放缩法证明数列不等式

合集下载

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.1求的值;2求证:.解析:1因为,所以2因为,所以奇巧积累:1 2 34 5 6 7 8 9 10 11111213 14 15 15 例2.1求证: 2求证: 3求证: 4 求证:解析:1因为,所以2 3先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案4首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证: 解析:一方面:因为,所以另一方面: 当时,,当时,,当时,,所以综上有例 4.2008年全国一卷设函数.数列满足..设,整数.证明:解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,,因为,于是例5.已知,求证: 解析:首先可以证明: 所以要证只要证:故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,,求证:.解析:所以从而例7.已知,,求证:证明: ,因为,所以所以二、函数放缩例8.求证: 解析:先构造函数有,从而因为所以例9.求证:1 解析:构造函数,得到,再进行裂项,求和后可以得到答案函数构造形式: ,例10.求证:解析:提示:函数构造形式:当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,,所以有,,…,,,相加后可以得到:另一方面,从而有取有,,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案函数构造形式:加强命题例13.证明: 解析:构造函数,求导,可以得到:,令有,令有,所以,所以,令有,所以,所以例14. 已知证明.解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案放缩思路:。

不等式证明之放缩法

不等式证明之放缩法

不等式证明之放缩法放缩法是一种常用的不等式证明方法,它通过对不等式两边进行一系列放缩操作,从而逐步缩小不等式范围,最终达到证明不等式成立的目的。

本文将对放缩法的基本思想和几种常用的放缩方法进行详细介绍。

首先,我们来介绍放缩法的基本思想。

放缩法的核心思想是通过对不等式两边进行放缩操作,把原来的不等式转化为一个更容易证明的不等式。

在放缩过程中,我们可以利用不等式的性质、算术平均-几何平均不等式、柯西-施瓦茨不等式等数学工具,结合实际问题的特点,灵活选择适当的放缩方法,从而得到具有更强的推理力度的不等式,最终完成不等式的证明。

接下来,我们介绍几种常用的放缩方法。

1.替换法:通过替换变量,将原不等式中的复杂变量替换为新的变量,使得不等式形式变得更加简单,更易证明。

这个方法可以常常应用于含有多个变量的不等式中,通过替换变量后,使得原来复杂的不等式简化为只含有一个变量的不等式。

2.增量法:通过引入一个增量,将原不等式中的变量加上增量后,得到一个更容易证明的不等式。

这个方法常常适用于原不等式中含有与增量具有类似性质的变量,可以通过增量的引入,改变原不等式的结构,使得证明变得更加简单。

3.分割法:将整个证明过程分为若干个子证明,通过对每个子证明的分割和放缩操作,最终得到整个不等式的证明。

这个方法常常适用于原不等式较为复杂或不易直接证明的情况,通过将证明分割为若干个子证明,分别证明每个子证明的不等式,最后再将这些子证明的不等式组合起来,得到原不等式的证明。

4.对称法:通过对不等式的两边同时进行操作,得到具有对称性的不等式,从而实现原不等式的放缩。

这个方法常常适用于原不等式中含有对称性的项,通过对称性的放缩操作,不仅可以得到更容易证明的不等式,也可以将原不等式变得更加简洁明了。

以上只是常用的放缩方法中的一部分,实际应用中还有很多其他的放缩方法,需要根据具体问题的情况选择适当的方法。

无论使用哪种放缩方法,都需要注意选择合适的放缩范围,并保证放缩后的不等式在放缩范围内成立,才能保证最终得到的不等式是正确的。

放缩法证明数列不等式

放缩法证明数列不等式

放缩法证明数列不等式数列不等式是指对于数列${a_n}$,能够证明其满足其中一种特定的不等关系。

放缩法是一种常用的证明数列不等式的方法,其核心思想是通过数学推导和合适的放缩操作,将需要证明的不等式转化为已知的不等式或者已有的数学结论。

下面我将详细阐述放缩法的步骤,并通过一个具体的例子来演示放缩法如何证明数列不等式。

步骤一:首先,我们要明确需要证明的不等式形式。

通常,数列不等式可以分为两种情况:单调性不等式和两边夹逼不等式。

单调性不等式需要证明数列${a_n}$的单调性(如$a_{n+1}>a_n$),而两边夹逼不等式需要证明数列${a_n}$的极限(如$\lim_{n\to\infty}a_n=a$)。

