导数与微分导数的简单应用
电子课件-《高等数学及应用(第3版)》-B10-3160 第二章 导数与微分
中国劳动社会保障出版社
2.1 导数的概念
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
2.1 导数的概念 例题解析
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
2.1 导数的概念
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
2.2
3.了解函数微分的简单应用.
2.3
导数的概念 导数的运算法则 函数的微分及其应用
教学重点
1. 函数微分的概念. 2. 会求函数的微分.
教学难点 函数微分的概念及几何意义. 教学方法 讲练结合法
中国劳动社会保障出版社
2.3 函数的微分及其应用
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
2.3 函数的微分及其应用
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
2.3 函数的微分及其应用
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
2.3 函数的微分及其应用
中国劳动社会保障出版社
2.3 函数的微分及其应用
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
2.3 函数的微分及其应用
节菜单
2.1 导数的概念 2.2 导数的运算法则 2.3 函数的微分及其应用
中国劳动社会保障出版社
导数与微分(经典课件)
导数与微分引 言导数与微分是数学分析的基本概念之一。
导数与微分都是建立在函数极限的基础之上的。
导数的概念在于刻划瞬时变化率。
微分的概念在于刻划瞬时改变量。
求导数的运算被称为微分运算,是微分学的基本运算,也是积分的重要组成部分。
本章主要内容如下: 1. 以速度问题为背景引入导数的概念,介绍导数的几何意义; 2. 给出求导法则、公式,继而引进微分的概念;3. 讨论高阶导数、高阶微分以与参数方程所确定函数的求导法。
4. 可导与连续,可导与微分的关系。
§1 导数的概念教学内容:导数的定义、几何意义,单侧导数,导函数,可导与连续的关系,函数的极值。
教学目的:深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数的相互联系和区别;明确导数与单侧导数、可导与连 续的关系;能利用导数概念解决一些涉与函数变化率的实际应用问题;会求曲线上一点处的切线 方程;清楚函数极值的概念,并会判断简单函数的极值。
教学重点:导数的概念,几何意义与可导与连续的关系。
教学难点:导数的概念。
教学方法:讲授与练习。
学习学时:3学时。
一、导数的定义:1.引入(背景):导数的概念和其它的数学概念一样是源于人类的实践。
导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,后来英国数学家牛顿(Newton )在研究物理问题变速运动物体的瞬时速度,德国数学家莱布尼兹(Leibuiz )在研究几何问题曲线切线的斜率问题中,都采用了相同的研究思想。
这个思想归结到数学上来,就是我们将要学习的导数。
在引入导数的定义前,先看两个与导数概念有关的实际问题。
问题1。
直线运动质点的瞬时速度:设一质点作直线变速运动,其运动规律为)(t s s =,若0t 为某一确定时刻,求质点在此时刻时的瞬时速度。
取临近于0t 时刻的某一时刻t ,则质点在[]t t ,0或[]0,t t 时间段的平均速度为:00)()(t t t s t s v --=,当t 越接近于0t ,平均速度就越接近于0t 时刻的瞬时速度,于是瞬时速度:0)()(lim 0t t t s t s v t t --=→。
导数与微分
第二章 导数与微分数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. . 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 内容要点: 1 导数的定义 2左右导数3导数的几何意义 4函数的可导性与连续性的关系一、引例1、直线运动速度设描述质点运动位置的函数为()s f t =,匀速时:tsv 时间路程=, 平均速度:tsv ∆∆=,因平均速度≠瞬时速度,则0t 到t 的平均速度为00()()f t f t v t t -=-,而0t 时刻的瞬时速度为000()()lim t t f t f t v t t →-=-2、切线问题(曲线在一点处切线的斜率)当点N 沿曲线C 趋于点M 时,若割线MN 绕点M 旋转而趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线因0000()()tan y y f x f x yx x x x xφ--∆===--∆ [切线应为割线的极限]当N 沿曲线M C →时,0x x →,故0000()() lim lim x x x f x f x yk x x x ∆→→-∆==∆- 即为割线斜率的极限,即切线斜率。
瞬时速度000()()limt t f t f t v t t →-=-切线斜率000()()limx x f x f x k x x →-=-两个问题的共性:所求量为函数增量与自变量增量之比的极限 .二、导数的定义: 1、函数在一点处的导数设函数()y f x =在点0x 的某个邻域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x +∆仍在该邻域内)时,相应的函数y 取得增量00()()y f x x f x ∆=+∆-;如果y ∆与x ∆之比当0x ∆→时极限存在,则称函数()y f x =在点0x 处可导,并称此极限为函数()y f x =在点0x 处的导数,记为:00000()()limlim x x x x f x x f x y y x x =∆→∆→+∆-∆'==∆∆或0()f x ',x x dy dx=或()x x df x dx =即:已知()f x ,构造yx∆∆,求此增量比的极限,若极限存在,则可导,不存在就不可导(此时切线必垂直于x 轴)。
数学3 考研经济应用题(导数和微分在经济学中的简单运用)
导数与微分在经济中的简单应用一、边际和弹性(一)边际与边际分析边际概念是经济学中的一个重要概念,通常指经济变量的变化率,即经济函数的导数称为边际。
而利用导数研究经济变量的边际变化的方法,就是边际分析方法。
1、总成本、平均成本、边际成本总成本是生产一定量的产品所需要的成本总额,通常由固定成本和可变成本两部分构成。
用c(x)表示,其中x 表示产品的产量,c(x)表示当产量为x 时的总成本。
不生产时,x=0,这时c(x)=c(o),c(o)就是固定成本。
平均成本是平均每个单位产品的成本,若产量由x 0变化到x x ∆+0,则:xx c x x c ∆-∆+)()(00称为c(x)在)(00x x x ∆+,内的平均成本,它表示总成本函数c(x)在)(00x x x ∆+,内的平均变化率。
而x x c /)(称为平均成本函数,表示在产量为x 时平均每单位产品的成本。
例1,设有某种商品的成本函数为:x x x c 30135000)(++=其中x 表示产量(单位:吨),c(x)表示产量为x 吨时的总成本(单位:元),当产量为400吨时的总成本及平均成本分别为:(元)1080040030400135000)(400=⨯+⨯+==x x c 吨)(元/2740010800)(400===x xx c 如果产量由400吨增加到450吨,即产量增加x ∆=50吨时,相应地总成本增加量为:4.686108004.11468)400()450()(=-=-=∆c c x c 728.13504.686)()(500400==∆∆+=∆∆=∆=x x xx x c x x c 这表示产量由400吨增加到450吨时,总成本的平均变化率,即产量由400吨增加到450吨时,平均每吨增加成本13.728元。
类似地计算可得:当产量为400吨时再增加1吨,即x ∆=1时,总成本的变化为:7495.13)400()401()(=-=∆c c x c7495.1317495.13)(1400=∆∆=∆=x x x x c表示在产量为400吨时,再增加1吨产量所增加的成本。
第二章导数与微分
第二章导数与微分一、教学目的1.理解导数和微分的概念、导数的几何意义,函数的可导性与连续性之间的的关系.2.掌握导数、微分计算的各种方法,会求简单函数的高阶导数的计算. 二、教学重点1.导数的概念及几何意义.2.导数计算的各种方法 三、教学难点复合函数和隐函数的导数 四、课时安排 约16学时2.1 导数的概念◆2.1.1引例◆2.1.2导数的定义 ◆2.1.3求导数举例◆2.1.4 导数与左右导数的关系 ◆2.1.5导数的几何意义◆2.1.6函数的可导性与连续性的关系 ◆2.1.7内容小结2.1.1引例1.瞬时速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑到 0000()()s s f t f t v t t t t --==--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选得越短, 这个比值和动点在时刻t 0的速度越接近.令t -t 0→0, 取比值0)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即0)()(limt t t f t f v t t --=→我们把这个极限值v 称为动点在时刻t 0的瞬时速度. 2. 产品总成本的变化率设某产品的总成本C 是产量q 的函数,即C =f (q ).当产量0q 变为0q q +∆时,总成本相应的改变量为 00()()C f q q f q ∆=+∆-而产量由0q 变为0q q +∆时,总成本的平均变化率为00()()f q q f q C q q+∆-∆=∆∆ 当0q ∆→时,如果极限000()()limq f q q f q C q q∆→+∆-∆=∆∆存在,称此极限为产量为0q 的总成本的变化率,又称边际成本.2.1.2导数的定义定义2.1.1 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量∆x 时, 相应地函数y 取得增量∆y =f (x 0+∆x )-f (x 0); 如果∆y 与∆x 之比当∆x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为)(0x f ',即 xx f x x f x yx f x x ∆-∆+=∆∆='→∆→∆)()(limlim)(00000, 也可记为0|x x y =', 0 x x dx dy =或0)(x x dx x df =. 