππππ>⎧<<+⎧⎪⎪⇒⎨⎨≠+≠+≠⎪⎪⎩⎩ 所求定义域{}222,2,2,33x k x k x k x k k Z πππππππ<<+≠+≠+∈且【例2】求下列函数的单调区间: (1)4sin(2)3y x π=- (2)12log cos y x =(3)sin 12xy ⎛⎫= ⎪⎝⎭(4) )cos (sin sin )(x x x x f -=解:(1)4sin(2)4sin(2)33y x x ππ=-=-- ,∴222()232k x k k Z πππππ-+≤-≤+∈时,函数为减函数.减区间为:5[,]()1212k k k Z ππππ-+∈.当3222()232k x k k Z πππππ+≤-≤+∈时,函数为增函数,故函数增区间为:511[,]()1212k k k z ππππ++∈;(2)12log y u = 为减函数,且cos 0u x =>的增区间为2,2()2k k k Z πππ⎛⎤-∈ ⎥⎝⎦,递减区间为2,2()2k k k Z πππ⎡⎫+∈⎪⎢⎣⎭,∴函数12log cos y x =的递增区间为2,22k k πππ⎡⎫+⎪⎢⎣⎭,递减区间为2,2().2k k k Z πππ⎛⎤-∈⎥⎝⎦(3) 2,2()2232,2()22k k k Z k k k Z ππππππππ⎡⎤-+∈⎢⎥⎣⎦⎡⎤++∈⎢⎥⎣⎦(4) 1()sin (sin cos )242f x x x x x π⎛⎫=-=++ ⎪⎝⎭ 3,()885,()88k k k Z k k k Z ππππππππ⎡⎤-+∈⎢⎥⎣⎦⎡⎤++∈⎢⎥⎣⎦【例3】求下列函数的最小正周期 ⑴ ⎪⎭⎫⎝⎛+=53tan πa x y 解:313T a aππ== ⑵ x x x x y 2cos 32cos 2sin 42sin 222++=解:()5242242y x T ππϕ=++⇒== ⑶x y sin = (思考:x y sin = 有周期吗?) 解:由图像知:x y sin =周期为π,x y sin =无周期 ⑷xx xx y 2sin 2cos 2sin 2cos -+=解:cos 2sin 21tan 2tan 2cos 2sin 21tan 242x x x y x T x x x ππ++⎛⎫===+⇒= ⎪--⎝⎭求函数周期的有以下方法:①直接从三角函数的周期的定义求得; ②由正弦,余弦函数的周期 ωπ2=T 由正切,余切函数的周期 ωπ=T ③由图像观察得到周期.④复合三角函数可化为“三个一”(一角一函数名一次)函数来求 【例4】判断下列函数的奇偶性: ⑴ x x x y 2cos cos sin 44+-=解:D R = 44sin cos cos2cos2cos20y x x x x x =-+=-+= ,既奇又偶⑵xx xx y cos sin 1cos sin 1-+++=解:1sin cos 0sin 4x x x π⎛⎫+-≠⇒-≠ ⎪⎝⎭32,244442,22x k x k x k x k πππππππππ-≠--≠-≠≠-定义域不关于原点对称,非奇非偶.【例5】求函数22sin cos 2sin 1y x x x =-+的最小正周期和最大、最小值及取得最大、最小值的对应变量x 的值.解:sin 2(1cos 2)1sin 2cos 2)4y x x x x x π=--+=+=+,故该函数的最小正周期22T ππ==当y2242x k πππ+=+,∴8x k ππ=+(k ∈Z ),当y取得最小值2242x k πππ+=-+,∴38x k ππ=-+(k ∈Z ). 【例6】求下列函数的值域: (1)x y 3sin 5=;(2)cos cos sin22xy x x =-;(3)22sin 2sin cos 3cos y x x x x =++; (4)2cos 3sin y x x =-;(5)sin cos sin cos y x x x x =++. 解:(1)[]sin31,1u x =∈-[]m i n m a x 125111,536215,,36u y u y x k u y x k k Z ππππ=-=-==-===+∈ 在,当时,当时,(2)|2,2D x x k k Z ππ⎧⎫=≠+∈⎨⎬⎩⎭, cos cos sin sin()2224cos sin 22x x x x y x x π==+=+-,因为,242x k πππ+≠+所以()sin()1,124x π+∈-,(y ∈(3)1cos 23(1cos 2)sin 22sin 2cos 222x x y x x x -+=++=++)24x π=++,∵1sin(2)14x π-≤+≤,∴所求函数的值域是[2+;(4)223131sin 3sin (sin )24y x x x =--=-++,∵1sin 1x -≤≤, ∴所求的函数的值域是[3,3]-;(5)设sin cos x x t +=,则21sin cos 2t x x -=,且)[4t x π=+∈,∴2211(1)122t y t t -=+=+-,故所求函数的值域是1[1,2+-. 【例7】已知函数()⎪⎭⎫⎝⎛≤≤-+=204sin 2cos 21πx a x a x x f 的最大值为2,求实数a 的值. 解:()()211cos 2sin 12sin sin 2424a af x x a x x a x =+-=-+- ()221sin 2,24a x a a ⎛⎫=--+-+ ⎪⎝⎭设sin ,x u =即()221()2,24a g u u a a ⎛⎫=--+-+ ⎪⎝⎭[]0,1u ∈()()[]()()[]()()()()[]()max 2max max 1100,0,1,0,26224120,102,,22,3,022*********,0,1,1,22423a aa g u u g u a a a a u g u a a a a a a a a a g u u g u a φ<⇒<==-=⇒=-∈⇒≤≤==-+⇒=-=≤≤⇒∈>⇒>==-=⇒= 在当当在当所以6a =-或103a =【例8】设1sin sin 3x y +=,求2sin cos u x y =-的最大值和最小值. 