放缩法证明“数列不等式”问题的两条途径
用放缩法证明数列中的不等式
2n 2 n 1 2 n 1 奇偶型: ; 2n 2n 1 2n 1
2n 1 2n 1
奇偶型放缩为可求积
指数型可放缩 为等比模型
一. 放缩目标模型——可求和
(一)形如 a k (k为常数)
i i 1 n
1 1 1 1 例1 求证: 2 3 L n 1 (n N ) 2 2 2 2
* 2 2 2
证明
1 1 1 1 1 1 2 ( ) (n 2) Q 2 (2n 1) 4n 4n 4n(n 1) 4 n 1 n
1 1 1 1 1 1 ) 左边 1 (1 ) ( ) L ( 4 2 2 3 n 1 n 1 1 1 (1 ) 1 1 5 n 2 4 n 4 4
n
接求和,就先求和再放缩;若不能直接求和的,一般要 先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不 多,主要有等差模型、等比模型、错位相减模型、裂项 相消模型等. 实际问题中, bn 大多是等比模型或裂项相 消模型.
评注
放缩法的证明过程就像“秋风扫落叶”一样干脆利落!
1 5 7 对 2 放缩方法不同,得到的结果也不同. 显然 2 , 3 4 n
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
1 那么变式 1 和变式 2 就显然成立. 对 2 的 3 种放缩方法体现了 n n 5 1 三种不同“境界” ,得到 2 的三个“上界” ,其中 最接近 3 k 1 k
用放缩法证明 数列中的不等式
张家界市第一中学 高三数学组
放缩法灵活多变,技巧性要求较高,所谓“放大一点 点就太大,缩小一点点又太小”,这就让同学们找不到头 绪,摸不着规律,总觉得高不可攀!
高中数学优秀讲义微专题57 放缩法证明数列不等式
微专题57 放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 ) (2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数 注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项 (2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
放缩法证明不等式
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。
高中数学数列与不等式综合问题放缩法
数列与不等式综合问题一裂项放缩 放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。
常见裂项放缩技巧:例1 求证(1) 变式训练 [2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. 求数列{a n }的通项(1)公式;(2)证明:1a 1+1a 2+…+1a n<74. [2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?<13. 二等比放缩(一般的,形如 的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....nk a a a +++<231111+++......+12222n<(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。
【数列】放缩证明不等式的4种方法(数列难点)
【数列】放缩证明不等式的4种方法(数
列难点)
数列放缩证明不等式的方法有很多,以下是其中4种方法:
- 直接求和再放缩:通过求和的方式将原式进行化简,再进行放缩证明。
- 先放缩再求和:通过放缩将原式进行化简,再通过求和的方式证明。
- 等差数列:将原式中的数列通过放缩转换为等差数列,再进行证明。
- 等比数列:将原式中的数列通过放缩转换为等比数列,再进行证明。
在使用放缩法证明不等式时,需要根据数列的特点选择合适的放缩方法,并进行严谨的证明。
求解数列不等式证明问题的方法
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
用放缩法证明数列不等式的策略与技巧
寿 鲜 春 : 放 缩 法 证 明数 列 不等 式 的 策 略 与 技 巧 用
・1 ・ 7
用 放 缩 法 证 明 数 列 不 等 式 的 策 略 与 技 巧
●寿鲜春 ( 牌头中学 浙江诸暨 31 5 1 2) 8
类 似 的 , 可 以证 明下 面一 个不 等式 : 还 例 2 已知数 列 { 满 足 : =a a} a+ 一a +1 , a= , 证: 】 2求 — + —+… + ——< ( ≥2 ∈ ・ . —+ - + … +— <1 n , ) — 【 ≥Z /∈N J 。 7 ,
利用 加糖后 糖水 变 甜 的结论 , 以得 出 : 可 若a>
b + rl < 2 3 . a ‘ t _
2 2 利 用浓度 不等 式 建 立项 与项之 间的对 应 关 系 .
