理科科立体解答新
2021年海南高考数学立体几何题及答案解析
2021年海南高考数学立体几何题及答案解析立体几何在高考数学中一直是考察的重点内容之一。
通过对2021年海南高考数学立体几何题目及答案解析的深入探讨,我们可以更好地理解这一知识点,并提升解题技巧。
本文将为大家从难度适中的题目出发,逐步解析,帮助大家理清思路与解题思路。
题目一:在长方体 ABCD-A1B1C1D1 中,已知 AB = 2,AC = 2√2,A1B1 = 2√2,A1C1 = 2,线段 MN 在平面 ABCD 内部,以 AM 为轴旋转到 MNMN',交于 MN 于 J,MN' 于 K,再以 AK 为轴旋转到MNMN'',交于 MN 于 L,已知 LN = 2,求 KL 的长。
【解析】首先,我们可以通过观察立体图形的几何性质,理解其中的关系。
根据题目所给信息,我们可以知道长方体的一些边长以及旋转后的线段情况。
接下来,我们可以利用平面几何的知识和三角关系进行求解。
设 KL 的长度为 x,根据题意,我们可以得到以下等式:∠BKL = ∠DKA = ∠NLA (由旋转的性质可知)∠BNK = ∠ALN (平行线之间的夹角)根据等腰三角形的性质,我们知道∠LNK = ∠LKN,且∠LNK =∠MKJ(内角和等于外角)由于 L 在 MN 上,且 LN = 2,我们可以得到以下等式:tan∠MKJ = tan∠NKL = tan∠LNK = tan∠ALN = tan∠BNK通过利用这些等式和三角函数的性质,我们可以整理出详细的解题步骤,具体过程略。
最后,计算得 KL 的长度为√10。
综上所述,本题通过巧妙地运用立体几何和平面几何的知识,结合三角关系与三角函数的运用,成功求解出 KL 的长度为√10。
通过以上题目的解析,我们可以看出,在解答立体几何题目时,我们需要充分理解立体图形的性质,通过平面几何的知识和三角关系进行运用,巧妙地利用等式和三角函数的性质,逐步解析并求得所需答案。
高考理科数学第一轮立体几何专题测试题参考答案
高考理科数学第一轮《立体几何》专题测试题&参考答案测试时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.[2021·浙江高考]已知彼此垂直的平面α,β交于直线l,若直线m,n 知足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥n答案C解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.故选C.2.[2021·济南调研]已知某几何体的三视图如图所示,则该几何体的体积是( )A.28+6 5 B.40C.403D.30+65答案C解析由三视图知,直观图如图所示:底面是直角三角形,直角边长为4,5,三棱锥的一个后侧面垂直底面,而且高为4,所以棱锥的体积为:13×12×5×4×4=403.3.[2021·云师大附中月考]某几何体的三视图如图所示,则该几何体的表面积为( )A.12 B.13 C .22D.23答案 D解析 由题意知该几何体为如图放置的正四面体,其棱长为2,故其表面积为12×2×2×sin π3×4=23,故选D.4.[2021·山东实验中学一诊]已知一个四棱锥的三视图及有关数据如图所示,则该几何体的体积为( )A .2 3 B.3 C.433D.233答案 C解析由三视图知该几何体是四棱锥,其直观图如图所示,四棱锥的一个侧面SAB与底面ABCD垂直,过S作SO⊥AB,垂足为O,所以SO⊥底面ABCD,SO=3,所以四棱锥的体积为13×2×2×3=433,故选C.5.[2021·广西梧州模拟]若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图所示,则此几何体的表面积是()A.(4+2)π B.6π+22πC.6π+2π D.(8+2)π答案C解析圆柱的侧面积为S1=2π×1×2=4π,半球的表面积为S2=2π×12=2π,圆锥的侧面积为S3=π×1×2=2π,所以几何体的表面积为S=S1+S2+S3=6π+2π,故选C.6.[2021·安徽师大期末]某个长方体被一个平面所截,取得的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 2C.4 2 D.8答案D解析按照三视图还原可知该几何体为长、宽、高别离为3,2,2的长方体,被一个平面截去一部份剩余23,如图所示,所以该几何体的体积为(3×2×2)×23=8,故选D.7.[2021·吉林长春质检]某几何体的三视图如图,其正视图中的曲线部份为半圆,则该几何体的体积是()A .4+32πB.6+3π C .6+32πD.12+32π答案 C解析 由题意,此模型为柱体,底面大小等于主视图面积大小,即几何体体积为V =⎝ ⎛⎭⎪⎫12π·12+12×2×2×3=6+3π2,故选C.8.[2021·河南百校联盟质监]如图,网格纸上小正方形的边长为1,粗线画出的是由正方形切割而成的几何体的三视图,则该几何体的体积为( )A.112B.132C .6D.7答案 C解析 几何体如图,为每一个正方体中去掉两个全等的三棱柱,体积为23-12×1×1×1×4=6,选C.9.[2021·河北唐山模拟]在四棱锥P -ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA =AB =4,E ,F ,H别离是棱PB ,BC ,PD 的中点,则过E ,F ,H 的平面截四棱锥P -ABCD 所得截面面积为( )A .2 6 B.4 6 C .5 6 D.23+46 答案 C解析 由过E ,F ,H 的平面交直线CD 于N 点,可得N 点为CD 的中点,即CN =2;由过E ,F ,H 的平面交直线PA 于M 点,可得M 为PA 的四等分点,所以PM =1,所以过E ,F ,H 的平面截四棱锥P -ABCD 所得截面为五边形MEFNH ,所以其面积等于三角形MEH 与矩形EFNH 的面积之和,而S △MEH =12×22×3=6,S △EFNH =22×23=46,所以所求的面积为56,故应选C.10.[2021·全国卷Ⅲ]在封锁的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6π D.32π3答案 B解析 由题意可得若V 最大,则球与直三棱柱的部份面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.11.[2021·云师大附中月考]棱长为2的正方体ABCD -A 1B 1C 1D 1的所有极点均在球O 的球面上,E ,F ,G 别离为AB ,AD ,AA 1的中点,则平面EFG 截球O 所得圆的半径为( )A. 2B.153 C.263D.3答案 B解析 如图,正方体ABCD -A 1B 1C 1D 1的外接球球心O 为对角线AC 1的中点,球半径R =3,球心O 到平面EFG 的距离为233,所以小圆半径r =R 2-⎝ ⎛⎭⎪⎫2332=153,故选B.12.[2021·河北武邑期末]已知边长为23的菱形ABCD 中,∠A =60°,现沿对角线BD 折起,使得二面角A -BD -C 为120°,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( )A .20π B.24π C .28π D.32π答案 C解析 如图别离取BD ,AC 的中点M ,N ,连MN ,则容易算得AM =CM =3,MN =32,MD =3,CN =332,由图形的对称性可知球心必在MN 的延长线上,设球心为O ,半径为R ,HN =x ,则由题设可得⎩⎪⎨⎪⎧R 2=x 2+274,R 2=⎝ ⎛⎭⎪⎫32+x 2+3,解之得x =12,则R 2=14+274=7,所以球的表面积S =4πR 2=28π,故应选C.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.[2021·江苏联考]将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是________.答案33π 解析 圆锥的侧面展开恰为一个半径为2的半圆,所以圆锥的底面周长为2π,底面半径为1,圆锥的高为3,圆锥的体积为13π×12×3=33π.14.[2021·河南郑州一中期末]我国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为________.答案 1.6解析 由图可得π×⎝ ⎛⎭⎪⎫122×x +3×1×(5.4-x )=12.6⇒x =1.6.15.[2021·江苏联考]在下列四个图所表示的正方体中,能够取得AB ⊥CD 的是________.答案 ①②解析 对于①,通过平移AB 到右边的平面,可知AB ⊥CD ,所以①中AB ⊥CD ;对于②,通过作右边平面的另一条对角线,可得CD 垂直AB 所在的平面,由线面垂直定理取得②中AB ⊥CD ;对于③,可知AB 与CD 所成的角为60°;对于④,通过平移CD 到下底面,可知AB 与CD 不垂直.故答案为①②.16.[2021·长春质检]若是一个棱锥底面为正多边形,且极点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P -ABCD 内接于半径为1的球,则当此正四棱锥的体积最大时,其高为________.答案 43 解析 由球的几何性质可设四棱锥高为h ,从而V P -ABCD =23h [1-(h -1)2]=23(-h 3+2h 2),有V ′P -ABCD =23(-3h 2+4h )=23h (-3h +4),可知当h =43时,体积V P -ABCD 最大.三、解答题(共6小题,共70分,解承诺写出文字说明、证明进程或演算步骤)17.[2021·西安八校联考](本小题满分10分)在长方体ABCD -A 1B 1C 1D 1中,AD =DC =12DD 1,过A 1、B 、C 1三点的平面截去长方体的一个角后,得如图所示的几何体ABCD -A 1C 1D 1,E 、F 别离为A 1B 、BC 1的中点.(1)求证:EF ∥平面ABCD ;(2)求平面A 1BC 1与平面ABCD 的夹角θ的余弦值.解 (1)证明:∵在△A 1BC 1中,E 、F 别离为A 1B 、BC 1的中点,∴EF ∥A 1C 1. ∵在长方体ABCD -A 1B 1C 1D 1中,AC ∥A 1C 1,∴EF ∥AC .(2分)∵EF ⊄平面ABCD ,AC ⊂平面ABCD ,∴EF ∥平面ABCD .(4分)(2)以D 为坐标轴原点,以DA 、DC 、DD 1方向别离为x ,y ,z 轴,成立空间直角坐标系,不妨设AD =DC =12DD 1=1, 则A (1,0,0),B (1,1,0),C 1(0,1,2),D 1(0,0,2),A 1(1,0,2),A 1B →=(0,1,-2),C 1B →=(1,0,-2),(5分)∵DD 1⊥平面ABCD ,∴平面ABCD 的一个法向量为DD 1→=(0,0,2),(6分)设平面A 1BC 1的一个法向量为n =(a ,b ,c ),则⎩⎨⎧ n ·A 1B →=0,n ·C 1B →=0,即⎩⎨⎧b -2c =0,a -2c =0,取a =1,得n =⎝ ⎛⎭⎪⎫1,1,12,(8分) ∴cos θ=|cos 〈n ,DD 1→〉|=⎪⎪⎪⎪⎪⎪DD 1→·n |DD 1→||n |=13. ∴平面A 1BC 1与平面ABCD 的夹角θ的余弦值为13.(10分)18.[2021·江西南昌模拟](本小题满分12分)如图所示,点P 为斜三棱柱ABC —A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.(1)求证:CC1⊥MN;(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF cos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.解(1)证明:∵PM⊥BB1,PN⊥BB1,PM∩PN=P,∴BB1⊥平面PMN,∴BB1⊥MN.又CC1∥BB1,∴CC1⊥MN.(4分)(2)在斜三棱柱ABC—A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1cosα,其中α为平面BCC1B1与平面ACC1A1所成的二面角的大小.(7分)证明:∵CC1⊥平面PMN,∴上述的二面角的平面角为∠MNP.在△PMN中,∵PM2=PN2+MN2-2PN·MN cos∠MNP,∴PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SCBB1C1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,∴S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1cosα.(12分)19.[2021·长春质检](本小题满分12分)已知等腰梯形ABCD如图1所示,其中AB∥CD,E,F别离为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点,现将梯形ABCD按EF所在直线折起,使平面EFCB⊥平面EFDA,如图2所示,N是线段CD上一动点,且CN=λND.(1)当λ=12时,求证:MN ∥平面ADFE ; (2)当λ=1时,求二面角M -NA -F 的余弦值.解 (1)证明:过点M 作MP ⊥EF 于点P ,过点N 作NQ ⊥FD 于点Q ,连接PQ .由题意,平面EFCB ⊥平面EFDA ,所以MP ⊥平面EFDA ,且MP =BE +CF 2=2,(2分) 因为CF ⊥EF ,DF ⊥EF ,所以EF ⊥平面CFD ,所以NQ ⊥EF ,由NQ ⊥FD ,所以NQ ⊥平面EFDA ,又CN =12ND ,所以NQ =23CF =2,(4分) 即MP ∥NQ ,MP =NQ ,则MN ∥PQ ,由MN ⊄平面ADFE ,PQ ⊂平面ADFE ,所以MN ∥平面ADFE .(6分)(2)以F 为坐标原点,FE 方向为x 轴,FD 方向为y 轴,FC 方向为z 轴,成立如图所示坐标系.由题意,M (1,0,2),A (2,1,0),F (0,0,0),C (0,0,3),D (0,3,0),N ⎝ ⎛⎭⎪⎫0,32,32. 设平面AMN 与平面FAN 的法向量别离为n 1,n 2,平面AMN 的法向量为平面ABCD 的法向量,即n 1=(1,1,1),(8分)在平面FAN 中,FA →=(2,1,0),FN →=⎝ ⎛⎭⎪⎫0,32,32,即n 2=(1,-2,2),(10分) 则cos θ=39,所以二面角M -NA -F 的余弦值为39.(12分) 20.[2021·沈阳质检](本小题满分12分)四棱锥P -ABCD 中,PD ⊥平面ABCD,2AD =BC =2a (a >0), AD ∥BC ,PD =3a ,∠DAB =θ.(1)若θ=60°,AB =2a ,Q 为PB 的中点,求证:DQ ⊥PC ;(2)若θ=90°,AB =a ,求平面PAD 与平面PBC 所成二面角的大小.(若非特殊角,求出所成角余弦即可)解 (1)证明:连接BD ,△ABD 中,AD =a ,AB =2a ,∠DAB =60°,由余弦定理:BD 2=DA 2+AB 2-2DA ·AB cos60°,解得BD =3a ,所以△ABD 为直角三角形,BD ⊥AD ,因为AD ∥BC ,所以BC ⊥BD ,(1分)又因为PD ⊥平面ABCD ,所以BC ⊥PD ,(2分)因为PD ∩BD =D ,所以BC ⊥平面PBD ,(3分)BC ⊂平面PBC ,所以平面PBD ⊥平面PBC ,(4分)又因为PD =BD =3a ,Q 为PB 中点,所以DQ ⊥PB .因为平面PBD ∩平面PBC =PB ,所以DQ ⊥平面PBC ,(5分)PC ⊂平面PBC ,所以DQ ⊥PC .(6分)(2)由θ=90°,AB =a ,可得BD =CD =2a .取BC 中点M ,可证得ABMD 为矩形.(7分)以D 为坐标原点别离以DA ,DM ,DP 所在直线为x ,y ,z 轴,成立空间直角坐标系Dxyz ,则A (a,0,0),B (a ,a,0),DM ⊥平面PAD ,所以DM →是平面PAD 的法向量,DM →=(0,a,0).(9分)设平面PBC 的法向量为n =(x ,y ,z ),P (0,0,3a ),B (a ,a,0),C (-a ,a,0),所以PB →=(a ,a ,-3a ),BC →=(-2a,0,0),⎩⎨⎧ n ·PB →=0,n ·BC →=0,令z =1,可得⎩⎨⎧ax +ay -3a =0,-2ax =0,解得n =(0,3,1),(10分) 所以cos θ=DM →·n |DM →||n |=3a 2a =32.(11分)所以平面PAD 与平面PBC 所成二面角为π6.(12分)21.[2021·贵阳月考](本小题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,PD ⊥底面ABCD ,PA =AB =2,BC=12PA ,BD =3,E 在PC 边上. (1)求证:平面PDA ⊥平面PDB ;(2)当E 是PC 边上的中点时,求异面直线AP 与BE 所成角的余弦值;(3)若二面角E -BD -C 的大小为30°,求DE 的长.解 (1)证明:因为底面ABCD 是平行四边形,∴AD =BC =1,又BD =3,AB =2,知足AD 2+BD 2=AB 2,∴AD ⊥BD .又因为PD ⊥底面ABCD ,∴PD ⊥BD ,∴BD ⊥平面PAD .(3分)∵BD ⊂平面PDB ,∴平面PDA ⊥平面PDB .(4分)(2)以D 为原点成立如图所示空间直角坐标系.则D (0,0,0),P (0,0,3),A (1,0,0),B (0,3,0),C (-1,3,0), ∵E 是PC 边上的中点,∴E ⎝ ⎛⎭⎪⎫-12,32,32, 则AP →=(-1,0,3),BE →=⎝ ⎛⎭⎪⎫-12,-32,32,(6分) ∴cos 〈AP →,BE →〉=|A P →·BE →||AP →||BE →|=277.(8分) (3)由C ,E ,P 三点共线,得DE →=λDP →+(1-λ)DC →,且0≤λ≤1,从而有DE →=(λ-1,3(1-λ),3λ),DB →=(0,3,0).设平面EDB 的法向量为n =(x ,y ,z ),由n ·DE →=0及n ·DB →=0,可取n =⎝⎛⎭⎪⎫3,0,1-λλ. 又平面CBD 的法向量可取m =(0,0,1),(10分)二面角E -BD -C 的大小为30°,∴cos30°=⎪⎪⎪⎪⎪⎪n ·m |n ||m |=32, ∴λ=14,∴DE →=⎝ ⎛⎭⎪⎫-34,334,34,∴|DE |=394.(12分)22.[2021·河北一模](本小题满分12分)如图,在三棱锥S-ABC 中,SC ⊥平面ABC ,SC =3,AC ⊥BC ,CE =2EB =2,AC =32,CD =ED . (1)求证:DE ⊥平面SCD ;(2)求二面角A -SD -C 的余弦值;(3)求点A 到平面SCD 的距离.解 (1)证明:以C 为原点,CA ,CB ,CS 所在直线别离为x 轴,y 轴,z 轴成立空间直角坐标系,如图,则C (0,0,0),A ⎝ ⎛⎭⎪⎫32,0,0,S (0,0,3),E (0,2,0),D (1,1,0), 因为DE →=(-1,1,0),CD →=(1,1,0),CS →=(0,0,3),所以DE →·CD →=-1+1+0=0,DE →·CS →=0+0+0=0,即DE ⊥CD ,DE ⊥CS .(2分)因为CD ∩CS =C ,所以DE ⊥平面SCD .(4分)(2)由(1)可知DE →=(-1,1,0)为平面SCD 的一个法向量.设平面SAD 的法向量为n =(x ,y ,z ),而AD →=⎝ ⎛⎭⎪⎫-12,1,0, AS →=⎝ ⎛⎭⎪⎫-32,0,3,则⎩⎨⎧ n ·AD →=0,n ·AS →=0,即⎩⎪⎨⎪⎧ -12x +y =0,-32x +3z =0. 不妨设x =2,可得n =(2,1,1).(6分)易知二面角A -SD -C 为锐角,因此有|cos 〈DE →,n 〉|=⎪⎪⎪⎪⎪⎪-2+1+02·6=36, 即二面角A -SD -C 的余弦值为36.(8分)(3)AC →=⎝ ⎛⎭⎪⎫-32,0,0,AD →=⎝ ⎛⎭⎪⎫-12,1,0,AS →=⎝ ⎛⎭⎪⎫-32,0,3,作AH ⊥平面SCD ,垂足为H , 设AH →=xAC →+yAD →+zAS →=⎝ ⎛⎭⎪⎫-32x -12y -32z ,y ,3z ,且x +y +z =1.(10分)由AH →⊥CD →,AH →⊥CS →,得 ⎩⎪⎨⎪⎧ -32x -12y -32z +y =0,9z =0,x +y +z =1,解得⎩⎪⎨⎪⎧ x =14,y =34,z =0.所以AH →=⎝ ⎛⎭⎪⎫-34,34,0,(11分)|AH →|=324,32即点A到平面SCD的距离为4.(12分)。
