2-5导数的简单应用
导数的应用完全归纳
导数的应⽤完全归纳第8讲导数应⽤的题型与⽅法(4课时)⼀、考试内容导数的概念,导数的⼏何意义,⼏种常见函数的导数两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利⽤导数研究函数的单调性和极值,函数的最⼤值和最⼩值⼆、考试要求⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在⼀点处的导数的定义和导数的⼏何意义,理解导函数的概念。
x的导数)。
掌握两个函数四⑵熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x,lnx, loga则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求⼀些实际问题(⼀般指单峰函数)的最⼤值和最⼩值。
三、复习⽬标1.了解导数的概念,能利⽤导数定义求导数.掌握函数在⼀点处的导数的定义和导数的⼏何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x, lnx, logx的导数)。
掌握两个函数四则a运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够⽤导数求单调区间,求⼀个函数的最⼤(⼩)值的问题,掌握导数的基本应⽤.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运⽤函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。
4.了解复合函数的概念。
会将⼀个函数的复合过程进⾏分解或将⼏个函数进⾏复合。
掌握复合函数的求导法则,并会⽤法则解决⼀些简单问题。
四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有⼒⼯具。
在⾼中阶段对于导数的学习,主要是以下⼏个⽅⾯:1.导数的常规问题:(1)刻画函数(⽐初等⽅法精确细微);(2)同⼏何中切线联系(导数⽅法可⽤于研究平⾯曲线的切线);(3)应⽤问题(初等⽅法往往技巧性要求较⾼,⽽导数⽅法显得简便)等关于n 次多项式的导数问题属于较难类型。
导数在经济学中的简单应用ppt课件
(4) 在经营决策分析中,通过分析边际成本,可 以制定现有成本基础上的最佳产量。
8
例3、假设某企业生产某种产品的总成本 C(万元) 与产量 Q(万件)之间的函数关系式为
C Q 0.02Q3 0.4Q2 6ቤተ መጻሕፍቲ ባይዱ 100 万元
1 Q 60
Q1000 10
40
Q1000
其经济意义为:当产量达到1000单位时,如果再多生产1个 单位产品,则成本将相应增加 40个单位。
7
(3)边际成本仅与可变成本有关,与固定成本无关。
一般情况下,总成本 C(Q)由固定成本 C0和可变成本 C1(Q)
组成,即 C(Q) C0 C1(Q),
3.5 导数在经济学中的简单应用
随着我国市场经济的不断发展,应用数学知识定量分析经济 及管理领域中的问题,已成为经济学理论中一个重要组成部 分.把经济活动中一些现象归纳到数学领域中,用我们所学的数 学知识进行解答,对很多经营决策起到了非常重要的作用.
导数是微积分中一个重要概念,它是函数关于自变量的变化 率.在经济学中,也存在变化率问题,如:边际问题和弹性问 题.导数在经济领域中的应用非常广泛,其中“边际”和“弹性” 是导数在经济分析应用中的两个重要概念.本节主要介绍导数概 念在经济学中的两个应用——边际分析与弹性分析.
解 y 6x
y 6x 12
x2
x2
函数 y 3x2在 x 2处的边际函数值为12
2020/5/5
5
4、边际成本
1定义 设总成本函数 C C(Q), Q为产量, 称它的导数 C(Q)
为边际成本函数,简称边际成本.C(Q0 )称为当产量为 Q0时的 边际成本.边际成本在经济学中被定义为产量增加一个单位 时所增加的成本.
导数在求极限中的应用
引言极限是研究变量的变化趋势的基本工具。
在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。
极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。
因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。
本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L' Hospital 法则,Taylor 展式法及微分中值定理在求极限中的应用。
旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。
达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。
例1求极限limb -tanx b _sin X a -asin x解由于b-lanx b -sinxct -a b tanx b , b b-sinxta n x= -------------------------- r ------------------ sin x tan x sin x sin x所以, limx—0b -tanx b -sinxa _asin xb -tanx b b b -sinxa —a tan x.. □ -a二lim limx 0 tan x sin x x 2tan x sin x第1章导数在求极限中的基本应用1.1导数定义法这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限.定义若函数y = f (x)在其定义域中的一点X)处极限也y r f (X o+也X)- f(X o)lim lim - —u0 .)x 匸J-:x存在,则称在X o处可导,称此极限值为f (X)在X-处的导数,记为f(X o).显然,f(X) 在X o处的导数还有如下的等价定义形式:f(X)- f(X-)X — X-F面通过两个例子让大家逐步领悟导数定义法的内涵=:b l n 二心b l n「- 2-b l n〉.例2 (本题选自《数学分析中的典型问题与方法》裴礼文.第二版.)设 f (0) = k,试证lim f(b)「f(a) = k.证明(希望把极限式写成导数定义中的形式)f(b) -f (a) b -a(拟合法思想:把要证的极限值 k 写成与此式相似的形式)0<f(b)-f(a) _k .::: b |f(b)-f(O) b -a|b -a|| b -ka f(a)-f(O)b -a a因 a > 0-,a bb — a b — ab f(b)-f(0) a f(a)-f(O) b -a b b -a aab —a两式相减,可得又因f (0) =k ,故当a > 0 - b > 0 •时右端极限为零,原极限获证.1.2 L ' Hospital 法则本节主要总结了 L ' Hospital 法则在求未定式极限中的应用,需要注意的 问题,并深入分析了使用L ' Hospital 法则时实质是对无穷小或无穷大进行降阶 另外还指出L ' Hospital 法则与其他极限方法如无穷小的替换的结合.1. L ' Hospital 法则L ' Hospital 法则作为Cauchy 中值定理的重要应用,在计算未定式极限中扮 演了十分重要的角色,这是因为对于未定式极限来讲极限是否存在,等于多少是 不能用极限的四则运算法则解得的,而通过对分子分母求导再求极限能够很有效 的计算出未定式的极限. 关于未定式:在计算一个分式函数的极限时,常常会遇到分子分母都趋于零或都趋于无穷 大的情况,由于这是无法使用“商的极限等于极限的商”的法则,运算将遇到很 大的困难.事实上,这是极限可能存在也可能不存在.当极限存在时极限值也会旳有各种各样的可能.我们称这种类型的极限为-未定型或未定型.事实上,未°°b > 0 ■,所以有b 0 a ,nnJlim 二=lim 竺x x, e'X二limHim 半X .; : ,-0 .求lim x )0x m 0x0 (1 -cost)dt3x例 3 求极限 lim.x'.xf^dt ,其中0,f (x)为闭区间1.0,11上的连续函数.定型除以上两种类型外还有0.:二_::, 1:, 00, ::0等类型. L ' Hospital 法则: 定理和若函数f 和g 满足:① lim f (x) = lim g(x) = 0 ;^Xo^^0② 在点X 的某空心邻域u 0(x 。
导数的四则运算法则课件高二下学期数学北师大版(2019)选择性必修第二册
高中数学
选择性必修第二册
北师大版
二 求导法则在实际中的应用
例2 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知
5284
将1t水进化到纯净度为%所需费用(单位:元),为() = 100− (80 < < 100).
求进化到下列纯净度时,所需进化费用的瞬时变化率:
(1) 90% ;(2) 98%
解:净化费用的瞬时变化率就是净化费用函数的导数;
′ ()
=
5284 ′ 5284’ ×(100−)−5284 (100−)’
(100−) =
(100−)2
(1)因为 ′ (90) =
5284
100−90 2
=
0×(100−)−5284 ×(−1)
(100−)2
(2) ’ = (2 + cos)’ = (2 )’ +(cos)’ = 2 ln2 − sin.
(3) ’ = ( 3 e )’ = ( 3 )’ e + 3 (e )’ = 3 2 e + 3 e .