32 +33 ’… + 3 一 <一 , + 。 。 1、 6 ’
< <
2 ( ≥3 n 凡 )
( 凡≥3 ),
,
g 一ln)g . ( ÷(_-艚 2 ) g 1l 2
然 后用 错位 相减 法计算 得 到
6 8
一 +
这 问 就 转 为 明l1 ) 样 题 可 化 证 :( > g+
g
2
7
< ,
+
√等即明 > 等显成. , √ , 立 证 然
与 要证 结果 不符. 事买是 放缩 时放 得 太大 !
l+ )把 边 作 一 数 之 , 3 g . 右 看 某 个 列 和则 ( 1 若
对应 的数列 通项 为 :
11
尝试 2 用 数学 归纳法 容 易 证 明 : n≥3时 , 当 > n 则 由浓度 不等式 可 以得 到 以下不 等式 : 2,
不等式的常见证明方法
不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
放缩法证明不等式
放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
例谈证明数列不等式问题的三种途径
法来进行求证,但这两种方法较为繁琐,且运算量
较大.
(作者单位:山东省聊城市东阿县实验高中)
Copyright©博看网. All Rights Reserved.
∴不等式1 +
n
2
3
1
通过观察发现,该数列的通项公式为
,很难
n
1
1 <
求 得 数 列 的 和 ,于 是 先 将
进行放缩:
n
n
∴1+
)
n - n - 1 ,然后再进行求和,这样数列中的部分
放缩方式.
= 2 k + 1,
= 2 n,
(
Hale Waihona Puke 项便会相互抵消,化简所得的结果,即可证明不等式
c1 + c 2 + ⋯ + c k + c k + 1 < 2 k +
又 ∵∠CEF = 90° ,
即 EF ⊥ CE ,
∴PB ⊥ CE ,PB ⊥ 平面 PAC ,
∴ 正三棱锥 P - ABC 的三条侧棱两两互相垂直,
把三棱锥补形为正方体,则正方体的外接球即为
半径为 6 ,
2
公式进行求解.
三棱锥的外接球,
其直径为 D = PA2 + PB2 + PC 2 = 6 ,
∴ 三棱锥 P - ABC 为正三
棱锥,
∴顶点 P 在底面的射影
O1 为底面三角形的中心,连接
图8
BO1 交 AC 于 G ,
∴AC ⊥ BG ,
又 PO1 ⊥ AC ,PO1 ⋂ BG = O1 ,
∴AC ⊥ 平面 PBG ,∴PB ⊥ AC ,
数列放缩通项证明不等式与数列不等式恒成立问题(解析版)
数列放缩通项证明不等式与数列不等式恒成立问题数列通项放缩问题是放缩问题的常考类型,相较于求和之后再比较大小的题型而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点. 此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩. 当然,下面的这些常见的裂项公式与放缩公式需要注意.目录题型一 通项放缩 (3)题型二 与导数结合的放缩 (8)题型三 数列恒成立问题 (9)1.常见的裂项公式:必须记例如:n n n n n )1(11)1(12−<<+或者12112−+<<++n n n n n 等 2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b −−−−−−=−+++++这样的话,可得:1)(−−>−n n n a b a b a ,就放缩出一个等比数列. 3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<. 4.利用导数产生数列放缩:由不等式1ln −≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.常见放缩公式:(太多了,不一定要全部记,自行选择) 一、等差型(1)()()21111211<=−≥−−n n n n n n; (2)()2111111>=−++n n n n n ; (3)2221441124412121 =<=− −−+n n n n n ; (4)()()()11!111112!!!11+=⋅=⋅<<=−≥−−−rr n r r n T C r n r n r n r r r r r; 二、根式型 (5(()22=<=+≥n ; (7(2>=;(8<2=−()22<−≥n;(9<)2==≥n ;三、指数型(10)()()()()()()()1211222211212121212122212121−−−=<==−−−−−−−−−−nn n n n n n n n n n n n()2≥n ;(11)()1111111312231+<+++++< ××−nn n n ; (12)()()01211122221111111=<==−−++−+++−n n n n n C C C n n n n ; (13)()()()111121122121212121−−−<=−≥−−−−−n nn n n n n . (14)=<<.(2021浙江卷)已知数列{}n a满足)111,N n a a n ∗+==∈.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S << D .100952S <<解析:由211111124n n n a a a ++ ==−2111122n a +∴<+⇒<12<11122n n −++=,当且仅当1n =时取等号,112311n n n n a n a a a n n ++∴≥∴=≤=+++. 一方面:252111)1(41002>⇒+−+>+>S n n n a n . 