高一数学立体几何计算题(理科)含解析
理科立体几何计算题一.解答题(共30小题)1.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.2.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.3.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.4.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.7.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.8.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.9.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.10.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.11.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:CD⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.12.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.13.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.14.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.15.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.16.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.17.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.(1)求证AC⊥PB;(2)求PA与平面PBC所成角的正弦值.18.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.19.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA ⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE;(2)求直线BE和平面CDE所成角的正弦值.21.如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.(Ⅰ)请在图中作出平面α,使得DE⊂α,且BF∥α,并说明理由;(Ⅱ)求直线EF与平面BCE所成角的正弦值.22.如图,在四棱锥中S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.(1)证明:平面SBE⊥平面SEC(2)若SE=1,求直线CE与平面SBC所成角的正弦值.23.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.24.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.25.如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C ⊥AC1.(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.26.等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.(1)证明:点H为EB的中点;(2))若,求直线BE与平面ABP所成角的正弦值.27.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧于点G,交弦BD于点E,F为线段BC的中点.(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.28.如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.(Ⅰ)证明:平面BAP⊥平面DAP;(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.29.如图所示,四棱锥P﹣ABCD的底面是梯形,且AB∥CD,AB⊥平面PAD,E 是PB中点,CD=PD=AD=AB.(Ⅰ)求证:CE⊥平面PAB;(Ⅱ)若CE=,AB=4,求直线CE与平面PDC所成角的大小.30.如图,多面体ABCDE中,AB⊥面ACD,DE⊥面ACD;三角形ACD是正三角形,且AD=DE=2,AB=1(1)求直线AE和面CDE所成角的正切值;(2)求多面体ABCDE的体积;(3)判断直线CB和AE能否垂直,证明你的结论.理科立体几何计算题参考答案与试题解析一.解答题(共30小题)1.(2017•天津)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.2.(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,则AD=PC=2,∴PB=,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.3.(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.4.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.5.(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.6.(2017•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD ⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=| |=.7.(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z 2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.8.(2017•新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.9.(2017•天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=或t=.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.10.(2017•吴江区三模)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.【解答】解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.∵PC⊥平面BDE,BD⊂平面BDE,∴PC⊥BD.又PA∩PC=P,∴BD⊥平面PAC,AC⊂平面PAC,∴BD⊥AC.又底面ABCD为矩形,∴ABCD为正方形.建立如图所示的空间直角坐标系.A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,1),D(0,2,0).=(0,2,0),=(﹣2,0,1),设平面BPC的法向量为=(x,y,z),∴,∴,取=(1,0,2.).∴平面BPC的一个法向量为=(1,0,2.).(2)平面PAC的法向量为:=(﹣2,2,0).设二面角B﹣PC﹣A=θ,由图可知:θ为锐角.则cos===﹣.∴cosθ=.∴sinθ=.∴tanθ==3.即二面角B﹣PC﹣A的正切值为3.11.(2017•虎林市模拟)在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:CD⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.【解答】证明:(1)由题意可知,在Rt△ABD中,tan∠ABD==,在Rt△ABB1中,tan∠AB1B==.又因为0<∠ABD,∠AB1B,所以∠ABD=∠AB1B,所以∠ABD+∠BAB1=∠AB1B+∠BAB1=,所以AB1⊥BD.又CO⊥侧面ABB1A1,且AB1⊂侧面ABB1A1,∴AB1⊥CO.又BD与CO交于点O,所以AB1⊥平面CBD.又因为BC⊂平面CBD,所以BC⊥AB1.(6分)解:(2)如图所示,以O为原点,分别以OD,OB1,OC所在的直线为x轴,y 轴,z轴,建立空间直角坐标系,则A(0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0).又因为=2,所以C1(,,).所以=(﹣,,0),=(0,,),=(,,).设平面ABC的法向量为=(x,y,z),则由,得令y=,则z=﹣,x=1,=(1,,﹣)是平面ABC的一个法向量.设直线C1D与平面ABC所成的角为α,则sin α==.故直线C1D与平面ABC所成角的正弦值为.(12分)12.(2017•广西一模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.【解答】(Ⅰ)证明:取AB中点,连接OC,OA1,∵CA=CB,AB=A1A,∠BAA1=60°∴OC⊥AB,OA1⊥AB,∵OC∩OA1=O,∴AB⊥平面OCA1,∵CA1⊂平面OCA1,∴AB⊥A1C;(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),==(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,可取y=1,可得=(,1,﹣1),故cos<,>=﹣,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.13.(2017•徐水县模拟)如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.【解答】解:(1)连接AE,∵AF⊥平面PED,ED⊂平面PED,∴AF⊥ED,在平行四边形ABCD中,BC=2AB=4,∠ABC=60°,∴AE=2,,∴AE2+ED2=AD2,∴AE⊥ED,又∵AF∩AE=A,AF⊂平面PAE,PA⊂平面PAE,∴ED⊥平面PAE,∵PA⊂平面PAE,∴ED⊥PA,又PA⊥AD,AD∩ED=D,AE⊂平面ABCD,AD⊂平面ABCD,∴PA⊥平面ABCD.(2)以E为坐标原点,以EA,ED为x轴,y轴建立如图所示的空间直角坐标系,则A(0,2,0),,,∵AF⊥平面PED,所以AF⊥PE,又F为PE中点,∴PA=AE=2,∴P(0,2,2),F(0,1,1),∴,,,设平面AFD的法向量为,由,得,,令x=1,得.设直线BF与平面AFD所成的角为θ,则:,即直线BF与平面AFD所成角的正弦值为.14.(2017•葫芦岛模拟)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.【解答】(Ⅰ)证明:∵在平行四边形ABCD中,∠BCD=135°,∴∠ABC=45°,∵AB=AC,∴AB⊥AC.∵E,F分别为BC,AD的中点,∴EF∥AB,∴EF⊥AC.∵侧面PAB⊥底面ABCD,且∠BAP=90°,∴PA⊥底面ABCD.又EF⊂底面ABCD,∴PA⊥EF.又∵PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴EF⊥平面PAC.(Ⅱ)解:∵PA⊥底面ABCD,AB⊥AC,∴AP,AB,AC两两垂直,以A为原点,分别以AB,AC,AP为x轴、y轴和z轴建立空间直角坐标系如图:则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),∴=(2,0,﹣2),=(﹣2,2,﹣2),,=(1,1,﹣2).设=λ(0≤λ≤1),则=(﹣2λ,2λ,﹣2λ),∴==(1+2λ,1﹣2λ,2λ﹣2),显然平面ABCD的一个法向量为=(0,0,1).设平面PBC的法向量为=(x,y,z),则,即令x=1,得=(1,1,1).∴cos<,>==,cos<>==.∵直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,∴||=||,即,解得,或(舍).∴.15.(2017•腾冲县校级一模)如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD ∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【解答】解:(1)证明:∵四边形ABCD是直角梯形,AD=CD=2,BC=4,∴AC=4,AB===4,∴△ABC是等腰直角三角形,即AB⊥AC,∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,∴AB⊥平面PAC,又PC⊂平面PAC,∴AB⊥PC.(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA,∴MN⊥平面ABCD,∴MN⊥AC.过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG,∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.若∠MGN=45°,则NG=MN,又AN=NG=MN,∴MN=1,即M是线段PD的中点.∴存在点M使得二面角M﹣AC﹣D的大小为45°.=S△ABC•MN==,在三棱锥M﹣ABC中,V M﹣ABC=,设点B到平面MAC的距离是h,则V B﹣MAC===2,∵MG=MN=,∴S△MAC∴=,解得h=2.在△ABN中,AB=4,AN=,∠BAN=135°,∴BN==,∴BM==3,∴BM与平面MAC所成角的正弦值为=.16.(2017•五模拟)如图,在多面体ABCDM中,△BCD是等边三角形,△CMD 是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.【解答】(Ⅰ)证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM⊂平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB⊂平面OMAB,OM⊂平面OMAB,∴CD⊥平面OMAB.∵AM⊂平面OMAB,∴CD⊥AM.(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM中,.∵△CMD是等腰直角三角形,∠CMD=90°,∴.∴AB=AN+NB=AN+OM=2.以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M(0,0,1),,D(﹣1,0,0),.∴,,.设平面BDM的法向量为=(x,y,z),由n•,n•,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,则==.∴直线AM与平面BDM所成角的正弦值为.17.(2017•香坊区校级二模)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.(1)求证AC⊥PB;(2)求PA与平面PBC所成角的正弦值.【解答】(1)证明∵底面ABCD为菱形,∴AC⊥BD,∵PD⊥底面ABCD,∴AC⊥PD,∵BD∩PD=D,∴AC⊥面PDB,∵PB⊂面PDB∴AC⊥PB.(2)解:设PD=AD=1,设A到平面PBC的距离为h,==则由题意PA=PB=PC=,S△ABC在等腰△PBC中,可求S==△PBC=V P﹣ABC,=,h=∴V A﹣PBC∴sinθ===18.(2017•徐汇区校级模拟)如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.【解答】解:(1)B1C⊥C1A证明如下:在平面BA1内,过B1作B1D⊥AB于D,∵侧面BA1⊥平面ABC,∴B1D⊥平面ABC,∠B1BA是BB1与平面ABC所成的角,∴∠B1BA=π﹣=,连接BC1,∵BB1CC1是菱形,∴BC1⊥B1C,CD⊥平面A1B,B1D⊥AB,∴B1C⊥AB,∴B1C⊥平面ABC1,∴B1C⊥C1A.(2)解:由题意及图,答:四棱锥B﹣ACC1A1的体积为219.(2017•焦作二模)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【解答】证明:(I)取AB的中点D,连结CD,DF,DE.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴A1E=,EF==,DE==,DF==,∴EF2+DE2=DF2,∴DE⊥EF,又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴EF⊥平面CDE,又CD⊂平面CDE,∴CD⊥EF,又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴sin<>==.∴直线AC1与平面CEF所成角的正弦值为.20.(2017•秦州区校级模拟)如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE;(2)求直线BE和平面CDE所成角的正弦值.【解答】解:(1)∵EA=ED=2,EA⊥ED,∴AD=2.∵BC=CD=2,BC⊥CD,∴BD=2又AB=4,∴AD2+BD2=AB2,∴AD⊥BD.又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面ADE.(2)取AD的中点F,连接EF,则EF⊥平面ABCD,EF=.过D点作直线Oz∥EF,则Oz⊥平面ABCD.以D为坐标原点,以DA,DB,Dz为坐标轴建立空间直角坐标系D﹣xyz,∴D(0,0,0),C(﹣,,0),B(0,2,0),E(,0,),∴=(,﹣2,),=(,0,),=(﹣,,0).设平面CDE的一个法向量为=(x,y,z),则,∴,设x=1得=(1,1,﹣1).∴cos<>===﹣.∴直线BE和平面CDE所成角的正弦值为.21.(2017•泉州一模)如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.(Ⅰ)请在图中作出平面α,使得DE⊂α,且BF∥α,并说明理由;(Ⅱ)求直线EF与平面BCE所成角的正弦值.【解答】解:(Ⅰ)取BC的中点G,连接EG,DG,则平面EDG为所求.∵AD=2,BG=2,AD∥BC,∴四边形ADGB是平行四边形,∴AB∥DG,∵AB⊄平面EDG,DG⊂平面EDG,∴AB∥平面EDG.同理AF∥平面EDG,∵AB∩AF=A,∴平面ABF∥平面EDG,∵FB⊂平面ABF,∴BF∥平面EDG;(Ⅱ)以点A为坐标原点,AD为y轴,AF为z轴,过A垂直于AD的直线为x 轴,建立如图所示的坐标系,则F(0,0,4),E(0,2,1),B(,﹣1,0),C(,3,0),∴=(0,﹣2,3),=(0,4,0),=(﹣,3,1),设平面BCE的法向量为=(x,y,z),则,取=(,0,3),则直线EF与平面BCE所成角的正弦值==.22.(2017•乃东县校级三模)如图,在四棱锥中S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.(1)证明:平面SBE⊥平面SEC(2)若SE=1,求直线CE与平面SBC所成角的正弦值.【解答】解:(1)证明:∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD,…(2分)∵BE⊂平面ABCD,∴SE⊥BE.∵CD=3AB=3,AE=ED=,∴∠AEB=30°,∠CED=60°.所以∠BEC=90°即BE⊥CE.…(4分)结合SE∩CE=E得BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.…(6分)(2)由(1)知,直线ES,EB,EC两两垂直.