《统计初步》基础测试

合集下载

第3章《数据分析初步》(基础检测卷培优提高卷)

第3章《数据分析初步》(基础检测卷培优提高卷)

第3章《数据复习初步》培优提高卷班级______ 姓名_______一、选择题(每题3分,共30分)1、有一组数据:2,5,7,2,3,3,6,下列结论错误的是()A.平均数为4B.中位数为3C.众数为2D.极差是52、一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,33、王明同学随机抽查某市10个小区所得到的绿化率情况,结果如下表:小区绿化率(%)20 25 30 32 小区个数 2 4 3 1则关于这10个小区的绿化率情况,下列说法错误..的是( )A.极差是13% B.众数是25% C.中位是25% D.平均数是26.2%4、在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是155、在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20 30 35 50 100学生数(人) 5 10 5 15 10在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,506、某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),纸笔测试实践能力成长记录甲90 83 95乙98 90 95丙80 88 90A.甲B.乙丙C.甲乙D.甲丙7、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个8、已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是31,那么另一组数据3 x 1-2,3 x 2-2,3 x 3-2,3 x 4-2,3 x 5-2的平均数和方差分别是 ( )A .2,31 B .2,1 C .4,32D .4,39、期中考试后,学习小组长算出全组5位同学数学成绩的平均分为M ,如果把M•当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N ,那么M :•N 为( ) A .56 B .1 C .65D .2 10、当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是( )A .21B .22C .23D .24 二、填空题(每题4分,共24分)11、一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组的整数,则这组数据的平均数是 .12、为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条. 13、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,则这位候选人的招聘得分为________. 14、今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是____元.15、将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.16、若已知一组数据x 1,x 2,…,x n 平均数为x ,方差为2s ,那么另一组数据3 x 1-2,3 x 2-2,…,3x n -2平均数为 ,方差为 . 三、简答题(共66分) 17、(本题6成绩(分) 60 70 80 90 100 人数(人) 15xy2(1)若这20名学生成绩的平均分数为82分,求x 和y 的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a ,中位数为b ,求a ,b 的值. .18、(本题8分)某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:队员每人每天进球数甲10 6 10 6 8乙7 9 7 8 9经过计算,甲进球的平均数为x甲=8,方差为2 3.2s甲.(1)求乙进球的平均数x乙和方差2s乙;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?19、(本题8分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86 90 96 92乙92 88 95 93(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁20、(本题10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).21.(本题10分)如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由。