解:∵1sin sin 3x y +=,∴1sin sin 3x y =-,又1sin 1x -≤≤,∴11sin 131sin 1y y ⎧-≤-≤⎪⎨⎪-≤≤⎩,∴2sin 13y -≤≤,而221111sin (1sin )(sin )3212u y y y =---=--,∴当1sin 2y =,1sin 6x =-时,min 1112u =-, 而当2sin 3y =-,sin 1x =时,max 49u =.【例9】对于⎥⎦⎤⎢⎣⎡∈2,0πθ的任何值都有05cos 4sin 2<-+θθk 成立,求k 的取值范围. 解:[]0,cos 0,12πθθ⎡⎤∈⇒∈⎢⎥⎣⎦()22min (1)cos 004,5sin 4cos 112cos 0cos 0,cos 4cos 4cos cos 411cos ,(0,1],,4550,1]44k t t u t t u u k θθθθθθθθθθ=<-+≠><==+=∈=+=⇒<时,原式为:恒成立时,令又在(, 【例10】设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小; (Ⅱ)求cos sin A C +的取值范围.解:(Ⅰ)由2s i n a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ>>-,2263B ππππ-=-=. 2336A ππ5π<+<,所以1sin 23A π⎛⎫<+< ⎪⎝⎭.由此有3A π⎛⎫<+< ⎪⎝⎭,所以,cos sin A C +的取值范围为322⎛⎫ ⎪ ⎪⎝⎭,.说明:要求cos sin A C +的取值范围,联想可否把它化为sin()y A x ωϕ=+的 形式.由ABC ∆是锐角三角形得,2A B π+>,从而得出22A B ππ>>-是求cos sin A C +的关键.【备用例题】1. 已知函数]434[22cos 2sin 3)(ππ,,∈++--=x b a x a x a x f ,是否存在常数∈b a 、Q ,使得)(x f 的值域为]133[--,?若存在,求出b a 、的值;若不存在,请说明理由.解:函数即b a x a x f +++-=2)62sin(2)(π,∵]434[ππ,∈x ,∴]3532[62πππ,∈+x,∴1sin(2)3x π-≤+≤; 若存在满足题设的有理数b a 、,则10当0>a 时,⎪⎩⎪⎨⎧-=++-=++-1322323b a a b a a ,这不可能;20当0<a 时,⎩⎨⎧-=++-=++-3221323b a a b a a ,此时求得11=-=b a ,;即这样的b a 、存在,且11=-=b a ,. 2.在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 【巩固练习】1.已知函数x x x f sin 3cos )(-=,则这一函数的一个递减区间是(C ) A .)6,65(ππ-B .)67,6(ππ C .)32,3(ππ-D .)35,32(ππ 2.已知函数cos(sin )y x =,则下列结论正确的是(B ) A .它是奇函数 B .值域为[cos1,1]C .它不是周期函数D .定义域为[1,1]-3.若)0(π,∈x ,则函数|cos 1cos 1|x x y --+=的值域为(C ) A .]20[,B .[02],C .)20[,D .)20[,4. 已知向量(1sin )a θ= ,,)b θ=,则a b - 的最大值为.【答案】sin a b θθ-= =2sin()23πθ-≤.5.函数2sin cos 3cos2y x x x =-的最小正周期T =π .6.已知1>a ,则函数x a x y cos 2cos 2-=的最小值是a 21- . 7.函数2cos 2cos xy x+=-(x ∈R )的最大值是3 .8.函数)20(cos 2π≤≤=x x y 的图象和直线2=y 围成一个封闭的平面图形,这个封闭图形的面积为π4 9.函数()sin()24f x x c π=+-(c 为常数),若()0f x =的根成公差为4的等差数列,则(4)f 的值是0 .提示:∵周期8=T ,∴当且仅当2=c 时,此时(4)sin 0f π==.10.已知函数2()2sin sin cos f x a x x x a b =-++的定义域是[0,]2π,值域是[5,1]-,求实数a 、b 的值.【答案】25a b =⎧⎨=-⎩或21a b =-⎧⎨=⎩.11. 已知ABC ∆中135A B +=,求22sin sin A B +的最大值. 解:∵2222sin sin sin sin (135)A B A A +=+-1cos 21cos(2702)22A A ---=+111cos 2sin 222A A =-+)14A π=-+由350,2,4444A A ππππ⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪⎝⎭⎝⎭,所以sin 24A π⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦所以221sin sin 2A B ⎛+∈ ⎝⎦,即22sin sin A B +的最大值为222+ (当67.5A B ==时)。