如图,以EB为x轴,以EC为y轴,以ES为z轴,建立空间直角坐标系.则,∴.设平面SBC的法向量为,则解得一个法向量,…(9分)设直线CE与平面SBC所成角为θ,又,则.所以直线CE与平面SBC所成角的正弦值.…(12分)23.(2017•邯郸二模)如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.【解答】证明:(1)取DB中点G,连结EG、FG.∵F是AD的中点,∴FG∥AB.∵BD=2CE,∴BG=CE.∵∠DBC=∠BCE∴E、G到直线BC的距离相等,则BG∥CB,∵EG∩FG=G∴面EGF∥平面ABC,则EF∥平面ABC.解:(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,设EC=1,则DB=2,取BC中点C,则EG∥BC,∴BC=3,∵AD=DE,则A(0,0,),E(0,,0),B(2,0,0),C(,,0).,.设平面ACE的法向量,=x+y=0令y=1,则,|cos|=.∴BE与平面ACE所成角的正弦值为:24.(2017•湘潭三模)在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.【解答】(Ⅰ)证明:如图,取OD的中点R,连接PR,QR,则DE∥RQ,由题知,又,故AB:AP=4:1=DB:DR,因此AD∥PR,因为PR,RQ⊄平面ADE,且AD,DE⊂平面ADE,故PR∥平面ADE,RQ∥平面ADE,又PR∩RQ=R,故平面PQR∥平面ADE,从而PQ∥平面ADE.…6分(Ⅱ)解:由题EA=ED=5,,设点O到平面ADE的距离为d,则由等体积法可得,故,因此.…12分.25.(2017•城厢区校级模拟)如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1.(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.【解答】解:(Ⅰ)证明:连接BC1,因为BB1C1C为菱形,所以B1C⊥BC1,又B1C⊥AC1,AC1∩BC1=C1,所以B1C⊥面ABC1.故B1C⊥AB.因为AB⊥BB1,且BB1∩BC1,所以AB⊥面BB1C1C.而AB⊂平面ABB1A1,所以平面AA1B1B⊥平面BB1C1C;(Ⅱ)因为∠ADB是二面角A﹣CC1﹣B的平面角,所以BD⊥CC1,又D是CC1中点,所以BD=BC1,所以△C1BC为等边三角形.如图所示,分别以BA,BB1,BD为x,y,z轴建立空间直角坐标系,不妨设AB=2,则A(2,0,0),,,).设是平面ABC的一个法向量,则,即,取z=1得.所以=,所以直线AC1与平面ABC所成的余弦值为.26.(2017•湖北模拟)等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.(1)证明:点H为EB的中点;(2))若,求直线BE与平面ABP所成角的正弦值.【解答】(1)证明:依题意,AE⊥BC,则AE⊥EB,AE⊥EP,EB∩EP=E.∴AE⊥面EPB.故∠CEP为二面角C﹣AE﹣P的平面角,则点P在面ABE上的射影H在EB上.由∠CEP=120°得∠PEB=60°.…(3分)∴EH=EP=.∴H为EB的中点.…(6分)(2)解:过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,∴HN⊥面PAB.故HB在面PAB上的射影为NB.∴∠HBN为直线BE与面ABP所成的角.…(9分)依题意,BE=BC=2,BH=BE=1.在△HMB中,HM=,在△EPB中,PH=,∴在Rt△PHM中,HN=.∴sin∠HBN=.…(12分)27.(2017•山东二模)圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧于点G,交弦BD于点E,F为线段BC的中点.(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.【解答】证明:(Ⅰ)∵OF为△ABC的一条中位线∴OF∥AC,又OF⊄平面ACD,AC⊂平面ACD,∴OF∥平面ACD.又∵OG为∠DOB的平分线,∴OG⊥BD,∵AB是⊙O的直径,∴AD⊥BD,∴OG∥AD,又OG⊄平面ACD,AD⊂平面ACD,∴OG∥平面ACD,又∵OG,OF为平面OGF内的两条相交直线,∴平面OGF∥平面CAD(Ⅱ)∵O为AB的中点,∴CO⊥AB,∵平面CAB⊥平面DAB,平面CAB∩平面DAB=AB,OC⊂平面ABC,∴CO⊥平面DAB,又Rt△DAB中,AB=2,∠DAB=60°,∴AD=1,又OG∥AD,OG=1,OA=1,∴四边形ADGO为菱形,∠AOG=120°,设DG中点为M,则∠AOM=90°,即OM⊥OB,∴直线OM,OB,OC两两垂直,以O为原点,以OM,OB,OC为坐标轴建立如图所示的空间直角坐标系O﹣xyz.则B(0,1,0),C(0,0,1),D(,,G(,,F(0,,).∴=(,,=(0,﹣1,1),=(,﹣,0).设平面BCD的法向量为=(x,y,z),则,∴,令y=1,=(,1,1).∴=1,||=1,=.∴=.∴直线FG与平面BCD所成角的正弦值为.28.(2017•上饶县模拟)如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.(Ⅰ)证明:平面BAP⊥平面DAP;(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.【解答】证明:(I)取PA的中点E,PB的中点O,连接DE,OE,OC.∵OE是△PAB的中位线,∴OE,∵CD∥平面PAB,CD⊂平面ABCD,平面ABCD∩平面PAB=AB,∴CD∥AB,又CD=,∴OE OE,∴四边形CDEO是平行四边形,∴DE∥OC.∵AB⊥平面PBC,OC⊂平面PBC,∴AB⊥OC,∵BC=PC,∴OC⊥PB,又PB⊂平面PAB,AB⊂平面PAB,AB∩PB=B,∴OC⊥平面PAB,又OC∥DE,∴DE⊥平面PAB,∵DE⊂平面PAD,∴平面PAD⊥平面PAB.(II)∵OE∥AB,AB⊥平面PBC,∴OE⊥平面PBC.以O为原点,以OC,OB,OE为坐标轴建立空间直角坐标系,如图所示:则P(0,﹣1,0),C(,0,0),D(,0,1),设M(0,1,a)(0≤a≤2),则=(0,2,a),=(0,0,1),=(,1,0).设平面PCD的法向量为=(x,y,z),则,∴,令x=1得=(1,﹣,0).∴cos<>==.∴sinα=.∴当a=0时,sinα取得最大值,当a=2时,sinα取得最小值.∴sinα的取值范围是[,].。
专题06 立体几何(解答题)(理科专用)(教师版)
专题06 立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√5.5【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=1,2,BD=√DE2+BE2=√3,故DE=√32所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD ⊥平面PAD , 又因PA ⊂平面PAD , 所以BD ⊥PA ;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃗⃗⃗⃗⃗ =(−1,0,√3),BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),DP ⃗⃗⃗⃗⃗ =(0,0,√3), 设平面PAB 的法向量n⃗ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃗ =(√3,1,1), 则cos〈n ⃗ ,DP ⃗⃗⃗⃗⃗ 〉=n ⃗ ⋅DP ⃗⃗⃗⃗⃗⃗|n ⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.【答案】(1)证明过程见解析(2)CF与平面ABD所成的角的正弦值为4√37【解析】【分析】(1)根据已知关系证明△ABD≌△CBD,得到AB=CB,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE⊥DE,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.(1)因为AD=CD,E为AC的中点,所以AC⊥DE;在△ABD和△CBD中,因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB=CB,又因为E为AC的中点,所以AC⊥BE;又因为DE,BE⊂平面BED,DE∩BE=E,所以AC⊥平面BED,因为AC⊂平面ACD,所以平面BED⊥平面ACD.(2)连接EF,由(1)知,AC⊥平面BED,因为EF⊂平面BED,AC⋅EF,所以AC⊥EF,所以S△AFC=12当EF⊥BD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CB=AB=2,又因为∠ACB=60°,所以△ABC是等边三角形,因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE .以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃗⃗⃗⃗⃗ =(−1,0,1),AB ⃗⃗⃗⃗⃗ =(−1,√3,0), 设平面ABD 的一个法向量为n⃗ =(x,y,z ), 则{n ⃗ ⋅AD ⃗⃗⃗⃗⃗ =−x +z =0n ⃗ ⋅AB⃗⃗⃗⃗⃗ =−x +√3y =0,取y =√3,则n ⃗ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃗⃗⃗⃗⃗ =(1,√34,34), 所以cos⟨n ⃗ ,CF ⃗⃗⃗⃗⃗ ⟩=n ⃗ ⋅CF⃗⃗⃗⃗⃗|n ⃗ ||CF⃗⃗⃗⃗⃗ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃗ ,CF⃗⃗⃗⃗⃗ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.3.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A−BD−C的正弦值.【答案】(1)√2(2)√32【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC⊥平面ABB1A1,建立空间直角坐标系,利用空间向量法即可得解.(1)在直三棱柱ABC−A1B1C1中,设点A到平面A1BC的距离为h,则V A−A1BC =13S△A1BC⋅ℎ=2√23ℎ=V A1−ABC=13S△ABC⋅A1A=13V ABC−A1B1C1=43,解得ℎ=√2,所以点A到平面A1BC的距离为√2;(2)取A1B的中点E,连接AE,如图,因为AA1=AB,所以AE⊥A1B,又平面A1BC⊥平面ABB1A1,平面A1BC∩平面ABB1A1=A1B,且AE⊂平面ABB1A1,所以AE⊥平面A1BC,在直三棱柱ABC−A1B1C1中,BB1⊥平面ABC,由BC⊂平面A1BC,BC⊂平面ABC可得AE⊥BC,BB1⊥BC,又AE,BB1⊂平面ABB1A1且相交,所以BC⊥平面ABB1A1,所以BC,BA,BB1两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃗⃗⃗⃗⃗⃗ =(1,1,1),BA ⃗⃗⃗⃗⃗ =(0,2,0),BC ⃗⃗⃗⃗⃗ =(2,0,0), 设平面ABD 的一个法向量m ⃗⃗ =(x,y,z),则{m ⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =x +y +z =0m ⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =2y =0,可取m⃗⃗ =(1,0,−1), 设平面BDC 的一个法向量n ⃗ =(a,b,c),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =a +b +c =0m ⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2a =0, 可取n⃗ =(0,1,−1), 则cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ |=√2×√2=12, 所以二面角A −BD −C 的正弦值为√1−(12)2=√32.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析(2)1113【解析】【分析】(1)连接BO并延长交AC于点D,连接OA、PD,根据三角形全等得到OA=OB,再根据直角三角形的性质得到AO=DO,即可得到O为BD的中点从而得到OE//PD,即可得证;(2)过点A作Az//OP,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;(1)证明:连接BO并延长交AC于点D,连接OA、PD,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,AO,BO⊂平面ABC,所以PO⊥AO、PO⊥BO,又PA=PB,所以△POA≅△POB,即OA=OB,所以∠OAB=∠OBA,又AB⊥AC,即∠BAC=90°,所以∠OAB+∠OAD=90°,∠OBA+∠ODA=90°,所以∠ODA=∠OAD所以AO=DO,即AO=DO=OB,所以O为BD的中点,又E为PB的中点,所以OE//PD,又OE⊄平面PAC,PD⊂平面PAC,所以OE//平面PAC(2)解:过点A作Az//OP,如图建立平面直角坐标系,因为PO=3,AP=5,所以OA=√AP2−PO2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃗⃗⃗⃗⃗ =(3√3,1,32),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AC ⃗⃗⃗⃗⃗ =(0,12,0), 设平面AEB 的法向量为n ⃗ =(x,y,z ),则{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3x +y +32z =0n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃗ =(0,−3,2);设平面AEC 的法向量为m⃗⃗ =(a,b,c ),则{m ⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3a +b +32c =0m ⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃗⃗ =(√3,0,−6); 所以cos ⟨n ⃗ ,m ⃗⃗ ⟩=n⃗ ⋅m ⃗⃗⃗ |n ⃗ ||m ⃗⃗⃗ |=√13×√39=−4√313设二面角C −AE −B 为θ,由图可知二面角C −AE −B 为钝二面角, 所以cosθ=−4√313,所以sinθ=√1−cos 2θ=1113故二面角C −AE −B 的正弦值为1113;5.【2021年甲卷理科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点, 易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-=,所以BF ED ⊥.(2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272, 此时cos θ6272=.所以()2min63sin 13θ⎛⎫=- ⎪ ⎪⎝⎭112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-. 又1111BD B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即1211(2)B H s =+-121(2)B H s =+-.所以2211DH B H B D =+2221(2)s t s ++-2229225t t t t +-+ 则11sin B D DHB DH∠=2229225t t t t =+-+29119222t =+⎛⎫-+ ⎪⎝⎭所以,当12t =时,()1min 3sin 3DHB ∠=. [方法三]:投影法如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F 中,222115DF B D B F t +=+在Rt ECF 中,223EF EC FC =+D 作1B N 的平行线交MN 于点Q . 在Rt DEQ △中,2225(1)DE QD EQ t =++-在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅()2315(1)35t t t ++=+()222214sin 35t t DFE t -+∠=+1sin 2DFESDF EF DFE =⋅∠2122142t t =-+13,2B NFS = 1cos B NF DFES Sθ=22214t t -+,()29sin 127t t θ=--+,当12t =,即112B D =,面11BB C C 与面DFE 3 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维. 第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.6.【2021年乙卷理科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12(270【解析】 【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长; (2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =22BC a = [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM. 所以2112BC =.所以2BC [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 解得212t =,所以22==BC t (2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-,由111120220m AM y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x =()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫= ⎪ ⎪⎝⎭,()2,1,1BP =--,由222220220n BM n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅==⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --70 [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 2的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG 35=AG .所以,70sin AH AGH AG ∠==A PMB --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.7.【2021年新高考1卷】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积. 【答案】(1)证明见解析;3【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -, 则31(,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m =,所以222cos ,44n OA m m -==⋅+1m =. 又点C 到平面ABD 311332132A BCD C ABD V V --==⨯⨯⨯=所以三棱锥A BCD -3[方法二]【最优解】:作出二面角的平面角 如图所示,作EG BD⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==. 