另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S≤−+−+−++−=−<,即100332S <<.故选:A .题型一 通项放缩1.已知1n a n =+,若数列21n a的前n 项和为n T ,求证:23n T <.【详解】证明:由(1)得()*1n a n n =+∈N , 重点题型·归类精讲所以()()()()()22221144411221232123141411na n n n n n n n ==<==− ++++ +++−, 所以()222211*********1222223435577921231nT n n n =+++⋅⋅⋅+<−+−+−+⋅⋅⋅+− ++ +111111111122235577921233233n n n −+−+−+⋅⋅⋅+−=−< +++1121212331333n n n n a +=×<×=+, 所以2341112321111112222111931333333313n n n n a a a a ++− ++++<++++==−<−3.(2014全国2卷)已知312n n a −=,证明:1231112n a a a ++<…+.解析:1231n n a =−,因为当1n ≥时,13123n n −−≥×,所以1113123nn −≤−× 于是2-112311-111111313311-1332321-3n n n na a a a ++++<+++==< (). 所以123111132na a a a ++++< . 注:此处13123n n −−≥×便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b −−−−−−=−+++++当然,利用糖水不等式亦可放缩:13133132−=<−n n n ,请读者自行尝试.4.已知21na n =−,{}n a 的前n 项和为n S ,0nb >,2121n n b S +=+,数列{}n b 的前n 项和为n T ,证明:1n T n <+.【详解】2n S n =,则21(1)n S n +=+,2221(1)n b n =++.22223(1)nn n b n ++=+,则n b =∴()()211121n b n n −=<=+⋅+ 2111(1)1n n n <−++.∴121111n n T b b b n n n =+++<+−<++5) A .3 B .4 C .5 D .6 【答案】B【分析】注意到据此可得答案. 【详解】..故,即整数部分为4.<>< 152<> 12>−+−+−++−92>=952<<2023届·广东省综合素质测试(光大联考)【详解】(1)当2,N n n ∗≥∈时,由22211121211n n n n n n n n n n a a S S S S S S S S −−−−−=−⇒=−⇒−=, 所以数列{}2n S 是等差数列;(2)112211211S S S S =−⇒=,由(1)可知数列{}2n S 是等差数列,且公差为1, 所以21(1)1n Sn n =+−⋅=,又因为数列{}n a 是正项数列,所以=n S,即1n S=,1001)1)1)18T >−+++> .2024届·广州·仲元中学校考7.已知是公差为2的等差数列,其前8项和为是公比大于0的等比数列,, (1)求和的通项公式: (2)记,证明: 【答案】(1), (2)证明见解析【分析】(1)由等差数列与等比数列的性质求解, (2)由放缩法与错位相减法求和证明. 【详解】(1)对于等差数列,,而,解得,故, 对于等比数列,,则,而公比,解得,故 (2)令,则,两式相减得, 得,故,原式得证{}n a {}64.n b 14b =3248.b b −={}n a {}n b *21,N n n n c b n b =+∈)*N n k n =<∈21na n =−4n nb ={}n a 81878642S a d ×=+=2d =11a =21na n =−{}nb 14b =232)484(b q b q −=−=0q >4q =4n n b =2144nn n c =+<212222n n S =+++ 2311122222n nS +=+++ 2111111112222222n n n n n n S ++=+++−=−− 112222n n nS −=−−<nk =<<【详解】121212311n n n T a a a n n =⋅⋅⋅⋅⋅⋅=××⋅⋅⋅×=++.所以2221222211123(1)n n S T T T n =+++=++++ 111111111112334(1)(2)23341222n n n n n >++=−+−++−=−××+++++ . 又因为11111122222n n a n n ++−=−=−++, 所以112n n S a +>−.【分析】当1n =时,验证所证不等式成立,当2n ≥时,由放缩法可得出11134n n b −≤⋅,再结合等比数列求和公式可证得原不等式成立,综合可得出结论.【详解】解:由141nn n b na =−=−,所以,1111441344134n n n n n b −−−−=⋅−=⋅+−≥⋅, 所以,11134n n b −≤⋅, 当1n =时,111439b =<, 当2n ≥时,211211*********144111344394914nn nn b b b −⋅−+++<++=⋅=−<− . 综上所述,对任意的n ∗∈N ,1211149n b b b +++< .10.已知11223n n n a ++=−,若2nn n b a a =−,n S 为n b 的前n 项和,证明:1215n S ≤<. 