(4) ’
=
2sin ’ (2sin)’ 2 − 3 ( 2 )’
北师大版
随堂小测
1.已知函数f(x)=ax2+c,且f′(1)=2,则a的值为 ( A )
A.1
B. 2
ቤተ መጻሕፍቲ ባይዱ
C.-1
D.0
3
2.已知物体的运动方程为s=t2+ (t是时间,s是位移),则物体在时刻t=2时的速度为 ( D )
19
A. 4
17
B. 4
15
C. 4
13
D. 4
2023年高考数学(文科)一轮复习——导数的概念及运算
第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。
高等数学第二章导数与微分(4)
(arcsin x) 1 1 x2
(arctan
x
)
1
1 x
2
(arccos x) 1 1 x2
(arc
cot
x)
1
1 x2
2.函数的和、差、积、商的求导法则
设u u(x),v v(x)可导,则
(1)(u v) u v, (2)(cu) cu ( C 是常数)
(3)(uv)
由y f 1(x)的严格单调性可知 y 0,
于是有
y x
1 x
,
y
y 0 (x 0),
y f 1(x)连续, 又知 f ( y) 0
[ f 1(x)] lim y lim 1 1 x0 x y0 x f ( y)
即[ f 1(x)] 1 .
y
f ( y)
4
例7 求函数 y arcsin x 的导数.
19
例20 双曲函数与反双曲函数的导数
ex ex
ex ex
sinh x
,cosh x
2
2
(sinh x) e x e x cosh x 2
(sinh x) cosh x (cosh x) sinh x
tanh x sinh x cosh x
(tanh
x)
1 cosh2
x
20
arcsinh x ln( x 1 x2 )
利用上述公式及法则, 初等函数求导问题可完全解决.
结论:初等函数的导数仍为初等函数.
16
例16 解
求函数 y x a2 x2 a2 arcsin x 的导数 .
y x 2
a2
2
x2
a2 2
2
数学论文导数及应用范文
数学论文导数及应用范文导数的几何意义伴随着导数进入高中数学教材后,给函数图象及性质的研究开辟了一条新的途径.下面是店铺为你整理的数学论文导数及应用,一起来看看吧。
数学论文导数及应用篇一一. 利用导数的几何意义求光滑曲线切线的斜率函数y=f(x)在点的导数表示曲线y=f(x)在点处切线的斜率,这就是导数的几何意义。
我们通过例题看一下,如何利用导数的几何意义求光滑曲线切线的斜率。
例题1 求曲线y=x2在点(1,1)处切线的方程。
解:由导函数定义应用点斜式方程,可得曲线在(1,1)处的切线方程:y-1=2(x-1)即2x-y-1=0 .二. 利用导数的物理意义求瞬时速度、加速度、电流强度等。
导数的物理意义没有统一的解释,对于不同的物理量,导数有不同的物理意义。
例如,变速直线运动路程函数S对时间t的导数就是瞬时速度;瞬时速度V对时间t的导数就是加速度;通过导体某截面的电量Q对时间t的导数就是电流强度。
下面我们看一个具体的例题。
例题2 已知物体的运动规律为s=t3(米) ,求这个物体在t=2秒时的速度。
解:有导函数的定义有运动物体运动路程对时间的物理意义可知将t=2,带入上式,得三. 利用导数的符号判别函数在某一区间的单调性及利用导数证明不等式导数是对函数的图像与性质的总结与拓展,导数是研究函数单调性极佳、最佳的重要工具,广泛运用在讨论函数图像的变化趋势及证明不等式等方面。
具体例题如下:例题3 讨论函数的单调性。
解: ,当x>0时, >0 ;当x<0时, <0 .函数的定义域为 ,因为在内 <0,所以函数在上单调减少;因为在内 >0,所以函数在上单调增加。
例题4 证明当x>0时,解:设则 , 在x=0时为零,在内均大于零,故函数在上单调增加,对于任何x>0,有 .即所以四. 利用导数研究函数的极值根据导数在驻点两侧的符号,可以判断函数在该驻点是极大值还是极小值。
例谈导数的几个简单的应用
例谈导数的几个简单的应用王耀辉高中阶段学习导数以后,常常把导数作为研究函数单调性、极大(小)值、最大(小)值和解决生活中优化问题等来运用.实际上,它还有其他方面更多的应用.本文就根据高中学过的一些内容,列举了导数的几个简单的应用,供读者学习时参考.1.利用导数的定义求极限 在一些教辅资料、高考题中,出现了一类特殊极限求值问题,最常见的是00型,感觉不好求.若能灵活运用导数的定义,问题便会迎刃而解.例1.求值:(1)0sin lim x x x →,(2)0ln(1)lim x x x→+. 解:(1)根据导数的定义,该式实际上为求函数()sin f x x =在点0x =处的导数. 所以00sin sin sin 0lim =lim x x x x x x→→-00(sin )|cos |cos 01x x x x =='====. (2)根据导数的定义,该式实际上为求函数()ln(1)f x x =+在点0x =处的导数. 所以000ln(1)1lim=[ln(1)]||11x x x x x x x ==→+'+==+. 例2.(2010年全国卷文科21题)设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.解:由已知得()(1)x f x x e ax =--≥0(x ≥0),即1x e ax --≥0(x ≥0), 当0x =时,a R ∈;当0x >时,分离参数得1x e a x -≤(0x >),令1()x e g x x-=(0x >),求导得21()x x xe e g x x-+'=(0x >),再令()1x x h x xe e =-+(0x >),则()0x h x xe '=>(0x >),∴()1x x h x xe e =-+在(0,)+∞上递增,∴()(0)0h x h >=,∴()0g x '>,∴1()x e g x x-=在(0,)+∞上递增.∴0()lim ()x g x g x →>,所以0lim ()x a g x →≤.因为00001lim ()=lim =lim 0x x x x x e e e g x xx →→→---00()||1x x x x e e =='===,所以1a ≤. 综上所述,实数a 的取值范围为1a ≤.2.利用函数极值点导数为零的性质,在三角函数中求值例3.已知()sin 2cos 2()f x a x x a R =+∈图像的一条对称轴方程为2x π=,则a 的值为( )A .12B C .3 D .2 解析:由于三角函数的对称轴与其曲线的交点为极值点,所以由()2cos 22sin 2f x a x x '=-,得()2cos 2sin =0266f a πππ'=-,故3a =. 例4.已知函数()cos f x x x =的图像向左平移ϕ(0)ϕ>个单位所得图像对应的函数为偶函数,则ϕ的最小值是( )A .6πB .3πC .23πD .56π解析:设函数()f x 图像向左平移ϕ(0)ϕ>个单位后的函数解析式为:()cos())g x x x ϕϕ=++,由于()g x 为偶函数,所以(0)0g '=.又()sin())g x x x ϕϕ'=-+-+,所以sin 0ϕϕ-=,tan ϕ=ϕ的最小值为23π.例5.已知2cos sin x x -=,求tan x 的值.解析:设()2cos sin f x x x =-,则曲线()2cos sin f x x x =-过点(,t .由于2cos sin )x x x x -=+cos cos sin )x x ϕϕ=+)x ϕ=+,其中cos ϕϕ==所以函数()2cos sin f x x x =-在点(,t 处取极小值,导数为零.即()2sin cos 0f t t t '=--=,所以1tan 2t =-,从而1tan 2x =-.3.导数在数列求和中的应用例6.已知数列{}n a 的通项为12n n a n -=⋅,求数列{}n a 前n 项的和n S .解析:令2x =,则11ni i i x -=⋅∑1()n i i x ='=∑12(1)1(1)=1(1)nn n x x n x n x x x +'⎡⎤--++⋅=⎢⎥--⎣⎦所以n S 121(1)22=(12)n n n n +-+⋅+⋅-1=1(1)22n nn n +-+⋅+⋅4.导数在二项式中的应用例7.证明:1231232n n n n n n C C C nC n -+++⋯+=⋅.证明:令012233(1)n n nn n n n n x C C x C x C x C x +=+++++…,对等式两边求导,得:1121321(1)23n n n n n n n n x C C x C x nC x --+=++++…, 令1x =,代入上式即得1123223n n n n n n n C C C nC -⋅=+++⋯+,即1231232n n n n n n C C C nC n -+++⋯+=⋅.5.导数在三角恒等变换公式中的应用在三角恒等变换公式中,公式多,不易记,应用导数可以将这些恒等式进行沟通.(1)两角和、差的三角函数公式cos cos cos sin sin αβαβαβ-=+(),①视α为变量,β为常量,对等式①两边求导,得sin()sin cos cos sin αβαβαβ--=-+即sin()sin cos cos sin αβαβαβ-=-,②反过来,视α为变量,β为常量,对等式②两边求导,得cos cos cos sin sin αβαβαβ-=+()故利用上述求导方法有:cos cos cos sin sin αβαβαβ±=()αα对求导对求导sin()sin cos cos sin αβαβαβ±=±(2)二倍角公式 22cos 2cos sin ααα=-αα对求导对求导sin 22sin cos ααα=(3)积化和差公式 1sin cos [sin()sin()]2αβαβαβ⋅=++- αα对求导对求导1cos cos [cos()cos()]2αβαβαβ⋅=++-, 1cos sin [sin()sin()]2αβαβαβ⋅=+-- αα对求导对求导1sin sin [cos()cos()]2αβαβαβ⋅=-+--. 当然,导数的应用不只这些,本文只是抛砖引玉,有兴趣的读者还可以继续探索.。