沪教新版九年级数学下册第28章统计初步单元测试卷包含答案

沪教新版九年级数学下册第28章统计初步单元测试卷包含答案

沪教新版九年级数学下册第28章统计初步单元测试卷一、选择题1.下列事件中,最适合采用普查的是A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查2.数据 4, 3, 5, 3, 6, 3, 4 的众数和中位数是A.3,4B.3,5C.4,3D.4,53.某同学对数据26,36, 36, 46,5■, 52 进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是A .平均数B.中位数C.方差D.众数4.某校足球队20 场比赛进球数如下,进 1 球的有 7 场,进 2 球的有 6 场,进 3 球的有 7场,则该队平均每场进球数是A.1 个B.2 个C.3 个D.4 个5.图中信息是小明和小华射箭的成绩,两人都射了10 箭,射箭成绩的方差较小的是A .小明B.小华C.两人一样D.无法确定6.从某校初三学生中,随机的抽取20 名学生,测得他们所穿鞋的鞋号(单位:公分)由小到大排列得到一个样本,则这个样本数据的四个统计量中,鞋厂最感兴趣的指标是A .平均数B.中位数C.方差D.众数二.填空题(共12 小题)7. 3 个数的平均数是44,这 3 个数的比是,最大的数是8.在数据1,2, 3, 4,中添加5,不改变原数据的平均数,则9.一组数据的标准差计算公式是.的值为.,则这组数据的平均数是.10.一组数据3, 4, 6, 8,的中位数是,且是满足不等式组的整数,则这组数据的平均数是.11.若40 个数据的平方和是56 ,平均数是,则这组数据的方差.12.已知一组数据,,,,的平均数是2,方差是1,则数据,,,,的平均数是,方差是.13.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,根据扇形统计图中提供的信息,计算出步行的学生人数占被调查的学生总人数的百分比为.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是,中位数是.15.为了解某社区居民的用电情况,随机对该社区10 户居民进行了调查,如表是这10 户居民 2019 年 10 月份用电量的调查结果:居民(户1324月用电量(度户)4050 5560那么关于这 10户居民月用电量(单位:度),下列说法:(1)中位数是55( 2)众数是60( 3)方差是29( 4)平均数是 54.其中错误的是(填序号)16.某校为了了解该校学生在家做家务的情况,随机调査了50 名学生,得到他们在一周内做家务所用时间的情况如下表所示时间(小时)人数8142062小时.(同一组中的数据用则可以估计该校学生平均每人在一周内做家务所用时间是这组数据的组中值作代表.17.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900 名居民进行调查,并将调查结果制作成了如下不完整的统计图和表:听说过不知道清楚非常清楚225根据以上信息求得“非常清楚”所占扇形的百分比为.18.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐 5 元、 10 元、20 元的,还有捐 50 元和 100 元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款元.三.解答题(共7 小题)19.如图是某学校教师喜欢看的电视节目统计图.( 1)喜欢《走进科学》的老师占全体老师人数的.( 2)喜欢节目和节目的人数差不多.( 3)喜欢节目的人数最少.( 4)如果喜欢焦点访谈比喜欢新闻联播的老师人数少26 名,那么该校共有名教师.20.“知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙 2 名候选人中选出 1 人代表学校参加区科技节项目的比赛,每人进行了 4 次测试,对照一定的标准,得分如下:甲: 80, 70, 100, 50;乙: 75, 80, 75, 70.如果你是教练,你打算安排谁代表学校参赛?请说明理由.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,,两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从,两村各抽取 15 户进行了抽样调查,并对每户每月销售的土豆箱数(用表示)进行了数据整理、描述和分析,下面给出了部分信息:村卖出的土豆箱数为的数据有: 40, 49, 42, 42, 43村卖出的土豆箱数为的数据有: 40, 43, 48, 46土豆箱数村03552村145平均数、中位数、众数如表所示:村名平均数中位数众数村48.859村47.44656根据以上信息,回答下列问题:(1)表中;;;( 2)你认为,两村中哪个村的小土豆卖得更好?请说明理由;( 3)在该电商平台进行销售的,两村村民共210 户,若该电商平台把每月的小土豆销售量在范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?22.我们规定:将任意三个互不相等的数,,按照从小到大的顺序排列后,把处于中间位置的数叫做这三个数的中位数.用符号,,表示.例如,2,.(1),5,.(2)当时,求,,.( 3)若,且,,,求的取值范围.23.哈 47 中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?”的问题在全校范围内随机抽取了部分学生进行问卷调查(每名学生必选且只选一座山),根据调查结果绘制了如图所示的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;( 3)若该中学共有学生3600 人,请你估计该中学最喜欢香炉山的学生约有多少人.24.为了解某校六年级学生数学摸底考试情况,随机抽取了部分学生的数学成绩(分数都分分)四个等为整数)为样本,分为、分分)、分分)、级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题:(1)这次随机抽取的学生共有多少人?(2)通过计算补全条形统计图;(3)这个学校六年级共有学生 640 人,若分数为 80 分及 80 分以上的为优秀,请估计这次六年级学生数学摸底考试成绩为优秀的学生有多少人?25.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩环中位数环众数环方差甲77 1.2乙78( 1)写出表格中,,的值:,,.( 2)如果乙再射击一次,命中7 环,那么乙的射击成绩的方差.(填“变大” “变小”“不变”( 3)教练根据这10 次成绩若选择甲参加比赛,教练的理由是什么?参考答案一.选择题(共 6 小题)1.下列事件中,最适合采用普查的是A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查解:、对我校七年级一班学生出生日期的调查适合采用普查;、对全国中学生节水意识的调查适合采用抽样调查;、对山东省初中学生每天阅读时间的调查适合采用抽样调查;、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:.2.数据 4, 3, 5, 3, 6, 3, 4 的众数和中位数是A.3,4B.3,5C.4,3D.4,5解:在这组数据中出现次数最多的是3,即众数是3;把这组数据按照从小到大的顺序排列3, 3, 3, 4, 4, 5, 6,中位数为4;故选:.3.某同学对数据26,36, 36, 46,5■, 52 进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是A .平均数B.中位数C.方差D.众数解:这组数据的平均数、方差和标准差都与第 5 个数有关,而这组数据的中位数为36与 46的平均数,与第 5 个数无关.故选:.4.某校足球队20 场比赛进球数如下,进 1 球的有 7 场,进 2 球的有 6 场,进 3 球的有 7场,则该队平均每场进球数是A.1 个B.2 个C.3 个D.4 个解:根据题意,得平均每场进球数故选:.5.图中信息是小明和小华射箭的成绩,两人都射了10 箭,射箭成绩的方差较小的是A .小明B.小华C.两人一样D.无法确定解:根据图中的信息可知,小明的成绩波动性小,则这两人中成绩稳定的是小明;故射箭成绩的方差较小的是小明故选:.6.从某校初三学生中,随机的抽取20 名学生,测得他们所穿鞋的鞋号(单位:公分)由小到大排列得到一个样本,则这个样本数据的四个统计量中,鞋厂最感兴趣的指标是A .平均数B.中位数C.方差D.众数解:由于众数是数据中出现次数最多的数,故鞋厂最感兴趣的指标是众数.故选:.二.填空题(共12 小题)7. 3 个数的平均数是44,这 3 个数的比是,最大的数是60.解:设这三个数分别为、、,根据题意知,,解得,则最大的数为,故答案为: 60.8.在数据1,2, 3, 4,中添加5,不改变原数据的平均数,则的值为15.解:根据题意得:,解得:,故答案为: 15.9.一组数据的标准差计算公式是,则这组数据的平均数是6.解:数据的标准差计算公式是这组数据的平均数是6.故答案为: 6.10.一组数据3, 4, 6, 8,的中位数是,且是满足不等式组,的整数,则这组数据的平均数是 5.4 .解:解不等式组得,,是整数,数据3, 4, 6, 8,的中位数是,,,故答案为: 5.4.11.若40 个数据的平方和是56 ,平均数是,则这组数据的方差0.9.解:由方差的计算公式可得:.故填0.9 .12.已知一组数据,,,,,,的平均数是的平均数是2,方差是4,方差是.1,则数据,,解:数据,,,,的平均数是2,,,数据,,,,的方差是1,,故答案为: 4, 9.13.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,根据扇形统计图中提供的信息,计算出步行的学生人数占被调查的学生总人数的百分比为.解:骑车的学生所占的百分比是,步行的学生所占的百分比是;故答案为:.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是15,中位数是.解:根据图中信息可知这些队员年龄的平均数为:(岁,该足球队共有队员(人,则第 11 名和第 12 名的平均年龄即为年龄的中位数,即中位数为15 岁,故答案为: 15, 15.15.为了解某社区居民的用电情况,随机对该社区10 户居民进行了调查,如表是这10 户居民 2019 年 10 月份用电量的调查结果:居民(户1324月用电量(度户)4050 5560那么关于这 10户居民月用电量(单位:度),下列说法:(1)中位数是55( 2)众数是60( 3)方差是29( 4)平均数是 54.其中错误的是( 3)(填序号)解:组数据按照从小到大的顺序排列为40, 50, 50, 50, 55, 55, 60, 60, 60,60,则中位数为:(度,度出现了 4 次,出现的次数最多,众数为 60 度,平均数为:(度,方差为;其中错误的是(3);故答案为:(3).16.某校为了了解该校学生在家做家务的情况,随机调査了50 名学生,得到他们在一周内做家务所用时间的情况如下表所示时间(小时)人数8142062则可以估计该校学生平均每人在一周内做家务所用时间是 2.1小时.(同一组中的数据用这组数据的组中值作代表.解: 50名学生平均每人在一周内做家务所用时间(小时),故答案为 2.1 小时.17.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900名居民进行调查,并将调查结果制作成了如下不完整的统计图和表:听说过不知道清楚非常清楚225根据以上信息求得“非常清楚”所占扇形的百分比为30.解:“清楚”的人数占总人数的百分比为,“非常清楚”扇形所占的百分比为,故答案为: 30.18.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐 5 元、 10 元、20 元的,还有捐 50 元和 100 元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款33元.解:由统计图可得,捐款 100 元的学生有:(人,捐款 10 元的学生有:(人,该班同学平均每人捐款:(元,故答案为: 33.三.解答题(共7 小题)19.如图是某学校教师喜欢看的电视节目统计图.( 1)喜欢《走进科学》的老师占全体老师人数的32.( 2)喜欢节目和节目的人数差不多.( 3)喜欢节目的人数最少.( 4)如果喜欢焦点访谈比喜欢新闻联播的老师人数少26 名,那么该校共有名教师.解:( 1),故答案为32;(2)新闻联播和大风车的人数差不多;故答案为新闻联播,大风车;(3)喜欢看焦点访谈的人数最少,故答案为焦点访谈;(4),故答案为200.20.“知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙 2 名候选人中选出 1 人代表学校参加区科技节项目的比赛,每人进行了 4 次测试,对照一定的标准,得分如下:甲: 80, 70, 100, 50;乙: 75, 80, 75, 70.如果你是教练,你打算安排谁代表学校参赛?请说明理由.解:选乙代表学校参赛;,,,选乙代表学校参赛.21.为了加快推进农村电子商务发展,积极助力脱贫攻坚工作,,两村的村民把特产“小土豆”在某电商平台进行销售(每箱小土豆规格一致),该电商平台从,两村各抽取 15 户进行了抽样调查,并对每户每月销售的土豆箱数(用表示)进行了数据整理、描述和分析,下面给出了部分信息:村卖出的土豆箱数为的数据有: 40, 49, 42, 42, 43村卖出的土豆箱数为的数据有: 40, 43, 48, 46土豆箱数村03552村145平均数、中位数、众数如表所示村名平均数中位数众数村48.859村47.44656根据以上信息,回答下列问题:(1)表中3;;;( 2)你认为,两村中哪个村的小土豆卖得更好?请说明理由;( 3)在该电商平台进行销售的,两村村民共 210 户,若该电商平台把每月的小土豆销售量在范围内的村民列为重点培养对象,估计两村共有多少户村民会被列为重点培养对象?解:( 1)由村的中位数为46,即中间第 8个为 46,,,,村的中位数为第8 个数 49,即;故答案为:3; 2; 49;(2),两村中村的小土豆卖得更好;理由如下:① 村的平均数比村大;② 村的中位数比村大;③ 村的众数比村大;( 3 ),两村抽取的15 户中每月的小土豆销售量在范围内的村民有户,(户;答:估计两村共有84 户村民会被列为重点培养对象.22.我们规定:将任意三个互不相等的数,,按照从小到大的顺序排列后,把处于中间位置的数叫做这三个数的中位数.用符号,,表示.例如,2,.(1),5,.(2)当时,求,,.( 3)若,且,,,求的取值范围.解:( 1), 5,故答案为:.(2)当时,,,,,,.( 3)当时,解得且,不等式组无解.当时,解得.的取值范围是.23.哈 47 中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?”的问题在全校范围内随机抽取了部分学生进行问卷调查(每名学生必选且只选一座山),根据调查结果绘制了如图所示的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生 3600 人,请你估计该中学最喜欢香炉山的学生约有多少人.解:( 1)样本容量.( 2)最喜欢凤凰山的学生人数(人,条形图如图所示:(3)(人,答:估计该中学最喜欢香炉山的学生约有1080 人.24.为了解某校六年级学生数学摸底考试情况,随机抽取了部分学生的数学成绩(分数都为整数)为样本,分为、分分)、分分)、分分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题:(1)这次随机抽取的学生共有多少人?(2)通过计算补全条形统计图;( 3)这个学校六年级共有学生640 人,若分数为80 分及 80 分以上的为优秀,请估计这次六年级学生数学摸底考试成绩为优秀的学生有多少人?解:( 1)这次随机抽取的学生共有:(人;( 2)等级人数:(人条形统计图:;( 3)根据题意得:(人,答:这次六年级学生数学摸底考试成绩为优秀的学生有256 人.25.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩环中位数环众数环方差甲77 1.2乙78(1)写出表格中,,的值:7,,.( 2)如果乙再射击一次,命中7环,那么乙的射击成绩的方差.(填“变大” “变小”“不变”( 3)教练根据这10 次成绩若选择甲参加比赛,教练的理由是什么?解:( 1)甲的平均成绩(环,甲的成绩的众数(环,乙射击的成绩从小到大重新排列为:3、 4、 6、 7、 7、 8、8、 8、 9、 10,乙射击成绩的中位数(环,其方差;故答案为: 7, 7.5, 4.2;( 2)如果乙再射击一次,命中7 环,那么乙的射击成绩的平均数不变,方差为:;乙的射击成绩的方差变小,故答案为:变小;( 3)因为他们的平均数相同,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.。

沪教版二年级数学上册统计表初步测试题

沪教版二年级数学上册统计表初步测试题

二年级上册数学一课一练-3.1统计表初步一、单选题1.按邮票的分值来分可以分为几类?()A. 3类B. 2类C. 4类2.下图中三角形有几个?()A. 5个B. 3个C. 4个3.下面是某校参加课外活动小组人数统计表。

参加哪两组的人数相差的最多()A. 足球组和绘画组 B. 书法组和舞蹈组 C. 书法组和篮球组4.喜欢( )小组的人数最少。

A. 舞蹈组B. 书法组C. 围棋组二、判断题5.老师统计同学们购买课外书的情况时发现,有28个同学买了故事书,14个同学买了科幻书,22个同学买了童话书,由此可知,同学们对故事书更感兴趣6.小明和小红一起去买六一装饰用的彩色气球,红气球买了6个;黄气球买了5个;蓝气球买了4个;粉红气球买了8个,那么小明算出,买黄色气球和蓝色气球的总和比粉红色气球多2个7.统计表可以看出数量多少,统计图可以直接看出哪种数量多,哪种数量少.8.统计表更能直观、形象地表示数量的多少.(判断对错)三、填空题9.请你根据表中的数据分析。

