最新重庆市巴蜀中学2019届九年级数学下学期第二次月考试题
重庆巴蜀中学初2019届九年级下二诊考试数学试卷(无答案)
![重庆巴蜀中学初2019届九年级下二诊考试数学试卷(无答案)](https://img.taocdn.com/s3/m/33ccb7cb700abb68a882fb03.png)
重庆巴蜀中学初2019届九年级下二诊考试数学试题(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项; 3.作图(包括辅助线)请一律用黑色签字笔完成; 4.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线2(0)y ax bx c a =++≠)的顶点坐标为24-24b ac b a a ⎛⎫- ⎪⎝⎭,,对称轴为a b x 2-=. —.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确,请将答题卡...上对应题目正确答案的标号涂黑. 1.《九章算术》中注有“今两算得失相反,要令正负以名之”意思是今有两数其意义相反,则分别叫做正数与负数.如果向北走两步记作+2步.那么向南走7步记作( ) A .+7步B .-7步C .-5步D .-2步2.如图所示几何体的俯视图是( )A .B .C .D . 3.计算()()32--2x x ⋅的结果是( ) A.-4x 6B.-4x 5C.2x 5D.4x 64.如图,直线l 1//l 2.若172350∠=︒∠=︒,,则2∠的大小为( ) A .︒50B .︒52C .︒58D .︒625.小丽同学准备用自己零花钱购买一台学生平板电脑,她原有750元.计划从本月起每月存入30元,直到她至少存有1080元,设x 个月后小丽至少有1080元,则可列计算月数的不等式为( ) A .10807503>+xB .30x-750≥1080C .30x-750<1080D .10807503≥+x6.将抛物线y=x 2+1先向左平移2个单位,再向下平移3个单位.得到的新抛物线的表达式为( ) A .y=(x +2)2+4B .y=(x -2)2-2C .y=(x -2)2+4D .y =(x +2)2-27.估计()2102-的值应在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间8.如图.AB 是O 的切线,A 为切点.点C 在O 上,连接BC 并延长交AD 干点D .若︒=∠70AOC ,则ADB ∠=( ) A .︒35B .︒45C .︒55D .︒659.如图所示的运算程序中,若开始输入的x 值为96.我们发现第一次输出的结果为48.第二次输出的结果为24.则第2019次输出的结果为( ) A .6B .3C .12D .2100810.下列命题中.真命题是( )A .一组对边相等且另一组对边平行的四边形是平行四边形B .对角线互相垂直的四边形是菱形C .对角线相等的四边形是矩形D .一组邻边相等的矩形是正方形11.如图是重庆轻轨10号线龙头寺公园站入口扶梯建设示意图.起初工程师计划修建一段坡度为3:2的扶梯AB ,扶梯总长为1315米.但这样坡度太陡,扶梯太长容易引发安全事故.工程师修改方案:修建AC 、DE 两段扶梯,并减缓各扶梯的坡度,其中扶梯AC 和平台CD 形成的ACD ∠为︒135.从E 点看D 点的仰角为︒5.36.AC 段扶梯长218米,则DE 段扶梯长度约为( )米(参考数据:sin ︒5.36≈53.cos ︒5.3654≈,tan ︒5.3643≈) A .43B .45C .47D .4912.若关于x 的方程111++=+-x a x x a 的解为负数,且关于x 的不等式组()⎪⎪⎩⎪⎪⎨⎧+≥->--3121021x x a x 无解.则所有满足条件的整数a 的值之和是( ) A .5B .7C .9D .10二.填空题:(本大题6个小题,每小题4分,共24分)请将每个小题的答案直接填在答题卡...中对应的横线上.13.计算-218-+-|-1|3π()()= . 14.一个不透明的袋中装有四张完全相同的卡片,把它们分别标上数字-l 、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片.则两次抽取的卡片上数字之和为偶数的概率是 .15.如图.圆O 的直径AB =10,C 为圆周上一点.∠ACB 的平分线CD 交圆O 于D ,连接AD 、BD ,则图中阴影部分的面积为 .16.如图.△ABC 中.∠ABC =90°,BC =l .将△ABC 绕点B 逆时针旋转得△A'BC'.C'恰好落在AC 边的中点处.连接AA',取AA'的中点D ,则C'D 的长为 .17.甲乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发到乙地停止,货车先出发从甲地匀速开往乙地,货车开出一段时间后,轿车出发,匀速行驶一段时间后接到通知提速后匀速赶往乙地(提速时间不计),最后发现轿车比货车提前0.5小时到达,下图表示两车之间的距离y (km )与货车行驶的时间x (h )之间的关系,则货车行驶 小时.两车在途中相遇.18.王老师在期中考试过后,决定给同学们发放奖品.他到对面one way 文具店看了一下,准备买一些钢笔和笔记本,再给班级购买一个中考倒计时电子显示屏,经预算总共需要1501元,其中电子显示屏的价格为41元。
重庆巴蜀中学初2019届初三下第二次定时作业数学试题卷
![重庆巴蜀中学初2019届初三下第二次定时作业数学试题卷](https://img.taocdn.com/s3/m/e7d1de4927d3240c8447efd4.png)
输入x y 、输出结果22x y -0x ≤是 否22x y + 初2019届初三(下)第二次定时作业数 学 试 题命题人:刘佳 盛元 审题人:王军 考试时间: 120分钟 满分:150分参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24()24b ac b a a--,,对称轴为直线 . 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确,请将答题卡...上对应题目正确答案的标号涂黑. 1.3的相反数是( )A .–3B . 3C .13-D .132. 中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )A .B .C .D .3.两个相似三角形的面积比是1:9,那么这两个三角形的周长比是( ) A .1:81 B .1:9 C .1:3 D .1:64. 用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .225.估计)210(2-的值应在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间 6. 下列命题是真命题的是( )A .菱形的对角线相等B .矩形的对角线互相垂直平分C .任意多边形的内角和为360°D .三角形的中位线平行第三边且等于第三边的一半 7.按如图所示的运算程序运算,能使输出的结果为的9的一组,x y 的值是( )A .1,2x y ==B .2,1x y =-=C .2,1x y ==D .3,1x y =-=第1个第2个第3个…2b x a =-8.某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .19B .16C .14D .139. 如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且点C 是弧BD 的中点.过点C 作AD 的垂线EF 交直线AD 于点E.若⊙O 的半径为2.5,AC 长为4,则CE 的长度为( ) A. 3 B. 203C. 125D.16510.轨道环线通车给广大市民带来了很大便利,如图是渝鲁站出口横截面平面图,扶梯AB 的坡度1:2.4i =,在距扶梯起点A 端6米的P 处,用1.5米的测角仪测得扶梯终端B 处的仰角为14°,扶梯终端B 距顶部2.4米,则扶梯的起点A 与顶部的距离是( ) (参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25)A .7.5米B .8.4米C .9.9米D .11.4米 11. 如图,矩形ABCD 的顶点A 在y 轴上,反比例函数(0)ky x x=>的图象恰好过点B 和点C ,AD 与x 轴交于点E ,且AE:DE=1:3,若E 点坐标为(2,0),且AD=2AB ,则k 的值是( ) A .6 B .8 C .10D .1212. 若实数a 使关于x 的二次函数2(1)2y x a x a =+--+,当1x <-时,y 随x 的增大而减小,且使关于y的分式方程4312112a y y--=--有非负数解,则满足条件的所有整数a 值的和为( )A .1B .4C .0D .3二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13. 报告显示,2018年中国家电市场规模达到8104亿元,同比增幅达到001.9,将8104亿元用科学计数法表示为 元.14. 计算: 021)()13π-+--= .15.如图,在菱形ABCD 中,︒=∠60A ,AB=6,以点A 为圆心、AD 长为半径画弧,图中阴影部分的面积是 .15题图10题图11题图9题图16.如图,在平行四边形ABCD 中,︒=∠30B ,且CA BC =,将ABC ∆沿AC 翻折至C B A '∆,B A '交CD 于点E ,连接D B '. 若33=AB ,则D B '的长度为 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行.小宁先出发5分钟后,小强骑自行车匀速回家.小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟. 两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示.则当弟弟到家时,小宁离图书馆的距离为 米.18.阳春三月,某校乒乓球俱乐部举行了一场乒乓球友谊赛,比赛为单循环制,即所有参赛选手彼此恰好比赛一场. 记分规则是:每场比赛胜者得3分、负者得0分、平局各得1分.赛后统计,所有参赛者的得分总和为210分,且平局数不超过比赛总场数的13,本次友谊赛共有参赛选手 人.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤.画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)2)())(()(2y x y x y x y x x +++-+-; (2)35(2)242x x x x -÷+---.20.如图,在ABC ∆中,AB BC =,AD 平分BAC ∠,40B ∠=︒,过点C 作CE AB ⊥于点E ,交AD 于点O .(1)求ACB ∠的度数;(2)过点E 作//EF AD 交BC 于点F ,求CEF ∠的度数.17题图16题图 ADBE CB '21. 在新的教学改革的推动下,某中学初三年级积极推进走班制教学。
17.中考数学专题“探索规律型”相关的探索性问题数学母题题源系列(解析版)
![17.中考数学专题“探索规律型”相关的探索性问题数学母题题源系列(解析版)](https://img.taocdn.com/s3/m/ca31da98a1c7aa00b52acba3.png)
专题03 中考中与“探索规律型”相关的探索性问题【母题来源一】【2019•武汉】观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是A.2a2–2a B.2a2–2a–2C.2a2–a D.2a2+a【答案】C【解析】∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2·2=2a2,∴原式=2a2-a.故选C.【名师点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.【母题来源二】【2019•枣庄】如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A .B .C .D .【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D .【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10. 【母题来源三】【2019•济宁】已知有理数a ≠1,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,-1的差倒数是()11112=--.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是 A .-7.5 B .7.5 C .5.5 D .-5.5【答案】A 【解析】∵a 1=–2,∴a 2()11123==--,a 3131213==-,412312a ==--,……∴这个数列以-2,13,32依次循环,且-2131326++=-,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(16-)-2152=-=-7.5, 故选A .【名师点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.【母题来源四】【2019•雅安】如图,在平面直角坐标系中,直线l 1:y 3=x +1与直线l 2:y =交于点A 1,过A 1作x 轴的垂线,垂足为B 1,过B 1作l 2的平行线交l 1于A 2,过A 2作x 轴的垂线,垂足为B 2,过B 2作l 2的平行线交l 1于A 3,过A 3作x 轴的垂线,垂足为B 3…按此规律,则点A n 的纵坐标为A .