求导数的简单方法
求导数的简单方法导数是微积分中的重要概念,用来描述函数的变化率。
求导数的方法有很多种,下面将介绍求导数的一些简单方法。
1.基本导数公式:基本导数公式是指一些基本函数的导数的公式,它们是求导数时经常用到的,如:-对于常数函数,其导数为0。
- 对于幂函数 f(x) = x^n,其导数为 f'(x) = nx^(n-1)。
- 对于指数函数 f(x) = a^x,其导数为 f'(x) = a^x * ln(a)。
- 对于对数函数 f(x) = logₐ(x),其导数为 f'(x) = 1 / (x *ln(a))。
- 对于三角函数,如正弦函数 f(x) = sin(x),余弦函数 f(x) = cos(x),它们的导数分别为 f'(x) = cos(x),f'(x) = -sin(x)。
2.导数运算法则:导数运算法则是求导数时常用的一些规则,它们可以用来对复合函数进行求导。
其中一些常用的导数运算法则包括:-加减法则:若f(x)和g(x)的导数都存在,则(f±g)'(x)=f'(x)±g'(x)。
-乘法法则:若f(x)和g(x)的导数都存在,则(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)。
-除法法则:若f(x)和g(x)的导数都存在且g(x)≠0,则(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/g^2(x)。
-复合函数法则:若y=f(g(x)),则y'=f'(g(x))*g'(x)。
3.高阶导数:高阶导数是指对函数进行多次求导得到的导数。
求高阶导数时可以使用迭代法则,根据求导的次数不同,重复应用导数运算法则即可。
例如,对于f(x)进行两次求导,可以先求得f'(x),然后再对f'(x)进行一次求导,即可得到f''(x)。
高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则
2021/12/8
第十页,共二十八页。
[规律方法] 1.若所求函数符合导数公式,则直接利用公式求解 2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原 则,避免不必要的运算失误 3.要特别注意“1x与ln x”,“ax与logax”,“sin x与cos x”的导数区别.
2021/12/8
第一章 导数及其应用(yìngyòng)。谢谢观看
No Image
12/8/2021
第二十八页,共二十八页。
2021/12/8
第十九页,共二十八页。
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
C
[对于①,y′=0,故①错;对于②,∵y′=-
2 x3
,∴y′|x=3=-
2 27
,
故②正确;显然③,④正确,故选C.]
2021/12/8
第二十页,共二十八页。
2.已知f(x)=xα(α∈Q*),若f′(1)=14,则α等于(
(4)若y=2sin x-cos x,则y′=2cos x+sin x.( )
[答案] (1)× (2)× (3)√ (4)√
2021/12/8
第六页,共二十八页。
2.若函数y=10xn 10
D.10l1n 10
C [∵y′=10xln 10,∴y′|x=1=10ln 10.]
)
A.13
B.12
C.18
D.14
D [∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=14.]
2021/12/8
第二十一页,共二十八页。
3.设y=-2exsin x,则y′等于( )
【导学号:31062023】
单元教学设计《导数及其应用》
课题名称《导数及其应用》单元教学设计设计者姓名冯德福设计者单位酒泉市实验中学联系电话《导数及其应用》单元教学设计(冯德福酒泉市实验中学)一、教学要素分析1、数学分析(1)该单元在整个高中数学中的地位和作用导数的概念是大学数学微积分的核心概念之一,是中学数学中特别重要的内容,在中学数学与高等数学之间起着承前启后的衔接作用。
导数以不同的形式渗透到高中数学的好多方面,与高中数学的许多内容都有密切的联系。
导数是研究函数性质、探求函数的极值最值、求曲线的斜率、证明不等式等的利器,为解决中学数学问题提供了新的视野。
在中学数学中的应用涉及到函数、三角、数列、不等式、向量、解析几何、立体几何等方面.应用导数可以十分方便地处理中学数学问题. 同时导数也是解决一些物理、化学问题等其他实际问题等的有力工具。
(2)导数在实际生活中的应用导数在物理、化学、生物、天文、地理、经济等领域都有着十分广泛和主要的应用。
为了突出导数概念的实际背景,教材选用了两个物理问题作为典型实例,从平均变化率到瞬时变化率的过程,引出导数概念,揭示导数的本质——导数就是瞬时变化率。
这也是导数的物理意义。
现实生活中经常遇到求利润最大、用料最省和效率最高等优化问题,这些问题常转化为数学中求函数的最值问题,而导数是求函数最值的强有力工具,因此我们利用导数解决生活中的优化问题就自然而然地用到导数了。
物理方面,学习了导数及其应用以后,学生可以很容易地根据做变速直线运动物体的运动方程:s=s(t),算出物体的瞬时速度 , 瞬时加速度;对非稳恒电流,就可以算出其瞬时电流强度;化学与数学紧密相关。
化学中的反应速度、冷却速度等都可以通过微积分的方法来解决。
(3)该单元的蕴含的基本数学思想和方法,以及数学文化价值在知识传授上,采用从特殊到一般,从猜想到探究,由感性上升到理性的思路,让学生充分感受数学知识产生过程,学会进行数学推理和探究方法。
同时,借助函数图象的直观性,即函数的平均变化率就是曲线割线所在直线的斜率,再利用无限逼近的数学思想得到曲线的切线和导数的关系――导数的几何意义,充分体现了数形结合思想和“无限逼近”的极限思想。
导数的简单应用
2022年高考数学总复习:导数的简单应用1.基本初等函数的八个导数公式(1)[f(x)±g(x)]′=f_′(x)±g′(x).(2)[f(x)·g(x)]′=f_′(x)·g(x)+f(x)·g′(x).(3)[f(x)g(x)]′=f′(x)·g(x)-f(x)·g′(x)[g(x)](g(x)≠0).(4)(理)若y=f(u),u=ax+b,则y′x=y′u·u′x,即y′x=a·y′u.3.切线的斜率函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,因此曲线f(x)在点P 处的切线的斜率k=f_′(x0),相应的切线方程为y-f(x0)=f_′(x0)(x-x0).4.函数的单调性在某个区间(a,b)内,如果f_′(x0)>0(f_′(x0)<0),那么函数y=f(x)在这个区间内单调递增(单调递减).5.函数的极值设函数f(x)在点x0附近有定义,如果对x0附近所有的点x,都有f(x)<f(x0),那么f(x0)是函数的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点都有f(x)>f(x0),那么f(x0)是函数的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.6.函数的最值将函数y=f(x)在[a,b]内的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.Y易错警示i cuo jing shi1.判断极值的条件掌握不清:利用导数判断函数的极值时,忽视“导数等于零,并且两侧导数的符号相反”这两个条件同时成立.2.混淆在点P处的切线和过点P的切线:前者点P为切点,后者点P不一定为切点,求解时应先设出切点坐标.3.关注函数的定义域:求函数的单调区间及极(最)值应先求定义域.a-1x2+ax.若f()x为奇函数,则曲线y=f()x在1.(2018·全国卷Ⅰ,5)设函数f()x=x3+()0,0处的切线方程为( D )点()A.y=-2x B.y=-xC.y=2x D.y=x[解析]因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.(2017·全国卷Ⅱ,11)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值是( A )A.-1B.-2e-3C.5e-3D.1[解析]函数f(x)=(x2+ax-1)e x-1则f′(x)=(2x+a)e x-1+(x2+ax-1)·e x-1=e x-1·[x2+(a+2)x+a-1].由x=-2是函数f(x)的极值点得f′(-2)=e-3·(4-2a-4+a-1)=(-a-1)e-3=0,所以a=-1.所以f(x)=(x2-x-1)e x-1,f′(x)=e x-1·(x2+x-2).