①选择________小组的人数最多,选择________小组的人数最少。

②选择羽毛球组的有________人。

10.裕星小学学生参加课外活动小组情况统计表。

请你根据表中的数据完成下面各题。

①选择羽毛球组的有________人,选择围棋组的有________人。

②喜欢________小组的人数最多,喜欢________小组的人数最少。

11.这个月中阴天有________天。

12.常见调查的方法有:________ 、________、________、________等。

13.商店空调销售情况统计表。

________天和________天销售量相同。

四、解答题14.老师调查了本班同学利用课余时间学习的情况.(1)本班同学利用课余时间学习情况统计表(2)本班同学利用课余时间学习情况统计图(3)请你根据统计的情况提出问题并解答.五、综合题15.你还记得龟兔赛跑吗?请你对参赛的所有动物进行调查,填一填。

统计初步

统计初步

( D)样 本 容 量 是 1o名 初 三 学 生 . 2
( )数 据 1 . 、 9 4 1 . 、 4 1 . 、 . 、 9 2 3 9 2 1 . 、 5 1 . 、 0 1 2 1 . 、 9 9 9 9
据 , 三 年 级 每 个 学 生 的视 力 数 据 , 查 初 三 年 级 5 初 抽 O名
外 , 余 8 同学 的平 均成 绩为 8 其 名 1分 , 问这 个学 生 的考
查成 绩是 多少 ?
4 .某 商 店 三 、 月 份 出 售 同 一 品 牌 各 种 规 格 的 空 四
调 销 售 台数 如 下 表 , 据 表 中 数 据 回 答 : 2 0 根 ( 0 1年 北 京
西城 区 )
学 的 生 视力数 5. ( 据, 2 0 )
2.( ])~ ( 4) CBBA .
妻二 _ 二

,一0 d .
1 . 、9 4 1 . 9 5 1 . 、 9 2的 众 数 和 中 位 数 分 别 是 (
( )1 . 1 . . A 9 2. 9 4 ( B)1 . 1 . . 2. 9 3 9

1 ( )8 3 . 。8 1 . 3 . ,8 1 . . ( )1 . 4 4 6岁 .
维普资讯
( ) 样 本 数 据 d , d , , 的 平 均 数 a : 2 。d ,。 … d

样 本 数 据 d+ 0 1 d一 0 7 d+ 0 2 d一 0 3 ., ., ., ., .
d一 0 4d 一 0 2 d+ o 5 d的 平 均 数 是 ., ., .,
3 .某 小 组 9名 学 生 一 次 考 查 课 的 平 均 成 绩 为 7 8 分 , 果 将 其 中 一 个 学 生 因 病 缺 课 , 查 成 绩 较 差 除 如 考

统计初步能力训练试题及答案

统计初步能力训练试题及答案

统计初步能力训练1.选择题(1)一个样本数据是11个连续自然数,那么,下面结论一定正确的是().(A)它的平均数是6 (B)它的中位数是6(C)它的方差是5 (D)它的方差是10(2)某地区100个家庭年收入按从低到高是5800元,…10000各不相同,在输入计算机时,把最大的数错误地输成了100000元,则依据错误数字算出的平均值与实际数字的平均值的差是().(A)900元(B)942元(C)90000元(D)1000元(3)用5分制评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估价全班的作业质量.从抽查的数据中已知其众数是4.那么,得4分的至少有().(A)2人(B)3人(C)4人(D)5人(4)若样本的平均数为10,方差为2,则对于样本下列结论正确的是().(A)平均数为10,方差为2 (B)平均数为11,方差为3(C)平均数为11,方差为2 (D)平均数为12,方差为4(5)一个样本的方差为零,中位数为,则它的平均数().(A)大于(B)等于(C)小于(D)无法确定(6)一个样本的数据是,它的平均数是5,另一个样本的数据,它的平均数是34.那么下面的结果一定正确的是().(A)(B)(C)(D)(7)在1000个数据中,用适当的方法抽取50个作为样本进行统计,频率分布表中,54.5~57.4这一组的频率是0.12,那么估计总体数据落在54.5~57. 4之间的约有().(A)120个(B)60个(C)12个(D)6个(8) 17.甲乙二人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连结,如图所示,下面的错误的是A.乙的第二次成绩与第五次成绩相同B.第三次测试甲的成绩与乙的成绩相同C.第四次测试甲的成绩比乙的成绩多2分D.五次测试甲的成绩都比乙的成绩高2.填空题(l)已知的平均数是,那么的平均数是______________.(2)某样本数据是2,2,,3,3,6,如果众数是2,则方差是______________.(3)一个容量为的样本,其中每个数据与其平均数之差的绝对值都不小于1且不超过2,那么它的方差的范围是______________.(4)容量为的样本,其各数据之平方和是,平均数是,那么,它的标准差是________________.(5)将50个数据分成3组,其中第1组与第3组的频率之和是0.7,则第2组的频率是____________,第2组的频数是_____________.(6)一个样本的数据有个,个,…,个,那么,它的平均数是_______________.3.解答题(1)已知数据的平均数是,求的值.(2)一个样本中出现次,出现次,…,出现次.若它的平均数是,方差是.求证:.(3)某养鱼户养鱼已3年,头一年放养鲢鱼苗20000尾,其成活率为70%,在秋季捕捞时,随意捞出10尾鱼,称得每尾的重量如下(单位:千克):0.8 0.9 1.2 1.3 0. 8 0.9 1.1 1.0 1.2 0.8①根据样本平均数估计这塘鱼的总产量是多少千克?②如果把这塘鱼卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入多少元?③已知该养鱼户这三年纯收入为132400元,求第二年、第三年平均每年的增长率是多少?(4) (上海市2001中考试题)某校在六年级和九年级男生中分别随机抽取20名男生测量他们的身高,绘制的频数分布直方图如图2所示,其中两条点划线上端的数值分别是每个年级被抽20名男生身高的平均数.试根据该图提供的信息填空:①六年级被抽取的20名男生身高的中位数所在组的范围是__________厘米;九年级被抽取的20名男生身高的中位数所在组的范围是___________厘米.②估计这所学校九年级男生的平均身高比六年级男生的平均身高高_________厘米.③估计这所学校六、九两个年级全体男生中,身高不低于153厘米且低于163厘米的男生所占的百分比是_________.参考答案:1.选择题:(1)D (2)A (3)C (4)C (5)B (6)A (7)A (8) D.2.填空题:(1)(2)2 (3)(4)(5)0.3,15 (6)3.解答题(1)0 (2)提示:(3)①14000千克(提示:,1×20000×70%=14000千克)②56000元,40000元③10% (提示:)(4) ①~、~②③.。

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川区第一中学2020年中考九年级数学典型压轴题专练:统计初步1、根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.2、为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.3、为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?4、某校八年级学生在学习《数据的分析》后,进行了检测.现将该校八年级(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【逐步提示】(1)在表格中查到得96的人数是6,据此不全条形图;(2)根据众数、中位数的定义求解;(3)用500乘以96分以上(含96分)的人数所占的百分比即可得解;(4)把小明的成绩和平均数、中位数、众数作对比,即可对小明的成绩做出判断.5、秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?6、某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?7、某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.8、中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?9、海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?10、为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?11、在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.12、某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱30%8%6%动画新闻体育娱乐戏曲体育的对应扇形的圆心角大小是______;(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.13、某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8% ,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.14、为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.15、为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求所抽取的学生人数;(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.16、某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?17、为了解某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?18、某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?19、为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.20、某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.答案:1、、【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A: =10,B: =30;C: =50;D: =70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.2、【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).3、【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.4、解:(1)补全条形统计图如下:(2)该班学生成绩的中位数为90分,众数为90分;(3)∵6+540×500≈138.∴估计有138名学生的成绩在96分以上(含96分).(4)小明的成绩为88分,他的成绩处于中偏下水平,因为小明的成绩比班级平均成绩高,但比班级学生成绩的中位数和众数低.5、【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.6、【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.7、【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.11118、【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.9、【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.10、【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.11、【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.12、【答案】(1)50,3,72°;(2)160人【解析】(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人),∵“娱乐”类人数占被调查人数的百分比为:18100%36% 50⨯=,∴“体育”类人数占被调查人数的百分比为:1-8%-30%-36%-6%=20%,在扇形统计图中,最喜爱体育的对应扇形圆心角大小事360°×20%=72°;(2)2000×8%=160(人).13、【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.14、【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.15、【解答】解:(1)∵频数之和=40,∴所抽取的学生人数40人.(2)活动前该校学生的视力达标率==37.5%.(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,视力保健活动的效果比较好.16、【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.17、【解答】解:(1)120÷30%=400(吨).[来源:学§科§网Z§X§X§K] 答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.18、【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.19、【解答】解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为: =6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.20、【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.。

2005年中学考试题分类选粹—统计初步

2005年中学考试题分类选粹—统计初步

2005年中考题分类选粹—统计初步一、选择题:1.(泉州)样本6,7,8,9,10,10,10的中位数和众数分别是( )A 、9,3B 、8,10C 、10,10D 、9,102.(玉林)宾馆客房的标价影响住宿百分率.下表是某一宾馆在近几年旅游周统计的平均数据:客房价(元) 160 140120100 住宿百分率63.8%74.3% 84.1%95%在旅游周,要使宾馆客房收入最大,客房标价应选( ). A .160元 B .140元 C .120元 D .100元3.(潜江)国家实行一系列“三农”优惠政策后,农民收入大幅度增加。