(32)n B .(12)n +1 C .(32)n -112+D .312n -【答案】A【解析】联立直线l 1与直线l 2的表达式并解得:x =y 32=,故A 132),则点B 10),则直线B 1A 2的表达式为:y =+b ,将点B 1坐标代入上式并解得:直线B 1A 2的表达式为:y 332=-,将表达式y 3与直线l 1的表达式联立并解得:x =,y 94=,即点A 2的纵坐标为94,同理可得A 3的纵坐标为278, …按此规律,则点A n 的纵坐标为(32)n , 故选A .【名师点睛】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.【母题来源五】【2019•广元】如图,过点A 0(0,1)作y 轴的垂线交直线l :y 3=于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2,△A 2A 3A 4,△A 4A 546,…,其面积分别记为S 1,S 2,S 3,…,则S 100为A.(2)100B .(100 C .4199 D .2395【答案】D【解析】∵点A 0的坐标是(0,1),∴OA 0=1, ∵点A 1在直线y =上,∴OA 1=2,A 0A1= ∴OA 2=4,∴OA 3=8,∴OA 4=16, 得出OA n =2n , ∴A n A n +1=2n∴OA 198=2198,A 198A 199=2198, ∵S 112=(4-1= ∵A 2A 1∥A 200A 199,∴△A 0A 1A 2∽△A 198A 199A 200,∴1001S S =1982, ∴S =2396=2395, 故选D .【名师点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.【母题来源六】【2019•淄博】如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y 4x=(x >0)的图象上.则y 1+y 2+…+y 10的值为A .B .6C .D .【答案】A【解析】过C 1、C 2、C 3…分别作x 轴的垂线,垂足分别为D 1、D 2、D 3…其斜边的中点C 1在反比例函数y 4x=,∴C (2,2)即y 1=2,∴OD 1=D 1A 1=2, 设A 1D 2=a ,则C 2D 2=a 此时C 2(4+a ,a ),代入y 4x=得:a (4+a )=4,解得:a 2=,即:y 22=,同理:y 3=y 4=∴y 1+y 2+…+y 10=22+++=…A .【名师点睛】考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.【母题来源七】【2019•大庆】归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为__________.【答案】3n+2【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.【母题来源八】【2019•天水】观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.【母题来源九】【2019•甘肃】如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2–1=3个.第3幅图中有2×3–1=5个.第4幅图中有2×4–1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n–1)个.当图中有2019个菱形时,2n–1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.【母题来源十】【2019•衡阳】在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为__________.【答案】(–1010,10102) 【解析】∵A 点坐标为(1,1), ∴直线OA 为y =x ,A 1(–1,1), ∵A 1A 2∥OA , ∴直线A 1A 2为y =x +2, 解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴A 2(2,4), ∴A 3(–2,4), ∵A 3A 4∥OA , ∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9), ∴A 5(–3,9) …,∴A 2019(–1010,10102), 故答案为:(–1010,10102).【名师点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.【母题来源十一】【2019•北京】小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 x 1 x 1 x 1 第2组 x 2 x 2 x 2 第3组 第4组x 4x 4x 4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为__________;(3)7天后,小云背诵的诗词最多为__________首.【解析】(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6.(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4=14③,x2+x4≤14④,①+②+④–③得,3x2≤28,∴x2283≤,∴x1+x2+x3+x4283≤+14703=,∴x1+x2+x3+x4≤2313,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【名师点睛】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.【母题来源十二】【2019•安徽】观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,第3个等式:2115315=+,第4个等式:2117428=+,第5个等式:2119545=+,……按照以上规律,解决下列问题: (1)写出第6个等式:21111666=+; (2)写出你猜想的第n 个等式:()2112121n n n n =+--(用含n 的等式表示),并证明. 【解析】(1)第6个等式为:21111666=+,故答案为:21111666=+. (2)()2112121n n n n =+--. 证明:∵右边()()112112212121n n n n n n n -+=+===---左边.∴等式成立, 故答案为:()2112121n n n n =+--. 【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出()2112121n n n n =+--的规律,并熟练加以运用.【命题意图】这类试题主要考查探索规律在中考中的应用,包括图形类的规律、数字类的规律、图表的规律、一次函数、反比例函数和二次函数中有关点的坐标规律的探索等. 【方法总结】根据一系列数式关系或一组相关图形的变化规律,从中总结其所反映的规律.其中,以图形为载体的数字规律最为常见.猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行观察对比,仿照数式规律的方法猜想得到最终结论. 1.解数字或数式规律探索题的方法 第一步:标序号;第二步:找规律,分别比较各部分与序号数(1,2,3,4,…,n )之间的关系,把其蕴含的规律用含序号数的式子表示出来;第三步:根据找出的规律表示出第n 个数式. 2.几何图形中的规律探究题图形规律问题主要是观察图形的组成、拆分等过程中的特点,分析其联系和区别,用相应的式子描述图形的变化所反映的规律. 3.点的坐标变化规律探究题图形在直角坐标系中的变化而引起点的坐标的变化,解决此类型题应先分析图形的变化规律,求出一些点的坐标,再结合点在直角坐标系中的位置变化找出坐标的变化规律,仿照猜想数式规律的方法得到最终结论.1.【安徽省池州市贵池区三级教研网络中片2019届中考数学二模试卷】已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199= A .7500 B .10000 C .12500 D .2500【答案】A【解析】101+103+105+107+…+195+197+199 =221199199()()22++- =1002-502, =10000-2500, =7500, 故选A .【名师点睛】本题考查了规律型–––数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.2.【2019年福建省南平市六校联考中考数学模拟试卷(4月份)】已知一列数:a 1=1,a 2=3,a 3=6,a 4=10,…则122017111a a a +++=A .20162017 B .40322017 C .20172018D .40342018【答案】D【解析】∵a 1=1,a 2=3,a 3=6,a 4=10,…∴122017111a a a +++1121320172018=+++⨯ 111112[(1)()()]22320172018=-+-+-12(1)2018=-201722018=⨯40342018=. 故选D .【名师点睛】本题考查了规律型的数字变化类,解题的关键是找到拆项的方法. 3.【2019年广西贺州市昭平县中考数学一模试卷】若x 是不等于1的实数,我们把11x-称为x 的差倒数,如2的差倒数是11x -=-1,-1的差倒数为11(1)--=12,现已知x 1=13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为 A .-13B .-2C .3D .4【答案】B【解析】根据差倒数的定义可得出:x 1=13,x 2=1113-=32,x 3=1312-=-2,x 4=11(2)--=13,… 由此发现该组数每3个一循环.∵2019÷3=673,∴x2019=x3=-2.故选B.【名师点睛】本题考查了数字的变化以及求倒数,解题的关键是发现“该组数每3个一循环”这个规律.本题属于基础题,难度不大,根据差倒数的定义式列出前4个数据即可找出规律得以解决.4.【云南省昆明市五华区2019届九年级中考数学二模试卷】仔细观察下列数字排列规律,则a=A.206 B.216C.226 D.236【答案】C【解析】观察发现:2=1×2-0;10=3×4-2;26=5×6-4;50=7×8-6…a=15×16-14=226,故选C.【名师点睛】考查了数字的变化类问题,解题的关键是找到各个图形中数字规律,难度不大.5.【重庆市巴蜀中学2019年初三第二次模拟考试数学试题】如图,将一些形状相同的小五角星按图中所规放,据此规律,第10个图形中五角星的个数为A.120 B.121C.99 D.100【答案】A【解析】第1个图形中小五角星的个数为3;第2个图形中小五角星的个数为8;第3个图形中小五角星的个数为15;第4个图形中小五角星的个数为24;则知第n个图形中小五角星的个数为n(n+1)+n.故第10个图形中小五角星的个数为10×11+10=120个,故选A.【名师点睛】本题主要考查图形规律探究,解决本题的关键是要从已知的特殊个体推理得出一般规律.6.【2019年山东省日照市中考数学二模试卷】如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;按B3此规律作下去,则点B n的坐标为A.(2n,2n-1)B.(2n,2n+1)C.(2n+1,2n)D.(2n-1,2n)【答案】D【解析】由题意可得,B1(1,2),B2(2,4),B3(4,8),B4(8,16)…∴点B n的坐标为(2n-1,2n),故选D.【名师点睛】此题重点考查学生对一次函数的拓展应用,找出其中的规律是解题的关键.7.【天津市河西区2019年中考二模数学试卷】如图,第一个图形是用3根一样长度的木棍拼接而成的等边三角形ABC,第二个图形是用5根同样木棍拼接成的;那么按图中所示的规律,在第n个图形中,需要这样的木棍的根数为__________.n【答案】21【解析】第1个图形有2+1=3根,第2个图形有1+2+2=5根,第3个图形有1+2+2+2=7根…第n 个图形有2n +1根, 故答案为:2n +1.【名师点睛】本题考查了图形的变化类问题,仔细观察图形发现图形的变化规律是解答本题的关键. 8.【江苏省徐州市2019届九年级第二次模拟考试数学试题】如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123101111a a a a ++++的值为__________.【答案】175264【解析】a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2), ∴12310111111111324351012a a a a +++⋯+=++++⨯⨯⨯⨯ (111111)133591124461012=+++++++⨯⨯⨯⨯⨯⨯…… 11111(1)()2112212=-+- 175264=, 故答案为:175264.【名师点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题. 9.【2019年贵州省黔南州中考数学一模试卷】已知函数1()(1)=+f x x x ,其中f (a )表示当x =a 时对应的函数值,如1(1)12f =⨯,11(2)()23(1)f f a a a ==⨯+,,则f (1)+(2)+f (3)+f (2019)=__________. 【答案】20192020【解析】∵1(1)12f =⨯,11(2),()23(1)f f a a a ==⨯+, ∴f (1)+f (2)+f (3)+f (2019)=112⨯+123⨯+…+120192020⨯=1-12+12-13+…+12019-12020=1-1 2020=2019 2020.故答案为:2019 2020.【名师点睛】此题主要考查代数式的求值,解题的关键是发现规律,进行简便求解.10.【2019年安徽省淮北市濉溪县中考数学二模试卷】观察下列式子:0×2+1=12①;1×3+1=22②;2×4+1=32③;3×5+1=42④;…(1)第⑤个式子__________,第⑩个式子__________;(2)请用含n(n为正整数)的式子表示上述的规律,并证明.【解析】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102,故答案为:4×6+1=52,9×11+1=102.(2)第n个式子为(n-1)(n+1)+1=n2,证明:左边=n2-1+1=n2,右边=n2,∴左边=右边,即(n-1)(n+1)+1=n2.【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n-1)(n+1)+1=n2的规律,并熟练加以运用.。