由e x-1>0恒成立,得x=-2或x=1时,f′(x)=0,且x<-2时,f′(x)>0;-2<x<1时,f′(x)<0;x>1时,f′(x)>0.所以x=1是函数f(x)的极小值点.所以函数f(x)的极小值为f(1)=-1.故选A.3.(2017·浙江卷,7)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( D )[解析] 观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C .如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 确,故选D .4.(文)(2018·全国卷Ⅱ,13)曲线y =2ln x 在点(1,0)处的切线方程为y =2x -2. [解析] y ′=2x ,k =21=2,所以切线方程为y -0=2(x -1)即y =2x -2.(理)(2018·全国卷Ⅱ,13)曲线y =2ln(x +1)在点(0,0)处的切线方程为y =2x . [解析] y ′=2x +1,k =20+1=2, 所以切线方程为y -0=2(x -0),即y =2x .5.(2018·天津卷,10)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为e. [解析] 因为f (x )=e x ln x ,所以f ′(x )=(e x ln x )′=(e x )′ln x +e x (ln x )′=e x ·ln x +e x ·1x ,f ′(1)=e 1·ln 1+e 1·11=e.6.(2018·江苏卷,11)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为-3.[解析] 令f (x )=2x 3-ax 2+1=0⇒a =2x +1x2,令g (x )=2x +1x 2,g ′(x )=2-2x 3>0⇒x >1⇒g (x )在(0,1)上单调减,在(1,+∞)上单调增.因为有唯一零点,所以a =g (1)=2+1=3⇒f (x )=2x 3-3x 2+1, 求导可知在[-1,1]上,f (x )min =f (-1)=-4,f (x )max =f (0)=1, 所以f (x )min +f (x )max =-3.7.(文)(2018·北京卷,19)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x . (1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ; (2)若f (x )在x =1处取得极小值,求a 的取值范围. [解析] (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x , 所以f ′(x )=[ax 2-(a +1)x +1]e x ,f ′(2)=(2a -1)e 2, 由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)方法一:由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0. 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞). 方法二:f ′(x )=(ax -1)(x -1)e x . ①当a =0时,令f ′(x )=0得x =1. f ′(x ),f (x )随x 的变化情况如下表:所以f (x )在②当a >0时,令f ′(x )=0得x 1=1a ,x 2=1.(ⅰ)当x 1=x 2,即a =1时,f ′(x )=(x -1)2e x ≥0, 所以f (x )在R 上单调递增, 所以f (x )无极值,不合题意.(ⅱ)当x 1>x 2,即0<a <1时,f ′(x ),f (x )随x 的变化情况如下表:(ⅲ)当x 1<x 2,即a >1时,f ′(x ),f (x )随x 的变化情况如下表:③当a <0时,令f ′(x )=0得x 1=1a ,x 2=1.f ′(x ),f (x )随x 的变化情况如下表:综上所述,a 的取值范围为(1,+∞).(理)(2018·北京卷,18)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y = f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解析] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x . f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0,所以a 的值为1. (2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(12,+∞).8.(文)(2018·天津卷,20(1)(2))设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若d =3,求f (x )的极值.[解析] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1,因此f (0)=0,f ′(0)=-1,又因为曲线y =f (x )在点(0, f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0.(2)由已知可得f (x )=(x -t 2+3)( x -t 2) (x -t 2-3) =( x -t 2)3-9 ( x -t 2)=x 3-3t 2x 2+(3t 22-9)x - t 32+9t 2. 故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x = t 2-3,或x = t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如表:=(3)3-9×3=-6 3.(理)(2018·天津卷,20(1)(2))已知函数f (x )=a x ,g (x )=log a x ,其中a >1. (1)求函数h (x )=f (x )-x ln a 的单调区间;(2)若曲线y =f (x )在点(x 1,f (x 1))处的切线与曲线y =g (x )在点(x 2,g (x 2))处的切线平行,证明x 1+g (x 2)=-2ln (ln a )ln a.[解析] (1)由已知,h (x )=a x -x ln a ,有h ′(x )=a x ln a -ln a . 令h ′(x )=0,解得x =0.由a >1,可知当x 变化时,h ′(x ),h (x )的变化情况如表:所以函数h (2)由f ′(x )=a x ln a ,可得曲线y =f (x )在点(x 1,f (x 1))处的切线斜率为ax 1ln a . 由g ′(x )=1x ln a ,可得曲线y =g (x )在点(x 2,g (x 2))处的切线斜率为1x 2ln a .因为这两条切线平行,故有ax 1ln a =1x 2ln a ,即x 2ax 1(ln a )2=1.2ln (ln a)两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-ln a.。
导数在经济学中的简单应用
=
1 2
10
P
P
=
p
P 20
2
(2)P 3,
EP
p3
3 17
(3)
ER 1
Ep
14, 总收益增加 14 %
17
17
12/31/2023
2 0
一、主要内容
dy y dy ydx y dy o(x) dx
关系
导数
y lim x0 x
基本公式 高阶导数
微分
dy yx
求导法则
12/31/2023
y f ( x0 x) f ( x0 )
如函数 f ( x)在点 x0可微,则
y dy |xx0 f ( x0 )x
假如 x 1, 则 y f ( x0 )
这说明当 x在 x0点改变“一个单位”时,y相应的近似改变 f ( x0 )个单位。 边际函数值描述了 f (x)在点 x0处的变化速度.
积,即
R(Q) QP QP(Q),
式中,P P(Q)是需求函数 Q Q(P)的反函数,也称需求函
数,于是有,R(Q) [QP(Q)] P(Q) QP(Q).
12/31/2023
7
例3 设某产品的需求函数为
P 10 Q , 5
求销售量为30个单位时的总收益、平均收益与边际收益。
总收益: R(Q )
(1)(u v) u v, (2)(cu) cu(c是常数),
(3)(uv) uv uv,
(4)(
u) v
uv v2
uv
(v
0).
(2) 反函数旳求导法则
如果函数x ( y)的反函数为y f (x),则有
f
( x)
高阶导数与隐函数的导数
⎛ 1 ⎞′ − 2x y′′ = ⎜ 2 ⎟ = ⎝ 1 + x ⎠ (1 + x 2 ) 2
2 ⎛ −2 x ⎞′ 2( 3 x − 1) = y′′′ = ⎜ 2 2 ⎟ (1 + x 2 ) 3 (1 + x ) ⎠ ⎝
− 2x ′′(0) = ∴f (1 + x 2 ) 2
(k )
莱布尼兹(Leibniz)公式
例6
设 y = x e , 求y
2 2x 2x 2
( 20 ) 2x ( 20 ) 2
( 20 )
.