某乡所辖村庄去年年人均收入(单位:元)情况如右表, 该乡去年年人均收入的中位数是( ) A 、3700元 B 、3800元 C 、3850元 D 、3900元4.(武汉)在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为,。

下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。

其中正确的共有( ).分数5060708090100年人均收入 3500 3700 3800 3900 4500 村庄个数1331(A)5.(淮安)下列统计量中,能反映一名同学在7~9年级学段的学习成绩稳定程度的是A.平均数B.中位数C.众数D.方差6.(乌兰察布)甲、乙两班举行汉字输入比赛,参赛学生每分钟输入汉字的个数经统计计算后,填入下表:分析此表得出如下结论:(1)甲、乙两班学生成绩的平均水平相同(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀)(3)甲班学生成绩的波动情况比乙班成绩波动大。

A.(1)(2)B.(1)(2)(3)C.(2)(3) D。

(1)(3)7.(上海)六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为()A、3B、4C、5D、68.(内江)某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A、19,20B、19,19C、19,20.5D、20,199.(资阳)某服装销售商在进行市场占有率的调查时,他最应该关注的是A. 服装型号的平均数B. 服装型号的众数C. 服装型号的中位数D. 最小的服装型号二、填空:9.(深圳)一组数据3、8、8、19、19、19、19的众数是____________.10.(柳州)若数据3,2,m,5,9,n的平均数为3,那么m和n的平均数是。

《统计初步》基础测试

《统计初步》基础测试

基础测试(一)填空题(每题5分,共30分):1.某班的5位同学在向“救助贫困学生”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是_______,中位数是_________,平均数是_______.2.n 个数据的和为56,平均数为8,则n =__________.3.在数据-1,0,4,5,8中插入一个数x ,使这组数据的中位数为3,则x =_______.4.数据2,-1,0,-3,-2,3,1的样本标准差为_____________.5.已知一个样本含20个数据:68 69 70 66 68 65 64 65 69 6267 66 65 67 63 65 64 61 65 66.在列频率分布表时,如果取组距为2,那么应分________组,64.5~66.5这一小组的频率为________,上述样本的容量是____________.6.在对100个数据进行整理的频率分布表中,各组的频数之和等于________,各组的频率之和等于________.(二)选择题(每题6分,共30分):7.要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是指………………………………………………………………………………( )(A )此城市所有参加毕业会考的学生(B )此城市所有参加毕业会考的学生的数学成绩(C )被抽查的1 000名学生(D )被抽查的1 000名学生的数学成绩8.如果x 1与x 2的平均数是6,那么x 1+1与x 2+3的平均数是………………( )(A )4 (B )5 (C )6 (D )89.甲、乙两个样本的方差分别是甲2s =6.06,乙2s =14.31,由此可反映……( )(A )样本甲的波动比样本乙大(B )样本甲的波动比样本乙小(C )样本甲和样本乙的波动大小一样(D )样本甲和样本乙的波动大小关系,不能确定10.在公式s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中,符号S 2,n ,x 依次表示样本的……………………………………………………………………( )(A )方差,容量,平均数 (B )容量,方差,平均数(C )平均数,容量,方差 (D )方差,平均数,容量11则这11双鞋的尺码组成的一组数据中,众数与中位数分别为………………( )(A )25,25 (B )24.5,25 (C )26,25 (D )25,24.5(三)解答题:12.((1)分别求这些男生成绩的众数、中位数与平均数;(2)规定8次以上(含8次)为优秀,这所学校男生此项目考试成绩的优秀率是多少?13.(20分)某地举办体操比赛,由7位评委现场给运动员打分,已知7位评委给某运动员的评分如下:评委1号2号3号4号5号6号7号评分9.2 9.8 9.6 9.5 9.5 9.4 9.3 请你利用所学的统计知识,给出这个运动员的最后得分(精确到0.01).。

第八章-概率与统计初步综合测试题-基础模块下册-高教版

第八章-概率与统计初步综合测试题-基础模块下册-高教版
A.2
B.4
C.6
2.数据 1,3,6,2,2,4,6,8 的平均值是(
A.3
B.4
D.10

C.5
D.6
3.电视台某节目组要从2019名观众中抽取100名幸运观众.先用简单随机抽样从2019人
中剔除19人,剩下的2000人再按系统抽样方法抽取100人,则在2019人中,每个人被

抽取的可能性(
A.都相等,且为
5
)
2
3
B.
C.
5
5
4
D.
5
16.抛掷一枚质地均匀的硬币,设事件 =“正面向上”,则下列说法正确的是(

A.抛掷硬币 10 次,事件 A 必发生 5 次
B.抛掷硬币 100 次,事件 A 不可能发生 50 次
C.抛掷硬币 1000 次,事件 A 发生的频率一定等于 0.5
D.随着抛掷硬币次数的增多,事件 A 发生的频率在 0.5 附近波动的幅度较大的可能性
分.某地旅游部门从 2020 年到该地旅游的游客中随机抽取部分游客进行调查,得到各年
龄段游客的人数和旅游方式如图所示,则下列结论正确的是(

A.估计 2020 年到该地旅游的游客选择自助游的中年人的人数少于选择自助游的青年
人人数的一半
B.估计 2020 年到该地旅游的游客选择自助游的青年人的人数占总游客人数的 13.5%
率.
29.甲、乙两位小朋友玩卡片游戏.甲有两张大小相同的卡片,卡片编号分别为数字 2、
4;乙有四张大小相同的卡片,卡片编号分别为数字 1、2、3、4.
(1)若乙从自己的卡片中随机抽取两张,求所抽取的两张卡片的编号之和为奇数的概率;
(2)若甲、乙从各自的卡片中各抽取一张卡片,并比较卡片编号大小,且编号大者获胜,

基础强化沪教版(上海)九年级数学第二学期第二十八章统计初步综合测试试卷(精选含详解)

基础强化沪教版(上海)九年级数学第二学期第二十八章统计初步综合测试试卷(精选含详解)