又30OBC OCB ∠=∠=︒,所以3BC =因为24222,,,,133333GD GB FG CD EG OA ======,11113322(11)13332A BCD BCDBOCV SO SOA A -==⨯⨯=⨯⨯⨯⨯⨯=[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒, 化简可得3cos βα.① 使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin 2βα=.② 将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -3【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.8.【2021年新高考2卷】在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,5,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD , 而2,5AD QA ==512QO =-=.在正方形ABCD 中,因为2AD =,故1DO =,故5CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-. 设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,6PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【答案】(1)证明见解析;(225. 【解析】 【分析】(1)要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;(2)方法一:过O 作ON ∥BC 交AB 于点N ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的一个法向量n ,平面PCE 的一个法向量为m ,利用公式cos ,||||nmm n n m ⋅<>=计算即可得到答案.(1)[方法一]:勾股运算法证明由题设,知DAE △为等边三角形,设1AE =, 则3DO =,1122CO BO AE ===,所以624PO ==226PC PO OC PB PA =+=== 又ABC 为等边三角形,则2sin 60BA OA =,所以3BA =, 22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法 不妨设23AB =4sin 60==︒=ABAE AD ,由圆锥性质知DO ⊥平面ABC ,所以22224223--=DO AD AO 62==PO .因为O 是ABC 的外心,因此AE BC ⊥.在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点,OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -, 则(0,2,0)A -,(3,1,0)B ,(3,1,0)C ,(0,2,0)E ,2)P . 所以(0,2)AP =,(3,2)=--BP ,(3,2)=-CP . 故0220⋅=-+=AP BP ,0220⋅=-+=AP CP . 所以AP BP ⊥,AP CP ⊥.又BP CP P =,故AP ⊥平面PBC .因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥. 因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥. 又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =,所以BC ⊥平面PAE .又因为PA ⊂平面PAE ,所以PA BC ⊥. 设AEBC F =,则F 为BC 的中点,连结PF .设DO a =,且6PO , 则3AF =,2PA =,12PF a =. 因此222+=PA PF AF ,从而PA PF ⊥. 又因为PFBC F =,所以PA ⊥平面PBC .[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得3OD R =,因为6=PO ,所以2=PO R .以,,OA OB OD 为基底,OD ⊥平面ABC ,则66=+=-+AP AO OP OA OD , 66=+=-+BP BO OP OB OD ,且212OA OB R ⋅=-,0OA OD OB OD ⋅=⋅=所以6666⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OD OB OD 26610666⋅-⋅-⋅+=OA OB OA OD OB OD OD . 故0AP BP ⋅=.所以AP BP ⊥,即AP BP ⊥. 同理AP CP ⊥.又BP CP P =,所以AP ⊥平面PBC . (2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则121313(,0,0),((,244E P B C ---,132(,4PC =-,132(4PB =-,12(,0,2PE =-,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得111111320320x y z x y z ⎧-=⎪⎨-=⎪⎩,令12x ,得111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222320220x z x z ⎧-=⎪⎨-=⎪⎩,令21x =,得2232,z y =-=,所以3(1,2)3m = 故2225cos ,||||1033n mm n n m ⋅<>===⋅⨯设二面角B PC E --的大小为θ,由图可知二面角为锐二面角,所以25cos θ= [方法二]【最优解】:几何法 设=BCAE F ,易知F 是BC 的中点,过F 作∥FG AP 交PE 于G ,取PC 的中点H ,联结GH ,则∥HF PB .由PA ⊥平面PBC ,得FG ⊥平面PBC . 由(1)可得,222BC PB PC =+,得PB PC ⊥. 所以FH PC ⊥,根据三垂线定理,得GH PC ⊥. 所以GHF ∠是二面角B PC E --的平面角. 设圆O 的半径为r ,则3sin 602︒==AF AB r ,2AE r =,12=EF r ,13EF AF =,所以14=FG PA ,1122==FH PB PA ,12=FG FH . 在Rt GFH 中,1tan 2∠==FG GHF FH , 25cos ∠=GHF . 所以二面角B PC E --的余弦值为25.[方法三]:射影面积法如图所示,在PE 上取点H ,使14HE PE =,设BC AE N =,连结NH .由(1)知14NE AE =,所以∥NH PA .故NH ⊥平面PBC .所以,点H 在面PBC 上的射影为N .故由射影面积法可知二面角B PC E --的余弦值为cos PCN PCHS θS=.在PCE 中,令6==PC PE 1CE =,易知5=PCES .所以335416PCH PCES S ==. 又1328PCNPBCSS ==,故3258cos 35PCN PCHS θS ===所以二面角B PC E --25.【整体点评】本题以圆锥为载体,隐含条件是圆锥的轴垂直于底面,(1)方法一:利用勾股数进行运算证明,是在给出数据去证明垂直时的常用方法;方法二:选择建系利用空间向量法,给空间立体感较弱的学生提供了可行的途径;方法三:利用线面垂直,结合勾股定理可证出;方法四:利用空间基底解决问题,此解法在解答题中用的比较少;(2)方法一:建系利用空间向量法求解二面角,属于解答题中求角的常规方法;方法二:利用几何法,通过三垂线法作出二面角,求解三角形进行求解二面角,适合立体感强的学生;方法三:利用射影面积法求解二面角,提高解题速度.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.【答案】(1)证明见解析;(210【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP =,由(1)BC ⊥平面1A AMN ,可得QPN ∠为1B E 与平面1A AMN 所成角,即可求得答案. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB , 1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥, 又侧面11BB C C 为矩形, 1BC BB ∴⊥,1//MN BB ,MN BC ⊥,由MN AM M ⋂=,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN , 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴ ,//EF BC ∴,又BC ⊥平面1A AMN ,∴EF ⊥平面1A AMN , EF ⊂平面11EB C F ,∴平面11EB C F ⊥平面1A AMN . (2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B AC 于点11,E F ,联结11,,,AE AO AF NP , 由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11=AOE F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F .又因平面11AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11∥EB AE .因为111B C A N ⊥,11B C MN ⊥,1A N MN N =,所以11B C ⊥面1AA NM .又因1111∥E F B C ,所以11⊥E F 面1AA NM , 所以1AE 与平面1AA NM 所成的角为1∠E AO .令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB . 在1Rt AE O 中,122,3===AO AB OE , 由勾股定理得2211210=+=AE AO OE 所以11110sin ∠==E O E AO AE 由于11∥EB AE ,直线1B E 与平面1A AMN 10 [方法二]【最优解】:几何法 因为//AO 平面11EFC B ,平面11EFC B 平面1=AMNA NP ,所以∥AO NP .因为//ON AP ,所以四边形OAPN 为平行四边形.由(Ⅰ)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线. 所以1B E 在平面1AMNA 的射影为NP . 从而1B E 与NP 所成角的正弦值即为所求.在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG . 在直角三角形1B EG 中,110sin 10∠==B EG [方法三]:向量法由(Ⅰ)知,11B C ⊥平面1A AMN ,则11B C 为平面1A AMN 的法向量.因为∥AO 平面11EB C F ,AO ⊆平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =, 所以//AO PN .由(Ⅰ)知11,=∥AA MN AA MN ,即四边形APNO 为平行四边形,则==AO NP AB . 因为O 为正111A B C △的中心,故13==AP ON AM . 由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++=PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C . 设直线1B E 与平面1A AMN 所成角为θ,AB a ,则2111211121103sin 13θ⋅===⎛⎫+ ⎪⎝⎭aEB B C EB B C a a a 所以直线1B E 与平面1A AMN 10 [方法四]:基底法不妨设2===AO AB AC ,则在直角1AA O 中,126AA =以向量1,,AA AB AC 为基底, 从而1,2π=AA AB ,1,2π=AA AC ,,3π=AB AC .1111123=++=+EB EA AA A B AB AA ,BC AC AB =-, 则12103=EB ,||2BC =. 所以112()3⎛⎫⋅=+⋅-=⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=-AB AC AB . 由(Ⅰ)知BC ⊥平面1A AMN ,所以向量BC 为平面1A AMN 的法向量. 设直线1B E 与平面1A AMN 所成角θ,则11110sin cos ,10||θ⋅===EB BC EB BC EB BC 故直线1B E 与平面1A AMN 所成角的正弦值为10sin θ= 【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法; 方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.11.【2020年新课标3卷理科】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值. 【答案】(1)证明见解析;(242. 【解析】 【分析】(1)方法一:连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)方法一:以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,如图1所示.在长方体1111ABCD A B C D -中,//,BF CG BF CG =,所以四边形BCGF 为平行四边形,则//,BC FG BC FG =,而,//BC AD BC AD =,所以//,AD FG AD FG =,所以四边形DAFG 为平行四边形,即有//AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴,1//C E AF ∴,因此点1C 在平面AEF 内.[方法二]:空间向量共线定理以11111,,C D C B C C 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示. 设11111,,3C D a C B b C C c ===,则1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c .所以1(,0,2),(,0,2)C E a c FA a c ==.故1C E FA =.所以1AF C E ∥,点1C 在平面AEF 内.[方法三]:平面向量基本定理同方法二建系,并得1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c , 所以111(,0,2),(0,,),(,,3)C E a c C F b c C A a b c ===. 故111C A C E C F =+.所以点1C 在平面AEF 内. [方法四]:根据题意,如图3,设11111,2,3A D a A B b A A c ===.在平面11A B BA 内,因为12BF FB =,所以1111133B F B B A A ==.延长AF 交11A B 于G ,AF ⊂平面AEF , 11A B ⊂平面1111D C B A .11,G AF G A B ∈∈,所以G ∈平面,AEF G ∈平面1111D C B A ①.延长AE 交11A D 于H ,同理H ∈平面,AEF H ∈平面1111D C B A ②. 由①②得,平面AEF平面1111A B C D GH =.连接11,,GH GC HC ,根据相似三角形知识可得11,2GB b D H a ==.在11Rt C B G 中,221C G a b =+同理,在11Rt C D H 中,2212C H a b =+如图4,在1Rt A GH 中,223GH a b =+ 所以11GH C G C H =+,即G ,1C ,H 三点共线. 因为GH ⊂平面AEF ,所以1C ⊂平面AEF ,得证. [方法五]:如图5,连接11,,DF EB DB ,则四边形1DEB F 为平行四边形,设1DB 与EF 相交于点O ,则O 为1,EF DB 的中点.联结1AC ,由长方体知识知,体对角线交于一点,且为它们的中点,即11AC B D O =,则1AC 经过点O ,故点1C 在平面AEF 内.(2)[方法一]【最优解】:坐标法以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,如图2.则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的一个法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎨⋅=⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的一个法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,37cos ,321m n m n m n⋅<>===⨯⋅ 设二面角1A EF A --的平面角为θ,则7cos θ=,242sin 1cos θθ∴=-因此,二面角1A EF A --42. [方法二]:定义法在AEF 中,2,22,516AE AF EF ===+即222AE EF AF +=,所以AE EF ⊥.在1A EF 中,115A E A F ==6,设,EF AF 的中点分别为M ,N ,连接11,,A M MN A N ,则1,A M EF MN EF ⊥⊥,所以1A MN ∠为二面角1A EF A --的平面角. 在1A MN 中,221112145MN A M A F MF A N ==-= 所以1175722cos 2142A MN +-∠==⨯⨯1142sin 17A MN ∠=-= [方法三]:向量法由题意得112,8,5,6AE AF AF AE EF == 由于222AE EF AF +=,所以AE EF ⊥.如图7,在平面1A EF 内作1A G EF ⊥,垂足为G , 则EA 与1GA 的夹角即为二面角1A EF A --的大小.由11AA AE EG GA =++,得22221111222AA AE EG GA AE EG EG GA AE GA =++++⋅⋅+⋅. 其中,1614EG AG ==,解得11AE GA ⋅=,1cos ,7AE GA 〉〈= 所以二面角1A EF A --42. [方法四]:三面角公式由题易得,112,22,6,5,5EA FA FE EA FA === 所以2222221111(2)(5)310cos 2225EA EA AA AEA EA EA +-+--∠===⋅⋅.222222(2)(6)(22)cos 0,sin 12226EA EF AF AEF AEF EA EF +-+-∠===∠=⋅⋅.22222211111(5)(6)(5)3070cos 2256EA EF A F A EF A EF EA EF +-+-∠===∠=⋅⋅设θ为二面角1A EF A --的平面角,由二面角的三个面角公式,得111cos cos cos 107cos sin sin 70AEA AEF A EF AEF A EF θ∠-∠⋅∠--==∠⋅∠42sin θ=【整体点评】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出. (2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出. 12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(26【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D =,所以l ⊥平面PDC . (2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 21cos ,31n PB n PB n PBm ⋅+<>==⋅+根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于2|cos ,|31n PB m <>=⋅+2231231m m m ++=+223232||36111111m m m m =++≤+++,当且仅当1m =时取等号,所以直线PB 与平面QCD 6.[方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .在平面PQC 中,设PB QC E =.在平面PAD 中,过P 点作PF QD ⊥,交QD 于F ,连接EF . 因为PD ⊥平面,ABCD DC ⊂平面ABCD ,所以DC PD ⊥. 又由,,DC AD ADPD D PD ⊥=⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .又PF ⊂平面PAD ,所以DC PF ⊥.又由,,PF QD QDDC D QD ⊥=⊂平面,QOC DC ⊂平面QDC ,所以PF ⊥平面QDC ,从而FEP ∠即为PB 与平面QCD 所成角.设PQ a =,在PQD △中,易求21PF a =+由PQE 与BEC △相似,得1PE PQ a EB BC ==,可得3aPE = 所以22211226sin 131333a a FEP a a ⎛⎫+⎛⎫∠==+= ⎪ ⎪+⎝⎭+⎝⎭1a =时等号成立. [方法三]:等体积法如图3,延长CB 至G ,使得BG PQ =,连接GQ ,GD ,则//PB QG ,过G 点作GM ⊥平面QDC ,交平面QDC 于M ,连接QM ,则GQM ∠即为所求.设PQ x =,在三棱锥Q DCG -中,111()(1)326Q DCG V PD CD CB BG x -=⋅⋅+=+.。