导数的定义式也可取不同的形式, 常见的有 h x f h x f x f h )()(lim)(0000-+='→, 或 000)()(l i m )(0x x x f x f x f x x --='→. .如果极限xx f x x f x ∆-∆+→∆)()(lim000不存在, 就说函数y =f (x )在点x 0处不可导.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导.定义2.1.2如果对任一x ∈I ,函数 f (x )都对应着的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作 y ',)(x f ',dx dy , 或dxx df )(. f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即 0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值.2.1.3求导数举例例1.求函数f (x )=C (C 为常数)的导数. 解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→h C C h . 即 (C ) '=0.例2. 求xx f 1)(=的导数.解:h x h x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→2001)(1lim )(lim x x h x x h x h h h h -=+-=+-=→→. 例3. 求x x f =)(的导数.解: hx h x h x f h x f x f h h -+=-+='→→00l i m )()(l i m )(xx h x x h x h h h h 211lim )(lim00=++=++=→→. 例4.求函数f (x )=x n (n 为正整数)在x =a 处的导数. 解: f '(a )a x a f x f ax --=→)()(lima x a x n n a x --=→lim ax →=lim (x n -1+ax n -2+ ⋅ ⋅ ⋅ +a n -1)=na n -1. 把以上结果中的a 换成x 得 f '(x )=nx n -1,即 (x n )'=nx n -1.一般地, 有(x μ)'=μx μ-1 , 其中μ为常数. 例5.求函数f (x )=sin x 的导数. 解: f '(x )hx f h x f h )()(lim-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0hh x h h +⋅=→x h hhx h cos 22sin )2cos(lim 0=⋅+=→.即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x . 例6.求函数f (x )= a x (a >0, a ≠1) 的导数. 解: f '(x )hx f h x f h )()(lim-+=→h a a x h x h -=+→0lim h a a h h x 1lim 0-=→t a h =-1令)1(log lim 0t t a a t x +→a a ea x a xln log 1==. 即 '()ln x xa a a =特别地有 (e x )=e x .例7.求函数f (x )=log a x (a >0, a ≠1) 的导数. 解: hx h x h x f h x f x f a ah h log )(log lim )()(lim)(00-+=-+='→→ h xa h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ax e x a ln 1log 1==. 即 ax x a ln 1)(log =' . :特殊地 xx 1)(l n='. 2.1.4 导数与左右导数的关系:定义2.1.3如果极限hx f h x f h )()(lim 000-+-→存在, 则称此极限值为函数在x 0的左导数.即 f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-;如果极限hx f h x f h )()(lim 000-++→存在, 则称此极限值为函数在x 0的右导数.即f (x )在0x 的右导数:hx f h x f x f h )()(lim )(0000-+='+→+.定理2.1 函数f (x )在点x 0处可导的充分必要条件是左导数左导数f '-(x 0) 和右导数f '+(x 0)都存在且相等.即: A x f =')(0⇔A x f x f ='='+-)()(00. 如果函数f (x )在开区间(a , b )内可导, 且右导数f '+(a ) 和左导数f '-(b )都存在, 就说f (x )有闭区间[a , b ]上可导.例8.求函数f (x )=|x |在x =0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h h f h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h hf h f f h h , 因为f '-(0)≠ f '+(0), 所以函数f (x )=|x |在x =0处不可导.2.1.5导数的几何意义函数y =f (x )在点x 0处的导数f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即 f '(x 0)=tan α , 其中α是切线的倾角.如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0.由直线的点斜式方程, 可知曲线y =f (x )在点M (x 0, y 0)处的切线方程为 y -y 0=f '(x 0)(x -x 0).过切点M (x 0, y 0)且与切线垂直的直线叫做曲线y =f (x )在点M 处的法线.如果 f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为 )()(1000x x x f y y -'-=-.例9. 求等边双曲线x y 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程.解: 21x y -=', 所求切线及法线的斜率分别为4)1(2121-=-==x x k , 41112=-=k k .所求切线方程为)21(42--=-x y , 即4x +y -4=0.所求法线方程为)1(12-=-x y , 即2x -8y +15=0.例10. 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为 0212302323)()(0x x x x f x x =='='=. 于是所求切线的方程可设为)(230000x x x x x y -=-.根据题意, 点(0, -4)在切线上, 因此 )0(2340000x x x x -=--,解方程得x 0=4.于是所求切线的方程为 )4(42344-=-x y , 即3x -y -4=0.2.1.6函数的可导性与连续性的关系如果函数y =f (x )在点x 处可导, 则函数在该点必连续.另一方面, 一个函数在某点连续却不一定在该点处可导.例11. 函数3)(x x f =在区间(-∞, +∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大h f h f h )0()0(lim-+→+∞=-=→hh h 0lim 30. 2.1.7内容小结1.引例2.导数的定义3.求导数举例4.导数与左右导数的关系5.导数的几何意义6.函数的可导性与连续性的关系2.2 函数的求导法则◆2.2.1函数的和、差、积、商的求导法则 ◆2.2.2反函数的求导法则 ◆2.2.3复合函数的求导法则 ◆2.2.4求导法则与导数公式 ◆2.2.5 隐函数的导数 ◆2.2.6 对数求导法◆2.2.7参数方程所确定的函数的导数 ◆2.2.8内容小结2.2.1函数的和、差、积、商的求导法则定理2.2 如果函数u =u (x )及v =v (x )在点x 可导, 则它们的和、差、积、商(分母不为零)都在点x 具可导, 并且[u (x ) ±v (x )]'=u '(x ) ±v '(x ) ;[u (x )⋅v (x )]'=u '(x )v (x )+u (x )v '(x );)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡.定理2.2中的函数的和、差、积的求导法则可推广到有限多个可导函数的情形. 在函数的积的求导法则中, 如果v =C (C 为常数), 则有 (Cu )'=Cu '. 例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-(5x 2)'+(3x )'-(7)'= 2 (x 3)'- 5( x 2)'+ 3( x )' =2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2. 2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2 (πf '.解: x x x x x f sin 43)2 (sin )cos 4()()(23-='-'+'='π,443)2 (2-='ππf .例3.y =e x (sin x +cos x ), 求y '.解: y '=(e x )'(sin x +cos x )+ e x (sin x +cos x )' = e x (sin x +cos x )+ e x (cos x -sin x ) =2e x cos x . 例4.y =tan x , 求y '.解:xx x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='='x xx x x 22222sec cos 1cos sin cos ==+=.即 (tan x )'=sec 2x .