在这里,我们以两边夹逼不等式为例来进行讲解。

步骤二:建立需要用到的不等式。

通常,需要利用已知的数学不等式或结论来辅助证明原不等式。

常见的不等式包括柯西-施瓦茨不等式、均值不等式、柯西反证法等。

在这里,我们以柯西-施瓦茨不等式为例进行讲解。

步骤三:利用放缩操作将原不等式转化为已知的不等式或数学结论。

放缩操作的核心是通过合适的代换或变形,对不等式进行放大或缩小,使得我们能够应用已知的不等式或数学结论。

在这里,我们以一个具体的例子来演示放缩操作的过程。

假设我们要证明数列${a_n}$满足以下不等式:$\frac{a_{n+1}}{a_n}<2$。

我们可以采用放缩法来证明这个不等式。

首先,我们知道对于任意的实数$x$,都有$x^2\geq 0$。

这是由平方数的非负性质可得,也可以通过推导得出。

根据柯西-施瓦茨不等式,我们有$(a_n\cdot 1-a_{n+1}\cdot 1)^2\geq 0$,即$a_n^2+a_{n+1}^2-2a_n\cdot a_{n+1}\geq 0$。

然后,利用放缩操作,我们可以将上述不等式改写为$a_n^2+a_{n+1}^2\geq 2a_n\cdot a_{n+1}$。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩

不等式放缩法

不等式放缩法

不等式放缩法不等式放缩法,这可是数学里一个相当有趣的“小魔法”!咱们先来说说啥是不等式放缩法。

简单来讲,就是把一个复杂的不等式通过巧妙的手段进行变形,让它变得更容易处理和证明。

比如说,原本一个长得很吓人的不等式,咱们通过合理的放缩,把它变成一个咱们熟悉的、能轻松搞定的形式。

我给大家举个例子哈。

比如说有这么个不等式:1/2 + 1/3 + 1/4 +… + 1/n > 1/2 ×(n 1) (n ≥ 2)。

要是直接去证明,可能会让人有点头疼。

那咱们就来放缩一下。

先把每一项 1/k (k =2, 3, 4, …, n)都放大成 1/2 ,这样原来的式子就变成了(n 1) × 1/2 ,这不就和要证明的右边一样了嘛!而且因为我们是把每一项都放大了才得到的这个式子,所以原不等式就成立啦!是不是感觉有点神奇?我还记得之前给学生们讲这部分内容的时候,有个小家伙一脸迷糊地问我:“老师,这放缩法咋感觉像是在‘作弊’呢?”我笑着回答他:“这可不是作弊哦,这是数学的智慧!就像你走在路上,遇到一个大石头挡道了,咱们总不能硬撞上去吧,得绕个弯或者找个更简单的路过去,这放缩法就是咱们在数学道路上找的‘捷径’!”那不等式放缩法有啥用呢?用处可大啦!比如说在一些数列求和的问题里,如果直接求和很难算,咱们就可以用放缩法来估计和的范围。