【解析】11223n n n a ++=− ,2n n nb a a =−,111211112223123232323n n n n n n n n n n b a a +++++++ ∴=−−=× −−−− =, 11111123N ,230,0,122323n n n n n n n b S S b +∗+++∈−>∴=×>∴≥==−− ,1111112323116,232323232323n n n n n n n n n b ++++++ ×<×− −−−−−−21224121525S b b ∴=+=+<,123445131N ,3,1111116232323232323241124654126121215,25232325525n n n n n n S b b ∗++∴∈≥ <++−+−++−−−−−−− =++−=++=+<−− 1215n S ∴≤<.题型二 与导数结合的放缩利用导数产生数列放缩:由不等式1ln −≤x x 可得:+∈<+<+N n n n n ,1)11ln(11.11.(2017全国3卷)已知函数()1ln f x x a x =−−. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值. 解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x −−>,令112nx =+得11ln(1)22n n +<,从而221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=−<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b − ≠=− = 对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立. 进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b−>−+,即111ln ln ()2b a b a a b −<+−.令,1a n b n ==+,则111ln(1)ln ()21n n n n +−<++,所以111ln(1)ln ()21n n n n +−<++①.(,)L a b <1ln ln ln 2ln (1)a a b x x x b x ⇔−<⇔<⇔<−=>其中,接下来令t=2−>1(1)lnn>+,1()nlnn+>②.12.已知函数(1)()ln(1)1x xf x xxλ++−+,设数列{}na的通项111123nan=++++,证明:21ln24n na an−+>.解析:由上述不等式①,所以111ln(1)ln()21n nn n+−<++,111ln(2)ln(1)()212n nn n+−+<+++,111ln(3)ln(2)()223n nn n+−+<+++…,111ln2ln(21)()2212n nn n−−<+−.将以上各不等式左右两边相加得:1122221ln2ln()2123212n nn n n n n n−<+++++++++−,即111211ln22123214n n n n n n<+++++++++−,故11211ln212324n n n n n+++++>+++,即21ln24n na an−+>.13.已知函数()ax xf x xe e=−.(1)当1a=时,讨论()f x的单调性;(2)当0x>时,()1f x<−,求a的取值范围;(3)设*n N∈(1)ln n+…+>+.【答案】(31()nlnn+>,进一步求和可得:11231()(...)(1)12n nk kk nln ln ln nk n=++>=×××=+∑, (1)ln n+>+.题型三数列恒成立问题14.已知等差数列{}n a的前n项和记为n S(*n∈N),满足235326a a S+=+,数列{}n S为单调递减数列,求1a的取值范围. 【答案】(),2−∞【分析】设等差数列{}n a 的公差为d ,由已知可得2d =−,求得n S ,由数列的单调性列不等式即可得1a 的取值范围;【详解】设等差数列{}n a 的公差为d ,由于235326a a S +=+, 所以()()1113225106a d a d a d +++=++,解得2d =−, 所以()()211112n n n S na d n a n −=+=−++,若数列{}n S 为单调递减数列,则10n n S S +−<对于*n ∈N 恒成立,所以()()()()221111111120n n S S n a n n a n a n + −=−++++−−++=−<在*n ∈N 上恒成立, 则12a n <,所以()1min 2a n <,又数列{}2n 为递增数列,所以()min 2212n =×=,即12a <, 故1a 的取值范围为(),2−∞15.已知数列{}n a 满足:11a =,12n n a a +=.设()232n n b nn a −−⋅,若对于任意的N n ∗∈,n b λ≤恒成立,则实数λ的取值范围为 【答案】1,2+∞【分析】由11a =,12n n a a +=可得112n n a −=,进而得到21322n n n n b −−−=,结合()152n nnn n b b +−−=−,分15n ≤≤和6n ≥分类讨论,确定数列{}n b 的单调性,求出n b 最大值,进而得解.【详解】由数列{}n a 满足11a =、1n n a a +=得:{}n a 是首项为1,公比为12的等比数列, ∴112n n a −=,∴21322n n n n b −−−=,∴()()()22111312532222n nn n nn n n n n n b b +−+−+−−−−−=−=−, 当15n ≤≤时,10n n b b +−≥,∴1n n b b +≥,当且仅当5n =时取等号,65b b =, 当6n ≥时,10n n b b ,∴1n n b b +<,当5n ≤时,数列{}n b 单调递增,当6n ≥时,数列{}n b 单调递减,则当5n =或6n =时,()24max 2512152n b −==−, 而任意的N n ∗∈,n b λ≤恒成立,则12λ≥,∴实数λ的取值范围为1,2+∞.16.