例5.y =sec x , 求y '.解: x x x x x y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='x x2cos sin ==sec x tan x . 即 (sec x )'=sec x tan x .类似的,可求得余切函数及余割函数的导数公式: (cot x )'=-csc 2x ,(csc x )'=-csc x cot x .2.2.2反函数的求导法则定理2.3如果函数x =f (y )在某区间I y 内单调、可导且f '(y )≠0, 那么它的反函数y =f -1(x )在对应区间I x ={x |x =f (y ), y ∈I y }内也可导, 并且)(1])([1y f x f '='-. 或dydx dx dy 1=.即反函数的导数等于直接函数导数的倒数.例6.设x =sin y , ]2 ,2 [ππ-∈y 为直接函数, 则y =arcsin x 是它的反函数. 函数x =sin y 在开区间)2 ,2 (ππ-内单调、可导, 且 (sin y )'=cos y >0.因此, 由反函数的求导法则, 在对应区间I x =(-1, 1)内有 2211sin 11cos 1)(sin 1)(arcsin x y y y x -=-=='='. 即(a r c s i nx '=类似地有: 211)(arccos x x --='.例7.设x =tan y , )2 ,2 (ππ-∈y 为直接函数, 则y =arctan x 是它的反函数. 函数x =tan y在区间)2 ,2 (ππ-内单调、可导, 且 (tan y )'=sec 2 y ≠0.因此, 由反函数的求导法则, 在对应区间I x =(-∞, +∞)内有 22211t a n 11s e c 1)(t a n 1)(a r c t a n xy y y x +=+=='='. 类似地有: 211)cot arc (xx +-='.例8.设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且 (a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有 ax a a a x y y a ln 1ln 1)(1)(log =='='. 2.2.3复合函数的求导法则定理2.4如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为 )()(x g u f dx dy '⋅'=或dx du du dydx dy ⋅=. 例9. 3x e y =, 求dxdy . 解: 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdu du dy dx dy =⋅=⋅=. 例10. 212sinx x y +=, 求dx dy .解: 函数212sinx x y +=是由y =sin u , 212x x u +=复合而成的, 因此2222222212cos )1()1(2)1()2()1(2cos x x x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量,而直接写出结果.例11.lnsin x , 求dxdy . 解:)(sin sin 1)sin (ln '⋅='=x xx dx dy x x x cot cos sin 1=⋅=. 例12.3221x y -=, 求dxdy . 解:)21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=. 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ), v =ψ(x ),则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=. 例13.y =lncos(e x ), 求dxdy . 解:])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy)tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=.例14.xe y 1sin =, 求dxdy . 解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=x x e x e e dx dy x x x x e x x 1cos 11sin 2⋅⋅-=. 例15.设x >0, 证明幂函数的导数公式(x μ)'=μ x μ-1.解: 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1.2.2.4求导法则与导数公式 1.基本初等函数的导数:(1) (C )'=0, (2) (x μ)'=μ x μ-1, (3) (sin x )'=cos x , (4) (cos x )'=-sin x , (5) (tan x )'=sec 2x , (6) (cot x )'=-csc 2x , (7) (sec x )'=sec x ⋅tan x , (8) (csc x )'=-csc x ⋅cot x , (9) (a x )'=a x ln a , (10) (e x )'=e x ,(11) a x x a ln 1)(log =',(12) xx 1)(ln =',(13) 211)(arcsin x x -=', . (14) 211)(arccos x x --=' (15) 211)(arctan x x +=',(16) 211)cot arc (xx +-='.2.函数的和、差、积、商的求导法则 设u =u (x ), v =v (x )都可导, 则(1)(u ±v )'=u '±v ', (2)(C u )'=C u ', (3)(u v )'=u '⋅v +u ⋅v ',(4)2)(v v u v u v u '-'='.3.反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f ='-. 或dydx dx dy 1=.4.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为dxdudu dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ). 例16. y =sin nx ⋅sin n x (n 为常数), 求y '. 解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .2.2.5 隐函数的导数定义2.2.1形如y =f (x )的函数称为显函数. 例如y =sin x , y =ln x +e x 是显函数的例子. 定义2.2.2 由方程F (x , y )=0所确定的函数称为隐函数. 例17求由方程e y +xy -e =0 所确定的隐函数y 的导数. 解: 把方程两边的每一项对x 求导数得 (e y )'+(xy )'-(e )'=(0)', 即 e y ⋅ y '+y +xy '=0, 从而 y ex yy +-='(x +e y ≠0). 在上式两边对x 求导过程中,在遇到含有y 项时,应视y 是x 的函数,利用复合函数的求导法则.例18求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0. 解: 把方程两边分别对x 求导数得5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y .因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y . 例19 求椭圆122=+y x 在)323 ,2(处的切线方程.解: 把椭圆方程的两边分别对x 求导, 得0928='⋅+y y x . 将x =2, 323=y , 代入上式得 03141='⋅+y ,于是 k =y '|x =243-=. 所求的切线方程为)2(43323--=-x y , 即03843=-+y x .2.2.6 对数求导法:这种方法是先在y =f (x )的两边取对数, 然后再求出y 的导数. 设y =f (x ), 两边取对数, 得 ln y = ln f (x ),两边对x 求导, 得 ])([ln 1'='x f y y,y '= f (x )⋅[ln f (x )]'.对数求导法适用于求幂指函数y =[u (x )]v (x )的导数及多因子之积和商的导数. 例20求y =x sin x (x >0)的导数.解法一: 两边取对数, 得 ln y =sin x ⋅ ln x ,上式两边对x 求导, 得 x x x x y y 1sin ln cos 1⋅+⋅=',于是 )1sin ln (cos x x x x y y ⋅+⋅=')sin ln (cos sin xx x x x x +⋅=.解法二: 这种幂指函数的导数也可按下面的方法求:y =x sin x =e sin x ·ln x, )sin ln (cos )ln (sin sin ln sin x x x x x x x e y x x x +⋅='⋅='⋅.例21求函数)4)(3()2)(1(----=x x x x y 的导数.解: 先在两边取对数(假定x >4), 得ln y 21=[ln(x -1)+ln(x -2)-ln(x -3)-ln(x -4)],上式两边对x 求导, 得 )41312111(211-----+-='x x x x y y ,于是 )41312111(2-----+-='x x x x yy .当x <1时, )4)(3()2)(1(x x x x y ----=; 当2<x <3时, )4)(3()2)(1(x x x x y ----=; 用同样方法可得与上面相同的结果.注: 严格来说, 本题应分x >4, x <1, 2<x <3三种情况讨论, 但结果都是一样的.2.2.7参数方程所确定的函数的导数定理2.5 设x =ϕ(t )具有单调连续反函数t =ϕ-1(x ), 且此反函数能与函数y =ψ(t )构成复合函数y =ψ[ϕ-1(x ) ], 若x =ϕ(t )和y =ψ(t )都可导, 则 )()(1t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=, 即 )()(t t dx dy ϕψ''=或dt dx dt dydx dy =. 