2x ( 19 ) 2
解 设u = e , v = x , 则由莱布尼兹公式知
y
= (e ) ⋅ x + 20(e ) ⋅ ( x )′ 20( 20 − 1) 2 x (18 ) + (e ) ⋅ ( x 2 )′′ + 0 2! 20 2 x 2 19 2 x = 2 e ⋅ x + 20 ⋅ 2 e ⋅ 2 x 20 ⋅ 19 18 2 x + 2 e ⋅2 2! = 2 20 e 2 x ( x 2 + 20 x + 95)
代入 x = 0, y = 1, y ′
x=0 y =1
1 = 得 y ′′ 4
x=0 y =1
=−
1 . 16
y = x + e x 的反函数的导数 . 例3 求
dy 解 方法1 ∵ = 1+ ex dx 1 dx = ∴ dy 1+ ex
方法2 等式两边同时对 y 求导
dx x dx +e ⋅ 1= dy dy
π
n! 1 (n) n n ( ) = ( −1) a ax + b (ax + b )n+1
“导数在研究函数单调性中的应用”的教学设计与反思
“导数在研究函数单调性中的应用”的教学设计与反思导数在研究函数单调性中的应用是高中数学中一个重要的知识点,也是学生学习微积分的必备内容之一、在教学设计中,我们可以结合具体的例子和实际问题,引导学生深入理解导数在研究函数单调性中的应用,并通过实际练习来加深他们的理解和掌握能力。
一、教学设计1.引入导入:通过一个简单的例子引入导数在研究函数单调性中的应用,让学生了解本节课的主题和学习目标。
2.理论讲解:介绍导数与函数单调性的关系,包括导数的定义、函数单调性的概念和判别方法等内容,让学生理解导数在研究函数单调性中的作用。
3.例题演练:选择一些形式简单、观念清晰的例题,让学生通过计算导数和分析函数的增减性来解决相关问题,掌握导数在研究函数单调性中的应用。
4.拓展练习:设计一些拓展性的综合题目,让学生灵活运用所学知识解决具体问题,培养他们的综合分析和解决问题的能力。
5.评价反思:及时对学生的学习情况进行评价和反馈,引导他们总结经验、查漏补缺,提高学习效果。
二、教学反思1.教学内容选择:在设计教学内容时,要根据学生的实际情况选择恰当的例题和练习题,既要符合课程要求,又要考虑学生自身的学习水平和能力,避免过于复杂或简单,确保教学效果。
2.教学方法运用:导数在研究函数单调性中的应用是一个相对抽象的概念,需要通过具体的例子和实践操作来引导学生理解和掌握。
因此,在教学过程中要采用灵活多样的教学方法,如教师讲解、学生自主探究、示范演练等,以提高学生的学习积极性和主动性。
4.课堂互动与反馈:在教学过程中要注重课堂互动和学生反馈,鼓励学生积极参与讨论和思考,及时纠正他们的错误和不完整理解,帮助他们建立正确的学习观念和方法,提高学习效果。
总之,导数在研究函数单调性中的应用是高中数学中一个重要的知识点,通过科学合理的教学设计和实施,可以有效提高学生的学习兴趣和掌握能力,促进他们对微积分知识的深入理解和应用。
希望我们的教学设计和反思能够对相关教师有所启发和帮助。
理科高三数学教案:导数及其应用
理科高三数学教案:导数及其应用【】鉴于大伙儿对查字典数学网十分关注,小编在此为大伙儿搜集整理了此文理科高三数学教案:导数及其应用,供大伙儿参考!本文题目:理科高三数学教案:导数及其应用第三章导数及其应用高考导航考试要求重难点击命题展望1.导数概念及其几何意义(1)了解导数概念的实际背景;(2)明白得导数的几何意义.2.导数的运算(1)能依照导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y= ,y= 的导数;(2)能利用差不多初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一样不超过三次);(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一样不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一样不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分与微积分差不多定理(1)了解定积分的实际背景,了解定积分的差不多思想,了解定积分的概念;(2)了解微积分差不多定理的含义. 本章重点:1.导数的概念;2.利用导数求切线的斜率;3.利用导数判定函数单调性或求单调区间;4.利用导数求极值或最值;5.利用导数求实际问题最优解.本章难点:导数的综合应用. 导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一样、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所表达,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的差不多运算与简单的几何意义,而以解答题的形式来综合考查学生的分析问题和解决问题的能力.知识网络3 .1 导数的概念与运算典例精析题型一导数的概念【例1】已知函数f(x)=2ln 3x+8x,求f(1-2x)-f(1)x的值.【解析】由导数的定义知:f(1-2x)-f(1)x=-2 f(1-2x)-f(1)-2x=-2f(1)=-20.【点拨】导数的实质是求函数值相关于自变量的变化率,即求当x0时,平均变化率yx的极限.【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时刻t(min)的函数关系能够近似地表示为f(t)=t2100,则在时刻t=10 min的降雨强度为()A.15 mm/minB.14 mm/minC.12 mm/minD.1 mm/min【解析】选A.题型二求导函数【例2】求下列函数的导数.(1)y=ln(x+1+x2);(2)y=(x2-2x+3)e2x;(3)y=3x1-x.【解析】运用求导数公式及复合函数求导数法则.(1)y=1x+1+x2(x+1+x2)=1x+1+x2(1+x1+x2)=11+x2.(2)y=(2x-2)e2x+2(x2-2x+3)e2x=2(x2-x+2)e2x.(3)y=13(x1-x 1-x+x(1-x)2=13(x1-x 1(1-x)2=13x (1-x)【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ; f(1+x)-f(1)x= (用数字作答).【解析】f(0)=4,f(f(0))=f(4)=2,由导数定义f(1+x)-f(1)x=f(1).当02时,f(x)=4-2x,f(x)=-2,f(1)=-2.题型三利用导数求切线的斜率【例3】已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点P(x0,y0) (x00),求直线l的方程及切点坐标.【解析】由l过原点,知k=y0x0 (x00),又点P(x0,y0) 在曲线C上,y0=x30-3x20+2x0,因此y0x0=x20-3x0+2.而y=3x2-6x+2,k=3x20-6x0+2.又k=y0x0,因此3x20-6x0+2=x20-3x0+2,其中x00,解得x0=32.因此y0=-38,因此k=y0x0=-14,因此直线l的方程为y=-14x,切点坐标为(32,-38).【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.【变式训练3】若函数y=x3-3x+4的切线通过点(-2,2),求此切线方程.【解析】设切点为P(x0,y0),则由y=3x2-3得切线的斜率为k=3x20-3.因此函数y=x3-3x+4在P(x0,y0)处的切线方程为y-y0=(3x20-3)(x-x0).又切线通过点(-2,2),得2-y0=(3x20-3)(-2-x0),①而切点在曲线上,得y0=x30-3x0+4,②由①②解得x0=1或x0=-2.则切线方程为y=2 或9x-y+20=0.总结提高1.函数y=f(x)在x=x0处的导数通常有以下两种求法:(1) 导数的定义,即求yx= f(x0+x)-f(x0)x的值;(2)先求导函数f(x),再将x=x0的值代入,即得f(x0)的值.2.求y=f(x)的导函数的几种方法:(1)利用常见函数的导数公式;(2)利用四则运算的导数公式;(3)利用复合函数的求导方法.3.导数的几何意义:函数y=f(x)在x=x0处的导数f(x0),确实是函数y =f(x)的曲线在点P(x0,y0)处的切线的斜率.3.2 导数的应用(一)典例精析题型一求函数f(x)的单调区间【例1】已知函数f(x)=x2-ax-aln(x-1)(aR),求函数f(x)的单调区间.【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+).f(x)=2x-a-ax-1=2x(x-a+22)x-1,①若a0,则a+221,f(x)=2x(x-a+22)x-10在(1,+)上恒成立,因此a0时,f(x)的增区间为(1,+).②若a0,则a+221,故当x(1,a+22]时,f(x)=2x(x-a+22)x-1当x[a+22,+)时,f(x)=2x(x-a+22)x-10,因此a0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+).【点拨】在定义域x1下,为了判定f(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范畴.【解析】因为f(x)=2x+1x-a,f(x)在(0,1)上是增函数,因此2x+1x-a0在(0,1)上恒成立,即a2x+1x恒成立.