沪科版数学七年级上册教案
沪教版初一上数学教案
沪教版初一上数学教案【篇一:沪科版初中数学七年级第一学期教学案】初中数学七年级(上册)导学案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本p1和p2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读p3练习前的内容 3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. p3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54则正数有_____________________;负数有____________________。
沪科版七年级数学教案
沪科版七年级数学教案【篇一:0沪科版7年级数学上册教案汇编】第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,?;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】 (1)与去年相比,某乡今年的水稻种植面积扩大了10hm(公顷),小麦的种植面积减少了5hm,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.22【答案】 (1)与去年相比,该乡今年的水稻种植面积增加了10hm,小麦种植面积增加了-5hm,油菜种植2面积增加了0hm.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】 (1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国 -6.4%, 德国 1.3%,法国 -2.4%, 英国 -3.5%,意大利 0.2%, 中国 7.5%.四、巩固练习1.-10表示支出10元,那么+50表示 ;如果零上5度记作5℃,那么零下2度记作 ;如果上升10m记作10m,那么-3m表示 ;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔 ;比海平面低30m的地方,它的高度记作海拔 .【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m;2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负. 221.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)? 教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的a点表示什么数?原点向左1个单位长度的b点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点o,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,??,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,??.3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上a、b、c、d各点表示的数.【答案】点c在原点表示0,点a在原点左边与原点距离2个单位长度,故表示-2.同理,点b表示-3.5.点d在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上: (1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律. 学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0. 说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】判断下列说法是否正确:(1)-5是5的相反数.( )(2)5是-5的相反数.( )(3)5与-5互为相反数.( )(4)-5是相反数.( )【答案】(1)√ (2)√ (3)√ (4)3【例2】 (1)分别写出5、-7、-3、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】 (1)5的相反数是-5.-7的相反数是7.-3的相反数是3.+11.2的相反数是-11.2.我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3); (4)-(-20).【答案】 (1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本p10练习的第1~3题.【篇二:沪教版七年级数学上册教案】教学计划(20## 学年度第一学期)制定日期:20##-教学进度表(20## 学年度第一学期)一、教材内容:本册内容是精选学生终生学习必备的基础知识和基本技能,基于这些,本学期学生学习的基础内容时整式、分式、图形的运动等。
七年级数学教案沪科版
七年级数学教案沪科版【篇一:沪科版初中数学七年级第一学期教学案】初中数学七年级(上册)导学案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本p1和p2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读p3练习前的内容 3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. p3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54则正数有_____________________;负数有____________________。
最新沪科版七年级上册数学全册优质公开课教案
1.1 正数和负数第1课时 正数和负数1.了解正数和负数的产生过程以及数学与实际生活的联系;2.理解正数和负数的意义,会判断一个数是正数还是负数;(重点)3.能用正数、负数表示生活中具有相反意义的量.(难点)一、情境导入今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗? 二、合作探究探究点一:正数和负数的概念下列各数哪些是正数?哪些是负数? -1,2.5,+43,0,-3.14,120,-1.732,-27中,正数是______________;负数是______________.解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.负数有-1,-3.14,-1.732,-27;正数有2.5,+43,120;0既不是正数也不是负数.故答案为2.5,+43,120;-1,-3.14,-1.732,-27.方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数.探究点二:用正数和负数表示具有相反意义的量【类型一】 学会用正、负数表示具有相反意义的量如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m解析:由水位升高0.8m 时水位变化记作+0.8m ,根据相反意义的量的含义,则水位下降0.5m 时水位变化就记作-0.5m ,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.