例1 设⎩⎨⎧+=-=)1ln(arctan 2t y tt x ,求1=t dx dy . 解:t t t t dt dx dt dydx dy 21111222=+-+== ∴21==t dx dy 例2求椭圆⎩⎨⎧==t b y t a x sin cos 在相应于4 π=t 点处的切线方程. 解:t ab t a t b t a t b dx dy cot sin cos )cos ()sin (-=-='=. 所求切线的斜率为ab dx dyt -==4π. 切点的坐标为224 cos 0a a x ==π, 224sin 0b b y ==π. 切线方程为)22(22a x a b b y --=-, 即 bx +ay 2-ab =0.2.2.8内容小结1.函数的和、差、积、商的求导法则2.反函数的求导法则3.复合函数的求导法则4.求导法则与导数公式5.隐函数的导数6.对数求导法7.参数方程所确定的函数的导数2.3 高阶导数◆2.3.1 高阶导数◆2.3.2 内容小结定义2.3.1如果函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 则称y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作 y ''、f ''(x )或22dx y d , 即 y ''=(y ')', f ''(x )=[f '(x )]' , )(22dxdy dx d dx y d =. 相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , nn dx y d . 函数f (x )具有n 阶导数, 也称函数f (x )为 n 阶可导. 如果函数f (x )在点x 处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内一定具有所有低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数.例1.y =ax +b , 求y ''.解: y '=a , y ''=0.例2.s =sin ω t , 求s ''.解: s '=ω cos ω t , s ''= cos ω t -ω 2sin ω t .例3.验证: 函数22x x y -=是方程y 3y ''+1=0的解.证明: 因为22212222x x x x x x y --=--=', 22222222)1(2x x x x xx x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1yx x -=--=, 所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数.解:y '=e x , y ''=e x , y '''=e x , y ( 4)=e x ,一般地, 可得 y ( n )=e x , 即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数.解: y =sin x ,)2s i n (c o s π+=='x x y , )22s i n ()2 2 s i n ()2 c o s (ππππ⋅+=++=+=''x x x y , )23s i n ()2 2 2s i n ()2 2c o s (ππππ⋅+=+⋅+=⋅+='''x x x y , )24sin()2 3cos()4(ππ⋅+=⋅+=x x y , 一般地, 我们有)2sin()(π⋅+=n x y n , 即)2 sin()(sin )(π⋅+=n x x n .同理, 可得 )2c o s ()(c o s )(π⋅+=n x x n .例6.求幂函数y =x μ (μ是任意常数)的n 阶导数公式.解: y '=μx μ-1,y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4,依次类推, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n ,即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n .当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! .而 (x n )( n +1)=0 .2.3.2 内容小结高阶导数2.4 函数的微分◆2.4.1微分的定义◆2.4.2微分的几何意义◆2.4.3基本初等函数的微分公式与微分运算法则◆2.4.4微分在近似计算中的应用◆2.4.5内容小结2.4.1微分的定义定义2.4.1 设函数y =f (x )在某区间内有定义, x 0及x 0+∆x 在这区间内, 如果函数的增量 ∆y =f (x 0+∆x )-f (x 0)可表示为∆y =A ∆x +o (∆x ), 其中A 是不依赖于∆x 的常数, 那么称函数y =f (x )在点x 0是可微, 而A ∆x 叫做函数y =f (x )在点x 0相应于自变量增量∆x 的微分, 记作 dy , 即 dy =A ∆x .定理2.6 (函数可微的条件): 函数f (x )在点x 0可微的充分必要条件是函数f (x )在点x 0可导, 且当函数f (x )在点x 0可微时, 其微分一定是dy =f '(x 0)∆x . .函数y =f (x )在任意点x 的微分, 称为函数的微分, 记作dy 或 d f (x ), 即dy =f '(x )∆x ,例1 求函数y =x 2在x =1和x =3处的微分.解 函数y =x 2在x =1处的微分为 1=x dy =(x 2)'|x =1∆x =2∆x ;函数y =x 2在x =3处的微分为 3=x dy =(x 2)'|x =3∆x =6∆x .例2.求函数 y =x 3当x =2, ∆x =0. 02时的微分.解: 先求函数在任意点x 的微分 dy =(x 3)'∆x =3x 2∆x .再求函数当x =2, ∆x =0. 02时的微分dy |x =2, ∆x =0.02 =3x 2| x =2, ∆x =0.02 =3⨯22⨯0.02=0.24.自变量的微分:因为当y =x 时, dy =dx =(x )'∆x =∆x , 所以通常把自变量x 的增量∆x 称为自变量的微分, 记作dx , 即dx =∆x . 于是函数y =f (x )的微分又可记作dy =f '(x )dx . 从而有 )(x f dxdy '=. 亦即, 函数的微分dy 与自变量的微分dx 之商等于该函数的导数. 因此, 导数也叫做“微商”. 2.4.2微分的几何意义当∆y 是曲线y =f (x )上的点的纵坐标的增量时, dy 就是曲线的切线上点纵坐标的相应增量. 当|∆x |很小时, |∆y -dy |比|∆x |小得多. 因此在点M 的邻近, 我们可以用切线段来近似代替曲线段.2.4.3基本初等函数的微分公式与微分运算法则1. 基本初等函数的微分公式导数公式: 微分公式:(x μ)'=μ x μ-1 d (x μ)=μ x μ-1d x(sin x )'=cos x d (sin x )=cos x d x(cos x )'=-sin x d (cos x )=-sin x d x(tan x )'=sec 2 x d (tan x )=sec 2x d x(cot x )'=-csc 2x d (cot x )=-csc 2x d x(sec x )'=sec x tan x d (sec x )=sec x tan x d x(csc x )'=-csc x cot x d (csc x )=-csc x cot x d x(a x )'=a x ln a d (a x )=a x ln a d x(e x )=e x d (e x )=e x d xax x a ln 1)(log =' dx a x x d a ln 1)(log = x x 1)(ln =' dx xx d 1)(ln = 211)(arcsin x x -=' dx x x d 211)(arcsin -= 211)(arccos x x --=' dx x x d 211)(arccos --=211)(arctan xx +=' dx x x d 211)(arctan += 211)cot arc (xx +-=' dx x x d 211)cot arc (+-= 2. 函数和、差、积、商的微分法则求导法则: 微分法则:(u ±v )'=u '± v ' d (u ±v )=du ±dv(Cu )'=Cu ' d (Cu )=Cdu(u ⋅v )'= u 'v +uv ' d (u ⋅v )=vdu +udv)0()(2≠'-'='v v v u v u v u )0()(2≠-=v dx v udv vdu v u d 乘积的微分法则证明:根据函数微分的表达式, 有d (uv )=(uv )'dx .再根据乘积的求导法则, 有(uv )'=u 'v +uv '.于是 d (uv )=(u 'v +uv ')dx =u 'vdx +uv 'dx .由于u 'dx =du , v 'dx =dv , 所以d (uv )=vdu +udv .3. 复合函数的微分法则设y =f (u )及u =ϕ(x )都可导, 则复合函数y =f [ϕ(x )]的微分为dy =y 'x dx =f '(u )ϕ'(x )dx .于由ϕ'(x )dx =du , 所以, 复合函数y =f [ϕ(x )]的微分公式也可以写成dy =f '(u )du 或 dy =y 'u du .由上式可见, 无论u 是自变量还是中间变量函数的微分形式dy =f '(u )du 保持不变. 这一性质称为微分形式不变性.例3.y =sin(2x +1), 求dy .解: 把2x +1看成中间变量u , 则dy =d (sin u )=cos udu =cos(2x +1)d (2x +1)=cos(2x +1)⋅2dx =2cos(2x +1)dx .运算熟练后,在求复合函数的导数时, 可以不写出中间变量.例4.)1ln(2x e y +=, 求dy .解: )1(11)1ln(222x x x e d e e d dy ++=+= xdx e x d e x x x x 21)(122222⋅⋅=⋅=dx e xe x x 2212+=. 例5.y =e 1-3x cos x , 求dy .解: 应用积的微分法则, 得dy =d (e 1-3x cos x )=cos xd (e 1-3x )+e 1-3x d (cos x )=(cos x )e 1-3x (-3dx )+e 1-3x (-sin xdx )=-e 1-3x (3cos x +sin x )dx .