九年级数学第二学期第二十八章统计初步综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题正确的是( )A .数轴上的每一个点都表示一个有理数B .甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则乙的成绩更稳定C .三角形的一个外角大于任意一个内角D .在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称2、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是( )A .甲B .乙C .丙D .丁3、水果店内的5个苹果,其质量(单位:g )分别是:200,300,200,240,260关于这组数据,下列说法正确的是( )A .平均数是240B .中位数是200C .众数是300D .以上三个选项均不正确4、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.255、为了了解2017年我县九年级6023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是( )A.2017年我县九年级学生是总体B.每一名九年级学生是个体C.200名九年级学生是总体的一个样本D.样本容量是2006、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是()A.九年级(1)班共有学生40名B.锻炼时间为8小时的学生有10名C.平均数是8.5小时D.众数是8小时7、下列调查中,最适合采用抽样调查的是()A.调查一批防疫口罩的质量B.调查某校九年级学生的视力C.对乘坐某班次飞机的乘客进行安检D.国务院于2020年11月1日开展的第七次全国人口调查8、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是()A.200名学生的视力是总体的一个样本B.200名学生是总体C .200名学生是总体的一个个体D .样本容量是1200名9、下列说法中,正确的是( )A .若a b =,0c ≠,则a c b c +=-B .90′=1.5°C .过六边形的每一个顶点有4条对角线D .疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查10、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A .甲B .乙C .丙D .丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg 种子中发芽的大约有_______kg .2、某校七年级二班在订购本班的班服前,按身高型号进行登记,对女生的记录中,身高150cm 以下记为S 号,150~160cm 记为M 号,160~170cm 记为L 号.170cm 以上记为XL 号.若绘制成统计图描述这些数据,合适的统计图是_____(填“条形”、“折线”、“扇形”中的一个)统计图.3、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.4、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____5、为庆祝中国共产党建党一百周年,某单位党支部开展“学史明理,学史增信,学史崇德,学史力行”读书活动,学习小组抽取了七名党员5天的学史的时间(单位:h)分别为:4,3,3,5,6,5,5,这组数据的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查,在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,得到两种西瓜得分的统计图:对数据进行分析,得到如下统计量:请根据以上信息分析哪种西瓜的品质更好,并说明理由.2、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即A、B、C、D、E五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a=,b=,c=,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、本学期某校举行了有关垃圾分类知识测试活动,并从该校七年级和八年级中各随机抽取40名学生的测试成绩,整理如下:小明将样本中的成绩进行了数据处理,如表为数据处理的一部分,根据图表,解答问题:(1)填空:表中的a = ,b = ;(2)你认为 年级的成绩更加稳定,理由是 ;(3)若规定6分及6分以上为合格,该校八年级共1200名学生参加了此次测试活动,估计参如此次测试活动成绩合格的学生人数是多少?5、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.(1)=a ,B 类所在扇形的圆心角的度数是 ,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在80100x ≤<范围内的学生人数;(3)九年级(1)班数学李老师准备从D 类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.-参考答案-一、单选题1、D【分析】根据数轴上的点与实数一一对应即可判断A ;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B ;根据三角形的外角与内角的关系即可判断C ;根据关于x 轴对称的点的坐标特征即可判断D【详解】A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则甲的成绩更稳定,故该选项不正确,不符合题意;C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;D. 在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称,故该选项正确,符合题意;故选D【点睛】本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于x轴对称的点的坐标特征,掌握以上知识是解题的关键.2、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.3、A【分析】根据平均数、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】A、平均数是:15×(200+300+200+240+260)=240(g),故本选项正确,符合题意;B、把这些数从小到大排列为:200,200,240,260,300,中位数是240g,故本选项错误,不符合题意;C、众数是200g,故本选项错误,不符合题意;D、以上三个选项A选项正确,故本选项错误,不符合题意;故选:A.【点睛】此题考查了平均数、中位数和众数.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).5、D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据总体、个体、样本、样本容量的定义,做出判断.【详解】解: 2017年我县九年级学生的数学成绩是总体,故A不符合题意;每一名九年级学生的数学成绩是个体,故B不符合题意;200名九年级学生的数学成绩是总体的一个样本,故C不符合题意;样本容量是200,故D符合题意;故选D【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、D【分析】根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.【详解】解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;C. 平均数是710820915105=8.350⨯+⨯+⨯+⨯小时,故原选项判断错误,不合题意;D. 众数是8小时,故原选项判断正确,符合题意.故选:D【点睛】本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.7、A【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D .国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意; 故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、A【分析】根据总体,样本,个体,样本容量的定义,即可得出结论.【详解】解:A .200名学生的视力是总体的一个样本,故本选项正确;B .学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;C .学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;D .样本容量是1200,故本选项错误.故选:A .【点睛】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.9、B【分析】由等式的基本性质可判断A ,由160,'︒= 可判断B ,由过n 边形的一个顶点可作()3n -条对角线可判断C ,由全面调查与抽样调查的含义可判断D ,从而可得答案.【详解】解:若a b =,则,a c b c +=+故A 不符合题意; 90′=90 1.5,60⎛⎫︒=︒ ⎪⎝⎭故B 符合题意; 过六边形的每一个顶点有3条对角线,故C 不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D 不符合题意;故选:B .【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.10、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意, 丁同学的平均分为:9796989797975++++=, 方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D .【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题1、850【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可.【详解】解:∵大量重复试验发芽率逐渐稳定在0.85左右,∴1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)故答案为:850.【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解.2、条形【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】解:为了清晰显示四种型号衣服的具体数量,应选用条形统计图,故答案为:条形.【点睛】此题主要考查统计图的选择,应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.3、0.753 4【分析】根据频率=频数÷总数进行求解即可.解:∵小亮在10分钟之内罚球20次,共罚进15次,∴小亮点球罚进的频率是150.75 20,故答案为:0.75.【点睛】本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.4、a>1.5b【分析】先表示甲乙的加权平均分,再根据甲被录取列不等式即可.【详解】甲的加权平均分为:90a+80b乙的加权平均分为:84a+89b∵甲被录取∴甲的分数>乙的分数∴90a+80b>84a+89b,解得a>1.5b,故答案为:a>1.5b.【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.5、5h【分析】根据众数的意义(出现次数最多的数据是众数)可得答案.解:这组数据中出现次数最多的是5h,共出现3次,所以众数是5h,故答案为:5h.【点睛】本题考查众数,理解众数的意义是解决问题的关键.三、解答题1、乙种西瓜品质更好,见解析.【分析】由平均数、中位数、众数、方差等数据的影响综合评价即可.【详解】解:乙种西瓜品质更好.理由如下:比较甲、乙两种西瓜品质的统计量可知甲与乙的平均数相同,乙的中位数较高、众数较低、方差较小.以上分析说明,乙种西瓜的品质更高,且稳定性更好.所以,乙种西瓜的品质更好.【点睛】本题考查了由平均数、中位数、众数、方差等数据做决策的问题.不受个别偏大或数偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势;众数的大小只与这组数据中部分数据有关,当一组数据中有个别数据多次重复出现,以至于其他数据的作用显得相对较小时,众数可以在某种意义上代表这组数据的整体情况;在分析数据时,往往要求数据的平均数,当数据的平均水平一致时,为了更好地根据统计结果进行合理的判断和预测,我们往往会根据方差来判断数据的稳定性,从而得到正确的决策.2、(1)40;(2)补图见解析;(3)117°;(4)40人.(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:512.5%40÷=(人),故答案为:40;(2)C等级的人数有:402513812----=(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:1336011740︒⨯=︒,故答案为:117°;(4)估计该校A等级的学生人数有:28004040⨯=(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,∴a=2182302+=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,∴c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×211400=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.4、(1)8,7.5(2)八,八年级成绩的方差小于七年级(3)1080【分析】(1)根据众数和中位数的定义求解即可;(2)根据方差的意义求解即可;(3)用总人数乘以样本中6分及6分以上人数所占比例即可.(1)解:由表可知,八年级成绩的平均数a =4586871084961040⨯+⨯+⨯+⨯+⨯+⨯=7.5, 所以a =7.5;八年级成绩最中间的2个数分别为7、8,所以其中位数b =782+=7.5, 故答案为:8、7.5;(2)解:八年级的成绩更加稳定,理由是八年级成绩的方差小于七年级,故答案为:八,八年级成绩的方差小于七年级;(3)解:估计参如此次测试活动成绩合格的学生人数是1200×40440-=1080(人). 【点睛】本题考查条形统计图、中位数、众数、方差、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1)2,120︒,图见解析;(2)450人;(3)815. 【分析】(1)先根据C 类的信息可求出调查的总人数,由此即可得出a 的值,再求出B 类所占百分比,然后乘以360︒可得圆心角的度数,最后根据,A D 类的人数补全频数分布直方图即可;(2)利用720乘以成绩在80100x ≤<范围内的学生所占百分比即可得;(3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.【详解】解:(1)调查的总人数为2450%48÷=(人),则48162462a =---=,B 类所在扇形的圆心角的度数是16360100%12048︒⨯⨯=︒, 故答案为:2,120︒,补全频数分布直方图如图所示:(2)246720100%45048+⨯⨯=(人), 答:估计该校成绩在80100x ≤<范围内的学生人数为450人;(3)把D 类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种, 则所求的概率为1683015P ==,答:恰好只选中其中1名留守学生进行经验交流的概率为815.【点睛】本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.。

2002年全国中考试题《统计初步》试题选

2002年全国中考试题《统计初步》试题选

2002年全国中考试题《统计初步》试题选n 个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?(2002年上海市中考试题)2、在育民中学举行的电脑知识竞赛中,将初三两个班参赛学生的成绩(得分均为整数)进行整理后分成五组,绘制出如下的频率分布直方图(如图所示)已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30、0.15、0.10、0.05,第二小组的频数是40 (1)求第二小组的频率,并补全这个频率分布直方图; (2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内(不必说明理由) (黑龙江哈尔滨市2002年中考试题)3、为估计一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店中抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为: 0.6 3.7 2.2 1.5 2.8 1.7 1.2 2.1 3.2 1.0(1)通过对样本的计算,估计该县1995年消耗多少盒一次性筷子(每年按350个营业日计算) (2)2001年又对该县一次木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店每个饭店平均每天使用一次性筷子2.42盒。

求该县2000年、2001年这两年一次性木质筷子用量平均每年增长的百分率(2001年该县饭店数、全年营业天数均与1999年相同)(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.07米3,求该县2001年使用一次性筷子的木材可以生产多少套学生桌椅。

计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5克,所用木材的密度为0.5×103千克/米3(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来。

(吉林省2002年中考试题)4、初中生的视力受到全社会的广泛关注,某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中所提供的信息回答下列问题:(1)本次调查共抽测了多少名学生? (2)在这个问题中的样本指什么?(3)如果视力在4.9-5.1(含4.9、5.1)均属正常,则全市有多少初中生的视力正常? (辽宁省沈阳市中考试题)5、甲、乙两人在相同的条件下各射靶10次,每次射靶的成绩情况如图所示: (1) 请填写下表(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些) ③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些) ④从折线图上两人射击命中环数的走势看(分析谁更有潜力)(河北省2002年中考试题) 根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参加比赛更好?为什么?(山东省济南市中考试题)6、甲、乙两同学做“投球进筐”游戏,商定:每人玩5局,每局在指定线外将一个皮球投往筐中,一次未进可再投第二次,以些类推,但最多只能投6次,当投进后,该局结束,并记下投球次数;当6次都未投进时,该局也结束,并记为“×”,两人五局投球情况如下:(1)为了计算得分,双方约定:记“×”的该局是0分,其他局得分的计算方法要满足两个条件:①投球次数越多,得分越低 ②得分为正数。

专题12 统计初步2013

专题12  统计初步2013

A 专题12 统计初步(于同溪,李洪雨)1.考试要求考点1. 数据的收集与表示经历收集、整理、描述和分析数据的活动, 了解抽样的必要性,能指出总体、个体、样本、样本容量。

知道不同的抽样可能得到不同的结果。

频数和频率的计算,根据所给的信息绘制频数分布直方图,是经常考察的内容.利用统计表传递和获取信息成为近几年中考的热点.考点2. 统计的初步认识统计中一项最基本的技能就是能读懂统计图形和表格,会画频率分布图,能将原始数据根据需要进行整理.中考中,这类试题也不在少数,主要有算数平均数、加权平均数、中位数、众数、极差、方差和标准差的计算,结合实际问题来描述一组数据的集中趋势和离散程度.考点3. 数据的整理与初步处理扇形、条形、折线统计图的知识是考察的一个热点,借助这些统计图获取信息,然后再应用到具体问题中是中考经常出现的题型之一.考点4. 用统计进行推断与决策能够解释统计结果,根据结果做出简单的判断和预测。