又2x+1x22(当且仅当x=22时,取等号).因此a22,故a的取值范畴为(-,22].【点拨】当f(x)在区间(a,b)上是增函数时f(x)0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f(x)0在(a,b)上恒成立.然后就要依照不等式恒成立的条件来求参数的取值范畴了.题型二求函数的极值【例2】已知f(x)=ax3+bx2+cx(a0)在x=1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判定x=1是函数的极小值点依旧极大值点,并说明理由.【解析】(1)f(x)=3ax2+2bx+c.因为x=1是函数f(x)的极值点,因此x=1是方程f(x)=0,即3ax2+2bx+c=0的两根.由根与系数的关系,得又f(1)=-1,因此a+b+c=-1. ③由①②③解得a=12,b=0,c=-32.(2)由(1)得f(x)=12x3-32x,因此当f(x)=32x2-320时,有x-1或x当f(x)=32x2-320时,有-1因此函数f(x)=12x3-32x在(-,-1)和(1,+)上是增函数,在(-1,1)上是减函数.因此当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f (1)=-1.【点拨】求函数的极值应先求导数.关于多项式函数f(x)来讲,f(x)在点x=x0处取极值的必要条件是f(x)=0.然而,当x0满足f(x0)=0时,f(x)在点x=x0处却未必取得极值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.同时假如f(x)在x0两侧满足左正右负,则x0是f(x)的极大值点,f(x0)是极大值;假如f(x)在x0两侧满足左负右正,则x0是f(x)的极小值点,f(x0)是极小值.【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f(x) 0,若x13,则有()A. f(x1)f(x2)C. f(x1)=f(x2)D.不确定【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),因此函数f(x)的图象关于x=32对称.又因为(x-32)f(x)0,因此当x32时,函数f (x)单调递减,当x32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x23,因此x1+x2232,相当于x1,x2的中点向右偏离对称轴,因此f(x1)f(x2).故选B.题型三求函数的最值【例3】求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.【解析】f(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.又由f(x)=11+x-12x0,且x[0,2],得知函数f(x)的单调递增区间是(0,1),同理,得知函数f(x)的单调递减区间是(1,2),因此f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-10,f(1)f(2),因此,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.【点拨】求函数f(x)在某闭区间[a,b]上的最值,第一需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.【变式训练3】(2021江苏)f(x)=ax3-3x+1对x[-1,1]总有f(x)0成立,则a= .【解析】若x=0,则不管a为何值,f(x)0恒成立.当x(0,1]时,f(x)0能够化为a3x2-1x3,设g(x)=3x2-1x3,则g(x)=3(1-2x)x4,x(0,12)时,g(x)0,x(12,1]时,g(x)0.因此g(x)max=g(12)=4,因此a4.当x[-1,0)时,f(x)0能够化为a3x2-1x3,现在g(x)=3(1-2x)x40,g(x)min=g(-1)=4,因此a4.综上可知,a=4.总结提高1.求函数单调区间的步骤是:(1)确定函数f(x)的定义域D;(2)求导数f(3)依照f(x)0,且xD,求得函数f(x)的单调递增区间;依照f(x)0,且xD,求得函数f(x)的单调递减区间.2.求函数极值的步骤是:(1)求导数f(2)求方程f(x)=0的根;(3)判定f(x)在方程根左右的值的符号,确定f(x)在那个根处取极大值依旧取极小值.3.求函数最值的步骤是:先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.3 导数的应用(二)典例精析题型一利用导数证明不等式【例1】已知函数f(x)=12x2+ln x.(1)求函数f(x)在区间[1,e]上的值域;(2)求证:x1时,f(x)23x3.【解析】(1)由已知f(x)=x+1x,当x[1,e]时,f(x)0,因此f(x)在[1,e]上为增函数.故f(x)max=f(e)=e22+1,f(x)min=f(1)=12,因而f(x)在区间[1,e]上的值域为[12,e22+1].(2)证明:令F(x)=f(x)-23x3=-23x3+12x2+ln x,则F(x)=x+1x-2x2=(1-x) (1+x+2x2)x,因为x1,因此F(x)0,故F(x)在(1,+)上为减函数.又F(1)=-160,故x1时,F(x)0恒成立,即f(x)23x3.【点拨】有关超越性不等式的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()A.f(x)0,g(x)0B.f(x)0,g(x)0C.f(x)0,g(x)0D.f(x)0,g(x)0【解析】选B.题型二优化问题【例2】(2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x) x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?【解析】(1)设需新建n个桥墩,则(n+1)x=m,即n=mx-1.因此y=f(x)=256n+(n+1)(2+x)x=256(mx-1)+mx(2+x)x=256mx+mx+2m-256.(2)由(1)知f(x)=-256mx2+12mx =m2x2(x -512).令f(x)=0,得x =512.因此x=64.当00,f(x)在区间(64,640)内为增函数.因此f(x)在x=64处取得最小值.现在n=mx-1=64064-1=9.故需新建9个桥墩才能使y最小.【变式训练2】(2021上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).【解析】设圆柱底面半径为r,高为h,则由已知可得4(4r+2h)=9.6,因此2r+h=1.2.S=2.4r2,h=1.2-2r0,因此r0.6.因此S=2.4r2(0令f(r)=2.4r2,则f(r)=2 .4r.令f(r)=0得r=0.4.因此当00;当0.4因此r=0.4时S最大,Smax=1.51.题型三导数与函数零点问题【例3】设函数f(x)=13x3-mx2+(m2-4)x,xR.(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)已知函数f(x)有三个互不相同的零点0,,,且.若对任意的x[,],都有f(x)f(1)恒成立,求实数m的取值范畴.【解析】(1)当m=3时,f(x)=13x3-3x2+5x,f(x)=x2-6x+5.因为f(2)=23,f(2)=-3,因此切点坐标为(2,23),切线的斜率为-3,则所求的切线方程为y-23=-3(x-2),即9x+3y-20=0.(2)f(x)=x2-2mx+(m2-4).令f(x)=0,得x=m-2或x=m+2.当x(-,m-2)时,f(x)0,f(x)在(-,m-2)上是增函数;当x(m-2,m+2)时,f(x)0,f(x)在(m-2,m+2)上是减函数;当x(m+2,+)时,f(x)0,f(x)在(m+2,+)上是增函数.因为函数f(x)有三个互不相同的零点0,,,且f(x)=13x[x2-3mx+3(m2-4)],因此解得m(-4,-2)(-2,2)(2,4).当m(-4,-2)时,m-2因此现在f()=0,f(1)f(0)=0,与题意不合,故舍去.当m(-2,2)时,m-20因此因为对任意的x[,],都有f(x)f(1)恒成立,因此1.因此f(1)为函数f(x)在[,]上的最小值.因为当x=m+2时,函数f(x)在[,]上取最小值,因此m+2=1,即m=-1.当m(2,4)时,0因此0因为对任意的x[,],都有f(x)f(1)恒成立,因此1.因此f(1)为函数f(x)在[,]上的最小值.因为当x=m+2时,函数f(x)在[,]上取最小值,因此m+2=1,即m=-1(舍去).综上可知,m的取值范畴是{-1}.【变式训练3】已知f(x)=ax2(aR),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[2,e]上有两个不等解,求a的取值范畴.【解析】(1)当a0时,F(x)的递增区间为(1a,+),递减区间为(0,1a);当a0时,F(x)的递减区间为(0,+).(2)[12ln 2,1e).总结提高在应用导数处理方程、不等式有关问题时,第一应熟练地将方程、不等式问题直截了当转化为函数问题,再利用导数确定函数单调性、极值或最值.3.4 定积分与微积分差不多定理典例精析题型一求常见函数的定积分【例1】运算下列定积分的值.