例6.在括号中填入适当的函数, 使等式成立.(1) d ( )=xdx ;(2) d ( )=cos ω t dt .解: (1)因为d (x 2)=2xdx , 所以)21()(2122x d x d xdx ==, 即xdx x d =)21(2. 一般地, 有xdx C x d =+)21(2(C 为任意常数). (2)因为d (sin ω t )=ω cos ω tdt , 所以 ) sin 1() (sin 1 cos t d t d tdt ωωωωω==. 所以 tdt C t d cos ) sin 1(ωωω=+(C 为任意常数). 2.4.4微分在近似计算中的应用如果函数y =f (x )在点x 0处的导数f '(x )≠0, 且|∆x |很小时, 我们有∆y ≈dy =f '(x 0)∆x ,∆y =f (x 0+∆x )-f (x 0)≈dy =f '(x 0)∆x ,f (x 0+∆x )≈f (x 0)+f '(x 0)∆x .若令x =x 0+∆x , 即∆x =x -x 0, 那么又有 f (x )≈ f (x 0)+f '(x 0)(x -x 0).特别当x 0=0时, 有 f (x )≈ f (0)+f '(0)x .这些都是近似计算公式.例7.有一批半径为1cm 的球, 为了提高球面的光洁度, 要镀上一层铜, 厚度定为0. 01cm . 估计一了每只球需用铜多少g (铜的密度是8. 9g/cm 3)?解: 已知球体体积为334R V π=, R 0=1cm , ∆R =0. 01cm . 镀层的体积为∆V =V (R 0+∆R )-V (R 0)≈V '(R 0)∆R =4πR 02∆R =4⨯3. 14⨯12 ⨯0. 01=0. 13(cm 3). 于是镀每只球需用的铜约为 0. 13 ⨯8. 9 =1. 16(g ).例8.利用微分计算sin 30︒30'的近似值.解: 已知30︒30'3606 ππ+=, 6 0π=x , 360π=∆x . sin 30︒30'=sin(x 0+∆x )≈sin x 0+∆x cos x 03606 cos 6 sin πππ⋅+= 5076.03602321=⋅+=π. 即 sin 30︒30'≈0. 5076.常用的近似公式(假定|x |是较小的数值): (1)x nx n 111+≈+; (2)sin x ≈x ( x 用弧度作单位来表达);(3)tan x ≈x ( x 用弧度作单位来表达);(4)e x ≈1+x ;(5)ln(1+x )≈x .例9.计算05.1的近似值.解: 已知 x nx n 111+≈+, 故025.105.021105.0105.1=⨯+≈+=. 直接开方的结果是02470.105.1=.2.4.5内容小结1.微分的定义2.微分的几何意义3.基本初等函数的微分公式与微分运算法则4.微分在近似计算中的应用。
微积分初步单元辅导二导数微分及其应用
《微积分初步》单元辅导二(导数微分及其应用)微积分初步学习辅导——导数与微分部分学习重难点解析(一)关于导数的概念函数的导数是一个增量之比的极限,即我们把卫称为函数的平均变化率,把lim y称为变化率,若lim y存在则可导,否则不可二x=x导•导数是由极限定义的,故有左导数和右导数• f(x)在点X。
处可导必有函数f (x)在点X。
处左右导数都存在且相等.(二)导数、微分和连续的关系由微分的定义dy二f (x)dx可知(1)函数的可导与可微是等价的,即函数可导一定可微;反之可微一定可导.⑵计算函数f(x)的微分dy,只要计算出函数的导数f(x)再乘上自变量的微分dx即可; 因此,我们可以将微分的计算与导数的计算归为同一类运算.(3)由定理可知,连续是可导的必要条件,那么,函数可微也一定连续.反之不然,即连续函数不一定是可导或可微函数.(三)导数的几何意义由切线问题分析可知,函数y=f(x)在点x。
处的导数就是曲线y = f(x)在点(x。
,f(x。
))处切线的斜率。
于是,y二f(x)在点(x。
,y0)处的切线方程为(四)关于导数的计算掌握导数的计算首先要熟记导数基本公式和求导法则.在我们这门课程中所学习的求导法则和方法有:(1)导数的四则运算法则;(2)复合函数求导法则;(3)隐函数求导方法.对于上述法则和方法在实用中要注意其成立的条件.在导数的四则运算法则中,应该注意乘法法则和除法法则,注意它们的构成形式并注意1— x解题的技巧.例如,y二,求了心.这是一个分式求二阶导数的问题,形式上应该用导1 1数的除法法则求解,但是,如果将函数变形为y -x:再求导数就应该用导数的加法法则了 .假如我们掌握了一些解题的技巧,会使我们的运算变得简单还会减少错误.复合函数求导数是学习的重点也是难点,它的困难之处在于对函数的复合过程的分解 由复合函数求导法则知,复合函数y = f(u),u 二(x)的导数为在求导时将y = f ( “X))分解为y = f(u),u =护(x)(其中u 为中间变量),然后分别对中间 变量和自变量求导再相乘.那么如何进行分解就是解题的关键,一般的说,所设的中间变量 应是基本初等函数或基本初等函数的四则运算,这样就会对于y = f (u),u = "X)分别都要有导数公式或法则可求导.如果分解后找不到求导公式,则说明分解有误.例如函数=sin 2,其分解为 y = u 2, u = sin v,v = x .于是分别求导为,y^2u,u^cosv , 1 — — 1 - .相乘得至U y x = 2 s i n ・.x c o s x - 2 . x 2 , x 2、x 二si n u,u =x ,这样在求导时会发现没有导数公式可以来求y u .隐函数的特点是变量y 与x 的函数关系隐藏在方程中,例如 y=1・xsiny ,其中的sin y 不但是y 的函数,还是x 的复合函数.所以对于sin y 求导数时应该用复合函数求导法则,先 对y 的函数sin y 求导得cosy ,再乘以y 对x 的导数y 〔由于y 对x 的函数关系不能直接写出 来,故而只能把y 对x 的导数写为y .一般地说,隐函数求导数分为下列两步:① 方程两边对自变量x 求导,视y 为中间变量,求导后得到一个关于 y 的一次方程; ② 解方程,求出y 对x 的导数y .总之,导数公式和求导法则是要靠练习来熟悉和理解的,我们应该通过练习掌握方法并 从中获得技巧.微积分初步学习辅导导数与微分部分典型例题例1求下列函数的导数或微分: (1) 设 y = x 3 3x log 3x-33,求 y . (2) 设 y = ^2,求 dyX xsi nx⑶设y ,求y (二).1 +cosx 3分析 这三个函数都是由基本初等函数经过四则运算得到的初等函数, 求导或求微分时,1 1 lsir2. x .有一种错误的分解是V x需要用到导数基本公式和导数的四则运算法则•对于(1)先用导数的加法法则,再用导数基本 公式;对于⑵,可以先用导数除法法则,再用基本公式;但注意到 ⑵ 中函数的特点,先将1 2函数进行整理,y J 二2 =x 3 -2x^',贝U 可用导数的加法法则求导,得到函数的导数后再乘 Vx 2 以dx ,得到函数的微分;对于(3)用导数除法法则,再用基本公式•解(1) y =(x 33xlog 3x-3 3)(x 3) (3x ) (gx) 一(33)21 — 4dy =ydx =(—X 3 x 3)dx.3 3(sin x) (1 cosx) -sin x(1 cosx)2(1 cosx)cosx(1 cosx) -sin x(-sinx) cosx cos 2 x sin 2x(1 + cosx)2(1 + cosx)2= 11 cosx在运用导数的四则运算法则应注意:①在求导或求微分运算中,一般是先用法则,再用基本公式;③ 解题时应先观察函数,看看能否对函数进行变形或化简,在运算中尽可能的避免使 用导数的除法法则.如例1中的⑵ 小题,将y 二x 二j 变形为y 『x-2二X? \x 2 v x 2 数,这种解法比直接用除法法则求解要简便且不易出错 •④ 导数的乘法和除法法则与极限相应的法则不同, 运算也相对复杂得多,计算时要细心. 例2求下列函数的导数或微分:sinl(1) 设 y = e x ,求 dy .3x 23 3x 2 3x —2(2)因为y=—1=x 3 1In 3xl n3In 3 — xln 3 -2x 1所以 y =(x 3) _2(x 3) s x3x3,于是所以y(3)=1 cosx②把根式qx p写成幕次px q的形式,这样便于使用公式且减少出错; 2-2x _3后再求导兀1 22(2)设 y =1 n(x—、1 x2),求 y(、3).(3)设 y =(邛)10,求 y .x +1分析采用复合函数求导法则,所设的中间变量应是基本初等函数或基本初等函数的四则运算.求导时,依照函数的复合层次由最外层起,向内一层层地对中间变量求导,直至对自变量求导为止.1解(1)设y =e u,u =sinv,v二一,利用复合函数求导法则,有x代回还原得在基本掌握复合函数求导法则后,也可以不写出中间变量,如下解法:(2)设y = In u,u = x - v,v = x2 T,利用复合函数求导法则,有代回还原得或着(3)设y = u10 ,u = △ ,v = x2 1,利用复合函数求导法则和导数的四则运算法则有,v代回还原得或着例3求下列方程所确定的隐函数的导数 y或微分dy :(1)x2 y2 xy 二 0,求 dy ;(2)e xy yl n x = cos2x,求 y .分析隐函数的特点是:因变量y与自变量x的对应关系是隐藏在方程中的.因此,在求导数时,不要忘记y是x的函数,在对y的函数求导后切记再乘以y对x的导数yl 依隐函数求导数的步骤求导.解(1)[方法1]由导数得到微分.方程两边对自变量x求导,视y为中间变量,有即(x 2y)y - -(y 2x)整理方程,解出y,得dy = ydx「y 2x dxx +2y[方法2]方程两边对变量求微分,这时变量y和x的地位是相同的,即不再将y看作x的函数.dy_x+2y(2)方程两边对自变量x求导,视y为中间变量,有于是 (xe^ In x)y - -2sin2x-'-ye xyx整理方程解出y •,得分析 如果函数y 二f (x )可导,函数曲线在点X 。
导数在经济学中的应用 PPT课件
(2) 由于平均成本为 C (Q )
C (Q )
Q
Q
10
2
160
Q
1 160 C (Q ) 2 10 Q
令C (Q ) 0,得唯一驻点Q 40.
160 C (Q ) 2 160(Q 2 ) 320 Q 3 Q 320 1 C (40) 3 0 40 200
在应用问题中解释弹性具体意义时,常常略去“近似”
二字.