还有在证明一些不等式的结论时,放缩法往往能起到关键作用,让看似复杂的问题一下子变得清晰起来。

不过呢,放缩法也不是随便放缩的,要是放缩得不合理,那可就得出错误的结论啦。

这就好比你修房子,尺寸要是搞错了,房子可就歪歪斜斜没法住人了。

所以在使用放缩法的时候,一定要小心谨慎,多思考多尝试。

再给大家说个我自己的经历。

有一次我在做一道数学题,用了放缩法,结果怎么都证明不出来。

我检查了好几遍,才发现是放缩的时候放得太大了,把原本成立的不等式给弄“变形”了。

从那以后,我每次用放缩法都会特别小心,反复确认放缩的合理性。

证明不等式的定积分放缩法

证明不等式的定积分放缩法

证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。

具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。

下面我们以一个简单的例子来说明定积分放缩法的具体应用。

假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。

具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。

为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。

可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。

总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。

例谈放缩法证明不等式的基本策略

例谈放缩法证明不等式的基本策略

03
放缩法证明不等式的案例分析
案例一:利用逐步调整法证明不等式
总结词
详细描述
逐步调整法是一种通过逐步调整不等 式的两边,以达到证明不等式目的的 方法。
逐步调整法通常需要找到一个可调整 的不等式,通过逐步调整该不等式的 两边,使不等式的左边逐渐增大,右 边逐渐减小,从而证明原不等式成立 。
实例
例如。要证明 $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} > \ln(n + 1)$。可以先从左边减去 $\frac{1}{n}$。再从右边加上 $\frac{1}{n}$
构造函数法
总结词
构造函数法是一种通过构造满足某种性质的函数或序列,从而证明不等式的方法。
详细描述
构造函数法的核心思想是,根据题目条件和目标形式构造一个满足特定性质的函数或序列。通过对这个函数或序列的分析 和计算,达到证明不等式的目的。构造函数法在函数不等式证明中较为常用。
示例
例如,在证明“当$x > 0$时,$e^{x} > x + 1$”时,可以使用构造函数法进行
• 示例:例如,在证明$\sqrt{2} < 1 + \frac{1}{n}$时,可以通过逐步调整法进行调整 • 首先,我们将不等式的两边同时加上$1 - \sqrt{2}$,得到$1 - \sqrt{2} < \frac{1}{n}(1 - \sqrt{2})$。 • 然后,我们将左边的不等式两边平方,得到$(1 - \sqrt{2})^{2} < \frac{1}{n}(1 - \sqrt{2})^{2}$。 • 进一步展开$(1 - \sqrt{2})^{2}$,得到$3 - 2\sqrt{2} < \frac{3}{n} - 2\sqrt{2}$。 • 最后,我们将右边的不等式两边除以$n$,得到$\frac{3}{n} < \frac{3}{n} + \frac{2\sqrt{2}}{n}$。 • 整理后,得到$\frac{3}{n} < 3 + 2\sqrt{2}$,从而证明了原不等式。

放缩法证明不等式

放缩法证明不等式

放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。

但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。

比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。

“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。

做到放大或缩小恰到好处,才有利于问题的解决。

一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。

专题20 放缩法证明数列不等式(练习及答案)-高考数学二轮专题必考点专练

专题20 放缩法证明数列不等式(练习及答案)-高考数学二轮专题必考点专练

专题20:放缩法证明数列不等式题型一:先求和再证明不等式典型例题例1(2021·全国乙)设{a n}是首项为1的等比数列,数列{b n}满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式;(2)记S n和T n别为{a n}和{b n}的前n项和.证明:T n<S n2.变式训练练1已知数列{a n}为等比数列,数列{b n}为等差数列,且b1=a1=1,b2=a1+a2,a3=2b3−6.(1)求数列{a n},{b n}的通项公式;(2)设c n=1b n b n+2,数列{c n}的前n项和为T n,证明:15≤T n<13.练2已知数列{a n }的首项a 1=3,前n 项和为S n ,a n+1=2S n +3,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{b n a n}的前n 项和T n ,并证明:13≤T n <34.题型二:先放缩再求和证明不等式典型例题例2(2014·全国Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.变式训练练3已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式; (2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.练4已知数列{a n }的前n 项和为S n ,a 1=32,2S n =(n +1)a n +1(n ≥2).(1)求{a n }的通项公式;(2)设b n =1(a n +1)2(n ∈N *),数列{b n }的前n 项和为T n ,证明:T n<710(n ∈N *).专题训练1.数列{a n}中,a1=12,a n+1=a n2a n2−a n+1(n∈N∗).(1)求证:a n+1<a n;(2)记数列{a n}的前n项和为S n,求证:S n<1.2.已知正项数列{a n}的前n项和为S n,且a n+1a n=2S n,n∈N∗(1)求证:数列{S n2}是等差数列(2)记数列b n=2S n3,T n=1b1+1b2+⋯+1b n,证明:1√n+1<T n≤32−√n.3.已知数列{a n}满足a1=2,a n+1=2(1+1n )2a n,n∈N+(1)求证:数列{a nn2}是等比数列,并求出数列{a n}的通项公式;(2)设c n=na n ,求证:c1+c2+⋯+c n<1724.4.已知数列{a n}的前n项和S n=na n−3n(n−1),n∈N∗,且a3=17.(1)求a1;(2)求数列{a n}的前n项和S n;(3)设数列{b n}的前n项和T n,且满足b n=√nS n ,求证:T n<23√3n+2.5.已知数列{a n}满足a1=14,a n=a n−1(−1)n a n−1−2(n≥2,n∈N).(1)试判断数列{1a n+(−1)n}是否为等比数列,并说明理由;(2)设b n=a n sin(2n−1)π2,数列{b n}的前n项和为T n,求证:对任意的n∈N∗,T n<47.。

用放缩法证明数列中的不等式 (1)

用放缩法证明数列中的不等式 (1)