三角函数图像与性质总复习教案

三角函数图像与性质总复习教案

三角函数图像与性质总复习教案一、教学目标1. 回顾和巩固三角函数的图像与性质,包括正弦函数、余弦函数、正切函数等。

2. 提高学生对三角函数图像与性质的理解和应用能力。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 复习正弦函数的图像与性质。

2. 复习余弦函数的图像与性质。

3. 复习正切函数的图像与性质。

4. 复习三角函数的周期性。

5. 复习三角函数的奇偶性。

三、教学方法1. 采用讲解法,通过教师的讲解,引导学生回忆和巩固三角函数的图像与性质。

2. 采用案例分析法,通过具体的例子,让学生理解和掌握三角函数的图像与性质。

3. 采用互动教学法,引导学生积极参与讨论和提问,提高学生的思维能力和解决问题的能力。

四、教学步骤1. 复习正弦函数的图像与性质。

a. 引导学生回忆正弦函数的定义和图像。

b. 讲解正弦函数的周期性和奇偶性。

c. 通过例子,让学生应用正弦函数的性质解决实际问题。

2. 复习余弦函数的图像与性质。

a. 引导学生回忆余弦函数的定义和图像。

b. 讲解余弦函数的周期性和奇偶性。

c. 通过例子,让学生应用余弦函数的性质解决实际问题。

3. 复习正切函数的图像与性质。

a. 引导学生回忆正切函数的定义和图像。

b. 讲解正切函数的周期性和奇偶性。

c. 通过例子,让学生应用正切函数的性质解决实际问题。

4. 复习三角函数的周期性。

a. 引导学生回忆三角函数的周期性定义。

b. 讲解三角函数的周期性性质。

c. 通过例子,让学生应用三角函数的周期性解决实际问题。

5. 复习三角函数的奇偶性。

a. 引导学生回忆三角函数的奇偶性定义。

b. 讲解三角函数的奇偶性性质。

c. 通过例子,让学生应用三角函数的奇偶性解决实际问题。

五、教学评价1. 课堂练习:布置相关的练习题,检查学生对三角函数图像与性质的理解和应用能力。

2. 课后作业:布置相关的作业题,巩固学生对三角函数图像与性质的记忆和理解。

3. 小组讨论:组织学生进行小组讨论,鼓励学生积极参与,提高学生的思维能力和解决问题的能力。

三角函数的图象与性质教案

三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标:1. 让学生理解三角函数的定义和基本概念,掌握正弦函数、余弦函数和正切函数的图象和性质。

2. 培养学生运用数形结合的思想方法研究三角函数的图象与性质。

3. 培养学生的逻辑思维能力和数学审美能力。

二、教学重点与难点:1. 教学重点:三角函数的图象与性质。

2. 教学难点:正弦函数、余弦函数和正切函数的图象与性质的推导和应用。

三、教学方法与手段:1. 教学方法:采用讲练结合、师生互动、分组讨论等教学方法。

2. 教学手段:利用多媒体课件、黑板、粉笔等教学工具。

四、教学过程:1. 导入新课:通过复习三角函数的定义和基本概念,引导学生关注三角函数的图象与性质。

2. 讲解与示范:讲解正弦函数、余弦函数和正切函数的图象与性质,并通过多媒体课件展示图象,让学生直观地感受三角函数的性质。

五、课后作业:1. 绘制正弦函数、余弦函数和正切函数的图象,并分析它们的性质。

2. 练习题:选择适当的函数,分析它们的图象与性质,解决实际问题。

3. 思考题:探讨三角函数图象与性质的内在联系,提出自己的见解。

六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角函数图象与性质的理解和掌握程度。

2. 观察学生在课堂讨论和练习中的表现,评估他们的逻辑思维能力和数学审美能力。

3. 收集学生对思考题的解答,评价他们的思考深度和创新能力。

七、教学反思:1. 反思本节课的教学内容和方法,评估学生对新知识的接受程度。

2. 思考如何改进教学手段,提高课堂教学效果。

3. 探讨如何引导学生将所学知识应用于实际问题,提高学生的应用能力。

八、教学拓展:1. 介绍三角函数在实际生活中的应用,如测量、信号处理等。

2. 引入高级三角函数的概念,如双曲函数、反三角函数等。

3. 探讨三角函数与其他数学领域的联系,如微积分、线性代数等。

九、教学资源:1. 多媒体课件:三角函数图象与性质的动态展示。

2. 练习题库:涵盖各种难度的练习题。

高三数学第一轮复习教案 三角函数 新课标 人教版

高三数学第一轮复习教案 三角函数 新课标 人教版

高三数学第一轮复习教案 三角函数 新课标 人教版一、知识要点:三角函数基本概念、三角函数的恒等变形(化简,求值,等式的证明)、三角函数的图象和性质1、三角变换基本解题方法:切割化弦,异名化同名,异角化同角,高次化低次,无理化有理. 常用的技巧:升幂降幂法、辅助元素法,“1”的代换法、利用倍角公式建立2α与α、α与2α的关系、角的配凑等2、对三角函数性质的考查总是与三角变换相结合.一般解题规律是先对三角函数关系式进行三角变换,使之转化为一个角的三角函数的形式,再利用换元法转化为对基本三角函数性质的研究.3、易错点:要注意正切函数定义域的限制;在三角变形过程中要注意自变量取值区间的变化,以防出现增根或失根;凡遇到参数或字母时,注意分情况进行讨论。