例4 解
Ey Ey 求 y 4 3 x 的弹性函数 及 Ex Ex
Ey x 3x y , y 3, Ex y 4 3x
.
x2
Ey Ex
x2
3 2 0.6. 4 3 2
2、需求弹性 格P的函数:
R(Q ) 平均收益函数为 R P (Q ). Q
dR P (Q ) QP (Q ). 边际收益函数为 R dQ
其经济意义是:在已销售Q个单位商品的基 础上,再销售一个单位商品所增加的总收入。
目录 上页 下页 返回 结束
二、最大利润原则 设总利润为L,则
L L(Q ) R(Q ) C(Q ),
R(Q ) Q P (Q ) 10Q
Q2
5
,
2Q R(Q ) P (Q ) 10 , R(Q ) 10 , 5 5 所以当 Q 10 时,总收益、平均收益与边际收益分别为:
Q
R(10) 80, R(10) 8, R(10) 6.
目录 上页 下页 返回 结束
Ey x 我们称它为y f ( x)的弹性函数, y 仍为x的函数, Ex y
Ey 当x x0 时, Ex Ef ( x0 ) x0 f ( x0 ) . Ex f ( x0 )
高数(1)第四章微分中值定理和导数的应用
第四章微分中值定理和导数的应用【字体:大中小】【打印】4.1 微分中值定理费马引理:设函数y=f(x)在点的一个邻域上有定义,并在可导,如果(或)则一、罗尔(Rolle)定理1.罗尔(Rolle)定理如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点,使得函数f(x)在该点的导数等于零,即。
2.几何解释:在曲线弧AB上至少有一点C,在该点处的切线是水平的。
例1.判断函数,在[-1,3]上是否满足罗尔定理条件,若满足,求出它的驻点。
【答疑编号11040101:针对该题提问】解满足在[-1,3]上连续,在(-1,3)上可导,且f(-1)=f(3)=0,∵,取例2.设f(x)=(x+1)(x-2)(x-3)(x-5),判断有几个实根,并指出这些根所在的区间。
【答疑编号11040102:针对该题提问】二、拉格朗日(Lagrange)中值定理1.拉格朗日(Lagrange)中值定理如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在(a,b)内至少有一点,使等式成立。
注意:与罗尔定理相比条件中去掉了f(a)=f(b)结论亦可写成。
2.几何解释:在曲线弧AB上至少有一点C,在该点处的切线平行于弦AB。
拉格朗日中值定理又称微分中值定理例3(教材162页习题4.1,3题(2)题)、判断f(x)=sinx在上是否满足拉格朗日中值定理。
【答疑编号11040103:针对该题提问】推论1 如果函数f(x)在区间I上的导数恒为零,那么f(x)在区间I上是一个常数。
例4(教材162页习题4.1,4题)、证明【答疑编号11040104:针对该题提问】证设又,即,推论2 假设在区间I上两个函数f(x)和g(x)的导数处处相等,则f(x)与g(x)至多相差一个常数。
4.2 洛必达法则一、型及型未定式解法:洛必达法则1、定义如果当x→a(或x→∞)时,两个函数f(x)与F(x)都趋于零或都趋于无穷大,那么极限称为或型未定式。
第五章微分学基本定理及导数应用
+
例 9 把函数 展开成具 Peano 型余项的 Maclaurin 公式 ,并与
的
相应展开式进行比较.
解
;
.பைடு நூலகம்
而
.
五.Taylor 公式应用举例:
- 12 -
《数学分析》讲义 1. 证明 是无理数: 例 10 证明 是无理数. 证 把 展开成具 Lagrange 型余项的 Maclaurin 公式, 有
《数学分析》讲义
第五章 微分学基本定理及导数应用
教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根 据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性; 难点是用辅助函数解决问题的方法。
Th 3 设函数 和 在闭区间 和 在 内不同时为零, 又
上连续, 在开区间
内可导,
则在
内至少存在一点
使
.
证 分析引出辅助函数 上满足 Rolle 定理的条件,
. 验证
在
必有
, 因为否则就有
同时为零”矛盾.
Cauchy 中值定理的几何意义.
(三)中值定理的简单应用:
1. 证明中值点的存在性
.这与条件“ 和 在
是常值函数.
(证明
3. 证明不等式:
例 6 证明不等式:
时,
, 其中 是正常 ).
.
微积分讲义_第三章-一元函数的导数和微分
3.6 导数和微分在经济学中的简单应用,由于知识体系的关联性,我们把本节放到第四章后面讲。
例11.求
的导数
【答疑编号11030311:针对该题提问】
例12.求
的导数
【答疑编号11030312:针对该题提问】
例13.求
的导数
【答疑编号11030313:针对该题提问】
例14.求
的导数
【答疑编号11030314:针对该题提问】
例15.(教材习题3.2,8题)已知 【答疑编号11030315:针对该题提问】
切线方程为 法线方程为
例8、求双曲线
处的切线的斜率,并写出在该点处的切线方程和法线方程。
【答疑编号11030108:针对该题提问】
解 由导数的几何意义, 得切线斜率为
所求切线方程为
法线方程为
六、可导与连续的关系 1.定理 凡可导函数都是连续函数. 注意:该定理的逆定理不成立,即:连续函数不一定可导。 我们有:不连续一定不可导 极限存在、连续、可导之间的关系。
2.连续函数不存在导数举例
例9、讨论函数
在x=0处的连续性与可导性。
【答疑编号11030109:针对该题提问】
解:
例10、 P115第10题
设
,α在什么条件下可使f(x)在点x=0处。
(1)连续;(2)可导。 【答疑编号11030110:针对该题提问】 解:(1)
(2)
七、小结 1.导数的实质:增量比的极限; 2.导数的几何意义:切线的斜率; 3.函数可导一定连续,但连续不一定可导;
第三章 一元函数的导数和 微分
一、问题的提出 1.切线问题 割线的极限位置——切线位置
3.1 导数概念
如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即
高中数学导数与微分
高中数学导数与微分导数和微分是高中数学中重要的概念,对于理解函数的变化趋势、求解极值和函数的近似计算具有重要意义。
本文将探讨导数和微分的含义、计算方法以及在实际问题中的应用。
一、导数的定义及计算方法导数是描述函数变化率的工具,表示函数在某一点处的瞬时变化率。
设函数y=f(x),如果极限$$\lim_{{h\to 0}}\frac{{f(x+h)-f(x)}}{h}$$存在,则称该极限为函数f(x)在点x处的导数,记作f'(x)。
导数的计算方法可以通过极限的定义进行推导,也可以利用一些常见函数的导数法则进行计算。
1.1 基本导数法则对于常见的初等函数,我们可以根据其性质和定义来求导。
例如:(1)常数函数的导数为0:若f(x)=C,其中C为常数,则f'(x)=0;(2)幂函数的导数规则:若f(x)=x^n,其中n为整数,则f'(x)=nx^(n-1);(3)指数函数和对数函数的导数规则:若f(x)=a^x,其中a为正实数且不为1,则f'(x)=a^x*lna;若f(x)=lnx,则f'(x)=1/x。
其他常见函数的导数规则还包括三角函数、反三角函数、指数型和对数型函数等,可以根据函数的性质灵活运用。
1.2 导数的计算在具体计算导数时,需要根据导数的定义或者导数法则进行变形和化简。
常用的导数计算方法有:(1)用极限的定义计算:根据极限的定义,利用函数在某一点的极限表达式进行转化和化简,最后求出导数的值;(2)利用导数法则进行计算:对于复杂的函数,可以利用导数法则进行简化。
例如,对于复合函数f(g(x)),可以利用链式法则求导数。
二、微分的概念与性质微分是导数的一个应用,用于近似计算和函数的变化分析。
在实际问题中,我们常常需要通过微分求出函数的局部线性逼近,并利用微分结果进行问题的求解。
2.1 微分的定义设函数y=f(x)在点x处有导数f'(x),则称函数y=f(x)在点x处的微分为:$$\mathrm{d} y=f'(x)\mathrm{d} x$$其中,dx表示自变量x的增量,dy表示相应的函数值的增量。
导数与微分
若是由方程确定的可导函数,则其导数()yfx=(,)0Fxy=()fx′可由方程(,())0dFxfxdx=
求得.即隐函数求导法则是:把方程两边对x求导,注意y是x的函数,然后从求导后得到的等式中解出.