1 1 1 1 例1 求证: 2 3 n 1 (n N ) 2 2 2 2
分析 不等式左边可用等比数列前n项和公式求和.
1 1 (1 ) 1 2 2 左边 1 n 1 1 2 1 2
n
表面是证数列不等式, 实质是数列求和
1 2 3 n 变式1 求证: 2 3 n 2 (n N ) 2 2 2 2
1 1 1 2 (n 2) n
当n = 1时,不等式显然也成立.
变式2 (2013广东理19第(3)问) 1 1 1 7 求证: 1 2 2 2 ( n N ) 2 3 n 4
分析 变式2的结论比变式1强,要达目的,须将
变式1放缩的“度”进行修正,如何修正?
保留前两项, 1 1 1 1 1 2 ( ) (n 3) 从第三项开 2 n n 1 2 n 1 n 1 始放缩
1 1 1 1 1 1 1 1 ) 左边 1 2 ( ) ( ) ( 2 2 2 4 3 5 n 1 n 1 1 1 1 1 5 1 1 1 1 1 1 1 ( ) 1 ( ) (n 3) 4 2 2 3 3 4 2 2 3 n n 1
模型
2n 2 n 1 2 n 1 奇偶型: ; 2n 2n 1 2n 1
2n 1 2n 1
奇偶型放缩为可求积
指数型可放缩 为等比模型
一. 放缩目标模型——可求和
(一)形如 a k (k为常数)
i i 1 n
1 1 1 1 例1 求证: 2 3 n 1 (n N ) 2 2 2 2
当n = 1时,不等式显然也成立.
例3 (2009珠海二模理20第(2)问) 1 1 1 求S 1 的整数部分. 2 3 100 1 分析 不能直接求和式 S ,须将通项 放缩为裂项相消模型后求和. n

证明数列不等式的等比数列放缩法

证明数列不等式的等比数列放缩法




例 2 数列 { } 的通 项 公 式为 = 1
求证 : +- . - … <
b l
= ,


2 算法模式 . 1
设∑a ∑b 或∑ ∑b , 数列{} i i( ≤ i 其中 < )
为正 项等 比数 列 ( 比 q≠1 ,即 公 )
2 1 第 9期 00年
福 建 中学数 学
3 3
证 明数列 不等式 的等 比数列放缩 法
李 鹏 王 娟
江 苏省 邗江 中学 (2 0 9 250) 文 [] “ 1在 目标 分 析 策 略” 中提 出 :通 过 目标 值 或 则 有 6 = ,N P b} l A{ 的通 项 公 式为 = ( ) ,因 .
3 .基 本思 维策 略下 的局 部调 整 例 3 数 列 } 的通 项公 式 为 : =
” ・
下 举例说明 ∑ M ( 常数) 是 面 “ < M是 且
的指数 形 式” 的证 明 .
,求证 :
aI a2 + a3 + … + 口 < 一 +

例1 列 的 项 式 —l , 证: 数 } 通 公 为a =_ 求


1 一g
: 一 g
1 q 1 一 一g

因为 目标 值 为
’… ’ … ’。 …
故令
= , 由 =
, g , 有 =1 令 = 则 而 2 , 时

故令

=3

由a= 1

可令 q , = 则

所 以 2 时 =1 () 1

有 6=3 3

专题36 到底你要放缩到什么程度:放缩法证明数列不等式-高考数学80个热点难点吃透大全

专题36 到底你要放缩到什么程度:放缩法证明数列不等式-高考数学80个热点难点吃透大全

36 到底你要放缩到什么程度:放缩法证明数列不等式考纲要求:1、掌握放缩法证明数列不等式的理论依据——不等式的性质:2、掌握放缩的技巧与方法.基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手 ② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。

从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

放缩法证明数列型不等式的注意问题以及解题策略

放缩法证明数列型不等式的注意问题以及解题策略

放缩法证明数列型不等式的注意问题以及解题策略纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。

处理数列型不等式最重要要的方法为放缩法。

放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。

对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。

1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。

2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。

3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:<<(2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-;真分数分子分母同时减一个正数,则变大;,11n n n n -<+; 假分数分子分母同时减一个正数,则变小,如212221n nn n +>-; (3)应用基本不等式放缩:222n n n n ++>+; (4)二项式定理放缩:如2121(3)nn n -≥+≥;(5)舍掉(或加进)一些项,如:121321||||||||(2)n n n a a a a a a a a n --≤-+-++-≥。