重庆市巴蜀中学2023-2024学年九年级下学期中考押题密卷数学试题
![重庆市巴蜀中学2023-2024学年九年级下学期中考押题密卷数学试题](https://img.taocdn.com/s3/m/024df249fbd6195f312b3169a45177232e60e440.png)
重庆市巴蜀中学2023-2024学年九年级下学期中考押题密卷数学试题一、单选题1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.如图所示的几何体,其左视图是( )A .B .C .D . 3.反比例函数12y x =-一定经过的点是( ) A .()3,4-- B .()3,4- C .()3,4 D .()2,4- 4.为了解江北区2024年初中毕业年级体育考试成绩情况,从全区20000名初三参考学生中随机抽取1500名学生的体育考试成绩进行分析,下列说法正确的是( )A .该调查方式是普查B .该调查中的总体是全区初三学生C .该调查中个体是江北区每位初三学生的体考成绩D .该调查中的样本是抽取的1500名学生5.如图,ABC V 与111A B C △是以点O 为位似中心的位似图形,若1112OC CC =,18ABC S =V ,则111A B C S =△( )A .2B .4.5C .6D .96.若n 为正整数,且满足估算(1n n <<+,则n 的值为( )A .18B .19C .20D .21 7.如图,点B 、C 、D 、E 在⊙O 上,CD 是⊙O 的直径,CD 的延长线交过点B 的切线于点A ,若E α∠=,则A ∠的度数是( )A .αB .1452α︒-C .90α︒-D .902α︒-8.由著名导演张艺谋执导的电影《第二十条》因深刻体现了普法的根本是人们对公平正义的勇敢追求,创下良好口碑,自上映以来票房连创佳绩.据不完全统计,第一周票房约5亿元,以后两周以相同的增长率增长,三周后票房收入累计达约20亿元,设增长率为x ,则方程可以列为( )A .255520x ++=B .()25120x +=C .()35120x +=D .()()25515120x x ++++=9.如图,在正方形ABCD 中,15AB =.E 为正方形外一点,连接CE ,且AE C E ⊥,3AE =,45DEC ∠=︒.过D 作DF CE ⊥于F ,连接BF ,则BF 的长度为( )A .B .12C .D .1510.给定一列数,我们把这列数中第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数),已知1a x =.并规定:111n na a +=-,123n n T a a a a =⋅⋅K ,123n n S a a a a =+++⋯+.则①25a a =;②1231000211x T T T T x -+++⋯+=-;③对于任意正整数k ,()3333233132k k k k k k T S S T T T ++---=--成立,以上结论中正确的有( )A .0个B .1个C .2个D .3个二、填空题11.计算:201(3)2π-⎛⎫-+= ⎪⎝⎭. 12.已知一个多边形的内角和与外角和之差为540︒,则这个多边形的边数是.13.一个不透明的盒子里放置三张完全相同的卡片,分别标有数字2-,1-,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为.14.已知直线y x m =+与直线2y x n =-+交于点A ,若点A 的横坐标为3,则关于x 的不等式2x m x n +>-+的解集为.15.如图,以Rt ABC △的直角边BC 为直径的半圆O ,与斜边AB 交于点D ,若2BD =,4BC =,则图中阴影部分的面积为.16.若关于x 的一元一次不等式组423323x x x m -⎧<+⎪⎨⎪-≥⎩至少有6个整数解,且关于y 的分式方程41322m y y -=---有非负整数解,则符合条件的整数m 的值的和是. 17.如图,矩形ABCD 中,点E 为CD 边的中点,连接AE ,过E 作EF AE ⊥交BC 于点F ,连接AF ,若5AF =,32CE =,则线段CF 的长为.18.一个四位正整数M ,其各个数位上的数字均不为零,如果个位数字等于十位数字与千位数字之和,则称这个四位数M 为“压轴数”.将“压轴数”M 的千位数字去掉得到一个三位数,再将这个三位数与原“压轴数”M 的千位数字的3倍求和,记作()F M .则最大的“压轴数”与最小的“压轴数”之差为.有两个四位正整数100020010P a b c d =+++,1010200K a x =++(1a ≤、c 、d 、9x ≤,14b ≤≤)均为“压轴数”,若()()F P F K +能被7整除且()F K 能被13整除,则满足条件的P 值的和为.三、解答题19.计算:(1)()()2242x y x x y +--; (2)232111a a a a a -⎛⎫+-÷ ⎪--⎝⎭. 20.在学习了平行四边形的性质后,小红进行了拓展性探究.她发现在平行四边形中,连接一条对角线,分别过另外两个顶点作这条对角线的垂线,则这两个顶点到垂足之间的两条垂线段有一定的数量和位置关系.她的解题思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:(1)用直尺和圆规,过点A 作对角线BD 的垂线,垂足为点E .(要求:只保留作图痕迹).(2)已知:如图,在平行四边形ABCD 中,连接BD ,AE BD ⊥于点E ,CF BD ⊥于点F .求证:AE CF =且AE CF ∥.证明:Q 四边形ABCD 为平行四边形,AB CD ∴=且AB CD P∴①AE BD ⊥Q ,90AEB ∴∠=︒,同理可得,90CFD ∠=︒AEB CFD ∴∠=∠,()ABE CDF AAS ∴V V≌ ∴②又AE BD ⊥Q ,90AEF ∴∠=︒,同理可得,90CFE ∠=︒∴③AE CF ∴∥.请你根据该探究过程完成下面命题:在平行四边形中,连接一条对角线,分别过另外两个顶点作这条对角线的垂线,则这两个顶点到垂足之间的垂线段④ .21.2024年4月25日,神舟十八号载人飞船在酒泉卫星发射基地发射升空.此举激发了广大青少年了解航天知识的热情,因此某校组织了航天知识的相关讲座和课程,并进行了测试.现从该校七、八年级各随机选取15名学生的测试成绩进行整理和分析(测试评分用x 表示,共分为五个等级:A .7580x ≤<,B .8085x ≤<,C .8590x ≤<,D .9095x ≤<,E .95100x ≤<),下面给出了部分信息.七年级15个学生的测试评分:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100;八年级15个学生的测试评分中D 等级包含的所有数据为:91,92,94,90,93七、八年级抽取的学生的测试评分统计表:(1)根据以上信息,可以求出:=a ______,b =______;(2)根据以上数据,你认为_____年级的学生的测试评分较好,请说明理由(一条理由即可);(3)若规定评分90分及以上为优秀,参加调研的七年级有990人,八年级有1080人,请估计两个年级学生评分为优秀的学生共有多少个?22.洪崖洞是重庆的网红打卡地,在该景点有一旅游纪念品专卖店,最近一款印有洪崖洞3D 图案的书签销售火爆,该专卖店第一次用800元购进这款书签,很快售完,又花1400元第二次购进这款书签,已知每个书签第二次购进的成本比第一次便宜了0.5元,且第二次购进的数量是第一次的2倍.(1)求该商店两次购进这款书签各多少个?(2)第二次购进这款书签后仍按第一次的售价销售,在销售了第二次购进数量的45后,由于季节的影响,游客量减少,专卖店决定将剩下的书签打八折销售并很快全部售完,若要使两次购进的书签销售完后的总利润不低于2472元,则第一次销售时每个书签的售价至少为多少元?23.如图,在矩形ABCD 中,3cm AB =,4cm AD =,动点P 在对角线BD 上运动(点P 不与B 、D 重合),设BP 的长度为cm x ,ABP V 的面积为21cm y ,CDP △的面积为22cm y ,请解答下列问题:(1)请直接写出1y ,2y 与x 的函数关系式及x 的取值范围,并在平面直角坐标系中画出1y ,2y 的函数图象;(2)结合函数的图象,写出函数1y 的一条性质;(3)根据图象直接写出当12y y ≥时,x 的取值范围.24.小鲁和能能相约周末到动物园游玩,如图,点A 、B 、C 、D 、E 为同一平面内的五个园区.已知园区B 位于园区A 的东北方向园区C 位于园区A 的正北方向,园区C 、D 均位于园区B 的北偏西60︒方向(园区C 离园区B 更近),且两园区相距园区E 位于园区B 的正西方向和园区D 的正南方向.(1)求园区A 与园区C 之间的距离.(结果保留根号)(2)小鲁和能能同时从园区A 出发,选择不同的路线前往园区D 参观:小鲁从A 到C 到D ,能能从A 到E 到D .已知两人同时出发且速度相同,请通过计算说明谁先到园区D (参考1.73≈).25.如图,在平面直角坐标系中,抛物线()250y ax bx a =++≠与x 轴交于()5,0A -,()10,0B 两点,与y 轴交于点C ,连接AC 、BC .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,过点P 作PM x ∥轴交BC 于点M ,过点P 作PN AC ∥交BC 于点N ,求PM PN +的最大值及此时点P 的坐标;(3)若E 是线段AC 上一点(E 与A 不重合),Q 是A 点关于y 轴的对称点,D 是y 轴负半轴上一点,连接DE 、DQ ,且DE DQ =;延长QD 至点F ,使75DF QD =.连接AF ,若45AFQ ∠=︒,写出所有符合条件的点E 的坐标,并写出求解点E 的坐标的其中一种情况的过程.26.如图,在ABC V 中,AB AC =,120BAC ∠=︒,点D 在BC 边上,连接AD .(1)如图1,若6AB =,CD =BD 的长;(2)如图2,以AD 为边在AD 左侧作等边ADE V ,连接EC ,过点A 作AF AB ⊥交EC 于点F .猜想线段AF 与BD 的数量关系,并证明你的猜想;(3)在AD 取得最小值的条件下,以AD 为边在AD 左侧作等腰ADE V ,其中120DAE ∠=︒.点P 为直线AB 左侧平面内一点,满足60APB ∠=︒,连接CP ,点Q 为CP 的中点.当BQ 取得最大值时,将BCQ △沿BQ 翻折得到BC Q 'V ,连接EC ',CC '请直接写出EC CC ''的值.。
重庆市九年级数学下学期第二次月考试题 新人教版
![重庆市九年级数学下学期第二次月考试题 新人教版](https://img.taocdn.com/s3/m/32c88d1db14e852458fb57e1.png)
1(总分:150分 120分钟完卷)参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(—a b 2,ab ac 442-),对称轴公式为x =—ab 2.一、选择题:(每小题4分,共40分) 1.下面四个数中比-2小的数是( )A.0 B.-1 C.-2 D.-3 2. 计算b a ab 2253⋅的结果是 ( ) A 、228b a B 、338b a C 、3315b a D 、2215b a3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定4.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ) A.30° B.40° C.60° D.70°5. 下列图形中,不是中心对称图形的是 ( )A. B. C. D.6.下列调查适合普查的是 ( )A 、调查2013年1月份市场上某品牌饮料的质量B 、了解中央电视台直播“两会”开幕式全国收视率情况C 、环保部门调查3月份长江某段水域的水质情况D 、为保证“神舟八号”飞船顺利升空,对其零部件进行调查。