(5)对数求导法则
若,分别可导,则幂指函数可两边取对数化成隐函数求导数. ()ux()vx()()vxyux=
解 (1)因为441(13)(13)yxx?==??
所以45[(13)]4(13)(13)yxx??′′=?=????
551212(13)(13)xx?=?=?
(2)11222221()(1)1[(1)]1(1)(1)2fxxxxxx?′′′′=+?=+?=+???
12221(1)11xxxx?=+?=+?
(5)理解高阶导数的概念,会求简单函数的n阶导数.
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.
二、内容提要
1.导数概念
导数是由变速直线运动的瞬时速度的曲线的切线斜率等具体的变化率总是抽象而产生的,是极限概念的具体应用.
(1) 定义:设函数在点()yfx=0x和某个邻域内有定义,当自变量在0x处取得改变量时,函数(0)xΔ≠()fx取得相应的改变量00()( yfxxfxΔ=+Δ?,如果当0xΔ→时,yxΔΔ的极限存在,即0000()(limlimxx fxxfxyxxΔ→Δ→+Δ?Δ=ΔΔ
a.求函数增量的近似公式
()ydyfxx′Δ≈=Δ
b.求函数在某点附近的函数值的近似公式
00()()()() fxfxfxxx′≈+?
微积分应用基础第三章导数的应用
0
(0,2) 2 (2,)
— 不存在 +
0
— 不存在 +
↘
极小值 0
↗
极大值 3 16
↘
极小值 0
↗
第三章 导数的应用
例2 求函数 f (x) 3x 2 sin x 在区间 [0,2 ] 内的极
值。
解 因为 f (x) 3 2 cos x ,f (x) 2sin x 。
注意:
(1)函数的极大值和极小值是局部概念,即如果 f(x0)是f(x) 的极值,只是对极值点x0的左右近旁一个小范围来讲的。 (2)函数在一个区间上可能会有几个极大值和几个极小值,
且其中的极大值未必比极小值要大。如极大值 f(x1) 极小值f(x5)还要小。 (3)函数的极值只能在区间内部取得。
就比
z 2x2 y 2 ,点(0,0) 处,函数有极小值0。
第三章 导数的应用
二、二元函数极值的判别法 极值存在的必要条件 若函数f(x,y) 在点P0(x0,y0)
处一阶偏导数存在,且在该点函数有极值,则必有 f x′(x0,y0)= f y′(x0,y0) =0
Q(t)、Q′(t)和Q〞(t)的图形,分析上图得出如下初步结论:
(1) 该班次的产量Q随着时间t增长而增加,到一定时间 后又随着时间增长而降低; (2)Q′ >0的时间对应产品Q增加的时间,Q′<0的时 间对应产品Q减少的时间; (3) Q′=0对应产品最大的时间; (4) Q〞>0的时间对应产品增加幅度较大的时间,Q〞 <0的时间对应产品增加幅度较小及产品减少′(x)=6x(x2 - 1)2由
f′(x)=0, 得驻点x1=-1,x2=0,x3=1 。 列表考察如下:
高等数学A1教学PPT课件1:18-第18讲 函数的单调性与凹凸性
而 lim f (x) lim (sin x x) ,
x
x
lim f (x) lim (sin x x) ,
x
x
由连续性,曲线 y f (x) 与x 轴至少有一个交点.
综上所述, 曲线 y f (x) 与x 轴有且仅有一个交点,
即方程 sin x x 在 (, )内有且仅有一个实根.
图形都存在一个需要判别弧段位于相应的弦线 的“上方”或“下方”的问题 .
我们将这种问题称为曲线 (函数)的凹凸性问题 .
简单地说 , 在区间 I 上 : 曲线弧段位于相应的弦线上方时, 称之为凸的; 曲线弧段位于相应的弦线下方时, 称之为凹的.
y
凸 y f (x)
y
凹 y f (x)
O
x1
x1 x2 2
x0
x1
x2 2
即
f
(
x1
x2 2
) 1 (
2
f
(x1)
f
(x2 )) .
故 f (x) 0 , x (a, b)时, 曲线 y f (x)
在区间[a, b] 上是凸凹的.
以上的讨论是对开区间 (a, b) 进行的, 但结论却出现了闭区间 [a, b] , 这正确吗?
结论是正确的, 我们可以利用函数的连续 性将开区间内的结论延伸到了闭区间上.
求两条相交的曲线在交点处的交角实质上仍是一个求 y f1(x) ,
L1
L2 : y f2 (x) 相交于点M (x0 , y0 ) 处 .
相应的切线方程分别为 :
M L2
1
2
O
x
y k1x b1 f1(x0 ) x b1 ,
y k2 x b2 f2(x0 ) x b1.
高数导数
善于总结:常见条件怎么用 做题注意:结论让你干什么
2.判断函数的极值,求极值
• 判断函数的极值:
(1)定义 (2)第一充分条件
(3)第二充分条件 • 求极值(具体函数): (1)求导数 (2)求出全部驻点与不可导点 (3)判断.
f ( x) f (a) lim 1, 则在点 a 处( 例. 设 2 x a ( x a )
提示:
1
ln b ln a f (b) f (a) ln b ln a 1 ( ); ; f f (b) f (a) f ( ) ba ba
4. 如果和高阶导数有关,则多次使用中值定 理或用泰勒定理
例:设f ( x)在[0,上具有三阶导数且f (0) f (1) 0. 1] 证明在 (0,1) 使得[ x3 f ( x)]
3. 可导的奇(偶)函数的导函数为偶 (奇) 函数
周期为T的可导函数的导函数也是周期为T 的函数
三.判断函数在一点x=x0处的可导性
1. 若函数为抽象函数,且不知道是否可导,通常利用导数 的定义判断:
f ( x0 h) f ( x0 ) f ( x0 ) lim ; h 0 h
注:导数定义的形式特征有两个 f ( x)
所以当 令 x b, 得 即所证不等式成立 .
• 例:设函数f(x)在区间[0,+∞)上具有二阶导数, 满足f(0)=0, f″(x)<0, 又0<a<b, 则当a<x<b时恒有 ( ) • A. af(x)>xf(a) B. bf(x)>xf(b) • C. xf(x)>bf(b) D. xf(x)>af(a)
1 1 (ln | y |)x (ln( y))x ( y ) y y y
微分中值定理与导数的应用总结
1基础知识详解先回顾一下第一章的几个重要定理1、0lim ()()x x x f x A f x A α→∞→=⇔=+ ,这是极限值与函数值(貌似是邻域)之间的关系 2、=+()o αββαα⇔: ,这是两个等价无穷小之间的关系3、零点定理:条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号)结论:在开区间(a,b)上存在ζ ,使得()0f ζ=4、介值定理:条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠=结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得()f C ζ=。
5、介值定理的推论:闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。
第三章 微分中值定理和导数的应用1、罗尔定理条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b)结论:在开区间(a,b)上存在ζ ,使得'()0f ζ=2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=-3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈结论:在开区间(a,b)上存在ζ ,使得()()'()()()'()f b f a f g b g a g ζζ-=-拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。
4、对罗尔定理,拉格朗日定理的理解。
罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。
当然也有用第一章的零点定理的。
但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。
而罗尔定理是两个端点大小相同,则导数存在0值。
《高等数学》上册(课件全集)第2章 导数及微分
根据导数的几何意义,过曲线y=f(x)上点M0(x0,y0)的切线方程为
对应的法线方程为
当f′(x0)=0时,切线方程为y=y0,法线方程为x=x0.
2.2 初等函数的求导法则
1.导数的基本公式 前一节由导数的定义,求出了几个简单函数的导数,但对于较复杂的函数,用定 义求导往往比较困难.为此,本节介绍导数的基本公式、求导法则和求导方法,借助 这些基本公式、法则和方法就可以方便地求出初等函数的导数.所有基本初等函数的 导数基本公式如下:
为Δ y=f(x0+Δ x)-f(x0).当Δ x→0时,若比值Δ yΔ x 的极限存在,则称函数y=f (x)在点
x0处可导,并称此极限值为函数y=f(x)在点x0处的导数值,记作f′(x0),
即
也记作
如果极限
不存在,则称函数y=f(x)在点x0处不可导.
如果函数y=f(x)在区间(a,b)内任意点x处都可导,则称函数y=f(x) 在区间(a,b)内可导.