学统计不仅要学会从图中获取信息,用公式作些计算,更重要的是要有统计意识,学会用统计的思想方法考虑问题,用统计知识作推断或帮助我们做出决策.2.典型例题分析 例题 某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下: 分析结果的扇形统计图分析结果的条形统计图根据上述信息完成下列问题: (1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750分,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份?解析:(1)结合条形统计图及扇形统计图中A 级的信息可以求出这次抽取的样本的容量120,从而求出支C 级的人数是120×30%=36;B 级的百分比48120=40%;D 级的百分比为1-20%-40%-30%=10%,D 级的人数为120×10%=12.(2)由扇形统计图可知:参赛作品达到B 级以上占20%+40%=60%,参赛作品达到B 级以上人数为750×60%=450. 答案(1)120;(2)36,12;(3)4503.典型素材卫生部修订的《公共场所卫生管理条例实施细则》从2011年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织同学开展了“你最支持哪种戒烟方式”的问卷调查,并且把结果分为五种类型A 警示戒烟B 替代品戒烟C 药物戒烟D 强制戒烟E 其他方式。

精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)

精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)

九年级数学第二学期第二十八章统计初步专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是()A.7,7 B.6,7 C.6.5,7 D.5,62、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.83、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.924、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.85、下列调查中,调查方式选择合理的是()A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式6、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的()A.平均数B.加权平均数C.众数D.中位数7、下列调查中,其中适合采用抽样调查的是()A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量8、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.259、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环10、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.2、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?3、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)(2)估算袋中白球的个数.4、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)将条形统计图补充完整;(2)本次调查测试成绩中的中位数落在______组内;(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.5、甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:甲校成绩统计表(1)甲校参赛人数是______人,x ______;(2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?-参考答案-一、单选题1、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C .【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.3、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.【详解】解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.故选:D.【点睛】本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.7、D【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.8、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).9、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.【详解】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.【点睛】本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、B【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.二、填空题1、3600【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:20 1.610 2.210 1.81.8201010⨯+⨯+⨯=++千克,⨯=条,成活的鱼的总数为:25000.82000则总质量约是2000 1.83600⨯=千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量÷总条数,能够根据样本估算总体.2、10 9【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.4、样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.三、解答题1、(1)40;(2)见解析;(3)360(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A类的学生有260人.【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:1525%60÷=(人),故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B 类所对应的扇形圆心角的大小为:2536015060⨯︒=︒, 故答案为:150;(4)101560=26060⨯(人). ∴估计该校表示“很喜欢”的A 类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.3、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25.(2)设袋中白球为x 个,4 0.254x=+, x =12,经检验x =12是方程的解,答:估计袋中有2个白球.【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.4、(1)见解析;(2)B ;(3)1620人.【分析】(1)先由A 组人数及其所占百分比求出总人数,总人数乘以B 组对应百分比即可求出其人数,从而补全图形;(2)根据中位数的定义求解;(3)总人数乘以样本A 、B 组对应百分比之和即可.【详解】解:(1)因为被调查的总人数为40÷10%=400(人)所以B组人数为400×35%=140(人),补全图形如下,(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,故答案为:B;(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)答:估计全校学生测试成绩为优秀的总人数为1620人.【点睛】本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.5、(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得:总人数为:90520360︒÷=︒人,∵两校参赛人数相等,∴甲校参赛人数为20人,∴2011081x=---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:787.52+=分;两校得分的平均分数一样,中位数分数乙校大于甲校,∴两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.。

2021高职高考数学同步练习2章测试:第九章 概率与统计初步(B)

2021高职高考数学同步练习2章测试:第九章 概率与统计初步(B)
25
三、解答题:本大题共有4小题,共50分.解答应写出文字说明、证 明过程或推演步骤. 21.由0,1,2,3,4,5这六个数字. (1)能组成多少个无重复数字的四位数?
解 : (1)55 43 300
(2)组成无重复数字的四位数中比4000大的数有多少个?
(2)千位为4的四位数 : 5 43 60 千位为5的四位数 : 5 43 60 60 60 120 能组成无重复数字的四位数中比4000大的数有120个.
A.[5.5,7.5) B.[7.5,9.5) C.[9.5,11.5) D.[11.5,13.5)
10.某班级要从4名男生、2名女生中选派4人参加某次社区服务, 如果要求至少有1名女生,那么不同的选派方案种数为 ( A )
A.14
B.24
C.28
D.48
11.由0,1,2,3组成无重复数字的四位数,其中0不在十位的有( B )
22.下表是某班50名学生综合能力测试的成绩分布表:
分数 1
2
3
4
5
人数 5 10 10 20 5
求该班成绩的方差.
解 : x 1 (51 210 310 4 20 5 5) 3.2 50
s2 1 [5 (1 3.2)2 10 (2 3.2)2 10 (3 3.2)2 20 (4 3.2)2 50
D.非以上三种抽样方法
5.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次
出现正面朝上的概率是( D )
A. 1
B. 999
C. 1
D. 1
999
1000
1000
2
6.从10名理事中选出3名常务理事,可能的选法种数有 ( A )
A.120

高三数学 章末综合测试题(18)统计与统计案例、算法初步(2)

高三数学 章末综合测试题(18)统计与统计案例、算法初步(2)