(1) (x-1)5dx;(2) (x+sin x)dx.【解析】(1)因为[16(x-1)6]=(x-1)5,因此(x-1)5dx= =16.(2)因为(x22-cos x)=x+sin x,因此(x+sin x)dx= =28+1.【点拨】(1)一样情形下,只要能找到被积函数的原函数,就能求出定积分的值;(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;(3)关于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;(4)当被积函数具有奇偶性时,可用以下结论:①若f(x)是偶函数时,则f(x)dx=2 f(x)dx;②若f(x)是奇函数时,则f(x)dx=0.【变式训练1】求(3x3+4sin x)dx.【解析】(3x3+4sin x)dx表示直线x=-5,x=5,y=0和曲线y=3x3+4si n x所围成的曲边梯形面积的代数和,且在x轴上方的面积取正号,在x 轴下方的面积取负号.又f(-x)=3(-x)3+4sin(-x)=-(3x3+4sin x)=-f(x).因此f(x)=3x3+4sin x在[-5,5]上是奇函数,因此(3x3+4sin x)dx=- (3x3+4sin x)dx,因此(3x3+4sin x)dx= (3x3+4sin x)dx+ (3x3+4sin x)dx=0.题型二利用定积分运算曲边梯形的面积【例2】求抛物线y2=2x与直线y=4-x所围成的平面图形的面积.【解析】方法一:如图,由得交点A(2,2),B(8,-4),则S= [2x-(-2x)]dx+ [4-x-(-2x)]dx=163+383=18.方法二:S= [(4-y)-y22]dy= =18.【点拨】依照图形的特点,选择不同的积分变量,可使运算简捷,在以y为积分变量时,应注意将曲线方程变为x=(y)的形式,同时,积分上、下限必须对应y的取值.【变式训练2】设k 是一个正整数,(1+xk)k的展开式中x3的系数为1 16,则函数y=x2与y=kx-3的图象所围成的阴影部分(如图)的面积为.【解析】Tr+1=Crk(xk)r,令r=3,得x3的系数为C3k1k3=116,解得k =4.由得函数y=x2与y=4x-3的图象的交点的横坐标分别为1,3.因此阴影部分的面积为S= (4x-3-x2)dx=(2x2-3x- =43.题型三定积分在物理中的应用【例3】(1) 变速直线运动的物体的速度为v (t)=1-t2,初始位置为x0 =1,求它在前2秒内所走过的路程及2秒末所在的位置;(2)一物体按规律x=bt3作直线运动,式中x为时刻t内通过的距离,媒质的阻力正比于速度的平方,试求物体由x=0运动到x=a时阻力所做的功.【解析】(1)当01时,v(t)0,当12时,v(t)0,因此前2秒内所走过的路程为s= v(t)dt+ (-v(t))dt= (1-t2)dt+ (t2-1)dt= + =2.2秒末所在的位置为x1=x0+ v(t)dt=1+ (1-t2)dt=13.因此它在前2秒内所走过的路程为2,2秒末所在的位置为x1=13.(2) 物体的速度为v=(bt3)=3bt2.媒质阻力F阻=kv2=k(3bt2)2=9kb2t4,其中k为比例常数,且k0.当x=0时,t=0;当x=a时,t=t1=(ab) ,又ds=vdt,故阻力所做的功为W阻= ds = kv2vdt=k v3dt= k (3bt 2)3dt=277kb3t71 = 277k3a7b2.【点拨】定积分在物理学中的应用应注意:v(t)= a(t)dt,s(t)= v(t)dt和W= F(x)dx这三个公式.【变式训练3】定义F(x,y)=(1+x)y,x,y(0,+).令函数f(x)=F[1,log 2(x2-4x+9)]的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.【解析】因为F(x,y)=(1+x)y,因此f(x)=F(1,log2(x2-4x+9))= =x2-4x +9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n0),f(x) =2x-4.因此解得B(3,6),因此S= (x2-4x+9-2x)dx=(x33-3x2+9x) =9.总结提高1.定积分的运算关键是通过逆向思维求得被积函数的原函数.?2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.?3.利用定积分求平面图形面积的步骤:?(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;?(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;?(3)把曲边梯形的面积表示成若干个定积分的和;?死记硬背是一种传统的教学方式,在我国有悠久的历史。
导数的计算
导数的计算求导法则是微积分中重要的工具,用于计算函数的导数。
它是微积分基本原理的具体应用,可以通过一系列简单的规则来求解各种函数的导数。
本文将介绍常见的求导法则,包括常数法则、幂规则、乘积法则、商法则、链式法则和复合函数法则。
1.常数法则:如果f(x)是一个常数,那么f'(x)=0。
这是因为常数的导数是0,因为它没有斜率。
2. 幂规则:设f(x)=x^n,其中n是一个实数。
那么f'(x)=nx^(n-1)。
这意味着x的任意幂次减一并乘以该幂次即可得到导数。
例如,如果f(x)=x^2,那么f'(x)=2x^(2-1)=2x。
3.乘积法则:设f(x)=u(x)v(x),其中u(x)和v(x)是两个函数。
那么f'(x)=u'(x)v(x)+u(x)v'(x)。
这个法则用于求解两个函数乘积的导数。
例如,如果f(x)=x^2sin(x),那么f'(x)=2xsin(x)+x^2cos(x)。
4.商法则:设f(x)=u(x)/v(x),其中u(x)和v(x)是两个函数,并且v(x)≠0。
那么f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2、这个法则用来求解两个函数的商的导数。
例如,如果f(x)=x^2/sinx,那么f'(x)=[2xsin(x)-x^2cos(x)]/sin^2(x)。
5.链式法则:设f(x)=g(u(x)),其中u(x)是一个函数,g(x)是一个关于x的函数。
那么f'(x)=g'(u(x))u'(x)。
这个法则用来求解复合函数的导数。
例如,如果f(x)=(sinx)^2,那么f'(x)=2sin(x)cos(x)。
6.复合函数法则:设f(x)=g(h(x)),其中g(x)是一个函数,h(x)是一个函数,g(x)是关于x的函数。
如果g(x)是导数可求的,且h(x)是可导的,那么f'(x)=g'(h(x))h'(x)。
导数的几种解法
导数的几种解法摘要:导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
通过熟练掌握这些方法,我们可以计算各种函数的导数,并应用导数来分析函数的性质和解决实际问题。
求导在数学和科学的各个领域都有广泛应用,为我们理解变化规律、优化问题和建模提供了强大的工具。
持续学习和探索微积分的知识,将帮助我们更好地理解和应用求导技术。
为了求解导数,我们可以采用多种不同的方法和技巧,本文将介绍导数的几种常见解法。
关键词:高中数学;导数;常见解法引言:高中数学中,导数是一个重要的概念和计算方法。
对于函数的导数,有多种解法可以应用。
每种解法都有其独特的适用场景和计算方式,能够帮助我们更好地理解和运用导数的概念。
通过熟练掌握和灵活运用这些解法,我们可以更精确地求解函数的导数,进而应用到各种实际问题中,提高数学问题的解决能力。
一、基本求导方法导数是微积分中的重要概念,用于描述函数在某一点处的变化率。
在数学上,导数可以通过极限的概念来定义,表示函数在某一点附近的斜率。
几何上,导数可以解释为函数图像在某一点处的切线斜率。
物理上,导数可以表示物体在某一时刻的速度或加速度。
导数的计算可以采用多种方法,以下是几种基本的求导方法。
一种常见的方法是使用定义法求导。
根据导数的定义,导数可以通过极限的方式来计算。
具体来说,对于一个函数f(x),它在某个点x=a处的导数可以通过计算极限lim(h→0) [f(a+h) - f(a)] / h 来求得。
这种方法需要对极限的概念和计算方法有一定的了解,并且在具体计算时需要进行一系列的代数运算。
例如,对于函数f(x) = x^2,在x=2处的导数可以通过计算lim(h→0) [(2+h)^2 -2^2] / h来得到。
另一种常用的方法是利用常见的导数规则来求导。
导数规则是一些已知的函数导数的性质和规律,可以帮助我们快速计算复杂函数的导数。
常见的导数规则包括幂函数的导数、指数函数的导数、对数函数的导数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显然, 显然 P(x) = R(x) −C(x).
例4 设生产 件产品的成本和收益分别是 设生产x件产品的成本和收益分别是
1 1 2 R x) =140x − x2(元 ( ), C(x) = 1800+ 4x + x (元 ), 2 2
生产30件产品时的平均成本及边际成本 求: (1)生产 件产品时的平均成本及边际成本 生产 件产品时的平均成本及边际成本; (2)生产 件产品时的边际收益及边际利润 生产30件产品时的边际收益及边际利润 生产 件产品时的边际收益及边际利润.