2014年全国高考数学理科(立体几何部分)解析汇编
【全国卷·新课标I ·第19题】如图,三棱柱ABC-A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C . (1)证明:AC=AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB=BC ,求二面角A-A 1B 1-C 1的余弦值.解:(1)∵面BB 1C 1C 为菱形∴BC 1⊥B 1C ,O 为B 1C 和BC 1的中点 ∵AB ⊥B 1C ∴B 1C ⊥面ABC 1令BC 1与B 1C 交于点O ,连接AO ∵AO ⊂面ABC 1 ∴B 1C ⊥AO ∵B 1O=CO∴AO 是B 1C 的中垂线 ∴AC=AB 1(2)因为AO 、BC 1、B 1C 两两互相垂直,以O 为坐标原点,分别以OB 、1OB 、OA 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系令|OB|=1,由AC ⊥AB 1,∠CBB 1=60°,AB=BC 易得:11B C BC =设向量n =(x ,y ,z )是平面AA 1B 1的一个法向量,则:1113n AB =0n A B=0y z x z ⎧⋅=⎪⎪⎨⎪⋅-=⎪⎩由此,可取n =(1,3同理可得,平面A 1B 1C 1的一个法向量为:m =(1∴n m 1cos n,m =7|n ||m |7⋅〈〉==⋅1【全国卷·新课标II ·第18题】如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.解:(1)连接BD 交AC 于O ,连接OE∵底面ABCD 为矩形 ∴O 为BD 的中点 ∵E 为PD 的中点 ∴PB ∥OE∵OE ⊂面AEC ,PB ⊄面AEC ∴PB ∥平面AEC (2)∵PA ⊥平面ABCD∴PA ⊥AB ,PA ⊥AD又AB ⊥AD ,即PA 、AB 、AD 两两互相垂直,以z 轴的正方向,建立如图所示的空间直角坐标系∵平面ADE与平面yOz 重合∴可取平面ADE 的一个法向量为n =(1,0,0) 设CD=a,由(a ∴AC =(a ,由∴AE =(0,设向量m =(x ,y ,z )是平面ACE的一个法向量,则m AC=031m AE=02ax y z ⎧⋅=⎪⎨⋅+=⎪⎩ 由此,可取m =(3,,3)∵二面角D-AE-C为60° ∴3n m 1cos n,m =cos602|n ||m |9o ⋅〈〉===⋅ 过点E 作EF ⊥AD 于F ∵PA ⊥平面ABCD ,即PA ⊥平面ACD ∴EF ⊥平面ACD∴EF 是三棱锥E-ACD 的高∴V E-ACD【全国卷·大纲版·第19题】如图,三棱柱ABC-A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC 1=2. (1)证明:AC 1⊥A 1B ;解:(1)∵点A 1在平面ABC 内的射影D 在AC 上∴A 1D ⊥平面ABC ∵A 1D ⊂平面ACC 1A 1 ∴平面ACC 1A 1⊥平面ABC ∵∠ACB=90°,即BC ⊥AC ∴BC ⊥平面ACC 1A 1 ∵AC 1⊂平面ACC 1A 1 ∴AC 1⊥BC连接A 1C ,由AC=CC 1知,侧面ACC 1A 1为菱形 ∴AC 1⊥A 1C∵BC 、A 1C ⊂平面A 1BC ∴AC 1⊥平面A 1BC ∵A 1B ⊂平面A 1BC ∴AC 1⊥A 1B(2)过点D 作DF ⊥AB 于F ,连接A 1F∵A 1D ⊥平面ABC ,AB ⊂平面ABC ∴AB ⊥A 1D ∴AB ⊥平面A 1DF ∴A 1F ⊥AB∴∠A 1FD 是二面角A 1-AB-C 的平面角∵AC=CC 1=2,A 1D ⊥AC在Rt △A 1DA 中,A 1A= CC 1=2ABCD A 1C 1EF【北京市·第17题】如图,正方形AMDE 的边长为2,B 、C 分别为AM 、MD 的中点,在五棱锥P-ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD 、PC 分别交于点G 、H . (1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA=AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长PABMCDEFGH解:(1)∵AB ∥DE ,DE ⊂平面PDE且AB ⊄平面PDE ∴AB ∥平面PDE∵平面AFGB ∩平面PDE=FG AB ⊂平面AFGB ,FG ⊂平面PDE ∴AB ∥FG(2)由题知,AP 、AM 、AE 两两互相垂直,以A 为坐标原点,分别以AM 、AE 、AP 为x 轴、y 轴、z轴的正方向,建立如图所示的空间直角坐标系由AM=AE=PA=2,易得:B (1,0,0),F (0,1,1),C (2,1,0),P (0,0,2)∴BC =(1,1,0),AB =(1,0,0),AF =(0,1,1),PC =(2,1,-2)设向量m =(x ,y ,z )是平面ABF 的一个法向量则m AB=0m AF=0x y z ⎧⋅=⎪⎨⋅+=⎪⎩ 由此,可取m =(0,1,-1)设直线BC 与平面ABF 所成角为θ,则m BC 1sin cos m,BC =2|m ||BC |2θ⋅=〈〉==⋅∴直线BC 与平面ABF 所成角θ=6π设H (a ,b ,c ),点H 在棱PC 上,不妨PH =k PC ,其中0<k <1∵PC =(2,1,-2),PH =(a ,b ,c -2) ∴(a ,b ,c -2)=k (2,1,-2) ∴a =2k ,b =k ,c =2-2k ∴AH =(2k ,k ,2-2k )∵m =(0,1,-1)为平面ABF 的一个法向量且AH ⊂平面ABF∴m AH 0⋅= ∴k -2+2k =0,得k =23∴|PH|=2【天津市·第17题】如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD=DC=AP=2,AB=1,点E 为棱PC 的中点. (1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F-AB-P 的余弦值.解:(1)由题意知,AP 、AB 、AD 两两互相垂直,以A 为坐标原点,分别以AB 、AD 、AP 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系易得:B (1,0,0),D (0,2,0),C (2,2,0),P (0,0,2)∴DC =(2,0,0)∵E 是PC 的中点 ∴E (1,1,1) ∴BE =(0,1,1)∵DC ·BE =0 ∴BE ⊥CD (2)∵PB =(-1,0,2),DB =(-1,2,0)设向量m =(x ,y ,z )是平面PBD 的一个法向量则m PB=20m DB=20x z x y ⎧⋅-+=⎪⎨⋅-+=⎪⎩ 由此,可取m =(2,1,1)设直线BE 与平面PBD 所成角为θ,则m BE sin cos m,BE =|m ||BE|6θ⋅=〈〉=⋅∴直线BE 与平面PBD(3)点F 在PC 上,不妨设PF =k PC ,其中0≤k ≤1设F (a ,b ,c ),由PC =(2,2,-2)得: (a ,b ,c -2)=k (2,2,-2) ∴a =2k ,b =2k ,c =2-2k ∴F (2k ,2k ,2-2k ) ∴BF =(2k -1,2k ,2-2k ) ∵BF ⊥AC ,且AC =(2,2,0)∴BF ·AC =0 即2(2k -1)+4k =0,得14k =∴AF =(2k ,2k ,2-2k )=(12,12,32) 又AB =(1,0,0)设向量n =(x ,y ,z )是平面ABF 的一个法向量则n AB=0113n AF=0222x x y z ⎧⋅=⎪⎨⋅++=⎪⎩ 由此,可取n =(0,3,-1)因为平面ABP 与平面xOz 重合,则可取平面ABP 的一个法向量为t =(0,1,0)n t cos n,t =|n||t |101⋅〈〉=⋅⋅∴二面角F-AB-P【重庆市·第19题】如图,四棱锥P-ABCD ,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=3π,M 为BC 上的一点,且BM=12,MP ⊥AP . (1)求PO 的长;(2)求二面角A-PM-C 的正弦值解:(1)连接BD 、AC∵底面ABCD 是菱形,中心为O 且PO ⊥底面ABCD ∴OP 、AC 、BD 两两互相垂直以O 为坐标原点,分别以OA 、OB 、OP 为x 轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐标系由AB=2,∠BAD=3π,易得A ,C (,B (0,1,0) ∴BC =(- ∵BM=12,BC=2 ∴BM - ∴M (设P(0,0,a ),则AP =(-,MP =∵AP ⊥MP∴=-3∴a =(2)由(1)知:AP =(-,MP =(3 设向量n =(x ,y ,z )是平面APM 的一个法向量则n AP=3033n MP=04z x y ⎧⋅-+=⎪⎪⎨⎪⋅-=⎪⎩由此,可取n =(1,52)同理可得,平面CPM 的一个法向量为: m=(1-2)∴n m cos n,m =|n ||m |40⋅〈〉==⋅∴二面角A-PM-C【江苏省·第16题】如图,在三棱锥P-ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA ⊥AC ,PA=6,BC=8,DF=5.求证:(1)直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC解:(1)∵D 、E 分别是PC 、AC 的中点∴PA ∥DE∵DE ⊂平面DEF ,PA ⊄平面DEF ∴直线PA ∥平面DEF(2)∵D 、E 分别是PC 、AC 的中点∴DE=12PA=3 ∵E 、F 分别是AC 、AB 的中点 ∴EF=12BC=4 ∵DF=5 ∴DE 2+EF 2=DF 2∴∠DEF=90°,即DE ⊥EF ∵DE ∥PA ,PA ⊥AC ∴DE ⊥AC∵AC∩EF=E ∴DE ⊥平面ABC ∵DE ⊂平面BDE ∴平面BDE ⊥平面ABCPACDEF【浙江省·第20题】如图,在四棱锥A-BCDE 中,平面ABC ⊥平面BCDE ,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,(1)证明:DE ⊥平面ACD; (2)求二面角B-AD-E 的大小解:(1)在直角梯形BCDE 中,易求得∵在△ABC 中,∴AB 2+BC 2=AB 2∴∠ACB=90°,即AC ⊥BC∵平面ABC ⊥平面BCDE 且AC ⊂平面ACD ∴AC ⊥平面BCDE ∵DE ⊂平面BCDE∴AC ⊥DE∵∠CDE=90° ∴DE ⊥CD ∵CD ⊂平面ACD ∴DE ⊥平面ACD(2)由题,以D 为坐标原点,建立如图所示的空间直角坐标系易得E (1,0,0),B (1,1,0),A (0,2∴DE = (1,0,0),DA =(0,2DB = (1,1,0)设向量n =(x ,y ,z )是平面ADE 的一个法向量则n DE=0n DA=20x y ⎧⋅=⎪⎨⋅=⎪⎩ 由此,可取n =(0,-1同理可得,平面ADB 的一个法向量为:m =(1,-1∴n m cos n,m=|n ||m |3⋅〈〉==⋅⋅∴二面角B-AD-E【山东省·第17题】如图,在四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB=60°,AB=2CD=2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;1解:(1)连接AD 1.∵M 是线段AB 的中点,AB=2 ∴AM=1∵C 1D 1=CD=1 ∴C 1D 1=AM ∵AM ∥CD ,CD ∥C 1D 1∴C 1D 1∥AM∴四边形AM C 1D 1是平行四边形 ∴C 1M ∥AD 1∵C 1M ⊄平面A 1ADD 1,AD 1⊂平面A 1ADD 1 ∴C 1M ∥平面A 1ADD 1(2)过点C 作CE ⊥AB 于E ,则CE ⊥CD∵CD 1⊥平面ABCD∴CD 1⊥CD ,CD 1⊥CE以C 为坐标原点,分别以CD 、CE 、1CD 为x轴、y 轴、z 轴的正方向,建立如图所示的空间直角坐 标系由由∠DAB=60°,AB=2CD=2,在等腰梯形ABCD22∴MD =(11=(1,设向量n =(x ,y ,z )是平面C 1D 1M 的一个法向量则111n C D =01n MD =02x x y ⎧⋅=⎪⎨⋅=⎪⎩ 的一个法向量为m =∴n m cos n,m =|n ||m |5⋅〈〉==⋅⋅∴平面C 1D 1M 和平面ABCD 所成的角的余弦值为【江西省·第20题】如图,四棱锥P-ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . (1)求证:AB ⊥PD ;(2)若∠BPC=90°,PC=2,问AB 为何值时,四棱锥P-ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.解:(1)∵底面ABCD 是矩形 ∴AB ⊥AD∵平面PAD ⊥平面ABCD 平面PAD ∩平面ABCD=AD ∴AB⊥平面PAD∵PD ⊂平面PAD ∴AB ⊥PD(2)∵∠BPC=90°,PC=2∴过点P 作PO ⊥AD 于O∵平面PAD ⊥平面ABCD ∴PO ⊥平面ABCD ∴V P-ABCD 过点O 作OE ⊥AD 交BC 于E ,连接PE设AB=x ,则OE=x 由前述,可建立如图所示的空间直角坐标系3∴PB =(6,BC =(-PD =(-2,DC = (0,设向量n =(x ,y ,z )是平面PBC 的一个法向量则n BC=606n PB=0x y z ⎧⋅-=⎪⎨⋅=⎪⎩由此,可取n =(0,1,1)同理可得,平面PDC 的一个法向量为:∴n m cos n,m =|n ||m |2⋅〈〉=⋅∴平面BPC 与平面DPC【广东省·第18题】如图,四边形ABCD 为正方形.PD ⊥平面ABCD ,∠DPC=30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D-AF-E 的余弦值.解:(1)∵PD ⊥平面ABCD ,AD ⊂平面ABCD∴AD ⊥PD∵四边形ABCD 为正方形 ∴AD ⊥CD ∵PD 、CD ⊂平面PCD ∴AD ⊥平面PCD∵CF ⊂平面PCD ∴CF ⊥AD ∵AF ⊥PC ,即CF ⊥AF 且AD 、AF ⊂平面ADF ∴CF ⊥平面ADF(2)因为PD 、CD 、AD 两两互相垂直,以D 为坐标原点,建立如图所示的空间直角坐标系设正方形ABCD 的边长为1,则AD=CD=1 ∴A (0,0,1),则DA =(0,0,1)由(1)知,DF ⊥PC ,在Rt △PDC 中,由∠DPC=30°,444∴EF =(0,,AE =(3DF =(34)设向量n =(x ,y ,z )是平面AEF 的一个法向量则3n EF=043n AE=0y x z ⎧⋅=⎪⎪⎨⎪⋅-=⎪⎩ 由此,可取n =(4,0同理可得,平面ADF 的一个法向量为:m =(31,0)∴n m cos n,m =|n ||m |19⋅〈〉==⋅∴二面角D-AF-E【湖南省·第19题】如图,四棱柱ABCD-A 1B 1C 1D 1的所有棱长都相等,AC∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形. (1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA=60°,求二面角C 1-OB 1-D 的余弦值解:(1)∵四边形ACC 1A 1为矩形∴A 1A ⊥AC由题知,四边形ABCD 和A 1B 1C 1D 1是菱形 ∴点O 是AC 、BD 的中点 点O 1是A 1C 1、B 1D 1的中点 ∴OO 1∥A 1A ∴OO 1⊥AC 同理可证:OO 1⊥BD ∵AC 、BC ⊂底面ABCD ∴O 1O ⊥底面ABCD (2)∵底面ABCD 是菱形∴AC ⊥BD由(1)知,AC 、BD 、O 1O 两两互相垂直 以O 为坐标原点,建立如图所示的空间直角坐标系。
2023高考上海数学理科试卷含详细解答
2023年全国普通高等学校招生统一考试(上海) 数学(理工农医类) 全解全析一 填空(4’×11)1.不等式|1|1x -<地解集是 .【解析】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = .【解析】2【解析】由{2}, 22A B A B a =⇒⇒= 只有一个公共元素.3.若复数z 满足z =i (2-z)(i 是虚数单位),则z = .【解析】1i+【解析】由2(2)11iz i z z i i=-⇒==++.4.若函数f (x )地反函数为f -1(x )=x 2(x >0),则f (4)= .【解析】2【解析】令12(4)()44(0)2f t ft t t t -=⇒=⇒=>⇒=.5.若向量→ a 、→ b 满足|→ a |=1,|→ b |=2,且→ a 与→ b 地夹角为π3,则|→ a +→b |= .【解析】222||()()2||||2||||cos 7||3a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+ 6.函数f (x )=3sin x +sin(π2+x )地最大值是 .【解析】2【解析】由max ()cos 2sin()()26f x x x x f x π=+=+⇒=.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形地概率是 (结果用分数表示).【解析】34【解析】已知A C E F B C D 、、、共线;、、共线;六个无共线地点生成三角形总数为:36C;可构成三角形地个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=;8.设函数f (x )是定义在R 上地奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0地x 地取值范围是 .【解析】(1,0)(1,)-+∞ 【解析】 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;;由f (x )为奇函数得: 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;9.已知总体地各个体地值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体地中位数为10.5,若要使该总体地方差最小,则a 、b 地取值分别是 .【解析】10.5,10.5a b ==【解析】根据总体方差地定义知,只需且必须10.5,10.5a b ==时,总体方差最小;10.某海域内有一孤岛,岛四周地海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 地椭圆,已知岛上甲、乙导航灯地海拔高度分别为h 1、h 2,且两个导航灯在海平面上地投影恰好落在椭圆地两个焦点上,现有船只经过该海域(船只地大小忽略不计),在船上测得甲、乙导航灯地仰角分别为θ1、θ2,那么船只已进入该浅水区地判别条件是 .【解析】1122cot cot 2h h a θθ⋅+⋅≤【解析】依题意, 12||||2MF MF a+≤1122cot cot 2h h a θθ⇒⋅+⋅≤;11.方程x 2+2x -1=0地解可视为函数y =x +2地图像与函数y =1x 地图像交点地横坐标,若x 4+ax -4=0地各个实根x 1,x 2,…,x k(k ≤4)所对应地点(x i,4x i )(i =1,2,…,k )均在直线y =x 地同侧,则实数a 地取值范围是 .【解析】(,6)(6,)-∞-+∞ 【解析】方程地根显然0x ≠,原方程等价于34x a x+=,原方程地实根是曲线3y x a =+与曲线4y x=地交点地横坐标;而曲线3y x a =+是由曲线3y x =向上或向下平移||a 个单位而得到地。