7.若x =1是一元二次方程x 2+x +m =0的一个根,则方程的另一个根为( )A .-2B .0C .1D .28、星期天,小明和小兵租用一艘皮划艇去嘉陵江游玩,他们先从上游顺流划行1小时,再停留0.5小时采集植物标本,然后加速划行0.5小时到下游,最后乘坐公交车1小时回到出发地,那么小明和小兵距离出发点的距离y 随时间x 变化的大致图象是( )9.按下列方式摆放圆形和三角形,观察图形,第10个图形中圆形的个数有( )(1) (2) (3)A CB D E4题图2A .36B .38C .40D .4210.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列四个结论正确的是( )A .0abc > B. 240b ac -< C. a c b +> D. 20b a +=二、填空题:(每小题4分,共24分) 11.函数3+=x y 的取值范围是 .12、如图,DE 是ABC △的中位线,则ADE △与ABC △的面积之比是 ; 13、如图,已知函数y =21-x +b 和y =2x 的图象交于点P ()2,4--,, 则根据图象可得,关于212y x b y x=-+=⎧⎪⎨⎪⎩的二元一次方程组的解是____________.14. 受冷空气持续影响,今年我市入春时间晚于常年。
重庆市九年级下学期数学第二次月考试卷
![重庆市九年级下学期数学第二次月考试卷](https://img.taocdn.com/s3/m/2ada9643daef5ef7ba0d3cff.png)
重庆市九年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共23分)1. (2分)(2019·景县模拟) 在,-1,0、,这四个数中,最小的实数是()A .B . -1C . 0D .2. (2分)(2011·湖州) 根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数法可表示为()A . 2.89×104B . 2.89×105C . 2.89×106D . 2.89×1073. (2分)(2017·鄂州) 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A .B .C .D .4. (5分)若,是整数,那么值一定是()A . 正数B . 负数C . 非负数D . 4的倍数5. (2分)(2017·大庆) 在△ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()A . 120°B . 80°C . 60°D . 40°6. (2分)(2018·河南模拟) 某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:节电量(千瓦时)20304050户数10403020则4月份这100户节电量的平均数、中位数、众数分别是()A . 35、35、30B . 25、30、20C . 36、35、30D . 36、30、307. (2分)下列方程中无实数根的是()A . 2x2+4x+1=0B . x2-6x+9=0C . (x+6)2=5D . 4x2+2x+3=08. (2分) (2017九上·义乌月考) 有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()A .B .C .D .9. (2分)(2019·新乡模拟) 如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为()A . (2,3)B . (2,2 )C . (2 ,2)D . (2,2 )10. (2分)(2020·武汉模拟) 将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与下落时间的关系可以用下图中的哪一幅来近似地刻画()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2019七下·姜堰期中) =________.12. (1分)(2017·武汉模拟) 如图,将矩形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE,BF,则∠EBF=________°.13. (1分) (2018九上·泰州月考) 若关于的一元二次方程有两个实数根,那么的取值范围是________.14. (1分)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧AB对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为________.15. (1分)(2017·丹东模拟) 如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.三、解答题 (共8题;共79分)16. (5分)(2016·宝安模拟) 先化简,再求值:(﹣)÷ ,其中x=﹣2+ .17. (15分) (2019七上·罗湖期末) 为了了解市民私家车出行的情况,某市交通管理部门对拥有私家车的市民进行随机抽样调查、其中一个问题是“你平均每天开车出行的时间是多少”共有4个选项:A、1小时以上(不含1小时);B:0.5-1小时(不含0.5小时);C:0-0.5小时(不含0小时);D,不开车.图1、2是根据调査结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了________名市民;(2)在图1中将选项B的部分补充完整,并求图2中,A类所对应扇形圆心角α的度数;(3)若该市共有200万私家车,你估计全市可能有多少私家车平均每天开车出行的时间在1小时以上?18. (2分)(2017·平谷模拟) 如图,⊙O为等腰三角形ABC的外接圆,AB=AC.AD是⊙O的直径,切线DE 与AC的延长线相交于点E.(1)求证:DE∥BC;(2)若DF=n,∠BAC=2a,写出求CE长的思路.19. (5分)(2018·广元) 如图,A,B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB)。
重庆巴蜀中学初2019级2018-2019学年(下)3月月考数学试题(Word版含答案)
![重庆巴蜀中学初2019级2018-2019学年(下)3月月考数学试题(Word版含答案)](https://img.taocdn.com/s3/m/af32af4dddccda38376baf3a.png)
9 B . 6 C . 4 D . 3 C . 5 D .重庆巴蜀中学初 2019 届初三下期第二次定时作业数学试题命题人:刘佳 盛元 审题人:王军 考试时间:120 分钟 满分:150 分一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个正确,请将答题卡上对应题目正确答案的标号涂黑.1.3 的相反数是( )A . -3B .3C . - 1 3D . 1 32.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )A .B .C .D .3.两个相似三角形的面积比是 1 : 9,那么这两个三角形的周长比是( )A .1 : 81B .1 : 9C .1 : 3D .1 : 64.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,则第 7 个图案中黑色瓷 砖的个数是( )A .19B .20C .21D .225.估计 2( 10 - 2) 的值应在() A .0 和 1 之间 B .1 和 2 之间 C .2 和 3 之间 D .3 和 4 之间6.下列命题是真命题的是( )A .菱形的对角线相等B .矩形的对角线互相垂直平分C .任意多边形的内角和为 360°D .三角形的中位线平行第三边且等于第三边的一半7.按如图所示的运算程序运算,能使输出的结果为的9 的一组 x , y 的值是( )A . x = 1, y = 2 C . x = 2, y = 1B . x = -2, y = 1D . x = -3, y = 18.某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加 测试,小华和小强都抽到物理学科的概率是( )A . 1 1 1 1 39.如图,AB 是⊙O 的直径,点 C 、D 在⊙O 上,且点 C 是弧 BD 的中点.过点 C 作 AD 的 垂线 EF 交直线 AD 于点 E .若⊙O 的半径为 2.5,AC 长为 4,则 CE 的长度为( )A .3B . 20 12 16 510.轨道环线通车给广大市民带来了很大便利,如图是渝鲁站出口横截面平面图,扶梯 AB 的坡度i = 1: 2.4 在距扶梯起点 A 端 6 米的 P 处,用 1.5 米的测角仪测得扶梯终端 B 处的仰角为 14°,扶梯终端 B 距顶部 2.4 米,则扶梯的起点 A 与顶部的距离是( )(参考数据:sin14° ≈ 0.24,cos14° ≈ 0.97,tan14° ≈ 0.25)A .7.5 米B .8.4 米C .9.9 米D .11.4 米于 y 的分式方程 4 - = 1 有非负数解,则满足条件的所有整数 a 值的和为( ) 14.计算: ( 8 - π )0 + ( )-2 - -1 = ________ 赛者的得分总和为 210 分,且平局数不超过比赛总场数的 ,本次友谊赛共有参赛选手______人 ÷ (x + 2 -11.如图,矩形 ABCD 的顶点 A 在 y 轴上,反比例函数 y = k x(x > 0) 的图象恰好 过点 B 和点 C ,AD 与 x 轴交于点 E ,且 AE : DE = 1 : 3,若 E 点坐标为(2, 0) ,且 AD = 2AB ,则 k 的值是( )A .6B .8C .10D .1212.若实数 a 使关于 x 的二次函数 y = x 2 + (a -1)x - a + 2 ,当 x < -1 时,y 随 x 的增大而减小,且使关a - 3 2 y -1 1 - 2 yA .1B .4C .0D .3二、填空题:本大题 6 个小题,每小题 4 分,共 24 分。
重庆巴蜀中学初2019届九年级下二诊考试(数学试卷)
![重庆巴蜀中学初2019届九年级下二诊考试(数学试卷)](https://img.taocdn.com/s3/m/fc521117453610661ed9f4af.png)
重庆巴蜀中学初2019届九年级下二诊考试数学试题(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线2(0)y ax bx c a =++≠)的顶点坐标为24-24b ac b a a ⎛⎫- ⎪⎝⎭,,对称轴为a b x 2-=.—.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确,请将答题卡...上对应题目正确答案的标号涂黑.1.《九章算术》中注有“今两算得失相反,要令正负以名之”意思是今有两数其意义相反,则分别叫做正数与负数.如果向北走两步记作+2步.那么向南走7步记作()A .+7步B .-7步C .-5步D .-2步2.如图所示几何体的俯视图是()A .B .C .D .3.计算()()32--2x x ⋅的结果是()A.-4x 6B.-4x 5C.2x 5D.4x 64.如图,直线l 1//l 2.若172350∠=︒∠=︒,,则2∠的大小为()A .︒50B .︒52C .︒58D .︒625.小丽同学准备用自己零花钱购买一台学生平板电脑,她原有750元.计划从本月起每月存入30元,直到她至少存有1080元,设x 个月后小丽至少有1080元,则可列计算月数的不等式为()A .10807503>+x B .30x-750≥1080C .30x-750<1080D .10807503≥+x 6.将抛物线y=x 2+1先向左平移2个单位,再向下平移3个单位.得到的新抛物线的表达式为()A .y=(x +2)2+4B .y=(x -2)2-2C .y=(x -2)2+4D .y =(x +2)2-27.估计()2102-的值应在()A .0和1之间B .1和2之间C .2和3之间D .3和4之间8.如图.AB 是 O 的切线,A 为切点.点C 在 O 上,连接BC 并延长交AD 干点D .若︒=∠70AOC ,则ADB ∠=()A .︒35B .︒45C .︒55D .︒659.如图所示的运算程序中,若开始输入的x 值为96.我们发现第一次输出的结果为48.第二次输出的结果为24.则第2019次输出的结果为()A .6B .3C .12D .2100810.下列命题中.真命题是()A .一组对边相等且另一组对边平行的四边形是平行四边形B .对角线互相垂直的四边形是菱形C .对角线相等的四边形是矩形D .一组邻边相等的矩形是正方形11.如图是重庆轻轨10号线龙头寺公园站入口扶梯建设示意图.起初工程师计划修建一段坡度为3:2的扶梯AB ,扶梯总长为1315米.但这样坡度太陡,扶梯太长容易引发安全事故.工程师修改方案:修建AC 、DE 两段扶梯,并减缓各扶梯的坡度,其中扶梯AC 和平台CD 形成的ACD ∠为︒135.从E 点看D 点的仰角为︒5.36.AC 段扶梯长218米,则DE 段扶梯长度约为()米(参考数据:sin ︒5.36≈53.cos ︒5.3654≈,tan ︒5.3643≈)A .43B .45C .47D .4912.若关于x 的方程111++=+-x a x x a 的解为负数,且关于x 的不等式组()⎪⎪⎩⎪⎪⎨⎧+≥->--3121021x x a x 无解.则所有满足条件的整数a 的值之和是()A .5B .7C .9D .10二.填空题:(本大题6个小题,每小题4分,共24分)请将每个小题的答案直接填在答题卡...中对应的横线上.13.计算-21+-|-1|3π)()=.14.一个不透明的袋中装有四张完全相同的卡片,把它们分别标上数字-l 、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片.则两次抽取的卡片上数字之和为偶数的概率是.15.如图.圆O 的直径AB =10,C 为圆周上一点.∠ACB 的平分线CD 交圆O 于D ,连接AD 、BD ,则图中阴影部分的面积为.16.如图.△ABC 中.∠ABC =90°,BC =l .将△ABC 绕点B 逆时针旋转得△A'BC'.C'恰好落在AC 边的中点处.连接AA',取AA'的中点D ,则C'D 的长为.17.甲乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发到乙地停止,货车先出发从甲地匀速开往乙地,货车开出一段时间后,轿车出发,匀速行驶一段时间后接到通知提速后匀速赶往乙地(提速时间不计),最后发现轿车比货车提前0.5小时到达,下图表示两车之间的距离y (km )与货车行驶的时间x (h )之间的关系,则货车行驶小时.两车在途中相遇.18.王老师在期中考试过后,决定给同学们发放奖品.他到对面one way 文具店看了一下,准备买一些钢笔和笔记本,再给班级购买一个中考倒计时电子显示屏,经预算总共需要1501元,其中电子显示屏的价格为41元。