4、主要数学思想:化归思想、函数思想、数形结合思想、分类讨论思想 二、主干知识点、基本方法回顾练习: 1. 若θ是第三象限的角,且95cos sin 44=+θθ,那么θ2sin 的值为( C ) A. 23 B. -23 C. 223 D. -2232. 已知函数)sin(2x y ω=在[3π-,4π]上单调递增,则实数ω的取值范围是( A )A .(0,23]B .(0,2]C .(0,1]D .]43,0( 3.先将)(x f y =的图象沿x 轴向右平移3π个单位,再将图象上每一个点的横坐标伸长为原来的2倍,而保持它们的纵坐标不变,得到的曲线与x y cos =的图象相同,则)(x f y =的解析式是( C ) A .)62cos(π+=x y B .)32cos(π+=x y C .)322cos(π+=x y D .)322cos(π-=x y 4.若α为第二象限的角,则下列各式恒小于0的是( B )A .ααcos sin +B .ααsin tan +C .ααcot cos -D .ααtan sin - 5.已知53)sin(=+B A ,51)sin(=-B A ,则=BA tan tan ( A ) A 、 2B 、 3C 、1D 、无法确定CA BD6. 如图是由三个相同的正方形相接,在△ABC 中,锐角∠ACB=α,则αtan =(C )A .51B .61C .71D .10277.函数x x x y 2cos 3sin cos +=相邻两条对称轴的距离为( C )A .2πB .4πC .2π D .π8. 函数)32sin(π+-=x y 的递减区间是_____5,1212k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭_______,递增区间是______________,511,1212k k k Z ππππ⎛⎫++∈⎪⎝⎭9.函数()3sin()(0)53kx f x k π=+≠有一条对称轴为6π=x ,则=k _5_______。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标1. 知识与技能:(1)了解正弦函数、余弦函数、正切函数的图像和性质;(2)学会分析三角函数图像的变化规律;(3)能够运用三角函数的性质解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳三角函数图像的特性;(2)利用数形结合的方法,研究三角函数的性质;(3)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养学习的积极性;(2)引导学生感受数学的美丽和实用性,提高学生的数学素养;(3)培养学生合作、探究的精神。

二、教学重点与难点1. 教学重点:(1)掌握正弦函数、余弦函数、正切函数的图像和性质;(2)能够运用三角函数的性质解决实际问题。

2. 教学难点:(1)三角函数图像的变换规律;(2)三角函数性质的深入理解。

三、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生探究三角函数的图像与性质;(2)运用数形结合的方法,帮助学生直观地理解三角函数的性质;(3)采用小组合作、讨论的方式,培养学生的团队合作能力。

2. 教学手段:(1)利用多媒体课件,展示三角函数的图像和性质;(2)利用数学软件,进行函数图像的动态演示;(3)提供充足的练习题,巩固所学知识。

四、教学内容与步骤1. 导入新课:(1)复习已知三角函数的图像和性质;(2)引出本节课要学习的内容:三角函数的图像与性质。

2. 探究正弦函数的图像与性质:(1)展示正弦函数的图像;(2)引导学生观察、分析正弦函数的性质;3. 探究余弦函数的图像与性质:(1)展示余弦函数的图像;(2)引导学生观察、分析余弦函数的性质;4. 探究正切函数的图像与性质:(1)展示正切函数的图像;(2)引导学生观察、分析正切函数的性质;五、课堂练习与拓展1. 课堂练习:(1)根据给定的函数式,绘制函数图像;(2)根据函数图像,分析函数的性质;(3)解决实际问题,运用三角函数的性质。

三角函数的图像和性质教案

三角函数的图像和性质教案

三角函数的图像和性质教案阳光教育的课题是三角函数的图像和性质。

这是一个重要的内容,但学生可能还不太清楚其中的概念和理解。

因此,需要及时巩固这些知识。

教学目标是掌握三角函数的图像及其性质在图像交换中的应用,并在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中应用这些知识。

教学重点是三角函数图像与性质的应用。

教学方法包括导入法、讲授法和归纳总结法。

在基础梳理部分,学生需要掌握“五点法”描图。

对于y=sin x和y=cos x的图像,在[0,2π]上的五个关键点的坐标应该知道。

此外,学生还需要了解三角函数的图像和性质,包括函数、性质、定义域、值域、图像、对称轴、对称中心、周期、单调性和奇偶性。

这些知识将有助于学生更好地理解三角函数的图像和性质。

在教学重点部分,学生需要掌握三角函数图像与性质的应用。

这包括如何求解三角函数的值域(最值),以及如何在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中应用这些知识。

为此,教师可以采用三种方法:利用sin x、cos x的有界性;将复杂的函数化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;利用奇偶性来简化函数形式。