高考数学(理)真题专题汇编:空间立体几何
高考数学(理)真题专题汇编:空间立体几何一、选择题(本题共9道小题,每小题0分,共0分)1.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<2.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 3243.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面4.【来源】2019年高考真题——理科数学(全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线5.【来源】0(08年全国卷2)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B. C. D.26.【来源】0(08年四川卷文)若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )(A)(B)(C)(D)7.【来源】0(08年北京卷)如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()8.【来源】2011年高考数学理(安徽)一个空间几何体得三视图如图所示,则该几何体的表面积为(A)48+(B)32817+(C)48817(D)509.【来源】2011年高考数学理(全国新课标)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为二、填空题10.【来源】2019年高考真题——理科数学(北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.12.【来源】2019年高考真题——理科数学(天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .13.【来源】2019年高考真题——理科数学(全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________.15.【来源】(07年浙江卷文)已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的取值范围是_________.16.【来源】2011年高考数学理(全国新课标)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。
2020全国卷二数学理科立体几何
2020全国卷二数学理科立体几何
全国卷二数学理科立体几何的内容主要包括:
一、立体几何的基本概念:
1. 空间的概念:空间的维数、空间的直角坐标系、空间的坐标变换、空间的参数方程等。
2. 立体几何的基本概念:点、直线、面、体、立体图形的分类、立体图形的基本性质、立体图形的基本关系等。
二、立体几何的基本公式:
1. 空间的距离公式:点到直线的距离、点到平面的距离、直线到平面的距离、点到点的距离等。
2. 空间的体积公式:正多面体的体积、球体的体积、椎体的体积等。
3. 空间的面积公式:正多面体的表面积、球体的表面积、椎体的表面积等。
三、立体几何的基本定理:
1. 空间三角形的关系:直角三角形的定理、锐角三角形的定理、钝角三角形的定理等。
2. 空间四边形的关系:正方形的定理、矩形的定理、平行四边
形的定理、平行六边形的定理等。
3. 空间多面体的关系:正多面体的定理、正八面体的定理、正十二面体的定理等。
《创新设计》2022高考数学(浙江专用理科)二轮专题精练:专题四 立体几何4-2 Word版含解析
第2讲空间中的平行与垂直(建议用时:60分钟)一、选择题1.在下列命题中,不是公理的是().A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在此平面内D.假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理.答案 A2.(2022·辽宁卷)已知m,n表示两条不同直线,α表示平面.下列说法正确的是().A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α解析法一若m∥α,n∥α,则m,n可能平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,由于直线与平面垂直时,它垂直于平面内任始终线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错;法二如图,在正方体ABCD-A′B′C′D′中,用平面ABCD表示α.A项中,若m为A′B′,n为B′C′,满足m∥α,n∥α,但m与n是相交直线,故A错.B项中,m⊥α,n⊂α,∴m⊥n,这是线面垂直的性质,故B正确.C项中,若m为AA′,n为AB,满足m⊥α,m⊥n,但n⊂α,故C错.D项中,若m为A′B′,n为B′C′,满足m∥α,m⊥n,但n∥α,故D错.答案 B3.(2021·丽水模拟)已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③解析过直线a作平面γ使α∩γ=c,则a∥c,再依据b⊥α可得b⊥c,从而b⊥a,命题①是真命题;下面考虑命题③,由b⊥α,b⊥β,可得α∥β,命题③为真命题.故正确选项为A.答案 A4.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中确定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β解析依据定理、性质、结论逐个推断.由于α⊥β,m⊂α⇒可能平行、相交、m在β面内,故A错误;由线面垂直的性质定理可知B正确;若α⊥β,m∥α,则m,β的位置关系也不确定,故C错误;若m⊥n,n∥β,则m,β的位置关系也不确定,故D错误.答案 B5.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1 B.2 C.3 D.4解析①中m,n可能异面或相交,故不正确;②由于m∥α,n⊥β且α⊥β成立时,m,n 两直线的关系可能是相交、平行、异面,故不正确;③由于m⊥α,α∥β可得出m⊥β,再由n∥β可得出m⊥n,故正确;④分别垂直于两个垂直平面的两条直线确定垂直,正确.故选B.答案 B6.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则().A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析假设α∥β,由m⊥平面α,n⊥平面β,则m∥n,这与已知m,n为异面直线冲突,那么α与β相交,设交线为l1,则l1⊥m,l1⊥n,在直线m上任取一点作n1平行于n,那么l1和l都垂直于直线m与n1所确定的平面,所以l1∥l.答案 D7.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H 必在().A.直线AB上B.直线BC上C.直线AC上D.△ABC的内部解析∵AC⊥AB,AC⊥BC1,AB∩BC1=B,∴AC⊥平面ABC1.又AC⊂平面ABC,∴平面ABC1⊥平面ABC,∴C1在面ABC上的射影H必在两平面交线AB上,故选A.答案 A二、填空题8.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出全部真命题的序号).解析由①知α内两条相交直线分别平行于平面β,则两条相交直线确定的平面α平行于平面β,故①为真命题;由线面平行的判定定理知,②为真命题;对于③,如图,α∩β=l,a ⊂α,a⊥l,但不愿定有α⊥β,故③为假命题;对于④,直线l与平面α垂直的充分必要条件是l与α内的两条相交直线垂直,故④为假命题.综上所述,真命题的序号为①②.答案①②9.(2021·金华调研)下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出全部符合要求的图形序号).。
理工科大学物理知识点总结及典型例题解析
第一章 质点运动学本章提要1、 参照系:描述物体运动时作参考的其他物体。
2、 运动函数:表示质点位置随时间变化的函数。
位置矢量:k t z j t y i t x t r r)()()()(++==位置矢量:)()(t r t t r r-∆+=∆ 一般情况下:r r∆≠∆3、速度和加速度: dt r d v= ; 22dt rd dt v d a ==4、匀加速运动: =a 常矢量 ; t a v v +=0 2210t a t v r+= 5、一维匀加速运动:at v v +=0 ; 2210at t v x += ax v v 2202=-6、抛体运动: 0=x a ; g a y -=θcos 0v v x = ; gt v v y -=θsin 0t v x θcos 0= ; 2210s i n gtt v y -=θ 7、圆周运动:t n a a a+=法向加速度:22ωR R v a n == 切向加速度:dtdv a t = 8、伽利略速度变换式:u v v+'=【典型例题分析与解答】1.如图所示,湖中有一小船。
岸上有人用绳跨过定滑轮拉船靠岸。
设滑轮距水面高度为h ,滑轮到原船位置的绳长为l 。
当人以匀速v 拉绳,船运动的速度v '为多少?解:取如图所示的坐标轴, 由题知任一时刻由船到滑轮的绳长为l=l 0-vt 则船到岸的距离为:22022)(-h -vt l -h l x == 因此船的运动速率为:20 ⎪⎪⎭⎫ ⎝⎛--==vt l h l vdtdxv2.一质点具有恒定的加速度2)46(m/s j i a +=,在t=0时刻,其速度为零, 位置矢量i r 10= (m).求:(1)在任意时刻的速度和位置矢量;(2)质点在 xoy 平面的轨迹方程,并画出轨迹的示意图.解. (1)由加速度定义dt vd a =,根据初始条件 t 0=0 v 0=0 可得⎰⎰⎰+==tt v )d tj i (dt a v d 046 s m j t i t v /)46(+=由dtr d v =及 t 0=0ir r 100==得⎰⎰⎰+==t t r r dt j t i t dt v r d 0)46(0m j t i t j t i t r r ]2)310[(2322220 ++=++=(2)由以上可得质点的运动方程的分量式x=x(t) y=y(t) 即 x=10+3t 2y=2t 2消去参数t,得质点运动的轨迹方程为 3y=2x-20这是一个直线方程.由m i r100=知x 0=10m,y 0=0.而直线斜率 32===t g a d y /d x k , 则1433'=a 轨迹方程如图所示3. 质点的运动方程为23010t t -x +=和22015t t-y =,(SI)试求:(1) 初速度的大小和方向;(2)加速度的大小和方向.解.(1)速度的分量式为 t -dx/dt v x 6010+== t -dy/dt v y 4015== 当t=0时,v 0x =-10m/s,v 0y =15m/s,则初速度的大小为01820200.v v v y x =+=m/s而v 0与x 轴夹角为 1412300'== xy v v arctga(2)加速度的分量式为 260-xx ms dt dv a == 240-y y ms dtdv a == 则其加速度的大小为 17222.a a a y x =+=ms-2 X10a 与x 轴的夹角为1433'== -a a arctgxy β(或91326' )4. 一质点以25m/s 的速度沿与水平轴成30°角的方向抛出.试求抛出5s 后,质点的速度和距抛出点的位置.解. 取质点的抛出点为坐标原点.水平方向为x 轴竖直方向为y 轴, 质点抛出后作抛物线运动,其速度为αcos 0v v x = gt v v y -=αsin 0 则t=5s 时质点的速度为 v x =21.65m/s v y =-36.50m/s质点在x,y 轴的位移分别为x=v 0x t=108.25m 060220.-gt t-v y y ==m 质点在抛出5s 后所在的位置为 )06025108(j .-i .j y i x r=+=m5.两辆小车A 、B 沿X 轴行驶,它们离出发点的距离分别为 XA=4t+t 2, XB= 2t 2+2t 3 (SI)问:(1)在它们刚离开出发点时,哪个速度较大?(2)两辆小车出发后经过多少时间才能相遇?(3)经过多少时间小车A 和B 的相对速度为零? 解.(1) t /dt dx v A A 24+== 264t t /dt dx v B B +==当 t=0 时, v A =4m/s v B =0 因此 v A > v B(2)当小车A 和B 相遇时, x A =x B 即 322224t t t t +=+ 解得 t=0、1.19s -1.69s(无意义)(3)小车A 和B 的相对速度为零,即 v A -v B =0 3t 2+t-2=0 解得 t=0.67s . -1s(无意义).第二章 质点力学(牛顿运动定律)本章提要1、牛顿运动定律牛顿第一定律 o F =时 =v常矢量牛顿第二定律 k ma i ma i ma a m F z y x++==X牛顿第三定律 'F F -=2、技术中常见的几种力:重力 g m P= 弹簧的弹力 kx f -= 压力和张力滑动摩擦力 N f k k μ= 静摩擦力 N f s s μ≤3、基本自然力:万有引力、弱力、电磁力、强力。
高考理科数学立体几何大全(含考纲,的知识点,例题).doc
第八章立体几何§8.1空间几何体的结构、三视图和直观图1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.高考主要考查空间几何体的结构和视图,柱、锥、台、球的定义与性质是基础,以它们为载体考查线线、线面、面面的关系是重点,三视图一般会在选择题、填空题中考查,以给出空间图形选择其三视图或给出三视图判断其空间图形的形式出现,考查空间想象能力.1.棱柱、棱锥、棱台的概念(1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相________,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是有一个公共顶点的__________,由这些面所围成的多面体叫做棱锥.※注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.※注:由正棱锥截得的棱台叫做正棱台.※2.棱柱、棱锥、棱台的性质(1)棱柱的性质侧棱都相等,侧面是______________;两个底面与平行于底面的截面是__________的多边形;过不相邻的两条侧棱的截面是______________;直棱柱的侧棱长与高相等且侧面、对角面都是________.(2)正棱锥的性质侧棱相等,侧面是全等的__________;棱锥的高、斜高和斜高在底面上的射影构成一个____________;棱锥的高、侧棱和侧棱在底面上的射影也构成一个____________;侧面的斜高、侧棱及底面边长的一半也构成一个____________;侧棱在底面上的射影、斜高在底面上的射影及底面边长的一半也构成一个____________.(3)正棱台的性质侧面是全等的____________;斜高相等;棱台的高、斜高和两底面的边心距组成一个____________;棱台的高、侧棱和两底面外接圆的半径组成一个____________;棱台的斜高、侧棱和两底面边长的一半也组成一个____________.3.圆柱、圆锥、圆台(1)圆柱、圆锥、圆台的概念分别以________的一边、__________的一直角边、________中垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台.(2)圆柱、圆锥、圆台的性质圆柱、圆锥、圆台的轴截面分别是________、___________、___________;平行于底面的截面都是__________.4.球(1)球面与球的概念以半圆的______所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球的________.(2)球的截面性质球心和截面圆心的连线________截面;球心到截面的距离d与球的半径R及截面圆的半径r的关系为______________.5.平行投影在一束平行光线照射下形成的投影,叫做__________.平行投影的投影线互相__________.6.空间几何体的三视图、直观图(1)三视图①空间几何体的三视图是用正投影得到的,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的.三视图包括__________、__________、__________.②三视图尺寸关系口诀:“长对正,高平齐,宽相等.” 长对正指正视图和俯视图长度相等,高平齐指正视图和侧(左)视图高度要对齐,宽相等指俯视图和侧(左)视图的宽度要相等.(2)直观图空间几何体的直观图常用斜二测画法来画,其规则是:①在已知图形所在空间中取水平面,在水平面内作互相垂直的轴Ox ,Oy ,再作Oz 轴,使∠xOz =________且∠yOz =________.②画直观图时,把Ox ,Oy ,Oz 画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=____________,∠x ′O ′z ′=____________.x ′O ′y ′所确定的平面表示水平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成____________x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的__________.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.注:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形,直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是在平行投影下画出的平面图形,用斜二测画法画出的直观图是在平行投影下画出的空间图形.【自查自纠】1.(1)平行 四边形 平行 (2)多边形 三角形2.(1)平行四边形 全等 平行四边形 矩形 (2)等腰三角形 直角三角形 直角三角形 直角三角形 直角三角形(3)等腰梯形 直角梯形 直角梯形 直角梯形 3.(1)矩形 直角三角形 直角梯形 (2)矩形 等腰三角形 等腰梯形 圆4.(1)直径 球心 (2)垂直于 d =R 2-r 2 5.平行投影 平行6.(1)①正(主)视图 侧(左)视图 俯视图 (2)①90° 90°②45°(或135°) 90° ③平行于 ④一半下列说法中正确的是( ) A .棱柱的底面一定是平行四边形B .棱锥的底面一定是三角形C .棱锥被平面分成的两部分不可能都是棱锥D .棱柱被平面分成的两部分可以都是棱柱 解:根据棱柱、棱锥的性质及截面性质判断,故选D.以下关于几何体的三视图的论述中,正确的是( )A .球的三视图总是三个全等的圆B .正方体的三视图总是三个全等的正方形C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆解:几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆.故选A.