2019年重庆九中中考数学二模试卷及答案(word解析版)
![2019年重庆九中中考数学二模试卷及答案(word解析版)](https://img.taocdn.com/s3/m/81a37ed6e009581b6ad9eb25.png)
数学精品复习资料重庆九中中考数学二模试卷参考答案与试题解析一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中...与﹣.423.(4分)不等式组的解是()<4.(4分)如图,直线AB∥CD,∠1=60°,∠2=50°,则∠E=()6.(4分)如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC等于()OAC==8.(4分)(2004•黄冈)如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为()∠9.(4分)如图,⊙O是△ABC的外接圆,AB是直径,若∠B=50°,则∠A等于()10.(4分)如图,在平行四边形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P、Q同时从顶点A 出发,点P沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x秒,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x的函数图象大致是()..Dx×××=×﹣(﹣+12+123611.(4分)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.12.(4分)如图,矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c (a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:①a>0;②c>3;③2a﹣b=0;④4a﹣2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.其中正确结论的个数为()﹣OA二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案直接填在题后的横线上.13.(4分)(2011•下关区一模)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是3.6×107.14.(4分)两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为48cm.则有=则该班学生年龄的中位数为15岁.16.(4分)已知扇形的圆心角为120°,半径为6,则扇形面积是12π.S==1217.(4分)标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(4,7),则他第三次掷得的点也在这条直线上的概率为.=.故答案为:.18.(4分)甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A 地植树18小时后立即转到B地.棵,根据题意可以建立方程,,三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)(2012•重庆模拟)计算:=1=20.(7分)(2007•怀化)解方程:解:原方程可化为:四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:()÷(﹣1),其中a是满足不等组的整数解.)﹣===<=122.(10分)作图:请你作出一个以线段a为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)已知:求作:23.(10分)(2013•深圳二模)重庆国际车展依托中国西部汽车工业的个性与特色,围绕“发现汽车时尚之美“的展会主题,已成功举办了十三届.在第十三届汽车展期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?请你将两幅统计图补充完整;(2)A型车的颜色有红、白、黑、蓝四种,红色的特别畅销,当只剩两辆红色时,有四名顾客都想要红色的,经理决定用抽签的方式决定红色车的归属,请用列表法或画树状图的方法,求顾客甲、乙都抽到红色的概率.p=.24.(10分)如图,在正方形ABCD中,点E是AB中点,点F是AD上一点,且DE=CF,ED、FC交于点G,连接BG,BH平分∠GBC交FC于H,连接DH.(1)若DE=10,求线段AB的长;(2)求证:DE﹣HG=EG.,;25.如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(﹣1,0)与y轴交于点C(0,3)△ABC的面积为6.(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC 相似时,请你求出BN的长度;(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.=﹣∴即即时,∴⇒t=.,顶点;x=坐标为()或(坐标为(26.如图,已知△ABC是等边三角形,点O为是AC的中点,OB=12,动点P在线段AB上从点A向点B 以每秒个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在直线OB上,取OB的中点D,以OD为边在△AOB内部作如图所示的矩形ODEF,点E在线段AB上.(1)求当等边△PMN的顶点M运动到与点O重合时t的值;(2)求等边△PMN的边长(用t的代数式表示);(3)设等边△PMN和矩形ODE F重叠部分的面积为S,请求你直接写出当0≤t≤2秒时S与t的函数关系式,并写出对应的自变量t的取值范围;(4)点P在运动过程中,是否存在点M,使得△EFM是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.AP=t AG=2AO=AC=OA=4AB=8AP=2t=2÷AP=AG=2GO=4AP=t﹣tHE=2ttAP=tAG=2GO=4=2t+6﹣FG=2,2t+4.OM=,+16t=DM=6+﹣t=,或者t=,。
2019-2020学年重庆市渝中区巴蜀中学九年级下学期开学数学试卷 (解析版)
![2019-2020学年重庆市渝中区巴蜀中学九年级下学期开学数学试卷 (解析版)](https://img.taocdn.com/s3/m/4bf876e4f242336c1fb95e62.png)
2019-2020学年重庆渝中区巴蜀中学九年级下学期开学数学试卷一、选择题(共10小题).1.下列各组数中,能作为直角三角形的三边长的是()A.2,4,6B.4,6,8C.3,4,5D.4,5,62.在平面直角坐标系中,点D(﹣5,4)到x轴的距离为()A.5B.﹣5C.4D.﹣43.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上4.把直线y=﹣x+1向下平移3个单位后得到的直线的解析式为()A.y=﹣x+4B.y=﹣x﹣2C.y=x+4D.y=X﹣25.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5B.6C.7D.86.关于分式有意义的正确说法是()A.x、y不都为0B.x、y都不为0C.x、y都为0D.x=﹣y7.下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的是()A.3:4:4:3B.2:2:3:3C.4:3:2:1D.4:3:4:3 8.如果直线y=(m﹣2)x+(m﹣1)经过第一,二,四象限,则m的取值范围是()A.m<2B.m>1C.m≠2D.1<m<29.下表是某学习小组一次数学测验的成绩统计表:分数70 80 90 100人数1 3 x 1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分10.如果关于x的不等式组如果关于x的不等式组的解集为x>4,且关于x的分式方程﹣1=0 有整数解,则符合条件的所有整数m的个数是()A.5B.4C.3D.2二、填空题(本大题共10个小题,每小题3分,共30分)11.函数y=+的自变量x的取值范围是.12.样本数据2,4,3,5,6的极差是.13.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m n=.14.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=3的解为.15.若一个多边形每个内角的度数都为150°,则这个多边形的边数为.16.已知一组数据1,2,0,﹣1,x的平均数为1,则这组数据的方差为.17.分式的值为负数,则x的取值范围是.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A 重合,折痕为DE,则△ABE的周长为.19.若关于x的方程有增根,则m的值是20.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值.三、解答题(本大题共4个小题,共40分)21.计算:(1)因式分解:a3b﹣ab3(2)﹣x﹣222.欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?23.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.24.如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E(1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由参考答案一、选择题(本大题共10个小题,每小题3分,共30分).1.下列各组数中,能作为直角三角形的三边长的是()A.2,4,6B.4,6,8C.3,4,5D.4,5,6【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.解:A、2+4=6,故不能构成三角形,故不符合题意;B、42+62≠82,故不是直角三角形,故不符合题意;C、32+42=52,故是直角三角形,故符合题意;D、42+52≠62,故不是直角三角形,故不符合题意.故选:C.2.在平面直角坐标系中,点D(﹣5,4)到x轴的距离为()A.5B.﹣5C.4D.﹣4【分析】求得D的纵坐标绝对值即可求得D点到x轴的距离.解:∵|4|=4,∴D点到x轴的距离是4,故选:C.3.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.解:若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选:D.4.把直线y=﹣x+1向下平移3个单位后得到的直线的解析式为()A.y=﹣x+4B.y=﹣x﹣2C.y=x+4D.y=X﹣2【分析】根据函数解析式平移的规律“上加下减”进行求解即可.解:把直线y=﹣x+1向下平移3个单位后得到的直线的解析式为y=﹣x+1﹣3,即y=﹣x﹣2.故选:B.5.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5B.6C.7D.8【分析】根据中位数是5,得出(4+x)÷2=5,求出x的值即可.解:一组从小到大的数据:0,4,x,10的中位数是5,则(4+x)÷2=5,x=6;故选:B.6.关于分式有意义的正确说法是()A.x、y不都为0B.x、y都不为0C.x、y都为0D.x=﹣y【分析】本题考查了分式有意义时分母不为0的条件,据此即可解答.解:根据题意得:x2+y2≠0,解得x≠0,或y≠0.故选:A.7.下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的是()A.3:4:4:3B.2:2:3:3C.4:3:2:1D.4:3:4:3【分析】由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.解:根据平行四边形的两组对角分别相等,可知D正确.故选:D.8.如果直线y=(m﹣2)x+(m﹣1)经过第一,二,四象限,则m的取值范围是()A.m<2B.m>1C.m≠2D.1<m<2【分析】根据一次函数的性质,直线过第一,二,四象限即m﹣2<0,且m﹣1>0,据此解答即可.解:这条直线的解析式一定是一次函数一次函数的一般形式是y=kx+b(k≠0,且k,b是常数)当图象经过第一,二,四象限时k<0,b>0则得到:m﹣2<0,且m﹣1>0解得:1<m<2.9.