最后,教师应该鼓励学生在课后进行练,巩固所学知识。

只有通过不断地练,才能真正掌握三角函数的图像和性质。

换元法是解决三角函数问题的一种常用方法。

通过把sinx 或cosx看作一个整体,可以将其化为求函数在区间上的值域问题。

例如,对于函数y=cos(x+π/3),可以将cos(x+π/3)看作cos(x)的平移,因此其最小正周期与cosx相同,即2π。

另外,对于函数y=tan(-x),其定义域为R\{(2k+1)π/2 | k∈Z},即除去所有奇数个π/2的点。

下面来看几个例题。

对于函数y=sin(-x),其周期为π,因为sin(-x)与sinx的图像关于y轴对称。

对于函数y=tan(3x-π/2),可以将其化为y=tan3x的平移,因此其最小正周期为2π/3.当求解三角函数的定义域和值域时,常常需要借助三角函数线或三角函数图像来解决。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。

2. 学会绘制三角函数的图像。

3. 掌握三角函数的性质,并能应用于实际问题。

二、教学内容:1. 三角函数的定义与基本概念正弦函数(sin)余弦函数(cos)正切函数(tan)余切函数(cot)正割函数(sec)余割函数(csc)2. 三角函数的图像正弦函数的图像余弦函数的图像正切函数的图像其他三角函数的图像3. 三角函数的性质周期性奇偶性单调性极值三、教学方法:1. 采用讲解法,讲解三角函数的定义、图像和性质。

2. 利用数形结合法,引导学生通过观察图像来理解函数的性质。

3. 运用实例分析法,让学生通过实际问题来应用三角函数的性质。

四、教学步骤:1. 引入三角函数的概念,讲解三角函数的定义和基本性质。

2. 利用计算机软件或板书,绘制三角函数的图像,让学生观察和理解函数的图像。

3. 通过示例,讲解三角函数的性质,引导学生掌握如何判断函数的周期性、奇偶性、单调性和极值。

4. 布置练习题,让学生巩固所学内容,并能够应用三角函数的性质解决实际问题。

五、教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生对三角函数定义和基本概念的掌握程度。

3. 学生能够正确绘制三角函数的图像。

4. 学生能够运用三角函数的性质解决实际问题。

六、教学拓展:1. 探索三角函数的复合函数图像和性质。

2. 研究三角函数在科学和工程中的应用。

3. 引入三角恒等式,让学生了解三角函数之间的关系。

七、教学活动:1. 组织小组讨论,让学生共同探讨三角函数的性质和图像。

2. 开展数学竞赛,激发学生学习三角函数的兴趣。

3. 安排实地考察,让学生观察和理解三角函数在现实世界中的应用。

八、教学资源:1. 利用计算机软件,如GeoGebra或Matplotlib,绘制三角函数的图像。

2. 提供三角函数的图像和性质的参考资料,供学生自主学习。

3. 利用互联网资源,寻找实际问题,让学生应用三角函数的性质解决。

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案一、教学目标1. 回顾和巩固三角函数的图像与性质的基本概念。

2. 提高学生对三角函数图像与性质的理解和应用能力。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 三角函数的图像与性质的基本概念。

2. 三角函数图像的绘制方法。

3. 三角函数性质的推导和应用。

三、教学重点与难点1. 重点:三角函数的图像与性质的基本概念和应用。

2. 难点:三角函数性质的推导和应用。

四、教学方法与手段1. 采用讲解、演示、练习、讨论相结合的教学方法。

2. 使用多媒体课件、黑板、教具等教学手段。

五、教学过程1. 导入:通过复习已学过的三角函数图像与性质的基本概念,激发学生的学习兴趣。

2. 讲解:讲解三角函数图像与性质的基本概念,结合实际例子进行解释和演示。

3. 练习:布置相关的练习题,让学生巩固所学的知识。

4. 讨论:组织学生进行小组讨论,分享各自的解题方法和思路。

六、教学评估1. 课堂练习:及时给予学生反馈,指出其错误,帮助学生纠正。

2. 课后作业:布置相关的作业,巩固所学知识,并及时批改,给予评价和建议。

3. 小组讨论:观察学生在讨论中的表现,了解其对知识的理解和应用能力。

七、教学拓展1. 邀请相关领域的专家或企业人士进行讲座或实践操作,让学生了解三角函数在实际生活中的应用。

2. 组织学生进行实地考察,如测量物体的高度等,运用三角函数解决实际问题。

3. 开展三角函数主题的研究性学习,培养学生的独立思考和探究能力。

八、教学反思1. 在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。

2. 反思教学内容,确保涵盖了三角函数图像与性质的重点和难点。

3. 思考如何激发学生的学习兴趣,提高学生的参与度和积极性。

九、教学计划与进度安排1. 制定详细的教学计划,明确每个阶段的教学目标和内容。

2. 根据学生的学习情况,合理调整教学进度,确保教学效果。

3. 定期进行教学评价,了解学生的学习进展,为后续教学提供参考。

高中数学高三三角函数的图象和性质【教案】

高中数学高三三角函数的图象和性质【教案】

高三一轮(理) 3.3 三角函数的图象和性质【教学目标】1.能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。

【重点难点】1。

教学重点:函数y=sin x,y=cos x,y=tan x的图象和性质; 2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】了解理解掌握函数y=sin x,y=cos x,y=tan x的图象和性质√[考纲传真] 1。