已知数列{an }对任意m ,n ∈N *都满足am +n =am +an ,且a 1=1,若命题“∀n ∈N *,λan ≤2n a +12”为真,则实数λ的最大值为 . 【答案】7【分析】先求出{}n a 的通项公式,然后参变分离转化为求最值【详解】令m =1,则a n+1=a n +a 1,a n+1-a n =a 1=1,所以数列{a n }为等差数列,首项为1,公差为1,所以a n =n , 所以λa n ≤2n a +12⇒λn ≤n 2+12⇒λ≤n +12n, 又函数12y x x=+在(0,上单调递减,在)+∞上单调递增, 当3n =或4n =时,min 12()7n n+=所以7λ≤【分析】先由题设求得n a ,然后利用数列的单调性求得其最大值,把对任意0λ>,所有的正整数n 都有22n k a λλ−+>成立转化为12k λλ<+对任意0λ>恒成立,再利用基本不等式求得12λλ+的最小值,即可得到答案.【详解】由()()211231222113n n a a a a n n n −++++=+− , 当2n ≥时,()()2212311222123n n a a a a n n n −−++++=−− , 两式相减可得:()()()()()112111213n n a n n n n n n n n −=+−−−−=−, ∴()112n n n n a −−=,由10a =,显然成立, 设()()22211112232222n nnn n nn n n n n n n n n na a +−+−+−+−+−=−==, ∴当03n <≤时,10n n a a +−>,当4n ≥时,10n n a a +−<,因此,03n <≤,数列{}n a 单调递增,当4n ≥时,数列{}n a 单调递减, 由332a =,432a =,故当3n =或4n =时,数列{}na 取最大值,且最大值为32,对任意0λ>,所有的正整数n 都有22n k a λλ−+>成立,可得2322k λλ−+>, 因此,212k λλ<+,即12k λλ<+对任意0λ>恒成立,由12λλ+≥12λλ=,即λ=min 12k λλ <+ ∴实数k 的取值范围是(−∞.18.已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是 .【答案】15,4 +∞【分析】先分离参数将问题转化为232n n n λ+≤对于任意*n ∈N 恒成立,进而转化为2max 3()2n n n λ+≤,构造232n nn nb +=,再作差判定单调性求出数列{}n b 的最值,进而求出λ的取值范围. 【详解】因为23n a n n =+,且2nn a λ≤对于任意*n ∈N 恒成立,所以232nn n λ+≤对于任意*n ∈N 恒成立,即2max 3()2n n n λ+≤, 令232n nn n b +=,则2221113(1)(1)3354222n nn n n n n n n n n b b +++++++−++−=−=, 因为21302b b −=>,32104b b −=>,43102b b −=−<, 且21135402n nn n n b b ++−++−=<对于任意3n ≥恒成立, 所以12345b b b b b <<>>>⋅⋅⋅,即2max 3315()24nn n b +==, 所以实数λ的取值范围是15,4+∞【分析】利用11,1,2n n n S n a S S n −= =−≥ ,得到118a =,1433nn n a a −=×−,变形后得到3n n a 是等差数列,首项为6,公差为4,从而求出()423nn a n =+⋅,故代入n a ≥3n n ≥,利用作差法得到3n n 单调递减,最小值为13,列出不等式求出答案.【详解】当1n =时,2111332a S a ==−,解得:118a =, 当2n ≥时,111333322n n n n n n n a S a a S −−+==−+−−, 整理得1433nn n a a −=×−,方程两边同除以3n ,得11343n n nn a a −−−=,又163a =,故3n n a 是等差数列,首项为6,公差为4, 所以()123644nnn n a =+−=+, 故()423n n a n =+⋅,经验证,满足要求,所以n a ≥为()423nn +⋅≥故3nn≥,对任意N n +∈恒成立, 111113123333n n n n n n n n n+++++−−−==,当1n ≥时,111120333n n n n n n +++−−=<, 故1133n n n n ++<, 3n n 单调递减,当1n =时,3nn 取得最大值13,故13≥,解得:136k ≥, 则k 的最小值为136【分析】先利用等差数列通项公式求解n a ,再利用数列的单调性求解数列()()221212n n n b n −−=−⋅的最大值,进而解决不等式恒成立问题即可.【详解】由()*122n n n a a a n ++=+∈N 可知数列{}n a 是等差数列,设其公差为d , 解方程218650x x −+=得5x =或13x =,又73a a >, ∴37513a a ==,,73135424d a a d −−=∴== ,, ()52321n a n n ∴=+−=−.