下表是某学习小组一次数学测验的成绩统计表:分数70 80 90 100人数1 3 x 1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分【分析】先通过平均数求出x的值,再根据众数的定义就可以求解.解:根据题意得:70+80+80+80+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选:D.10.如果关于x的不等式组如果关于x的不等式组的解集为x>4,且关于x的分式方程﹣1=0 有整数解,则符合条件的所有整数m的个数是()A.5B.4C.3D.2【分析】根据已知不等式的解集确定出m的范围,再由分式方程有整数解,确定出m的个数即可.解:不等式组整理得,∵不等式组的解集为x>4,∴m≤4,分式方程去分母,得:1﹣mx﹣3﹣(2﹣x)=0,解得:x=,∵分式方程有整数解,∴1﹣m=±4或1﹣m=﹣2或1﹣m=±1,解得:m=﹣3或m=5或m=3或m=0或m=2,∵m≤4,∴符合条件的整数m的值有﹣3、3、0、2这四个,故选:B.二、填空题(本大题共10个小题,每小题3分,共30分)11.函数y=+的自变量x的取值范围是x≤3且x≠2.【分析】根据分母不能为零且被开方数是非负数,可得答案.解:由题意,得3﹣x>0且x﹣2≠0,解得x≤3且x≠2,故答案为:x≤3且x≠2.12.样本数据2,4,3,5,6的极差是4.【分析】根据极差的定义直接求解,用6减去2即可.解:样本数据2,4,3,5,6的极差是=6﹣2=4,故答案为:4.13.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m n=.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求出m、n的值,再代入代数式进行计算即可得解.解:∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m﹣1=2,n+1=﹣3,解得m=3,n=﹣4,∴m n=3﹣4=.故答案为:.14.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=3的解为x=2.【分析】首先利用待定系数法把(2,3)(0,1)代入y=kx+b,可得关于k、b的方程组,再解方程组可得k、b的值,求出一次函数解析式,再求出方程kx+b=0的解即可.解:∵y=kx+b经过(2,3)(0,1),∴,解得:,∴一次函数解析式为y=x+1,x+1=3,解得:x=2,故答案为:x=2.15.若一个多边形每个内角的度数都为150°,则这个多边形的边数为12.【分析】本题需先根据内角度数计算公式,列出式子解出结果,即可求出边数.解:根据题意得:360°÷(180°﹣150°)=360°÷30°=12.故答案为:12.16.已知一组数据1,2,0,﹣1,x的平均数为1,则这组数据的方差为2.【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.解:由平均数的公式得:(1+2+0﹣1+x)÷5=1,解得x=3;则方差=[(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2]÷5=2.故答案为:2.17.分式的值为负数,则x的取值范围是x<3.【分析】将原题中的分式的分子配方,得到分子的值恒大于0,根据值为负数得到分母必小于0,进而得到关于x的不等式,求出不等式的解集即可得到x的取值范围.解:=,∵(x+1)2≥0,∴(x+1)2+2>0,根据题意得:x﹣3<0,解得:x<3.故答案为:x<3.18.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A 重合,折痕为DE,则△ABE的周长为7.【分析】先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.19.若关于x的方程有增根,则m的值是﹣1【分析】将方程两边都乘以x﹣2得1﹣x﹣m=x﹣2,求得x=,由方程有增根得出=2,解之可得m的值.解:将方程两边都乘以x﹣2,得:1﹣x﹣m=x﹣2,解得:x=,∵x的方程有增根,∴增根x==2,解得:m=﹣1,故答案为:﹣1.20.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值或2+.【分析】过P点作PD⊥x轴,垂足为D,根据A(﹣,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODP﹣S△ADP,列方程求a.解:过P点作PD⊥x轴,垂足为D,由A(﹣,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,∴S△ABC=×2×=,又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP=××1+×(1+a)×3﹣×(+3)×a,=,由2S△ABP=S△ABC,得+3=,∴a=.当P在AB与x=3交点的上方时,同理可求得a=2+故答案为:或2+.三、解答题(本大题共4个小题,共40分)21.计算:(1)因式分解:a3b﹣ab3(2)﹣x﹣2【分析】(1)先提取公因式ab,再利用平方差公式计算可得;(2)根据分式的加减运算顺序和运算法则.解:(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b);(2)原式=﹣=.22.欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?【分析】(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x平方米,根据工作时间=工作总量÷工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y天,则乙工程队工作(48﹣2y)天,根据总费用=0.4×甲工程队工作天数+0.25×乙工程队工作天数结合总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可.解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:﹣=2,解得:x=200,经检验,x=200是原分式方程的解,∴当x=200时,2x=400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工作y天,则乙园林队工作=(48﹣2y)天,根据题意得:0.4y+0.25(48﹣2y)≤10,解得:y≥20,∴y的最小值为20.答:甲工程队至少应工作20天.23.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.【分析】(1)利用平行四边形的性质以及直角三角形的性质得出CE的长,进而得出答案;(2)利用全等三角形的判定得出△AEM≌△DNM(ASA),根据全等三角形的性质得到EM=MN,根据直角三角形的性质得到MN=MC,根据等腰三角形和三角形的外角的性质即可得到结论.【解答】(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=8.在▱ABCD的面积中,BC=CD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵,∴△AEM≌△DNM(ASA),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.24.如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E(1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由【分析】(1)根据长方形的性质可得出点A的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,再由点P是AD的中点可得出点P的坐标,进而可得出正比例函数OP的解析式;(2)利用三角形面积的公式可求出S△ODP的值,由直线OP的解析式,利用一次函数图象上点的坐标特征可得出点E的坐标,设点N的坐标为(m,﹣m+8),由△AEN的面积等于△ODP的面积,可得出关于m的含绝对值符号的一元一次方程,解之即可得出m 的值,再将其代入点N的坐标中即可得出结论;(3)由点T的坐标可得出点F,G的坐标,分∠FGQ=90°、∠GFQ=90°及∠FQG =90°三种情况考虑:①当∠FGQ=90°时,根据等腰直角三角形两直角边相等可得出关于t的一元一次方程,解之可得出t值,再利用等腰直角三角形的性质可得出点Q的坐标;②当∠GFQ=90°时,根据等腰直角三角形两直角边相等可得出关于t的一元一次方程,解之可得出t值,再利用等腰直角三角形的性质可得出点Q的坐标;③当∠FQG =90°时,过点Q作QS⊥FG于点S,根据等腰直角三角形斜边等于斜边上高的二倍可得出关于t的一元一次方程,解之可得出t值,再利用等腰直角三角形的性质可得出点Q 的坐标.综上,此题得解.解:(1)∵四边形OABC为长方形,点B的坐标为(8,6),∴点A的坐标为(8,0),BC∥x轴.∵直线y=﹣x+b经过点A,∴0=﹣8+b,∴b=8,∴直线AD的解析式为y=﹣x+8.当y=6时,有﹣x+8=6,解得:x=2,∴点D的坐标为(2,6).∵点P是AD的中点,∴点P的坐标为(,),即(5,3),∴直线OP的解析式为y=x.(2)S△ODP=S△ODA﹣S△OPA,=×8×6﹣×8×3,=12.当x=8时,y=x=,∴点E的坐标为(8,).设点N的坐标为(m,﹣m+8).∵S△AEN=S△ODP,∴××|8﹣m|=12,解得:m=3或m=13,∴点N的坐标为(3,5)或(13,﹣5).(3)∵点T的坐标为(t,0)(5<t<8),∴点F的坐标为(t,t),点G的坐标为(t,﹣t+8).分三种情况考虑:①当∠FGQ=90°时,如图1所示.∵△FGQ为等腰直角三角形,∴FG=GQ,即t﹣(﹣t+8)=8﹣t,解得:t=,此时点Q的坐标为(8,);②当∠GFQ=90°时,如图2所示.∵△FGQ为等腰直角三角形,∴FG=FQ,即t﹣(﹣t+8)=8﹣t,解得:t=,此时点Q的坐标为(8,);③当∠FQG=90°时,过点Q作QS⊥FG于点S,如图3所示.∵△FGQ为等腰直角三角形,∴FG=2QS,即t﹣(﹣t+8)=2(8﹣t),解得:t=,此时点F的坐标为(,4),点G的坐标为(,)此时点Q的坐标为(8,),即(8,).综上所述:在线段AE上存在一点Q,使得△FGQ为等腰直角三角形,当t=时点Q 的坐标为(8,)或(8,),当t=时点Q的坐标为(8,).。
2019学年重庆市九年级二模数学试卷【含答案及解析】
![2019学年重庆市九年级二模数学试卷【含答案及解析】](https://img.taocdn.com/s3/m/0c5e81e5f111f18582d05abc.png)
2019 学年重庆市九年级二模数学试卷【含答案及解析】姓名 _________ 班级 __________ 分数 ________题号二三四五总分得分、选择题1. 在 、 、 、 四个数中最小的数是( )4. 如图, AB ∥ CD ,直线EF 分别与 AB 、CD 交于点 E 、F ,若∠ AEF=40 °,则∠ E 的FD 度数为5. 某水果经销商对四月份甲、乙、丙、丁四个市场每天出售的草莓价格进行调查,通过计 算发现这个月四个市场草莓的平均售价相同,方差分别为 , ,,,则四月份草莓价格最稳定的市场是( )A .甲B .乙C .丙D .丁 6. 是的解,则 的值为( )A .B .C .D .C. 50 D . 140°A .B . C2. 下列图形是轴对称图形的是3. 计算 的结果为( )7.函数中,自变量的取值范围是()60° D .7010. 2015年 4月 25日14时 11分,尼泊尔发生 8.1级大地震,波及我国西藏自治区,其 中聂拉木县受灾严重,我解放军某部火速向灾区救援,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下 车急行军匀速步行前往,下列是官兵们离出发地的距离 S (千米)与行进时间 t (小时)A .C.D .BCD 交 AD 边于点 E ,且 AE=4,则 AB 的 9. 如图,△ AB 是C ⊙O 的内接三角形,∠ OAB=35°,则∠ 的A 度CB 数为( ) 的函数大致图象,你认为正确的是( 11. 图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有 图形一共有 6 颗棋子,⋯⋯,则第⑦个图形棋子的个数为( )1 颗棋子,第②个ABCD 中, BC=7, CE 平分∠8. 如图,在平行四边形 .55)12. 如图,在平面直角坐标系 xoy 中, Rt △ OA 的B 直角边在 x 轴的负半轴上,点 C 为斜边 OB 的中点,反比例函数 的图象经过点 C ,且与边 AB 交于点 D ,则 的值、填空题13. 亚洲基础设施银行将于近期签约成立 用科学记数法表示为 .14. △ ABC ∽△ DEF ,AB:DE=2:3,则△ 15. 计算:16. 如图, Rt △ OA 中B ,∠ AOB=90°,OA=OB=,4 ⊙O 与斜边 AB 相切于点 C ,则图中阴影部 分的面积为 .A .76B96 C 106 D 116,注册资金将达到 6300 亿元人民币,数字 6300ABC 和△ DEF 的周长比为AB三、解答题17. 有正面分别标有数字 、 、 、 、 的五张不透明卡片,它们除数字不同外其 余全部相同,现将它们背面朝上,洗匀后从中任取一张,将卡片上的数字记为 ,则使关于 的方程 +x - m=0有实数解且关于 的不等式组 有整数解的的概率 为.四、填空题18. 