能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。

真题再现学生通过对高考真题的解决,发现自己对知识的掌握情况。

通过对考纲的解读和分析.让学生明确考试要求,做到有的放矢2.【2014上海】 函数 的最小正周期是________ 【解析】由题意13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎪⎫π2=f ⎝⎛⎭⎪⎪⎫2π3=-f ⎝ ⎛⎭⎪⎪⎫π6,则f (x )的最小正周期为________.典例 (1)(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y =cos ⎝⎛⎭⎪⎪⎫2x +π2B.y =sin ⎝⎛⎭⎪⎪⎫2x +π2C.y =sin 2x +cos 2xD.y =sin x +cos x学生通过对高考真题的解决,感受高考题的考察视角。

(2)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象 如图所示,则f (x )的单调递减区间为()A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z .故选D.∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,解析 (1)选项A中,y =cos ⎝⎛⎭⎪⎪⎫2x +π2=-sin 2x ,符合题意.6.(2016高考新课标1)已知函数为的零点,为 图像的对称轴, 且在单调,则的最大值为( )数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.知识点3 三角函数的图象和性质y=sin x y=cos x y=tan xR R x≠kπ+错误!,k [-1,1][-1,1]R增区间:错误!,减区间:错误!增区间:[2kπ-π,2kπ],减区间:[2kπ,2kπ+π],递增区间kπ-错误!,kπ+∈Z奇函数偶函数奇函数(kπ,0),k ∈Z 错误!,k∈Zkπ2,0,k∈Z在解题中注意引导学生自主分析和解决问题,教师及时和解题效率.学必求其心得,业必贵于专精。

三角函数的图像与性质教案

三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标:1. 知识与技能:使学生掌握三角函数的图像与性质,能够运用三角函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索三角函数的图像与性质。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作能力。

二、教学内容:1. 三角函数的定义与图像2. 三角函数的周期性3. 三角函数的奇偶性4. 三角函数的单调性5. 三角函数的极值三、教学重点与难点:1. 教学重点:三角函数的图像与性质的掌握。

2. 教学难点:三角函数的周期性、奇偶性、单调性和极值的判断。

四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图像与性质。

2. 利用多媒体手段,展示三角函数的图像,增强学生的直观感受。

3. 组织小组讨论,培养学生的团队协作能力。

五、教学过程:1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。

2. 探究三角函数的图像与性质:引导学生观察三角函数的图像,分析其特点,归纳出性质。

3. 讲解与示范:教师讲解三角函数的周期性、奇偶性、单调性和极值的判断方法,并进行示范。

4. 练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置相关作业,巩固所学知识,提高学生的实际应用能力。