(2012·陕西)将正方体(如图a 所示)截去两个三棱锥,得到图b 所示的几何体,则该几何体的侧视图为( )解:还原正方体知该几何体侧视图为正方形,AD 1为实线,B1C 的正投影为A 1D ,且B 1C 被遮挡为虚线.故选B.用一张4cm×8cm 的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为________cm 2(接头忽略不计).解:以4cm 或8cm 为底面周长,所得圆柱的轴截面面积均为32πcm 2,故填32π.已知正三角形ABC 的边长为a ,那么△ABC的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′×C ′D ′=12×a ×68a =616a 2.故填616a 2.类型一 空间几何体的结构特征(2012·湖南)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()解:D 选项的正视图应为如图所示的图形. 故选D.【评析】本题主要考查空间想象能力,是近年高考中的热点题型.本题可用排除法一一验证:A ,B ,C 都有可能,而D 的正视图与侧视图不可能相同.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解:从俯视图看,B ,D 符合,从正视图看,B 不符合,D 符合,而从侧视图看D 也是符合的.故选D.类型二 空间几何体的三视图如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A .6 3B .93C .12 3D .18 3解:由三视图可知该几何体是一个斜四棱柱,高h =22-1=3,底面积为9,所以体积V =9×3=9 3.故选B.【评析】通过三视图考查几何体的体积运算是较为常规的考题,考生对此并不陌生.对于空间几何体的考查,从内容上看,柱、锥的定义和相关性质是基础,以它们为载体考查三视图、体积是重点.本题给出了几何体的三视图,只要掌握三视图的画法“长对正、高平齐,宽相等”,不难将其还原得到斜四棱柱.如图所示的三个直角三角形是 一个体积为20cm 3的几何体的三视图,则h =________cm.解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三角形,直角边长分别为5cm ,6cm ,三棱锥的高为h cm ,则三棱锥的体积为V =13×12×5×6×h=20,解得h =4cm.故填4.类型三 空间多面体的直观图如图是一个几何体的三视图,用斜二测画法画出它的直观图.解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥.画法:(1)画轴.如图1,画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°.图1(2)画底面.利用斜二测画法画出底面ABCD ,在z 轴上截取O ′使OO ′等于三视图中相应高度,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′.(3)画正四棱锥顶点.在Oz 上截取点P ,使PO ′等于三视图中相应的高度.(4)成图.连接P A ′,PB ′,PC ′,PD ′,A ′A ,B ′B ,C ′C ,D ′D ,整理得到三视图表示的几何体的直观图如图2所示.图2【评析】根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴、y 轴、z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A . 2B .6 2C .13D .2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =2 2.因此该四棱锥的体积为V =13Sh =13×22×3=2 2.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r ,4r .根据相似三角形的性质得, 33+l =r4r,解得 l =9. 所以,圆台的母线长为9cm.【评析】用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.圆锥底面半径为1cm ,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1如图所示. 设正方体棱长为x ,则CC 1=x ,C 1D 1=2x .作SO ⊥EF 于O ,则SO =2,OE =1.∵△ECC 1∽△ESO ,∴CC 1SO =EC 1EO ,即x2=1-22x1, 解得x =22(cm). 故内接正方体的棱长为22cm.1.在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a 的正四面体A 1-BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).3.长方体的外接球(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3. 5.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,对于能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变、三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=24S 原图形,S 原图形=22S 直观图.1.由平面六边形沿某一方向平移形成的空间几何体是( )A .六棱锥B .六棱台C .六棱柱D .非棱柱、棱锥、棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C .2.下列说法中,正确的是( ) A .棱柱的侧面可以是三角形B .若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C .正方体的所有棱长都相等D .棱柱的所有棱长都相等解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A .一个圆台、两个圆锥B .两个圆台、一个圆柱C .两个圆台、一个圆锥D .一个圆柱、两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.4.将正三棱柱截去三个角(如图1所示A ,B ,C分别是△GHI 三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )A B C D 解:观察图形,易知图2所示几何体的侧视图为直角梯形,且EB 为直角梯形的对角线.故选A.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()A .棱柱B .棱台C .圆柱D .圆台 解:由俯视图可知该几何体的上、下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为()A .2 2 B. 2C .2 3D. 3解:由三视图可知,此多面体是四棱锥,底面是边长为2的正方形,并且有一条长为2的侧棱垂直于底面,所以最长棱长为22+22+22=2 3.故选C.7.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为2,高为1的正三棱柱,所以底面积为2×12×2×2×32=23,侧面积为3×2×1=6,所以其表面积为6+2 3.故填6+23.8.如图是某个圆锥的三视图,根据图中所标尺寸可得俯视图中圆的面积为________,圆锥母线长为________.解:由三视图可知,圆锥顶点在底面的射影是底面圆的中心,根据图中的数据,底面圆的半径为10,则俯视图中圆的面积为100π,母线长为302+102 =1010,故填100π;1010.9.如图a 是截去一个角的长方体,试按图示的方向画出其三视图.解:图a中几何体三视图如图b 所示:10.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图.解:图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =∠yOz =90°.(2)画底面,利用斜二测画法画出底面ABCDEF ,在z 轴上截取O ′,使OO ′等于正六棱柱的高,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′E ′F ′.(3)画正六棱锥顶点.在Oz 上截取点P ,使PO ′等于正六棱锥的高.(4)成图.连接P A ′,PB ′,PC ′,PD ′,PE ′,PF ′,AA ′,BB ′,CC ′,DD ′,EE ′,FF ′,整理得到三视图表示的几何体的直观图如图3所示.注意:图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.11.某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分别为a 和b ,求ab的最大值.解:如图,则有AC 1=7,DC 1=6, BC 1=a ,AC =b ,设AB =x ,AD =y ,AA 1=z ,有x 2+y 2+z 2=7,x 2+z 2=6,∴y 2=1. ∵a 2=y 2+z 2=z 2+1,b 2=x 2+y 2=x 2+1, ∴a =z 2+1,b =x 2+1.∴ab =(z 2+1)(x 2+1)≤z 2+1+x 2+12=4,当且仅当z 2+1=x 2+1,即x =z =3时,ab 的最大值为4.水以匀速注入某容器中,容器的三视图如图所示,其中与题中容器对应的水的高度h 与时间t的函数关系图象是( )解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2空间几何体的表面积与体积1.了解棱柱、棱锥、台、球的表面积和体积的计算公式.2.会利用公式求一些简单几何体的表面积与体积.高考主要考查空间几何体的侧面积、表面积、体积以及相关元素的关系与计算,这些内容常与三视图相结合,以选择题、填空题的形式出现,也可能以空间几何体为载体,考查线面关系、侧面积、表面积以及体积.1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S直棱柱侧=__________,S正棱锥侧=__________,S正棱台侧=__________(其中C,C′为底面周长,h为高,h′为斜高).(2)圆柱、圆锥、圆台的侧面积S圆柱侧=________,S圆锥侧=________,S圆台侧=________(其中r,r′为底面半径,l为母线长).(3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体、锥体、台体的体积(1)棱柱、棱锥、棱台的体积V棱柱=__________,V棱锥=__________,V棱台=__________(其中S,S′为底面积,h为高).(2)圆柱、圆锥、圆台的体积V圆柱=__________,V圆锥=__________,V圆台=__________(其中r,r′为底面半径,h为高).3.球的表面积与体积(1)半径为R的球的表面积S球=________.(2)半径为R的球的体积V球=________.【自查自纠】1.(1)Ch 12Ch′12()C+C′h′(2)2πrlπrlπ(r+r′)l(3)侧面积两个底面积侧面积一个底面积2.(1)Sh 13Sh13h()S+SS′+S′(2)πr2h 13πr2h13πh()r2+rr′+r′23.(1)4πR2(2)43πR3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为()A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2)解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,∴S底=πr2=4π,S侧=6π×4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3.∴S底=πr2=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).故选C.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V=13×12×(2)2×2=23.故选C.已知圆柱的底面直径与高都等于球的直径,则圆柱的体积与球体积之比为()A.1∶2 B.2∶1 C.2∶3 D.3∶2解:设球半径为R,圆柱底面半径为R,高为2R.∵V球=43πR3,V圆柱=πR2·2R=2πR3,∴V圆柱∶V球=3∶2.故选D.长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=3,AA1=1,则球面面积为________.解:∵长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,则外接球的直径是长方体的体对角线,而长方体的体对角线的长为AB2+AD2+AA21=22,∴半径R= 2.∴S球=4πR2=8π.故填8π.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为____________.解:设圆锥底面半径为r,母线长为l,则⎩⎪⎨⎪⎧πr 2=π,πrl =2π,有⎩⎪⎨⎪⎧r =1,l =2,从而可知圆锥的高h =l 2-r 2=4-1= 3.∴V =13×π×3=33π.故填33π.类型一 空间几何体的面积问题如图,在△ABC 中,∠ABC =45°,∠BAC=90°,AD 是BC 边上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ; (2)若BD =1,求三棱锥D -ABC 的表面积. 解:(1)证明:∵折起前AD 是BC 边上的高, ∴沿AD 把△ABD 折起后,AD ⊥DC ,AD ⊥BD . 又DB ∩DC =D ,∴AD ⊥ 平面BDC .又∵AD ⊂平面ADB ,∴平面ADB ⊥ 平面BDC . (2)由(1)知,DA ⊥BD ,BD ⊥DC ,DC ⊥DA , DB =DA =DC =1,∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin60°=32.∴三棱锥D-ABC 的表面积S =12×3+32=3+32.【评析】充分运用图形在翻折前后的不变性,如角的大小不变,线段长度不变,线线关系不变等,再由面面垂直的判定定理进行推理证明,然后再计算.(2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是____________.解:由三视图可知该组合体为球内接一个棱长为2的正方体,∴正方体的体对角线为球的直径2r =22+22+22=23,S 球=4πr 2=12π.故填12π.类型二 空间旋转体的面积问题如图,半径为4的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.解:如图,设球的一条半径与圆柱相应的母线的夹角为α,圆柱侧面积S =2π×4sin α×2×4cos α=32πsin2α,当α=π4时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.故填32π.【评析】根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.(2012·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为____________.解:由三视图知该几何体为长4宽3高1的长方体的中间挖去一个半径为1高为1的圆柱所成几何体,所以表面积为2×(4×3+4×1+3×1)-2×π×12+2π×1×1=38.故填38.类型三 空间多面体的体积问题一个正三棱锥(底面是正三角形,顶点在底面的射影是底面正三角形的中心)的底面边长为6,侧棱长为15,求这个三棱锥的体积.解:如图所示为正三棱锥S -ABC ,设H 为正三角形ABC 的中心,连接SH ,则SH 的长即为该正三棱锥的高.连接AH 并延长交BC 于E ,则E 为BC 的中点,且AH ⊥BC .∵△ABC 是边长为6的正三角形,∴AE =32×6=33,AH =23AE =2 3. 在△ABC 中,S △ABC =12BC ×AE =12×6×33=93,在Rt △SHA 中,SA =15,AH =23, ∴SH =SA 2-AH 2=15-12= 3.∴V 正三棱锥=13×S △ABC ×SH =13×93×3=9.【评析】(1)求锥体的体积,要选择适当的底面和高,然后应用公式V =13Sh 进行计算.(2)求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为()A.23B.33C.43D.32解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD -BNC +V E -AMD +VF -BNC .依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32.作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F -BNC =13·S △BNC ·NF =224, V E -AMD =V F -BNC =224,V AMD -BNC =S △BNC ·MN =24. ∴V ABCDEF =23,故选A .类型四 空间旋转体的体积问题某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π3解:由三视图知几何体为一个正方体中间去掉一个圆锥,所以它的体积是V =23-13×π×12×2=8-23π.故选A.【评析】根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2012·河南模拟)已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12 B.4π3+16 C.2π6+16D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝⎛⎭⎫223+13×⎝⎛⎭⎫12×1×1×1=2π6+16.故选C.1.几何体的展开与折叠(1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱、正棱锥、正棱台也可直接利用公式;(2)圆柱、圆锥、圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法、补体法、还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.4.由几何体的三视图求几何体的表面积与体积问题,一般按如下三个步骤求解:(1)由三视图想象出原几何体的形状;(2)由三视图给出的数量关系确定原几何体的数量关系;(3)如果是规则几何体,直接代入公式求解,如果不是规则几何体,通过“割补”后,转化为规则几何体求解.1.已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为( )A .2π2B .2πC .3π3D .3π 解:易知圆锥的底面直径为2,母线长为2,则该圆锥的高为22-12=3,因此其体积是13π·12×3=3π3.故选C. 2.一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6解:设长方体的长、宽、高分别为a ,b ,c ,则有ab =2,ac =3,bc =6,解得a =1,b =2,c =3,则长方体的体对角线的长l=a 2+b 2+c 2= 6.故选D.3.一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233。
理科高考数学立体几何选择填空压轴题专练
立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。
最新-2021届高考数学理科1轮复习课件:第八章 立体几何 第7讲 立体几何中的向量方法 精品
A.π6
B.π4
π
π
C.3
D.2
【解析】 以 O 为坐标原点建系如图,
则
A(0,1,0),A1(0,1,1),B1
23,12,1,
C
23,-12,0.