如图,矩形 ABCD 中, AB=3, AD=3 ,点 E 在 CB 的延长线上,且 BE= ,连结 AE , G 是 BA 延长线上一点,连结 EG ,交 CA 的延长线于 M ,将△ AEG 绕点 A 逆时针旋转 60°得 到 (点 E 的对应点为 ,点 G 的对应点为 ),若△ 的面积为 6 ,则 CM 的长为.五、解答题20. 习总书记在去年 9 月和 10 月分别提出建设“新丝绸之路经济带”和“ 世纪2海1上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的 “命运共同体”.某国有企业在“一带一路” 战略合作中 ,向东南亚销售 A 、B 两种外CD ∥ BE .AD=CE ,CD=BE .求证:贸产品共 6万吨.已知 A种外贸产品每吨 800 元, B种外贸产品每吨 400元.若 A、B 两种外贸产品销售额不低于 3200 万元,则至少销售 A产品多少万吨?21.化简:(1)(2)22.2014 年岁末,中国多个省市出现了持续浓重的雾霾天气,截至3月底,今年主城已收获 68 个蓝天,三大主要污染物 PM10、二氧化硫、二氧化氮明显好转,这与各化工厂积极响应节能减排的号召分不开.我市某化工厂从 2011 年就开始控制二氧化硫的排放.图 1、图 2 分别是该厂 2011-2014 年二氧化硫排放量(单位:吨)的两幅不完整的统计图,根据图中信息回答下列问题.(1)该厂 2011-2014 年二氧化硫排放总量是吨, 2011 年二氧化硫的排放量对应扇形的圆心角是度, 2014 年二氧化硫的排放量占这四年排放总量的百分比是.并补全条形统计图.(2)为了进一步加大环保宣传力度,重庆市环保局于年底将举行主题为“弘扬环境文化,建设绿色家园”的环保知识竞赛.该化工厂准备从刚分来的 4 名大学生(其中 3 名男生,1 名女生)中选派 2 名员工参加比赛,请用列表法或画树状图的方法,求出所选两位参赛选手恰好是一男一女的概率.23.如图,某中学操场边有一旗杆 A,小明在操场的 C处放风筝,风筝飞在图中的 D 处,在 CA的延长线上离小明 30 米远的 E 处的小刚发现自己的位置与风筝 D和旗杆的顶端 B 在同一条直线上,小刚在 E处测得旗杆顶点 B的仰角为,且 tan = , 小明在 C处测得旗杆顶点 B 的仰角为 45°.(2)此时,在 C处背向旗杆,测得风筝 D的仰角(即∠ DCF)为 48°,求风筝 D离地面的距离.(结果精确到 0.1米,其中 sin48 °≈ 0. 74,cos48°≈0.67,tan48 °≈1. 11)24.对于实数 a、b,定义一种新运算“”为: a b= ,这里等式右边是通常的四则运算.例如: 1 3= .( 1)解方程;(2)若 , 均为自然数,且满足等式,求满足条件的所有数对( ,).25.如图 1,在菱形 ABCD中, ABC=60°,若点 E在 AB的延长线上, EF∥ ADE,F=BE,点 P 是 DE的中点,连接 FP并延长交 AD于点 G.(2)连接 CP,求证: CP FP;(3)如图 2,在菱形 ABCD中, ABC=6°0 ,若点 E在 CB的延长线上运动,点 F在 AB的延长线上运动,且 BE=BF,连接 DE,点 P 为 DE的中点,连接 FP、CP,那么第( 2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.1)在 轴上方的抛物线上存在点 D ,使 为等腰直角三角形,请求出点2)在( 1)的条件下,连接 AD ,在直线 AD 的上方的抛物线上有一动点 C ,连结 、 ,当 的面积最大时,求直线 OC 的解析式; (3)在( 1)( 2)的条件下,作射线 OD,在线段 OD 上有点 B,且 ,过点 B 作于点 B ,交 轴于点 F .点 P 在 轴的正半轴上,过点P作 轴,交射线 于点 R ,交射线 于点 E ,交抛物线于点 Q .以 为一边,在 的右侧作矩形 ,其中 .请求出矩形 RQMN 与 重叠部分为轴对称图形时点 P 的横坐标的取值范围.参考答案及解析第 1 题【答案】第 2 题【答案】与 x 轴正半轴交于点 A .D 的坐标;第3 题【答案】第4 题【答案】第5 题【答案】第6 题【答案】第7 题【答案】第 8 题【答案】第 9 题【答案】第 10 题【答案】第 11 题【答案】第 12 题【答案】第 13 题【答案】第 14 题【答案】第 15 题【答案】第 16 题【答案】第 17 题【答案】第 18 题【答案】第 19 题【答案】第 20 题【答案】第 21 题【答案】第 22 题【答案】第 23 题【答案】第 24 题【答案】第 25 题【答案】(1)1; <2)见解析5 (3) √3 ・【解析】试题解析:(1)解:丁四边形ABCD为菱形/.DA//BC CDHB ZCDG=ZCBAhlr =ZDAH二,ABCRO °DHVDHIAB•_在紅AD H中SinZDAH^DH-2√3 _ 1 /.AD=S lnZDJ// √JTAB=- X 4=1 TEF “ AD .∖ ZPDG=ZPEB TP为DE的中点/.PD=PE 4e ZZDPG=ZEPF /.∆PDG^∆PEF .∖DG=EF β∕EF∕∕AD AD//BC ΛEF∕/BC.∖ZFEB=ZCBA=602 TBE=EF .∖∆BEΓ≠)正三角形.∖EF=ΣE=1 .∖DG=EF=I、证明:连接CG、CFSI由(1〉知∆PDG^∆PEF /.PG=PF在ACDO与ACBF中易证:ZCDG=ZCBF=60Q CD=CB BP=EF=DG /.∆CDG^∆CBF/.CG=CF TPG=PF .NP丄GF(3) Sa團;CP丄GF仍成立理由如下:过D作EF的平行线,交FP延长于点G试題分抵:(1>根据菱旳得出DA "BC ,CD=CB, ZCDG=ZCBA=^O 0 )HlABff出ZD, ⅛⅛Rt∆ADHK正弦倩得护P的:二… ∆PDG^∆PEF^ 得出DG=EF, ^IgEF//AD, AD//BC得出EF"Bς2 I fe ∣∆PD^∆PEFf ⅛PG^PF2然洁过D祚EF的平行线二父FP延IZxE=I20°DHlAB得出ZDHA=90 ,i⅛p½t∆CDG^∆CBF^.Von-ViV j∙5,JZ DAH=Z ABC=6(Γ-2长度,隣后能BE ... .√∕BC s WJlRBflABE_ .病证⅛∆°......行駕交IT延KT^G接CG、CFiiE∆PEF^∆PDG ;根i⅛RtACP球出比宿•__________________ 啜而得出DG的鬻鈔籍s≡⅛≡課.".BE=第 26 题【答案】试题解析:⑴•••抛^⅜v = -→∙-÷2x 与X 轴正半轴交于点為."(go)4 •••△皿为等腰直角三角形,且点D 在X 轴上方的抛物线上,・・・线段加不能是的直角边'只能是Mλ3的斜边,・•・作线段血 的中垂线交抛物线于点D,交OA 于点G,连接OD 、AD,则MUD 是等贱三角形,易求 D(4.4),Q OG = GA = GD = 4 ,・,.Z6>DJ≈90o . .,. Δ□.4Z> 为等腰直角三角形, 即在X 轴上方的抛物线上存在点D,使SAD 为等腰直角三角形,点D 的坐标为0(44).(2) 设在宜线AD 的上方的抛物线上点C 伽-十胪+ 2血),则 SMCD = -CDG^ ∖y c I)X I 龙-小 I + 牙 IwIXm-K I --GA X GD乙 上 上=—(4+1 - —in 2 +2WI)X I m -41 + 丄I-丄屛 + Im IX | 8—Wrl -■ ×4×4 2 4 2 4 2=—nr ÷ 6///-16 = (??i-6)2+2 2 2 Q 4<m<8 •・•当m = 6时,MCD 的面积最大二点C 的坐标为C(63)• ••直线OC 的解析式为y =(3) 如图,R0 ≡RA'时,m = 3-爲,9 如图,BG 所在的直线为矩形RQ 泊 的对称轴时,W =-, I如色 陀与FG 重合时,重蠡部分为等腰直角三角形,协=3 ;线设标 物•,坐 O J △然占心 屯V*R S ・・厶冃一。
重庆市巴蜀中学2023-2024学年下学期九年级3月月考数学试题
![重庆市巴蜀中学2023-2024学年下学期九年级3月月考数学试题](https://img.taocdn.com/s3/m/75bf8471abea998fcc22bcd126fff705cc175ce7.png)
重庆市巴蜀中学2023-2024学年下学期九年级3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列代数式中,是单项式的是( )A .xBC .1yD .x y +2.如图,将ACB △绕点C 顺时针旋转一定角度后得到DCE △,若80ACB ∠=︒,150∠=︒,则2∠=( )A .20︒B .30︒C .50︒D .80︒3.下列调查适合普查的是( )A .调查2024年1月全市某品牌火锅底料的质量B .了解中央电视台体育频道某时段节目的全国收视率情况C .环保部门调查长江全域的水质情况D .了解某班同学在校园艺术节时参加志愿者活动的时间4.已知平面直角坐标系中,A 的坐标为()3,4-,则点A 到y 轴的距离为( ) A .5B .4C .3D .75 ) A .6与7之间B .7与8之间C .8与9之间D .9与10之间 6.某学校九年级同学劳动实践的任务是平整2500m 土地.由于操作不熟练开始的半小时,只平整完240m ,学校要求完成全部任务的时间不超3小时,若他们在剩余时间内每小时平整土地2m x ,则x 满足的不等关系为( )A .()4030.5500x +-≤B .()4030.5500x +-≥C .()4030.5500x +-<D .()4030.5500x +->7.如图是用黑色棋子摆放而成的图案,其中第①个图中有3枚棋子,第②个图中有6枚棋子,第③个图中有11枚棋子,第④个图中有18枚棋子……按此规律,第⑦个图案黑色棋子的个数为( )A .36B .49C .51D .658.如图,射线CP 与O e 相切于点C ,点A 、B 在O e 上,连接BA BC ,,过点A 作BC 的平行线与CP 交于点D ,若130BOC ∠=︒,则ADC ∠的度数是( )A .50︒B .55︒C .75︒D .65︒9.如图:正方形ABCD 中,点E 、F 分别是CD 、CB 边上的点,连接AE ,DF 交于点N ,ADF ∠的角平分线DM 交AB 于M ,过点M 作MQ AE ∥分别交DF 于点H ,交BC 于点Q ,连接DQ ,若DE CF =,AMG a ∠=,则用含a 的代数式表示DQC ∠为( )A .135a ︒-B .1902a ︒-C .1452a ︒+ D .23a 10.一列数1M ,2M ,3M ,……2n M +满足1M m =,213M M =-,323M M =-,……以此类推,且规定:1231N M M =,3241N M M =,3451N M M =,……211n n n N M M ++=,其中m 为正整数,则以下说法中正确的有( )①1231212198M M M M m ++++=-L L②当10m =时,1232018N N N N ++++=-L L ③若26n M n n <++恒成立,则1m <-A .0B .1C .2D .3二、填空题11.计算:2(2)-︒= .12.如图,B 、E 分别是线段AC DF 、上的点,且AD BE CF ∥∥,若234AB BCDE ===,,,则EF 的长度是 .13m 的取值范围是 . 14.若一个正多边形的内角和恰好是其外角和的2倍,则该正多边形的每一个外角是 度. 15.现将正面分别标有“0”、“1”、“2”的三张卡片洗匀后背面朝上放在桌上,随机抽出一张卡片将其上的数字记为A ,不放回,再从余下的卡片中随机抽出一张将其上的数字记为B ,两次抽出的卡片上的数字使得A B ⨯的值为正数的概率是 .16.如图,矩形ABCD 的对角线AC BD 、交于点O ,3AB =.以点A 为圆心,AB 长为半径画弧,与AD 交于点E ,点O 恰好在弧上,则图中阴影部分的面积为 .17.如果关于x 的分式方程133ax x x x -=---有整数解,且关于x 的不等式组3434122a x x x x -+≤+⎧⎪⎨-<-⎪⎩至少有2个整数解,那么符合条件的所有整数a 的和为 .18.对于一个四位自然数M ,如果M 满足各个数位上的数字互不相同且均不为0,且它的千位数字与十位数字之差等于百位数字与个位数字之差,那么称这个数M 为“等差数”.将M 的千位数字与十位数字对调,百位数字与个位数字对调得到一个新的四为自然数*M ,并规定()99M M F M *-=.若S ,T 都是“等差数”,其中()()2134S x y b =++,()()251T a b c =++(07a ≤≤,18b ≤≤,19c ≤≤,04x ≤≤,06y ≤≤且a ,b ,c ,x ,y 都是整数),则()()11F S F T -= (用含c ,y 的代数式表示),若()()11F S F T -是一个完全平方数,则此时S T -最小值为 .三、解答题19.计算:(1)()()23233a b a a b +-+ (2)252333m m m m m ⎛⎫ ⎪⎝⎭-+-÷++ 20.如图,在四边形ABCD 中,AD BC ∥,AD AB >,(1)尺规作图:在AD 上截取DE DC =,作DEF DCB ∠=∠交BC 于点F ;(保留作图痕迹,不写作法)(2)在(1)所作图形中,求证:EF FC =(请补全下面的证明过程,不写证明理由) 证明:∵AD BC ∥∴ ① 180D +∠=︒∵DEF DCB ∠=∠∴ ②∴ ③∴四边形DCFE 为平行四边形∵ED CD =∴ ④∴EF FC =21.某校举办了“春节烟花爆竹燃放安全”的知识竞赛,从该校五、六年级中各随机抽取10名学生的成绩(百分制,单位:分)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .95100x ≤≤;B .9095x ≤<;C .8590x ≤<;D .8085x ≤<).