2013届高三数学章末综合测试题(18)统计、统计案例一、选择题:本大题共12小题,每小题5分,共60分.1.①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学月考中,某班有12人在100分以上,30人在90~100分,12人低于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加4×100 m 接力的6支队安排跑道.就这三个事件,恰当的抽样方法分别为( )A .分层抽样、分层抽样、简单随机抽样B .分层抽样、简单随机抽样、简单随机抽样C .分层抽样、简单随机抽样、简单随机抽样D .系统抽样、分层抽样、简单随机抽样D 解析:事件①中总人数较多,适合用系统抽样;事件②中有明显的层次差异,适合用分层抽样;事件③中总体的个体数较少,适合用简单随机抽样.2.已知下列各组对应变量:①产品的成本与质量; ②学生的数学成绩与总成绩;③人的身高与脚的长度.其中具有相关关系的组数为( )A .3B .2C .1D .0A 解析:由两个变量具有相关关系的含义知,题中三组变量都具有相关关系. 3.对于样本中的频率分布直方图与总体密度曲线的关系,下列说法正确的是( ) A .频率分布直方图与总体密度曲线无关B .频率分布直方图就是总体密度曲线C .样本容量很大的频率分布直方图就是总体密度曲线D .如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线D 解析:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布直方图就会越来越接近于总体密度曲线.4.在样本的频率分布直方图中,共有n 个小长方形,若中间一个小长方形的面积等于另外n -1个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .35B .34C .33D .32D 解析:由已知设中间小长方形的频率为x ,则5x =1,∴x =15,∴中间一组频数为15×160=32.5.某校有高一学生300人,高二学生270人,高三学生210人,现教育局督导组欲用分层抽样的方法抽取26名学生进行问卷调查,则下列判断正确的是( )A .高一学生被抽到的概率最大B .高三学生被抽到的概率最大C .高三学生被抽到的概率最小D .每名学生被抽到的概率相等D 解析:用分层抽样法抽样,总体中每个个体被抽到的概率相等,它与每一层的个体数的多少无关.6.在第29届奥运会上,中国运动员取得了51金、21银、28铜的好成绩,稳居世界金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数与中国进入体育强国有无关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率C 解析:根据题意,可以列出列联表,计算K 2的值,说明金牌数与体育强国的关系,故用独立性检验最有说服力.7.从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为( )A .25,60,15B .15,60,25C .15,25,60D .25,15,60A 解析:∵该社区共有家庭150+360+90=600(户),∴每一户被抽到的概率为100600=16, ∴三种家庭应分别抽取的户数为150×16=25,360×16=60,90×16=15.8.一个容量为100的样本,其数据的分组与各组的频数如下表:A .0.13B .0.39C .0.52D .0.64解析:由表知数据在[10,40)上的频数为13+24+15=52,∴其相应的频率为52100=0.52.答案:C9.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”.利用2×2列联表计算,得K2的观测值k≈3.918.经查对临界值表,知P(k2≥3.841)≈0.05.给出下列结论:①在犯错误的概率不超过0.05的前提下,认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.其中正确结论的序号是( )A.①③ B.②④C.① D.③解析:由独立性检验的意义知,当k>3.841时,就有95%的把握认为所研究的两个事件X与Y之间有关系.答案:C10.200辆汽车经过某一雷达地区,时速频率分布直方图如下图所示,则时速超过60 km/h 的汽车数量为( )A.65辆B.76辆C.88辆D.95辆解析:由频率分布直方图可得:设车速为v,当v≥60 km/h时,频率为(0.028+0.010)×10=0.038×10=0.38.∴汽车数量为n=0.38×200=76辆.答案:B11.若数据x1,x2,x3,…,x n的平均数是x,方差是s2,则3x1+5,3x2+5,3x3+5,…,3x n+5的平均数和方差分别是( )A.x,s2B.3x+5,9s2C .3x +5,s 2D .3x +5,9s 2+30s +25B 解析:∵x =1n(x 1+x 2+…+x n ),s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],∴x ′=1n [(3x 1+5)+(3x 2+5)+…+(3x n +5)]3n(x 1+x 2+…+x n )+5=3x +5,s ′2=1n[(3x 1+5-3x -5)2+(3x 2+5-3x -5)2+…+(3x n +5-3x -5)2]=9n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=9s 2.12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力从4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .27,83A 解析:∵频率=频数100,∴由题意知,前4组的频率成等比数列,后6组的频率成等差数列. 设前4组的频率分别为a 1,a 2,a 3,a 4,则a 1=0.1×0.1=0.01,a 2=0.3×0.1=0.03, ∴公比q =3, ∴a =a 4=a 1q 3=0.01×33=0.27,设后6组的频数分别为b 1,b 2,b 3,b 4,b 5,b 6,公差为d , 则b 1=0.27×100=27,∴b 1+b 2+…+b 6=6b 1+6×52d =6×27+15d =162+15d .又∵b 1+b 2+…+b 6=100-(0.01+0.03+0.09)×100=87, ∴162+15d =87,d =-5,∴b =b 1+b 2+b 3+b 4=4×27+4×32×(-5)=78.二、填空题:本大题共4个小题,每小题5分,共20分.13.某学校有初中一1 080人,高中生900人,教师120人,现对学校的师生进行样本容量为n 的分层抽样调查,已知抽取的高中生为60人,则样本容量n =__________.解析:由题意,得60900=n 1 080+900+120,故n =140.答案:14014.一个高中研究性学习小组对本地区2002年到2004年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如下图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭__________万盒.解析:由题意得这三年中该地区每年平均销售盒饭为(30×1.0+45×2.0+90×1.5)=10+30+45=85(万盒).答案:8515.已知一个样本中各个个体的值由小到大依次为:4,6,8,9,x ,y,11,12,14,16,且其中位数为10,要使该样本的方差最小,则x ,y 的取值分别为__________.解析:由题意,样本容量为10,其中位数为x +y2=10,即x +y =20,∴样本平均数为x =110(4+6+8+9+x +y +11+12+14+16)=10.∵s 2=110[(4-x )2+(6-x )2+…+(x -x )2+(y -x )2+(11-x )2+…+(16-x )2],∴要使方差最小,x =y =x =10. 答案:10,10 16.给出下列命题:①样本标准差反映了样本数据与样本平均值的偏离程度,标准差越大,偏离程度越大; ②在散点图中,若点的分布是从左下角到右上角,则相应的两个为量正相关;③回归直线方程y ^=b ^x +a ^中截距a ^=b ^y -x ;④第11届全运动会前夕,政府在调查居民收入与来济观看全运会的关系时,抽查了3 000人.经济计算发展K 2的观测值k =6.023,则根据这一数据查阅下表,说明在犯错误的概率不超过0.025的前提下认为居民收入与来济观看全运会存在关系.解析:①由样本标准差的定义可知正确; ②根据两个变量正相关的概念知正确;③由回归地线主程b ^与a ^的关系知③不正确;④经过计算发现k =6.023,则根据这一数据查阅上表,k =6.023>5.024,说明在犯错误的概率不超过0.025的前提下认为居民收入与来济观看全运会存在关系.答案:①②④三、解答题:本大题共6小题,共70分.17.(10分)吸烟有害健康,现在很多公共场所都明令禁止吸烟.为研究是否喜欢吸烟与性别之间的关系,在某地随机抽取400人调研,得到列联表:(参考公式及数据:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2>3.841)=0.05,P (K 2>6.635)=0.010, P (K 2>10.828)=0.001)解析:由列联表中的数据得k =400×(120×180-20×80)2140×260×200×200≈109.890>10.828.∴在犯错误的概率不超过0.001的前提下认为“是否喜欢吸烟与性别有关”. 18.(12分)为备战2010年广州第十六届亚运会,某教练对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得它们的最大速度(m/s)的数据如下:解析:x =16(27+38+30+37+35+31)=33,x 乙=16(33+29+38+34+28+36)=33.他们的平均速度相同,再看方差及标准差:s 甲2=16[(-6)2+52+(-3)2+42+22+(-2)2]=473, s 乙2=16[02+(-4)2+52+12+(-5)2+32]=383.则s 甲2>s 乙2,即s 甲>s 乙.故乙的成绩比甲稳定.所以,应选乙参加亚运会.19.(12分)我国是世界上缺水严重的国家之一,如北京、天津等大城市缺水尤其严重,所以国家积极倡导节约用水.某公司为了解一年内用水情况,抽查了10天的用水量如下表:(1)这10天中,该公司用水的平均数是多少? (2)这10天中,该公司每天用水的中位数是多少?(3)你认为应该使用平均数和中位数中哪一个来描述该公司每天的用水量? 解析:(1)x =22+38+40+2×41+2×44+50+2×9510=51(t).(2)中位数=41+442=42.5(t).(3)用中位数42.5 t 来描述该公司的每天用水量较合适, 因为平均数受极端数据22、95的影响较大.20.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如右图.(1)根据茎叶图判断哪个班的平均身高较高;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解析:(1)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~179之间.因此乙班平均身高高于甲班;(2)设身高为176 cm 的同学被抽中的事件为A ,从乙班10名同学中抽中两名身高不低于173 cm 的同学们有:(181,173)、(181,176)、(181,178)、(181,179)、(179,173)、(179,176)、(179,178)、(178,173)、(178,176)、(176,173)共10个基本事件,而事件A 含有4个基本事件:(181,176)、(179,176)、(178,176)、(176,173). ∴P (A )=410=25.21.(12分)某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应关系:(1)假定y 与x (2)若实际销售额不少于60百万元,则广告费支出应不少于多少? 解析:(1)x =2+4+5+6+85=5,y =30+40+60+50+705=50.∑5i =1x i 2=145,∑5i =1x i y i =1 380. 设所求回归方程为y ^=b ^x +a ^,则b ^=∑5i =1(x i -x )(y i -y )∑5i =1 (x i -x )2=∑5i =1x i y i -5xy ∑5i =1x i 2-5x 2=1 380-5×5×50145-5×52=6.5. a ^=y -b ^x =50-6.5×5=17.5.(2)由回归方程,得y ^≥60,即6.5x +17.5≥60,解得x ≥8513,故广告费支出应不少于8513百万元.22.(12分)为了了解九年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:(1)求出表中m ,n ,M ,N 所表示的数分别是多少? (2)画出频率分布直方图;(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率.解析:(1)M =10.02=50,m =50-(1+4+20+15+8)=2,N =1,n =m M =250=0.04. (2)作出直角坐标系,组距为4,纵轴表示频率/组距,横轴表示身高,画出直方图如下图所示.(3)身高在[153.5,157.5)范围内的人数最多,估计身高在161.5以上的概率为。

中职基础模块下概率与统计测试题

中职基础模块下概率与统计测试题

中职基础模块下概率与统计初步测试题(时间:60分钟总分:100分)得分:_________一、单选题(本大题共6小题,每小题4分,共24分)1、下列语句中,表示随机事件的是--------------()A、掷三颗骰子出现点数之和为19B、从54张扑克牌中任意抽取5张C、型号完全相同的红、白球各3个,从中任取一个是红球D、异性电荷互相吸引2、下列语句中,不表示复合事件的是-----------()A、掷三颗骰子出现点数之和为8B、掷三颗骰子出现点数之和为奇数C、掷三颗骰子出现点数之和为3D、掷三颗骰子出现点数之和大于133、同时抛掷两枚质地均匀的硬币,则出现两个正面的的概率是( )A.21 B.41 C.31 D.814、在掷一颗骰子的试验中,下列A和B是互斥事件的是---------()A、A={1,5},B={3,5,6}B、A={2,3},B={1,3,5}C、A={2,3,4,5},B={1,2}D、A={2,4,6},B={1,3}5、在100张奖券中有2张中奖,从中任抽一张,则中奖的概率是()A、1100B、150C、125D、156、任选一个两位数,它既是奇数,又是偶数的概率是()A、797B、2190C、5190D、0二、填空题(本大题共6小题,每小题5分,共30分)7、已知x1,x2,x3的平均数是a,则5x1+7、5x2+7、5x3+7的平均数是______8、将5封信投入3个邮筒,不同的投法有__________9、投掷两枚骰子,出现点数之和为3的概率为________10、在“石头、剪子、布”的游戏中,两人做同样手势的概率是________.11、某中职学校共有20名男足球运动员,从中选出3人调查学习成绩情况,调查应采用的抽样方法是_____12、从-2、-1、0、1、2这5个数中任取一个数,作为关于x的一元二次方程20x x k-+=的k值,则所得的方程中有两个不相等的实数根的概率是______三、解答题(本大题共3小题,共45分,解答时应写出简要步骤。