由()()2241n n n a a λ−>−得()()()2224212n n n λ>−−−,()()2212142n n n λ−−>−∴−,设()()221212n n n b n −−=−⋅, 则()()()()2232111221252212212412n n n n n n n n n b b n n n −+−−−−+−−=−=+⋅−⋅−⋅,由()21412n n −−⋅>0对于任意*n ∈N 恒成立,所以只考虑32252n n −+−的符号,设()()322521f n n n n =−+−≥,()()2610235f n n n n n ′=−+=−−, 令()0f n ′>解得513n ≤<,即()f n 在513n ≤<上单调递增, 令()0f n ′<解得53n >,即()f n 在53n >上单调递减,()11f =,()22f =,()311f =−,当3n ≥,()()30f x f ≤<,当1n =,2n =时,()0f n >,即10n n b b +−>,123b b b ∴<<, 当3n ≥,()0f x <,即()221132520412n n n n n b b n +−−+−−=<−⋅, 即从3n ≥,n b 开始单调递减, 即325≤=n b b ,245λ∴−>,即185λ<,λ∴的取值范围为185−∞ ,.解:14122n n nb n na −−−=, 则()()211112135222n n nT −−=−+−×+−×++ ,则()2111132121322222n n n n n T −−−=−×+−×+++ , 两式相减得:()()2312111111112121122212()123+122222222212nn n n n n n n n n T −−−−−−=−+−×++++−=−+−×−=−−− 于是得3112126+2n n n n T −−−=−−, 由1361122n nn T +>−+得:12512n n −+<,即12250n n −−−>,令1225n n c n −−−,N n ∗∈, 显然,16c =−,27c =−,37c =−,45c =−,51c =,由111(227)(225)220n n n n n c c n n −−+−=−−−−−=−>,解得2n >,即数列{}n c 在3n ≥时是递增的,于是得当12250n n −−−>时,即510n c c ≥=>,5n ≥,则min 5n =, 所以不等式1361122n nn T +>−+成立的n 的最小值是5.22.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+−∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++, 所以{}21n a n ++是以12114a +×+=为首项,公比为2的等比数列, 所以1121422n n n a n −+++=×=,所以1221n n a n +−−.(2)()()()231122325221n n n S a a a n + =+++=−+−++−+ ()()23122235721n n ++++−+++++ ()()222212321122242n n n n n n +−++=−−−−−, 若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+−−−+>,可得22222n n n n λ+⋅>+−即2242nn n λ+>−对于任意正整数n 恒成立, 所以2max 242n n n λ +>− ,令()242n n n n b +=−,则21132n n n n b b ++−−=, 所以1234b b b b <>>>…,可得()222max222422n b b +×==−=−,所以2λ>−,所以λ的取值范围为()2,−+∞。
放缩法证明
放缩法证明“数列+不等式”问题的两条途径数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、 先放缩再求和例1 (05年湖北理)已知不等式],[log 21131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。
设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2( =n ,证明:][log 222n b ba n +<, 5,4,3=n 分析:由条件11--+≤n n n a n na a 得:na a n n 1111+≥- n a a n n 1111≥-∴- )2(≥n111121-≥---n a a n n ……211112≥-a a 以上各式两边分别相加得:21111111++-+≥- n n a a n 2111111++-++≥∴n n b a n ][log 2112n b +>)3(≥n =bn b 2][log 22+∴ ][log 222n b ba n +<)3(≥n本题由题设条件直接进行放缩,然后求和,命题即得以证明。
例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:nn n a S )1(2-+=, 1≥n(1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
放缩法在数列不等式证明中的应用
分母变小,则分式变大.与狀12 有关的放缩关系主要有 如下几种:
1 ① 狀2
<
1 狀2 -1
=
1 (狀-1)(狀+1) =
1 2
·
( ) 1
1
狀-1-狀+1
;
1 ②狀2
1 =狀·狀
1
1
<狀(狀-1)=狀-1-
1 狀
;
1 ③狀2
1 =狀·狀
1
1
>狀(狀+1)=狀
-狀1+1;
( ) 1 4
4
1
1
④狀2 =4狀2 <4狀2 -1=22狀-1-2狀+1 .