教案编写完毕,仅供参考。

如有需要,请根据实际情况进行调整。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和团队协作能力。

2. 作业评价:对学生的课后作业进行批改,评价学生对课堂所学知识的掌握程度。

3. 单元测试评价:在单元结束后进行测试,评价学生对三角函数图像与性质的掌握情况。

七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使所有学生都能跟上教学进度。

高考数学一轮复习 4.5 三角函数的图象与性质(一)教案

高考数学一轮复习 4.5 三角函数的图象与性质(一)教案

4.5 三角函数的图象与性质(一)●知识梳理1.五点法作y =A sin (ωx +ϕ)的简图:五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图.2.利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.3.给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置. ●点击双基1.(2002年全国)函数y =-x cos x 的部分图象是DCBA解析:y =-x cos x 为奇函数,且当x 0+时,图象在x 轴下方. 答案:D2.(2002年全国)在(0,2π)内,使sin x >cos x 成立的x 的取值范围是 A.(4π,2π)∪(π,4π5) B.(4π,π) C.(4π,4π5)D.(4π,π)∪(4π5,2π3) 解析:利用三角函数线.答案:C3.(2005年春季北京,4)如果函数f (x )=sin (πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么A.T =2,θ=2π B.T =1,θ=π C.T =2,θ=πD.T =1,θ=2π 解析:T =ππ2=2,又当x =2时,sin (π·2+θ)=sin (2π+θ)=sin θ,要使上式取得最大值,可取θ=2π. 答案:A4.设函数f (x )=A +B sin x ,若B <0时,f (x )的最大值是23,最小值是-21,则A =_______,B =_______.解析:根据题意,由⎪⎪⎩⎪⎪⎨⎧-=+=-2123B A B A ,可得结论.答案:21-1 5.(2004年全国,5)已知函数y =tan (2x +ϕ)的图象过点(12π,0),则ϕ可以是 A.-6π B.6π C.-12π D.12π 解析:将(12π,0)代入原函数可得,tan (6π+ϕ)=0,再将A 、B 、C 、D 代入检验即可. 答案:A●典例剖析【例1】 把函数y =cos (x +3π4)的图象向左平移4个单位,所得的函数为偶函数,则ϕ的最小值是A.3π4 B.3π2 C.3π D.3π5 剖析:先写出向左平移4个单位后的解析式,再利用偶函数的性质求解. 向左平移ϕ个单位后的解析式为y =cos (x +3π4+ϕ), 则cos (-x +3π4+ϕ)=cos (x +3π4+ϕ), cos x cos (3π4+ϕ)+sin x sin (3π4+ϕ)=cos x cos (3π4+ϕ)-sin x sin (3π4+ϕ). ∴sin x sin (3π4+ϕ)=0,x ∈R .∴3π4+ϕ=k π.∴ϕ=k π-3π4>0. ∴k >34.∴k =2.∴ϕ=3π2. 答案:B【例2】 试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象.解:y =31sin (2x +3π))(纵坐标不变倍横坐标扩大为原来的3πsin 312+=−−−−−−−−−→−x yx y sin 313π=−−−−−−−−→−纵坐标不变个单位图象向右平移x y sin 3=−−−−−−−−−→−横坐标不变倍纵坐标扩大到原来的深化拓展还有其他变换吗?不妨试一试.答案:(1)先将y =31sin (2x +3π)的图象向右平移6π个单位,得y =31sin2x 的图象;(2)再将y =31sin2x 上各点的横坐标扩大为原来的2倍(纵坐标不变),得y =31sin x 的图象;(3)再将y =31sin x 图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到y =sin x 的图象.【例3】 (2004年重庆,17)求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.解:y =sin 4x +23sin x cos x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )+3sin2x =3sin2x -cos2x =2sin (2x -6π). 故该函数的最小正周期是π;最小值是-2;单调递增区间是[0,3π],[6π5,π]. 评述:把三角函数式化简为y =A sin (ωx + )+k (ω>0)是解决周期、最值、单调区间问题的常用方法.●闯关训练 夯实基础1.(2004年辽宁,7)已知函数f (x )=sin (πx -2π)-1,则下列命题正确的是 A.f (x )是周期为1的奇函数 B.f (x )是周期为2的偶函数C.f (x )是周期为1的非奇非偶函数D.f (x )是周期为2的非奇非偶函数 解析:T =ππ2=2,且f (x )=sin (πx -2π)-1=cos2x -1,∴f (x )为偶函数. 答案:B2.(2004年全国Ⅰ,9)为了得到函数y =sin (2x -6π)的图象,可以将函数y =cos2x 的图象A.向右平移6π个单位长度 B.向右平移3π个单位长度 C.向左平移6π个单位长度D.向左平移3π个单位长度解析:∵y =sin (2x -6π)=cos [2π-(2x -6π)]=cos (3π2-2x )=cos (2x -3π2)= cos [2(x -3π)], ∴将函数y =cos2x 的图象向右平移3π个单位长度. 答案:B3.方程2sin2x =x -3的解的个数为_______. 解析:画图象. 答案:34.函数y =A sin (x +ϕ)与y =A cos (x +ϕ)在(x 0,x 0+π)上交点的个数为_______. 解析:画图象. 答案:15.(2004年上海,14)已知y =f (x )是周期为2π的函数,当x ∈[0,2π)时,f (x )=sin 2x ,则f (x )=21的解集为 A.{x |x =2k π+3π,k ∈Z } B.{x |x =2k π+3π5,k ∈Z } C.{x |x =2k π±3π,k ∈Z }D.{x |x =2k π+(-1)k3π,k ∈Z } 解析:∵f (x )=sin 2x =21,x ∈[0,2π),∴2x ∈[0,π).∴2x =6π或6π5. ∴x =3π或3π5. ∵f (x )是周期为2π的周期函数,∴f (x )=21的解集为{x |x =2k π±3π,k ∈Z }. 答案:C6.画出函数y =|sin x |,y =sin|x |的图象. 解:y =sin|x |=⎩⎨⎧<-≥.0sin 0sin x x x x,培养能力7.作出函数y =|sin x |+|cos x |,x ∈[0,π]的图象,并写出函数的值域. 解:原式=⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-⎥⎦⎤⎢⎣⎡∈+.π2π4πsin 22π04πsin2,)(,,)(x x x x如下图:函数的值域为[1,2].8.(2004年福建,17)设函数f (x )=a ·b ,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R .(1)若f (x )=1-3且x ∈[-3π,3π],求x ; (2)若函数y =2sin2x 的图象按向量c =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.分析:本题主要考查平面向量的概念和计算、三角函数的恒等变换及其图象变换的基本技能,考查运算能力.解:(1)依题设,f (x )=2cos 2x +3sin2x =1+2sin (2x +6π).由1+2sin (2x +6π)=1-3, 得sin (2x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤6π5.∴2x +6π=-3π,即x =-4π. (2)函数y =2sin2x 的图象按向量c =(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f (x )的图象.由(1)得f (x )=2sin2(x +12π)+1. ∵|m |<2π,∴m =-12π,n =1. 探究创新9.(2004年北京西城区一模题)f (x )是定义在[-2π,2π]上的偶函数,当x ∈[0,π]时,y =f (x )=cos x ,当x ∈(π,2π]时,f (x )的图象是斜率为π2,在y 轴上截距为-2的直线在相应区间上的部分.(1)求f (-2π),f (-3π); (2)求f (x ),并作出图象,写出其单调区间. 解:(1)当x ∈(π,2π]时,y =f (x )=π2x -2, 又f (x )是偶函数,∴f (-2π)=f (2π)=2. 