4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。

这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。

一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。

放缩法在数列不等式证明中的应用

放缩法在数列不等式证明中的应用

分母变小,则分式变大.与狀12 有关的放缩关系主要有 如下几种:
1 ① 狀2

1 狀2 -1

1 (狀-1)(狀+1) =
1 2
·
( ) 1

狀-1-狀+1

1 ②狀2
1 =狀·狀


<狀(狀-1)=狀-1-
1 狀

1 ③狀2
1 =狀·狀


>狀(狀+1)=狀
-狀1+1;
( ) 1 4



④狀2 =4狀2 <4狀2 -1=22狀-1-2狀+1 .
1 2
1 +22


1 +2狀-1
1-2狀 =狀+ 1
1- 2
1 =狀+2-2狀-1 <狀+2.
说明:本题利用了无穷递减等比数列的放缩公式
进行放缩,即当公比0<狇
<1时,犛狀
犪1(1-狇狀 = 1-狇
) =
1犪-1狇-1犪-1狇狇狀 <1犪-1狇.注意,若从第一项就开始放 缩,则 会 出 现 过 度 放 大 的 问 题,而 从 }满足犪2 =9,犪狀+1 =8犪狀 -7,狀 ∈
犖 .
(1)求{犪狀}通项公式;
(2)设犮狀

=槡犪狀+1
-1,将犮狀
的底数与指数互
换得
{ } 到犱狀,设数列
1 犱狀
的前项和为犜狀,求证:犜狀 <3 23 0.
解析:(1)犪狀 =8狀-1 +1.
(2)由(1)可得犪狀
1- 2
2狀1-1,狀 ∈ 犖 . 当狀 ≥2时,2狀 -1-2狀-1 =2狀-1 -1>0,即2狀 -
1>2狀-1
>0,2狀1-1

高考数学放缩法证明数列不等式之常数型与函数型(解析版)

高考数学放缩法证明数列不等式之常数型与函数型(解析版)

放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n=n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×n n -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n 1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n +a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。

放缩法证明不等式例题

放缩法证明不等式例题

放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。

所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。

放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。

二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放缩法证明数列不等式
一、基础知识:
1、放缩法证明数列不等式的理论依据——不等式的性质:
2、放缩的技巧与方法:
(1)常见的数列求和方法和通项公式特点:
① 等差数列求和公式:12n n a a S n +=
⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()
()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)
③ 错位相减:通项公式为“等差⨯等比”的形式
④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项
(2)与求和相关的不等式的放缩技巧:
① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手
② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)
③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

(3)放缩构造裂项相消数列与等比数列的技巧:
3、常见的放缩变形:
二、典型例题:
例1:已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a =
(1)求证:数列{}n a 是等差数列,并求出{}n a 的通项公式
(2
)设n b =
,数列{}n b 的前n 项和为n T ,求证:32
n T <
例2:设数列{}n a 满足:111,3,n n a a a n N *+==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠,112,n n b b S S n N *-=⋅∈
(1)求数列{}{},n n a b 的通项公式
(2)求证:对任意的n N *∈且2n ≥,有223311132
n n a b a b a b +++<---
例3:已知正项数列{}n a 的前n 项和为n S ,且12,n n n a S n N a *+
=∈ (1)求证:数列{}
2n S 是等差数列 (2)记数列3121112,n n n n b S T b b b ==
+++
,证明:312n T <≤-
例4:已知数列{}n a 满足21112,21,n n a a a n N n ++⎛⎫==+∈ ⎪⎝⎭
(1)求证:数列2n a n ⎧⎫⎨⎬⎩⎭
是等比数列,并求出数列{}n a 的通项公式 (2)设n n
n c a =,求证:121724n c c c +++<
例5:已知数列{}n a 的前n 项和()31,n n S na n n n N *=--∈,且317a =
(1)求1a
(2)求数列{}n a 的前n 项和n S
(3)设数列{}n b 的前n 项和n T
,且满足n b =
n T <
例6:已知数列{}n a 满足()()1111,2,412
n n n n a a a n n N a --==≥∈-- (1)试判断数列()11n n a ⎧⎫+-⎨⎬⎩⎭
是否为等比数列,并说明理由
(2)设()21sin
2n n n b a π-=,数列{}n b 的前n 项和为n T ,求证:对任意的4,7n n N T *∈<
例7:已知数列{}n a 的各项均为正值,对n N *∀∈,()()212141,log 1n n n n n a a a b a +-=+=+,且11a =
(1)求数列,n n a b 的通项公式
(2)当7k >且k N *∈时,证明对n N *∀∈,都有121111132
n n n nk b b b b ++-++++> 成立。

相关文档
最新文档