内所经过的路程为Δ s,
即
则在时间段Δ t内的平均速度
显然,时间段Δ t越小,质点运动速度变化越小,可近似看做匀速直线运动,平 均速度v就越接近于质点在t0时刻的瞬时速度v(t0),即当Δ t→0,平均速度v的极
限,便是质点在t0时刻的瞬时速度,即
2.导数的定义
定义 设函数y=f(x)在点x0的左右近旁有定义,自变量x在点x0处有改变量Δ x(Δ x≠0)(也叫自变量的增量)时,相应函数的改变量(也叫函数的增量)
如果函数z=f(x,y)在某个平面区域D内的每一点(x,y)处,对x的偏导数都存在, 那么,这个偏导数就是x,y的函数,称它为z=f(x,y)对自变量x的偏导函数,简称偏 导数,记作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) b = 0时,x0 = 0, 引一条切线;
(3) b < 0时,无切线.
7. 一飞机在离地面2km的高度,以每小时200km的 速度水平飞向目标O的上空,O处有一摄影机跟踪
拍摄飞行过程,试求飞机飞至目标O上方时,摄影机
转动的角速度. y
解 如图建立坐标系,设 t 秒末
飞机与目标水平距离为 x(km),
例1
设
⎧ ⎨ ⎩e
y
x= sin t
3t −
2
y
+ +
2t 1=
0
,
求该曲线 在 t = 0
点处的切线方程.
解 1° 求切点 令 t = 0,得 x(0) = 0,
e y(0) ⋅ 0 − y(0) + 1 = 0 y(0) = 1. ∴ 切点 (0,1)
2° 求斜率 方程组两边同时对 t 求导, 得
设x------产品数量,则 C(x)------产品成本, MC ( x) = C'( x)------边际成本 R(x)------销售收益, M R( x) = R'( x) ------边际收益 P(x)------销售利润 M P ( x) =P'( x)------边际利润 显然, P( x) = R( x) − C( x).
=
a sin t
a(1 − cos t)
=
sin t 1 − cos t
dt
π
当
t
∴
=π
dy dx
时,
sin
t
=π
2
x
= =
2
1 − cos
π
a(
−
π
2
1
=
),
1.
y
=
a.
2
2
所求切线方程为
y − a = x − a(π − 1)
2
即 y = x + a(2 − π ) .
2
5. 求心形线 ρ = a(1 + cosθ )(a为常数,) 在点(ρ,θ ) = (a,π )处的切线的斜率 .
解 设气球上升 t 分钟末其高度为h , 仰角为α ,
则 tanα (t) = h(t)
500
两边对 t 求导
sec2 α (t )⋅ dα (t) = 1 dh(t)
d t 500 d t
h
α
500m
sec2 α (t ) ⋅ dα (t) = 1 dh(t)
d t 500 d t
sec2 α = 1 + tan2 α
四、同步练习解答
1. 河水以 8m3 / s的速度流入水库中,水库
的形状是长为4000m,顶角为120°的水槽, 问水深
20m时,水面每小时上升几米?
解 设时刻t水深为h(t),
600
水库内水量为V(t),则
V
(t
)
=4000
⋅
1 2
⋅
h
⋅
2(h
⋅
tan
60°)
=
4000
3h2
4000m
V
(t
)
求生产100单位产品时的边际成本。 10. 有一底半径为 R cm , 高为 h cm 的圆锥容器 , 今以 25 cm 3 s 的速度自顶部向容器内注水 , 试求当 容器内水位等于锥高的一半时水面上升的速度.
11. 液体从深为18cm, 顶部直径为12cm 的正圆 锥形漏斗,漏入直径为10cm的圆柱形桶中,开始 时漏斗盛满液体,已知漏斗中液面深12cm时,液面 下落速度为1cm/min, 问此时桶中液面上升的速度是 多少?
2km
摄影机仰角为θ,则飞机速度 o
θ
x
x
v = dx = −200km/h,
dt
θ = arctan 2 ,
x
角速度
ω = dθ
dt
= dθ ⋅ dx
dx dt
=
1+
1 ( 2 )2
⋅ (−
2 x2
)
⋅
dx dt
=
−
2 x2 +
4
⋅dx
dt
x
飞机飞至目标正上方时,角速度为
ω
x=0
=
−
2 (−200) 4
(3,3) 22
= −1.
所求切线方程为 y − 3 = − ( x − 3 ) 即 x + y − 3 = 0.
2
2
法线方程为
y
−
3 2
=
x
−
3 2
即
y = x,
显然通过原点.
4.
求摆线⎨⎧
⎩
x y
= =
a(t a(1
− −
sin t)在
cos t )
t
=π
2
点处的切线方程.
dy
解
dy dx
=
dt dx
=
1 在点 ( 1 , 2 )处的切线
x
2
的斜率, 并写出该点的切线方程和法线方程.
解 由导数的几何意义,得切线斜率为
k = y′
x=1 2
=
(
1 )′ x
x=1
2
=
−
1 x2
x=1 2
= −4.
所求切线方程为
y−2=
−
4(
x
−
1), 2
即
4
x
+
y
−
4
=
0.
法线方程为 y − 2 =
1 ( x − 1), 即 42
2 解 心形线的参数方程:
⎧ x = ρ cos θ = a (1 + cos θ )cos θ
⎨ ⎩y
=ρ
sin θ
=
a (1 +
cos θ )sin θ
心形线在点 (a , π )处的切线斜率:
2
dy
dy = d x θ =π
2
dθ
dx
dθ
= −
θ =π
− a
a sin 2θ + sinθ cosθ
=4000
⋅
1 2
⋅
h
⋅
2(h
⋅
tan
60°)
=
4000
3h2
上式两边都对t求导得
dV = 8000 3h ⋅ dh
dt
dt
600
Q
dV dt
=
8(m3 / s)
=
28800(m3 / h),
∴ 当 h = 20 m 时 , dh ≈ 0.104(m / h).
dt
水面上升之速率
4000m
2.
求等边双曲线 y
线通过原点.
4.
求摆线⎨⎧
⎩
x y
= =
a(t a(1
− −
sin t)在
cos t )
t
=π
2
点处的切线方程.
5. 求心形线 ρ = a(1 + cosθ )(a为常数,) 在点(ρ,θ ) = (a,π )处的切线的斜率 .
2 6. 从原点向抛物线 y = x 2 + ax + b引切线
可引几条?
d x = 6t + 2
dt
e y⋅ d y ⋅ sin t + e y cos t − d y = 0
dt
dt
d x = 6t + 2
dt
e y⋅ d y ⋅ sin t + e y cos t − d y = 0
dt
dt
dy dt
=
e y cos t , 1 − e y sin t
y t=0
=
解 v = d s = 3 − 2t dt
初速:v(0) = 3(m / s) 令 v(t) = 0,得 t = 3 (s)
2 ∴ 当 t = 3 s时,小球开始下滚.
2
例4 一气球从离开观察员500 m 处离地面铅直上升,
其速率为 140m min , 问当气球高度为 500 m 时,
观察员视线的仰角增加率是多少?
=
100(rad
/ h)
= 100 / 3600 = 1 (rad / s). 36
θ = arctan 2 ,
x
8. 已知阻尼振动的位移函数为 s = be−λ t sinωt ,
(b,λ,ω为常数),求任意时刻t 振动的速度和加
速度. 解 速度 v = ds = be−λ t ⋅ (−λ )sinω t + be−λ t cosω t ⋅ ω
的形状是长为4000m,顶角为120°的水槽, 问水深
20m时,水面每小时上升几米?
4000m
600
2. 求等边双曲线 y
=
1 在点 ( 1 , 2 )处的切线
x
2
的斜率, 并写出该点的切线方程和法线方程.
3. 设曲线C的方程为x3 + y3 = 3 xy,求过C上点
(
3 2
,
3 2
) 的切线方程, 并证明曲线C在该点的法
2 x − 8 y + 15
= 0.
3. 设曲线C的方程为x3 + y3 = 3 xy,求过C上点
(
3 2
,
3 2
) 的切线方程, 并证明曲线C在该点的法
线通过原点.
解 方程两边对x求导得, 3 x2 + 3 y2 y′ = 3 y + 3 xy′
∴ y′ (3,3) =
22