又x ∈[0,π]时,y =f (x )=cos x ,∴f (-3π)=f (3π)=21. (2)y =f (x )=[)[](]⎪⎪⎩⎪⎪⎨⎧∈--∈--∈--.2ππ2π2ππcos ππ22π2,,,,,x x x xx x单调区间为[-2π,-π),[0,π),[-π,0],[π,2π]. ●思悟小结1.数形结合是数学中重要的思想方法,在中学阶段,对各类函数的研究都离不开图象,很多函数的性质都是通过观察图象而得到的.2.作函数的图象时,首先要确定函数的定义域.3.对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.4.求定义域时,若需先把式子化简,一定要注意变形时x 的取值范围不能发生变化. ●教师下载中心 教学点睛解析式的求解中应引导学生用好图象,紧扣五点中的第一个零点,要注意图象的升降情况,注意数形结合的思想.拓展题例【例题】 已知函数f (x )=A sin ωx +B cos ωx (A 、B 、ω是实常数,ω>0)的最小正周期为2,并当x =31时,f (x )max =2.(1)求f (x ). (2)在闭区间[421,423]上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1)f (x )=3sin πx +cos πx =2sin (πx +6π). (2)令πx +6π=k π+2π,k ∈Z .∴x =k +31,421≤k +31≤423. ∴1259≤k ≤1265.∴k =5. 故在[421,423]上只有f (x )的一条对称轴x =316.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5课 三角函数的图像和性质(一)【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_____6____;初相ϕ=__________. 2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.4.下列函数图像:其中是函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,上的简图的序号是__①__.x① ②③④6π{2,}3x x k k Z ππ=±∈ 48sin(4π+π-=x y第3题5. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位. 【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 分析:化为sin()A x ωϕ+形式.解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x .列表,取点,描图:故函数)(x f y =在区间]2,2[-上的图象是:(Ⅱ)解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin(2)4y x π=-的图像,然后把si n (2)4y x π=-的图像上所有点纵坐标伸长到原来的倍(横坐标不变),得到s i n (2)4y x π=-的图像,再将)4y x π=-的图像上所有点向上平移1个单位,即得到1)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin 2y x =的图像,再π6把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的倍(横坐标不变),得到)4y x π=-的图像,再将)4y x π=-的图像上所有点向上平移1个单位,即得到1)4y x π=+-的图像.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.分析:识别图像,抓住关键点. 解:(1)由图知,A =,22(62)16πω=⨯+=,8πω∴=,即sin()8y x πϕ=+.将2x =,y=sin()4πϕ+=4πϕ=,即1()sin()84f x x ππ=+.(2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''', 得8,2.x xy y '+⎧=⎪⎨⎪'=⎩解得16,.x x y y '=-⎧⎨'=⎩代入1()sin()84f xx ππ''=+中,得2()sin()84f x x ππ=-.(3)y =ω,代入最高点或最低点求ϕ.例3.右图为游览车的示意图,该游览车半径为4.8m ,圆上最低点与地面距离为0.8m ,60秒转到一周,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h . (1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒到达OB ,求h 与t 间关系的函数解析式.分析:理解题意,建立函数关系式. 解:(1)由已知作图,过点O 作地面平行线ON ,过点B 作ON 的垂线BM角ON 于M 点,当2πθ>时,2BOM πθ∠=-, 0.84.8sin()5.62h OA BM πθ∴=++=-+,经验证当02πθ≤≤,上述关系也成立.综上, 4.8sin() 5.62h πθ=-+.(2)因为点A 在圆O 上逆时针运动的速度是30π,所以t 秒转过的弧度数为30t π. 4.8sin() 5.6302h t ππ∴=-+,[0,)t ∈+∞.点评:本题关键是理解题意,抽象出具体的三角函数模型,再运用所学三角知识解决,回答实际问题. 【反馈演练】1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变);④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变). 其中,正确的序号有_____③______. 2.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移________个单位长度.3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =ω=__2____;ϕ=__________. 4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________. 5.下列函数: ①sin 6y x π⎛⎫=+ ⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 3π3π5,44ππ⎛⎫ ⎪⎝⎭ 第5题第9题其中函数图象的一部分如右图所示的序号有_____④_____.6.设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈),且()f x 的图像在y 轴右侧的第一个最高点的横坐标是6π.则ω=_________.7.要得到cos 2y x =的图像,只要把sin(2)3y x π=-的图像向____左___平移_________个单位即可.8.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________. 9.如图,函数2sin()y x πφ=+,x R ∈,(其中02πφ≤≤)的图象与y 轴交于点(0,1).设P 是图象上的最高点,M ,N 是图象与x 轴的交点,则PM 与PN 的夹角余弦值为_________. 10.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω (1)求这段时间的最大温差;(2)写出这段时间的函数解析式. 解:(1)由图示,这段时间的最大温差是201030=-℃(2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω= 由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x ) 11.已知函数f (x )=A 2sin ()x ωϕ+(A >0,ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008).解:(1)由题意得2A =,()1cos(22)f x x ωϕ∴=-+,又24T πω==,∴4πω=,代入点(1,2),得ϕ=4π;第10题12 512π 13k << 1517(2)由(1)得:()sin12f x x π=+,(1)(2)(3)(4)4f f f f +++=(1)(2)(2008)2008f f f ∴+++=.12.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=, 因为02θπ≤≤,所以6θπ=. 又因为该函数的最小正周期为π,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,0y =所以点P 的坐标为022x π⎛-⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 462x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.第12题。

相关文档
最新文档