1 2
1 +22
+
…
1 +2狀-1
1-2狀 =狀+ 1
1- 2
1 =狀+2-2狀-1 <狀+2.
说明:本题利用了无穷递减等比数列的放缩公式
进行放缩,即当公比0<狇
<1时,犛狀
犪1(1-狇狀 = 1-狇
) =
1犪-1狇-1犪-1狇狇狀 <1犪-1狇.注意,若从第一项就开始放 缩,则 会 出 现 过 度 放 大 的 问 题,而 从 }满足犪2 =9,犪狀+1 =8犪狀 -7,狀 ∈
犖 .
(1)求{犪狀}通项公式;
(2)设犮狀
3
=槡犪狀+1
-1,将犮狀
的底数与指数互
换得
{ } 到犱狀,设数列
1 犱狀
的前项和为犜狀,求证:犜狀 <3 23 0.
解析:(1)犪狀 =8狀-1 +1.
(2)由(1)可得犪狀
1- 2
2狀1-1,狀 ∈ 犖 . 当狀 ≥2时,2狀 -1-2狀-1 =2狀-1 -1>0,即2狀 -
1>2狀-1
>0,2狀1-1
高中数学数列与不等式综合问题放缩法
高中数学数列与不等式综合问题放缩法Last updated on the afternoon of January 3, 2021数列与不等式综合问题 一裂项放缩放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。
常见裂项放缩技巧:例1求证(1)变式训练[2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,=a n +1-n 2-n -,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:++…+<.[2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;证明:对一切正整数n ,有++…+<. (3)二等比放缩(一般的,形如的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明是等比数列,并求{a n }的通项公式;(2)证明++…+<.变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式 2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....n k a a a +++<231111+++......+12222n <(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。
高考数学放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n=n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×n n -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n 1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n +a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法证明“数列+不等式”问题的两条途径
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、 先放缩再求和
例1 (05年湖北理)已知不等式],[log 2
1131212n n >+++Λ其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。
设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2(Λ=n ,证明:]
[log 222n b b a n +<,Λ5,4,3=n 分析:由条件11--+≤
n n n a n na a 得:n a a n n 1111+≥- ……
以上各式两边分别相加得:
=b
n b 2][log 22+ 本题由题设条件直接进行放缩,然后求和,命题即得以证明。
例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n
(1)写出数列}{n a 的前三项1a ,2a ,3a ;
(2)求数列}{n a 的通项公式;
(3)证明:对任意的整数4>m ,有8
711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;
⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)
化简得:1122(1)n n n a a --=+-
2)1(2)1(11---=---n n n n a a ,]3
2)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以3
21+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3
n n n a -=--
∴数列{n a }的通项公式为:22[2(1)]3
n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
而左边=232451113111[]221212(1)m m
m a a a -+++=+++-+--L L ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:32322121121121+>++-, 43432121121121+<-++,因此,可将1
212-保留,再将后面的项两两组合后放缩,即可求和。
这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,
(2)当m 是奇数)4(>m 时,1+m 为偶数,
所以对任意整数4>m ,有m a a a 11154+++Λ8
7<。
本题的关键是并项后进行适当的放缩。
2、 先求和再放缩
例3(武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22
11
证明:(1)对于*∈N n 恒有n n a a >+1成立。
(2)当*∈>N n n 且2,有11211+=-+a a a a a n n n Λ成立。
(3)111121
12006
212006<+++<-a a a Λ。
分析:(1)用数学归纳法易证。
(2)由121+-=+n n n a a a 得:
… …
以上各式两边分别相乘得:
)1(111211-=--+a a a a a a n n n Λ,又21=a
(3)要证不等式111121
12006
212006<+++<-a a a Λ, 可先设法求和:2006
21111a a a +++Λ,再进行适当的放缩。
又2006200612006212=>a a a a Λ
原不等式得证。
本题的关键是根据题设条件裂项求和。