所以A→A1=(0,0,1),B→1C=(0,-1,
-1),
所以 cos〈A→A1,B→1C〉=A|A→→AA11·||BB→→11CC| =0×1×0+002×+((--11))+2+1×((--1)1)2 =- 22, 所以〈A→A1,B→1C〉=34π, 所以异面直线 B1C 与 AA1 所成的角为π4.故选 B.
m·A→C=0, 设平面 ACC1A1 的一个法向量为 m=(x,y,z),则由m·C→C1=0
得x-+xy+=03,z=0,取 m=( 3,- 3,1).
所以 cos〈B→1D,m〉=B|B→→ 11DD·||mm|
=
0× 3+1×(- 02+12+(- 3)2×
3()+3)(2-+(3-)×31)2+12=
A→O=V→O-V→A=12V→D-V→A=16(b+c-5a), 所以|D→M|= 16(-2a-2b+c)2=12, |A→O|= 16(b+c-5a)2= 22, D→M·A→O=16(-2a-2b+c)·16(b+c-5a)=14. 设 DM 与 AO 所成的角是 θ,
所以 cos θ=||DD→→MM|··A|→A→OO||= 22,所以 θ=45°.
取 x=1,则 m=(1,-1,0).设直线 PD 与平面 PAC 所成
的角为 α,所以 sin
α=|cos〈P→D,m〉|=||PP→→DD·|·|mm||=
2 5×
2
=
510,因为 α∈0,π2 ,所以 cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:1. (本题满分12分)如图,P A ⊥矩形A B C D 所在的平面,M ,N 分别是P C ,A B 的中点,且2PA AB AD ==. (I )求证:M N C D ⊥;(II )求二面角P AB M --的余弦值大小; (III )在线段A D 上是否存在一点G ,使G M P B C ⊥平面? 若不存在,说明理由;若存在,确定点G 的位置.2.如图, ABCD 是边长为3的正方形, D E ⊥平面ABCD ,DE AF //,AF DE 3=, BE 与平面ABCD 所成角为060.(Ⅰ)求证:A C ⊥平面BD E ; (Ⅱ)求二面角D BE F --的余弦值;(Ⅲ)设点M 是线段B D 上一个动点,试确定点M 的位置,使得//A M 平面B E F ,并证明你的结论.3如图,在四棱锥P A B C D -中,P A 丄平面A B C D ,A C 丄A D ,AB 丄BC ,0=45ABC ∠,==2P A AD ,=1A C .(Ⅰ)证明P C 丄A D ;(Ⅱ)求二面角A P C D --的正弦值;(Ⅲ)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.4在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠B AF=90º,AD= 2,AB=AF=2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点, (ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值; (Ⅱ)若二面角D-AP-C的余弦值为3,求PF的长度.PFEDCABDBAP5 如图,三棱柱111C B A ABC -中,1AA ⊥面ABC ,2,==⊥AC BC AC BC ,13AA =,D 为AC 的中点. (Ⅰ)求证:11//BDC AB 面;(Ⅱ)求二面角C BD C --1的余弦值;(Ⅲ)在侧棱1AA 上是否存在点P ,使得1BDC CP 面⊥? 请证明你的结论.6在如图所示的几何体中,四边形ABC D 为平行四边形,=90ABD ∠︒,EB ⊥平面ABC D ,EF//AB ,=2AB,==1EB EF,=BC M 是BD 的中点.(Ⅰ)求证:EM //平面ADF ; (Ⅱ)求二面角D-AF-B 的大小; (Ⅲ)在线段EB 上是否存在一点P , 使得C P 与AF 所成的角为30︒? 若存在,求出BP 的长度;若不 存在,请说明理由.CACBABD CAF EBMD7.如图所示,⊥PA 平面ABC ,点C 在以AB 为直径的⊙O 上, 30=∠CBA ,2PA AB ==,点E 为线段PB 的中点,点M 在AB 弧上,且O M ∥A C . (Ⅰ)求证:平面M O E ∥平面PAC ;(Ⅱ)求证:平面PAC ⊥平面P C B ; (Ⅲ)设二面角M B P C --的大小为θ,求c o s θ的值.8.如图,在三棱锥P A B C -中,A B A C =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2 (Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
MEBO CAP如图,在直三棱柱ABC-A 1B 1C 1中,A C B C ⊥,1AC BC BB ==,点D 是BC 的中点. (Ⅰ)求证:1A C //平面1A B D ; (Ⅱ)求二面角1B AD B --的余弦值;(Ⅲ) 判断在线段1B B 上是否存在一点M ,使得11A M B D ⊥?若存在,求出11B M B B的值;若不存在,请说明理由.10.如图,正方体''''A B C D A B C D -中,E 是棱BC 的中点.(I )求证:''BD C DE 平面;(II )试在棱'C C 上求一点P ,使得平面'''A B P C DE ⊥平面.PABCDE 如图,在四面体P A B C D -中,底面A B C D 是正方形,PA ABCD ⊥底面,1PA AB ==.(I )求证:P C ⊥D B ;(II )求二面角D P B C --的余弦值; (III )若点E 在P B 上,当E B 取何值时,E C 与平面A B C D 所成角为030.13.如图,在长方体1111ABC D A B C D -中1,AB AD E ==为C D 中点.(Ⅰ)求证:11B E AD ⊥(Ⅱ)在棱1A A 上是否存在一点P ,使得//D P 平面1B AE ?若存在,求A P 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30︒,求A B 的长.14如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.姓名: 1(2011朝阳一模理16).(本小题满分13分)如图,在四棱锥P A B C D -中,底面A B C D 为直角梯形,且//A D B C ,90A B C P A D ∠=∠=︒,侧面P A D ⊥底面A B C D . 若12P A A B B C A D ===.(Ⅰ)求证:C D ⊥平面PAC ;(Ⅱ)侧棱P A 上是否存在点E ,使得//BE 平面PC D ?若存在,指出点E 的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角A P D C --的余弦值.2如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.A B ∥C D ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB D E ⊥;(Ⅱ)求直线EC 与平面A B E 所成角的正弦值; (Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出E F E A;若不存在,说明理由.3如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC上的点,PA =PD =2,BC =12AD =1,CD .(Ⅰ)若点M 是棱PC 的中点,求证:PA // 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ;PDM4如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠= ,DE AF //,22===AF DA DE .(Ⅰ)求证:A C ⊥平面BD E ; (Ⅱ)求证://A C 平面B E F ; (Ⅲ)求四面体BDEF 的体积.9.在长方形11AA B B 中,124AB AA ==,C ,1C 分别是A B ,11A B 的中点(如左图).将此长方形沿1C C 对折,使平面11AA C C ⊥平面11CC B B (如右图),已知D ,E 分别是11A B ,1C C 的中点. (Ⅰ)求证:1C D ∥平面1A BE ;(Ⅱ)求证:平面1A B E ⊥平面11AA B B ; (Ⅲ)求三棱锥11C A BE -的体积.3.如图,在三棱锥P A B C -中,平面P A C ⊥平面A B C ,A B A C B C ==,E 、F 分别是AP 、A C 的中点.(Ⅰ)求证:直线EF ∥平面P B C ; (Ⅱ)求证:平面BEF ⊥平面P A C .A BCDFEEP姓名:1.如图,在直三棱柱111ABC A B C -中,5A B A C ==,D ,E 分别为B C ,1B B 的中点,四边形11B BCC 是边长为6的正方形. (Ⅰ)求证:1A B ∥平面1AC D ; (Ⅱ)求证:C E ⊥平面1AC D ; (Ⅲ)求二面角1C AC D --的余弦值.2如图,四棱锥P ABC D -的底面是直角梯形,//AB C D ,AB AD ⊥,P A B ∆和PAD ∆是两个边长为2的正三角形,4D C =,O 为BD 的中点,E 为P A 的中点. (Ⅰ)求证:PO ⊥平面A B C D ;(Ⅱ)求证://O E 平面P D C ;(Ⅲ)求直线C B 与平面P D C 所成角的正弦值.AD OCPBE3.如图,在多面体A B C D E F -中,四边形A B C D 为正方形,//E F A B ,E F E A ⊥,2AB EF =,090AED ∠=,AE ED =,H 为A D 的中点.(Ⅰ)求证://E H 平面FAC ; (Ⅱ)求证:EH ⊥平面A B C D ; (Ⅲ)求二面角A F C B --的大小.4如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且F A F C =.(Ⅰ)求证:A C ⊥平面B D E F ;(Ⅱ)求证:F C ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.5在直三棱柱111ABC A B C -中,1BC CC AB ===2 ,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.E D ABCFH(I )求证:⊥C B 1平面BNG ;(II)若CG //平面M AB 1,试确定G 点的位置,并给出证明;(III)求二面角1M AB B --的余弦值.6.如图,四棱锥P A B C D -中,底面ABCD 为平行四边形,60D A B ∠=︒,2A B A D =,P D ⊥底面ABCD .(I )证明:PA BD ⊥;(II )若PD=AD ,求二面角A-PB-C 的余弦值.7如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD (I) 求异面直线BF 与DE 所成的角的大小;(II) 证明平面AMD ⊥平面CDE ;(III 求二面角A-CD-E 的余弦值。
8.在如图所示的几何体中,四边形A B C D 是等腰梯形,A B ∥C D ,60,D AB FC ∠=⊥平面,,ABCD AE BD CB CD CF ⊥==.(Ⅰ)求证:B D ⊥平面A E D ; (Ⅱ)求二面角F B D C --的余弦值.9如图5所示,在四棱锥P A B C D -中,AB ⊥平面PAD ,//A B C D ,PD AD =,E 是P B 的中点,F 是C D 上的点且12D F A B =,P H 为△PAD 中A D 边上的高.(1)证明:PH ⊥平面A B C D ;(2)若1PH =,AD =1F C =,求三棱锥E B C F -的体积;(3)证明:E F ⊥平面P A B .10.方体1111D C B A ABCD -中,E ,F ,G 分别为1AA ,AB ,AD 的中点, 求证:平面EFG ∥平面11CD BFE C1C A11. (本小题共14分)在如图的多面体中,E F ⊥平面A E B ,AE EB ⊥,//AD EF ,//E F B C ,24BC AD ==,3E F =,2AE BE ==, G 是B C 的中点.ADBCDO AP(Ⅰ) 求证://A B 平面D E G ;(Ⅱ) 求证:B D E G ⊥;(Ⅲ) 求二面角C D F E --的余弦值.12.如图,四棱锥P A B C D -中,底面A B C D 是正方形,O 是正方形A B C D 的中心,P O ⊥底面A B C D ,E 是P C 的中点.求证:(Ⅰ)P A ∥平面BD E ;(Ⅱ)平面PAC ⊥平面BD E .13.如图5所示,在四棱锥P ABC D -中,底面ABC D 为矩形,PA ⊥平面A B C D ,点E 在线段P C 上,P C ⊥平面B D E .(Ⅰ)证明:BD ⊥平面P A C ;(Ⅱ)若1PA =,2AD =,求二面角B PC A --的正切值.14四棱锥P A B C D -中,底面A B C D 为等腰梯形, 其中//A D B C ,O 为A D 中点,P O ⊥底面A B C D .又8,4,4AB BC AD PO ====.( I ) 求直线PA 和C D 所成角的余弦值;( II ) 求PAB 和平面P A D 所成平面角的余弦值;C。