下面给出了部分信息:五年级10名学生的成绩在B 组中的数据是:94 93 92 91六年级10名学生的成绩是:81 85 86 87 89 92 92 95 98 100五年级抽取的学生成绩扇形统计图:五、六年级抽取的学生成绩统计表:根据以上信息,解答下列问题:(1)填空:=a ______,b = ______,c = ______;(2)根据以上数据.你认为该校五年级和六年级中哪个年级学生掌握知识较好?请说明理由(一条即可);(3)已知该校五年级有900人,六年级有1000人参加了此次知识竞赛活动,请估计两个年级参加竞赛活动的成绩不低于90分的共有多少?22.某陶瓷厂有90名工人生产碗和盘子,3只碗和5个盘子配成一套餐具礼盒,已知一名工人一天可以生产6只碗或8个盘子.(1)分别安排多少名工人生产碗和盘子可使一天生产的碗和盘子正好配套?(2)A 、B 两个车间接到任务生产一批套装餐具礼盒,若该任务由A 车间单独完成,则恰好能在规定工期完成;若由B 车间单独完成,则需要比规定工期多用6天时间.若A 、B 两个车间先合作4天,剩下的再由B 车间继续加工3天后刚好完成.请求出完成这批餐具礼盒规定工期是多少天?23.如图,Rt ACB △中,9054C AB BC ∠=︒==,,,点D 为AC 上一点,且1AD =,动点E 从D 点出发,E 沿折线D C B --运动,当E 点到达B 点时停止运动,设点E 运动路程为x ,ABE V 的面积为y ,(1)请直接写出y 关于x 的函数表达式并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出ABE V 的面积不小于4的x 的取值范围.24.如图,熊大和熊二春节去洪崖洞景区游玩,如图,A 、B 、C 、D 为同一平面内的四个景点,已知,从景点A 出发经过一条笔直的公路可到达A 正东方向的景点B ;景点C 在景点B 的东北方向,景点D 在景点C 北偏西60︒方向800米处,景点D 在景点A 的北偏东37︒方向(500+米处.1.414≈ 1.732≈2.449≈,sin370.60︒≈,cos370.80︒≈)(1)求景点C 到直线AB 的距离.(结果保留到个位)(2)熊大从景点A 出发到D 再到C ,熊二从景点A 出发到B 再到C ,他们在各景点停留的时间忽略不计,已知两人同时出发,熊大的速度为3米/秒,熊二的速度为2.5米/秒,通过计算判断它们谁先到达景点C ?(结果保留到个位)25.如图1,抛物线2y ax bx =+x 轴交于()3,0A -、()1,0B ,与y 轴交于点C ,连接AC 、BC .(1)求抛物线解析式.(2)如图1,点P 是直线AC 上方抛物线上一点,过点P 作PK BC ∥交AC 于点K ,交x 轴于点N ,求2PK PN -的最大值及此时点P 的坐标.(3)如图2,将原抛物线沿x 轴向右平移2个单位得到新抛物线y ',新抛物线y '交x 轴于点A '、B ',点G 为新抛物线y '对称轴与x 轴的交点,点M 为新抛物线y '上一动点,使得150MGA A CA ''∠+∠=︒,请直接写出所有满足条件的点M 的坐标.26.如图,已知ABC V 中,AB AC =,90BAC ∠=︒,点D 是AB 上一点.(1)如图1,若BC =CD =BD 的长.(2)如图2,将DC 绕点D 顺时针旋转90︒后得到线段DE ,DE 交BC 于点M .连接EB 并延长交CD 延长线于点F .求证:MC BF =.(3)如图3,AC =ABC V 沿BC 翻折,得到A BC 'V ,点D 、N 分别是AB 和A C '上的两个动点,在运动过程中,始终保持AD A N '=,过点A 作直线DN 的垂线,垂足为G .连接CG ,在线段CG 上取一点Q ,使得13CQ QG =,直接写出当AQ 取得最小值时AGQ △的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴蜀中学初2019届(下)第二次月考数学题一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1.-2的倒数是( )A .-2B .-12C .12D .22.在以下图形中,即是中心对称图形,又是轴对称图形的是( )3.下列计算正确的是( )A .a 2·a 3=a 6B .2a +3b =5abC .a 8÷a 2=a 6D .(a 2b)2=a 4b4.如图,直线a∥b,若∠1=55°,∠2=60°,则∠3等于( ) A .85° B .95° C .105° D .115° 5.下列说法中正确的是( )A .在统计学中,把组成总体的每一个考察对象叫做样本容量;B .为了审核书稿中的错别字,应该选择抽样调查;C .一组数据3、x 、4、5、8的平均数为5,则这组数据的中位数是5;D .A 组数据方差S A 2=0.03,B 组数据方差S B 2=0.2,则B 组数据比A 组数据稳定。
6.如图,AB 是⊙O 的弦,过点A 作⊙O 的切线,交BO 的延长线于点C 。
若∠B=28°,则∠C 的度数是( ) A .28° B .34° C .44° D .56°7.已知x -2y =-3,那么代数式2x -4y +3的值是( ) A .-3 B .0 C .6 D .98.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE∥AC,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △BDE :S △CDE =( )A .1:3B .1:4C .1:5D .1:259.下列图形都是由同样大小的圆按一定的规律组成,其中第①个图形中一共有2个圆,第②个图形中一共有7个圆,第③个图形中一共有16个圆,第④个图形中一共有29个圆,以此规律,第⑦个图形中的个数为( ) A .67 B .92 C .113 D .12110.已知二次函数y =a 2+bx +c (a≠0)的图像如图所示,对称轴为直线x =1,下列结论中正确的是( ) A .abc >0 B .b =2a C .a +c >b D .4a +2b +c >011.如图,在A 处观察C 处的仰角∠CAD =31°,且A 、B 的水平距离AE =80米,斜坡AB 的坡度i =1:2,索道BC 的坡度i =2:3,C D⊥AD 于点D ,BF⊥CD 于点F ,则索道BC 的长大约是( )(参考数据:tan31°≈0.6;c os31°≈0.9;13 ≈3.6)。
A .140 B .144 C .150 D .154321ODBA…④③②①FCDEBA的横线上。
13.据相关数据统计,大多数动植物细胞的直径在20微米到30微米之间,已知某动物细胞直径为25微米,即为0.000025米,请将0.000025用科学记数法表示为 。
14.计算:(-1)2017+38 -(-13)-2+cos60°= 。
15.如图,以AD 为直径的半圆O 经过Rt△ABC 的斜边AB 的两个端点,交直角边AC 于点E ,点B 、E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为 。
16.在一个不透明的盒子里装有5个分别写有数-3,-2,0,1,2的小球,它们除数字不同外其余全部相同。
现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,再从剩余小球中取出一个球,将小球上的数字作为b 的值,则a 和b 恰好使得关于x 、y 的二元一次方程组 有整数解的概率是 。
17.甲、乙两人骑车从学校出发,先上坡到距学校6千米的A 地,再下坡到距学校16千米的B 地,甲、乙两人行驶的路程y (千米)与时间x (小时)之间的函数关系如图所示,若甲、乙两人同时从B 地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变,则在返回途中二人相遇时离A 地的距离是 千米。
18.在正方形ABCD 中,AB =4 5 ,E 为BC 中点,连接AE ,点F 为AE 上一点,FE =2。
FG⊥AE 交DC 于点G ,将FG 绕着点G 逆时针旋转使得点F 正好落在AD 上的点H 处,过点H 作HN⊥HG,交AB 于点N ,交AE 于点M ,则S △MNF = 。
三、解答题(本大题共3个小题,共26分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡...(卷.)中对应的位置上。
19.(8分)如图,AB =CD ,AE =CF ,E 、F 是BD 上两点,且BF =DE 。
求证:△ABE≌△CDF。
F EDBA乙甲4115NM HFE DCBA20.(8分)“校园手机”现象越来越受到社会的关注。
“寒假”期间,记者小刘随机调查了某区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全条形统计图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)若该区共有中学生8000人,请根据以上图表信息估算出该区中学生对“校园手机”持“无所谓”态度的人数是多少?21.(10分)化简下列各式:(1)4(a +b)2-2(a +b)(2a -2b); (2) (m +2)÷(m-1+2m +1m +1 )-1m 。
四、解答题(本大题共4个小题,每小题10分共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡...(卷.)中对应的位置上。
22.(10分)如图,一次函数y =kx +b 的图象与反比例函数y =mx象限内的A 点和四象限内的B 点,与x 轴将于点C ,连接AO ,已知AO tan∠AOC=12 ,点B 的坐标为(a ,-4)。
(1)求此反比例函数和一次函数的解析式;(2)根据图像写出使一次函数的值小于反比例函数的值的x (3)求△AOB 的面积。
23.(10分)观音桥重百电器某品牌洗衣机销售情况良好,据了解,去年5月份该洗衣机售价为2900元每台,当月售出615台。
据调查,每台涨价100元,销量就会减少5台。
(1)若该商场要想该品牌洗衣机月销量不低于600台,则售价每台应不高于多少元?(2)据悉,6月份该商场购进该品牌洗衣机600台,并按(1)问的最高售价销售,结果全部售出,7月份,全国经济出现通货膨胀,商品价格进一步上涨,去年7月份该品牌洗衣机的售价比6月份上涨了m%,但7月份的销售量比6月份下降了2m%。
重百电器为了促进销量,8月份决定对该品牌洗衣机实行九折优惠促销,受此政策的刺激,该品牌洗衣机销售量比7月份增加了220台,且总销售额比6月份增加了15.5%,求m 的值。
图②反对无所谓 20%赞成家长对中学生带手机的态度统计图图①24.(10分)如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位数字与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3-1,所以4312是亲密数;(1)最小的亲密数是 ,最大的亲密数是 。
(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数。
25.(10分)已知△ABC 是等腰直角三角形,∠BAC=90°,E 为△ABC 外一点,CE⊥FE,CE =FE ,连接AE 、BF ,点M 为AE 中点,点N 为BF 中点。
(1)若BC =4 2 ,FC =2 2 ,∠ECA=30°,求S △ACE ; (2)求证:MN⊥AE。
NM FEA五、解答题(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡...(卷.)中对应的位置上。
26.(12分)如图1,抛物线y =-58 x 2-218 x +52 的图像与x 轴交于A 、B 两点(点A 在点B 左侧),与y轴交于点C ,连接AC ,点D 为抛物线上一点,横坐标为-1。
(1)求直线AC 的解析式;(2)如图1,点E 为抛物线上位于线段AC 上方的一动点(不与点C 重合),连接CE ,作点D 关于直线CE 的对称点D′,当点D′落在线段AC 上的时候,在线段CE 上方的抛物线上再找一点,连接EG 、CG 得△ECG,求△ECG 面积的最大值和此时点G 的横坐标;(3)如图2,动点P 以每秒2单位的速度从点A 出发,沿线段AO 匀速运动,过点P 作PQ⊥x 轴,交AC 于点Q ,以PQ 为斜边向左作等腰直角△RPQ ;同时,动点H 以每秒 5 个单位的速度,从点C 出发,沿线段CA 匀速运动,过点H 作HM⊥x 轴交抛物线于点M ,以HM 为斜边向左作等腰直角△NHM;设运动时间为t (秒),当△RPQ 的一条边所在直线与△NHM 的中位线重合时,求t 的值。
DCBAOyxM N HQR PDCBAOyx图1 图2数学随堂练习(二)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1.-2的倒数是( B )A .-2B .-12C .12D .22.在以下图形中,即是中心对称图形,又是轴对称图形的是( C )3.下列计算正确的是( C )A .a 2·a 3=a 6B .2a +3b =5abC .a 8÷a 2=a 6D .(a 2b)2=a 4b4.如图,直线a∥b,若∠1=55°,∠2=60°,则∠3等于( D )A .85°B .95°C .105°D .115° 5.下列说法中正确的是( C )A .在统计学中,把组成总体的每一个考察对象叫做样本容量;ODBAB .为了审核书稿中的错别字,应该选择抽样调查;C .一组数据3、x 、4、5、8的平均数为,则这组数据的中位数是5;D .A 组数据方差S A 2=0.03,B 组数据方差S B 2=0.2,则B 组数据比A 组数据稳定。
6.如图,AB 是⊙O 的弦,过点A 作⊙O 的切线,交BO 的延长线于点C 。