数学必修3算法初步与统计测试题

数学必修3算法初步与统计测试题

数学必修3算法初步与统计测试题2011-2012年度第二学期14届期初测试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,总分:100分.考试时间:80分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1. 将两个数a=17,b=8,2. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数⎩⎨⎧<+≥-=)0(2)0(1)(xxxxxf的函数值. 其中不需要用条件语句来描述其算法的有 ( )A. 1个B. 2个C. 3个D. 4个3、某赛季甲、乙两名篮球运动员每场比赛得分如图所示,则甲、乙两运动员得分的中位数分别是( )甲乙86 4 38 6 39 8 31123452 54 51 1 6 7 7 94 9(A)26 33.5 (B)26 36 (C)23 31 (D)24.5 33.5 4.有五组变量:①汽车的重量和汽车每消耗 1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量;其中两个变量成正相关的是()(A)①③(B)②④(C)②⑤(D)④⑤5.算法:S1 m=aS2 若b<m,则m=bS3 若c<m,则m=cS4 若d<m,则 m=dS5 输出m,则输出m表示 ( )A .a ,b ,c ,d 中最大值B .a ,b ,c ,d 中最小值C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序 6.数4557、1953、5115的最大公约数应该是 ( )A .651B .217C . 93D .31 7.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( ).A .简单随机抽样B .系统抽样C .分层抽样D .先从老年人中剔除一人,然后分层抽样 8.有以下程序:s=0;for x=-1:1:11 s=x*x; end s该程序执行后的输出结果是( )A.-1B.11C.100D.121 9.某店一个月的收入和支出总共记录了 N 个数据N a a a ,,21,其中收入记为正数,支出记为负数。

《统计表初步》 知识清单

《统计表初步》 知识清单

《统计表初步》知识清单一、什么是统计表统计表是一种对数据进行整理和呈现的工具,它以表格的形式将数据有条理地排列出来,使得数据更加清晰、直观,便于分析和比较。

二、统计表的构成要素1、标题标题是统计表的名称,它应该简明扼要地概括统计表的主要内容,让人一眼就能明白表格所涉及的数据主题。

2、标目标目分为横标目和纵标目。

横标目通常位于表格的上方,用于说明横行数据的类别或属性;纵标目位于表格的左侧,用于说明纵列数据的含义和度量单位。

3、线条线条用于分隔表格的不同部分,一般使用三线表,即顶线、底线和栏目线,使表格看起来简洁清晰。

4、数字数字是统计表的核心内容,必须准确无误。

数字的填写要整齐规范,对齐方式根据数据的类型和表格的设计而定。

5、备注备注用于对表格中的某些数据或情况进行补充说明,不是必需的要素,但在需要时能帮助更好地理解表格内容。

三、统计表的分类1、简单表只包含一组数据的统计表,例如某班级学生的身高情况表。

2、分组表将数据按照一定的标志进行分组后形成的统计表,比如按照成绩的高低将学生分为不同的等级。

3、复合表包含两组或两组以上数据的统计表,可以更全面地反映数据之间的关系。

四、制作统计表的步骤1、确定统计目的明确需要收集和整理哪些数据,以及要通过这些数据说明什么问题。

2、收集数据通过调查、实验、查阅资料等方式获取所需的数据。

3、整理数据对收集到的数据进行审核、分类和汇总,确保数据的准确性和完整性。

4、设计表格根据数据的特点和统计目的,确定表格的形式,包括横纵标目、行数和列数等。

5、填写数据将整理好的数据按照表格的设计准确填写进去。

6、检查核对仔细检查表格中的数据是否准确无误,逻辑是否合理。

五、统计表的优点1、清晰直观能够将大量复杂的数据以简洁明了的方式呈现出来,让人一目了然。

2、便于比较可以很方便地对不同数据进行横向和纵向的比较,从而发现数据之间的差异和规律。

3、节省篇幅相比于用文字描述数据,统计表能够在有限的空间内展示更多的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《统计初步》基础测试
(一)填空题(每题5分,共30分):
1.某班的5位同学在向“救助贫困学生”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是_______,中位数是_________,平均数是_______.
2.n个数据的和为56,平均数为8,则n=__________.
3.在数据-1,0,4,5,8中插入一个数x,使这组数据的中位数为3,则x=_______.
4.数据2,-1,0,-3,-2,3,1的样本标准差为_____________.
5.已知一个样本含20个数据:
68 69 70 66 68 65 64 65 69 62
67 66 65 67 63 65 64 61 65 66.
在列频率分布表时,如果取组距为2,那么应分________组,64.5~66.5这一小组的频率为________,上述样本的容量是____________.6.在对100个数据进行整理的频率分布表中,各组的频数之和等于________,各组的频率之和等于________.
(二)选择题(每题6分,共30分):
7.要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是指………………………………………………………………………………
()
(A)此城市所有参加毕业会考的学生
(B)此城市所有参加毕业会考的学生的数学成绩
(C)被抽查的1 000名学生
(D)被抽查的1 000名学生的数学成绩
8.如果x1与x2的平均数是6,那么x1+1与x2+3的平均数是………………
()
(A)4 (B)5 (C)6 (D)8 9.甲、乙两个样本的方差分别是甲2s=6.06,乙2s=14.31,由此可反映……
( )
(A )样本甲的波动比样本乙大 (B )样本甲的波动比样本乙小 (C )样本甲和样本乙的波动大小一样
(D )样本甲和样本乙的波动大小关系,不能确定 10.在公式s 2=
n
1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中,符号S 2

n ,x 依次表示样本
的……………………………………………………………………( ) (A )方差,容量,平均数 (B )容量,方差,平均数 (C )平均数,容量,方差 (D )方差,平均数,容量 11.某商场一天中售出李宁运动鞋11双,其中各种尺码的鞋的销售量如下
表所示,
则这11双鞋的尺码组成的一组数据中,众数与中位数分别为………………( )
(A )25,25 (B )24.5,25 (C )26,25 (D )25,24.5
(三)解答题:
12.(20分)在引体向上项目中,某校初三100名男生考试成绩如下列所示:
(1)分别求这些男生成绩的众数、中位数与平均数;
(2)规定8次以上(含8次)为优秀,这所学校男生此项目考试成绩的优秀率是多少?
13.(20分)某地举办体操比赛,由7位评委现场给运动员打分,已知7位评委给某运动员的评分如下:
评委1号2号3号4号5号6号7号
评分9.2 9.8 9.6 9.5 9.5 9.4 9.3 请你利用所学的统计知识,给出这个运动员的最后得分(精确到0.01).
1【答案】8,4,5.
【点评】本题考查众数、中位数、平均数的求法,因8出现两次,故众数为8;
把数据按2,3,4,8,8排列,中位数即第三个数4;平均数为5
1
(8+3+8+2
+4)=5
1
×25=5.
2【提示】平均数=n
n 个数据的和

【答案】7.
【点评】本题考查平均数的意义.
3【提示】插入一个数据后共有几个数据?此时中位数应如何求得? 【答案】2.
【点评】本题考查中位数意义的灵活运用.因为加一个数据后有六个数,故中位数应为
24x +,即2
4x
+=3,所以x =2. 4【提示】这组数据的方差怎么求?它的标准差与方差有什么关系? 【答案】2.
【点评】本题考查方差、标准差的求法,由 s 2=
7
1
[22+(-1)2+02+(-3)2+(-2)2+32+12-7×0]=4, 故 s =2s =2.
或由x =0知, s 2=
7
1[22
+(-1)2+02+(-3)2+(-2)2+32+12]=4, 故 s =2s =2.
5【提示】将一组数据分组时应注意什么? 【答案】5,0.4,20.
【点评】本题考查频率分布中的分组方法及频率计算方法.因26170-=42
1
,故应分5组,在64.5~66.5之间有8个数据,则20
8
=0.4,即这小组的频率为0.4. 6【答案】100,1.
【点评】本题考查频率分布表中频数、频率的规律.解题时要注意分清频数、频率的意义. 7【答案】D .
【点评】本题考查样本的意义与识别. 8【提示】x 1+1与x 2+3只有两个数据. 【答案】D .
【点评】本题考查新数据的平均数与原数据平均数间的关系,有
23121+++x x =2
4)(21++x x =24
26+⨯=8.
9【提示】方差的意义是什么? 【答案】B .
【点评】本题考查方差的意义.因甲2s <乙2s ,故样本甲的波动较小. 10【答案】A .
【点评】本题实质是考查对方差公式意义的理解. 11【答案】A .
【点评】本题综合考查众数、中位数的求法,以及表格阅读能力. 12【答案】(1)这些男生成绩的众数为10(次),中位数为第50个数据8与第51个数据9的平均数,即8.5(次).
平均数x =100
1
(100×30+9×20+8×15+7×15+6×12+5×5+4×2+3×1)
=8.13(次).
(2)优秀率=
100
15
2030++×100 %=65 %.
【点评】(1)解第(1)小题的关键是明确众数、中位数、平均数的概念和计算方法.(2)当数据是偶数个时,中位数是中间的两个数据的平均数.(3)本题平均数的计算是用加权平均数的计算方法. 13【答案】(1)求出平均分x ≈9.47;
(2)去掉一个最高分和一个最低分,求得平均分x ≈9.46; (3)取中位数9.5; (4)取众数9.5.
这些分数都可以作为这名运动员的最后得分.
【点评】本题考查统计知识的应用.确定运动员得分的途径很多,依据的标准、考察目的的不同,答案不一定相同.。

相关文档
最新文档