四、相关变化率
知 F 已 : (x, y) = 0 —— 相关方程
dx =ϕ(t) dt
x 关于 的相关变化率 关于t
相关变化率问题: 相关变化率问题: 已知其中一个变化率时如何求出另一个变化率? 已知其中一个变化率时如何求出另一个变化率
相关变化率问题解法 相关变化率问题解法: 解法 找出相关联的变量间的等式 对 t 求导 得相关变化率之间的关系式 求出未知的相关变化率
2 2
3 3 法线方程为 y − = x − 即 y = x, 显然通过原点. 显然通过原点. 2 2
x = a(t −sint) t π 点处的切线方程. 在 = 点处的切线方程. 例1-3 求摆线 2 y = a(1−cost) dy sint asint dy dt 解 = = = a(1−cost) 1−cost dx dx dt π sin dy dy 2 = 1. ∴ = dx t=π 1−cosπ 2 2 π π t , ), y = a. 当 = 时 x = a( −1 2 2 所求切线方程为
分析 两曲线 y=f (x) 与 y = g(x) 在点( x0 , y0 ) 相切 在点
切 相 ) f (x0) = g(x0) (在 点 交 ⇔ 线 率 同 f ′(x0) = g′(x0) (切 斜 相 )
y y0 O
x0
x
解
切 为 设 点 (x0, y0),则
kx = x2 + ax + b ① 0 0 0 ② 0 k = 2x + a
1 y − f (x0) = − (x − x0), f ′(x0) 其中 f ′(x0) ≠ 0.
法线方程: 法线方程
x = 3t2 + 2t , 求该曲线 在 t = 0 例1 设 y e sint − y +1= 0
点处的切线方程. 点处的切线方程 解 1° 求切点 令t = 0 得 , °
一气球从离开观察员500 m 处离地面铅直上 例5 一气球从离开观察员 升,其速率为 140m m , 当气球高度为 500 m 时, 其速率为 in 观察员视线的仰角增加率是多少? 观察员视线的仰角增加率是多少 分钟后其高度为h 解 设气球上升 t 分钟后其高度为 , 仰角为α , 则
h tanα = 500
2.物理应用: 2.物理应用: 物理应用
3. 经济应用: 经济应用: 常用 C(x), R(x), P(x)分别表示成本、收益 分别表示成本、 及利润, 及利润,于是 C '(x) 表示边际成本 R (x)表示边际收益 表示边际成本; ' 表示边际收益;
P'(x)表示边际利润 表示边际利润.
4. 相关变化率 列出依赖于 t 的相关变量关系式
MR(x) =R (x) = 140− x, '
MP(x) = P'(x) = MR(x) − M (x) = 136−2x, C
因此,生产 件产品时的边际收益及边际利润分别为 因此 生产30件产品时的边际收益及边际利润分别为 生产
1 ( / ), MR(30) =1 0 元件
MP(30) =7 (元件 6 / ).
dv d2 s a(t) = = 2 = s′′(t) dt dt
一小球在斜面上向上而滚, 例3 一小球在斜面上向上而滚,在t 秒之终与 的单位为米), 开始的距离为 s = 3 t – t 2 (s的单位为米 , 的单位为米 问其初速为多少?何时开始下滚? 问其初速为多少?何时开始下滚? 解 初速: 初速:
M (30) =C'(30) = 3 (元件 . 4 / ) C
这说明,生产 件产品的平均成本为 这说明 生产30件产品的平均成本为 元, 但在此基础 生产 件产品的平均成本为79元 上生产第31件产品则只需增加 元 上生产第 件产品则只需增加34元. 件产品则只需增加 (2) 边际收益及边际利润分别为
所求切线方程为
e e y −1= (x −0), 即 y = x +1. 2 2
a 何 时 曲 例2 当 取 值 , 线y = ax和 线y = x 相 , 直 切
求切点的坐标. 求切点的坐标 分析 两曲线 y=f (x) 与 y = g(x) 在点 x0 , y0 ) 相切 在点(
切 相 ) f (x0) = g(x0) (在 点 交 ⇔ 线 率 同 f ′(x0) = g′(x0) (切 斜 相 )
600
1 4000⋅ ⋅ h⋅ 2(h⋅ tan60°) =4000 3 2 V(t) = h 2
1 V(t) = 4000⋅ ⋅ h⋅ 2(h⋅ tan60°) =4000 3 2 h 2
上式两边都对t求导得
dV dh = 8000 3h⋅ dt dt
600
dV dV 3 Q = 8(m / s) = 28800 m / h), ( 3 dt dh 0 时 ∴ h = 2 m , ≈ 0.104(m/ h). 当 dt
第二章
第五节 导数的简单应用
一、几何应用 二、物理应用 三、经济应用 四、相关变化率
一、几何应用
•
切线、 切线、法线 平面曲线 y = f (x)上点 (x0, f (x0)) 处
的切线斜率为: 的切线斜率为: tanα = f ′(x0). 切线方程: 切线方程
y − f (x0) = f ′(x0)(x − x0),
y −a = x −a( −1) 即 y = x + a(2− ) . 2 2
π
π
例1-4 求 形 ρ = a(1+cosθ)(a为 数) 心 线 常 ,
点 θ 在 ( ρ, ) = (a, )处 切 的 率 的 线 斜 . 2 解 心 线 参 方 : 形 的 数 程
π
s s s x =ρ co θ = a(1+co θ) co θ s y =ρ sinθ = a(1+co θ) sinθ
x0 ∈(a,b)
设x------产品数量 则 产品数量,则 产品数量 C(x)------产品成本 产品成本, 产品成本 R(x)------销售收益 销售收益, 销售收益 P(x)------销售利润 销售利润
M (x) = C'(x)------边际成本 边际成本 C
MR(x) =R (x) ------边际收益 ' 边际收益
形 在 ( 心 线 点a, )处 切 斜 : 的 线 率 2 dy −asin2θ + a(1+cosθ )cosθ d y = dθ = = 1. − asinθ cosθ − a(1+cosθ ) sinθθ=π dxθ=π dx 2 2 d θ θ=π
2
π
原 向 物 y 切 例2-1 从 点 抛 线 = x2 +ax +b引 线 引 条 可 几 ?
水面上升之速率
备用题
1 1 ) 例1-1 求等边双曲线 y = 在点 ( ,2 处的切线 2 x
的斜率, 并写出该点的切线方程和法线方程. 的斜率, 并写出该点的切线方程和法线方程. 解 由导数的几何意义,得切线斜率为 由导数的几何意义,
k = y′
1 x= 2
1 1 = ( )′ 1 = − 2 x x= x 2
e
y(0)
点 ⋅ 0− y(0) +1= 0 y(0) =1. ∴ 切 (0,1)
2° 求斜率 ° 求导, 方程组两边同时对 t 求导 得
dy ⋅ dt
dy − =0 dt
dy ⋅ dt
dy − =0 dt
yt=0 = y(0) = 1
dy ∴ dx t=0
t =0
ey(0) e .= . = 2 2
1+ ln(lna) = 0
e−1
得 a =e 解
, 故切点为 e). 故切点为(e,
二、物理应用
•
速度、 速度、加速度 位移函数s 的一阶导数的物理意义是速度 速度, 位移函数 (t ) 的一阶导数的物理意义是速度, ds v(t) = = s′(t) dt
位移函数s 的二阶导数的物理意义是加速度 加速度. 位移函数 (t ) 的二阶导数的物理意义是加速度
1 C(x) 1800 解 (1) 平均成本为 C(x) = + 4+ x, = 平均成本为 x 2 x
边际成本为 C 边际成本为 M (x) =C'(x) = 4+ x . 因此,生产 件产品时的平均成本及边际成本分别为 因此 生产30件产品时的平均成本及边际成本分别为 生产
C(30) C(30) = =79 元 件, ( / ) 30
线通过原点. 线通过原点. 解 方程两边对x求导得, 3x + 3y y′ = 3y + 3xy′ 求导得,
2 2
y − x2 ∴y′ 3 3 = 2 1 3 3 =− . ( , ) y −x ( , ) 22
22
所求切线方程为 y − 3 = −(x − 3) 即 x + y − 3= 0. =
3− 2t
3 令v(t) = 0 得 t = (s) , 2