【类型二】 用正、负数表示误差范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL ,511mL ,489mL ,473mL ,527mL ,问抽查产品的容量是否合格?解析:+30mL 表示比标准容量多30mL ,-30mL 表示比标准容量少30mL ,则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”是指500mL 为标准容量,470~530(mL)为合格范围,因此503mL ,511mL ,489mL ,473mL ,527mL 在合格范围内,抽查产品的容量是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.三、板书设计正数和负数⎩⎪⎨⎪⎧正、负数的定义具有相反意义的量本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;让学生经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.第1章 有理数1.1 正数和负数第1课时 正数和负数教学目标1.借助生活实例使学生了解正数与负数是从实际需要中产生的,体会和认识引入负数的必要性和有理数应用的广泛性.2.使学生理解正数与负数的概念,会判断一个数是正数还是负数. 3.初步学会用正、负数表示具有相反意义的量.4.在负数的形成过程中,培养学生的观察、猜想、归纳与概括的能力. 教学重点:正、负数的概念,理解用正、负数表示两种相反意义的量. 教学难点:正、负数的意义和对基准的理解. 教学程序设计: 一.温故知新上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考. 师:我们的班级是14班,有54个同学,其中男同学有29个,占全班总人数的5429… 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗? 学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗? 二.设置情境引入新知 1. 引入负数问题1:请同学们看书第2页(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.学生交流后,教师归纳:以前学过的数已经不够用了,图(1)中上海的气温6℃~9℃,北京的气温是-3℃~7℃各表示什么意思?图2中,珠穆朗玛峰高8844米,吐鲁番盆地高-155米又是什么意思? 有时候需要一种前面带有“-”的新数.问题2:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解.学生带着这些问题看书自学,然后师生交流.这阶段主要是让学生学会正数和负数的表示. 2.正数和负数的含义(1)像7,31,0.5,17﹪等这样的数叫正数(为了强调正数,前面也可加上“+”号) (2)像-7,-31,-0.5,-17﹪等这样的数叫负数,负数前面的“-”不能省略.(3)0既不是正数,也不是负数.0是正数、负数的的界限,是表示“基准”的数. 例1:下列各数,哪些是正数,哪些是负数? -2,3.5,+76,0,-1.75,150,-32,1.5解析:根据正数、负数的概念进行判断,特别注意0的分类. 3.用正数和负数表示相反意义的量如果马鞍山的某一天的最高气温5℃,最低气温5℃,如何表示这两个具有相反意义的量呢?得分与失分是两个具有相反意义的量,你还能举一些具有相反意义量的例子吗? 强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.我们把一种意义的量规定为正的,把与它意义相反的量规定为负的.例2:(1)规定向东为正,向东走20m记为 ,向西走15米记为 ,原地不动记为 ;-16m表示向 走16m,+13m表示向走13m;(2)如果-20元表示亏本20元,那么+35元表示.例3:用正数和负数表示下列具有相反意义的量(1)温度上升8℃和下降5℃;(2)运出800箱和运进500箱;(3)增加20﹪和减少16﹪.解:(1)规定温度上升8℃,记作+8℃,则温度下降5℃,记作-5℃;例4:(1)与去年相比,某乡今年的水稻种植面积扩大了10公顷,小麦的种植面积减少了5公顷,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市"12345"中心2005年国庆期间受理消费投诉件事的增长率:日用百货类比上年同期增加了10﹪,家用电器类比上年同期减少了20﹪.写出这两类消费商品投诉件事的增长率.三.举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题3:请同学们举出用正数和负数表示相反意义的量的例子.四.课堂反馈:课本第5页练习.五.总结反思拓展升华1.引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.2.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.3.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别.六.作业:课本第5、6页第1、2、3、4、5题补充:一、填空:1.吐鲁番盆地海拔高度为-155米的意义是:___________________________2.前进了3米记作+3米,那么后退5米记作:________________________ 3.气球上升10米,记作+10米,那么-3米表示_________________________, 不升不降记作:________________________4.某班男生平均身高165cm ,若高于平均身高记为正,低于平均身高记为负,甲、乙的身高分别记为-3cm ,+4cm ,则甲比乙矮___________cm 。
上海科学技术出版社七年级数学上册全套教案
正数和负数【课时安排】2课时【第一课时】【教学目标】一、知识与技能:(一)借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性。
整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念。
(二)能区分两种不同意义的量,会用符号表示正数和负数。
二、过程和方法:体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
三、情感态度与价值观:通过正数与负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。
【教学重难点】难点:正数、负数的意义以及对基准的理解。
重点:两种相反意义的量与对基准的理解。
【教学过程】一、设置情境,引入课题师:今天我们已经是七年级的学生了,我是你们的数学老师。
下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重78.5千克,今年27岁,我们班级有46个同学,其中男同学有27个,约占全班总人数的58.7%。
(一)问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。
(二)问题2:在生活中,仅有整数和分数够用了吗?有没有比0更小的数呢?(学生在脑中产生疑问。
)请同学们看大屏幕(教师展示投影)1.在冬日的某一天,国家气象中心天气预报当天温度如图所示,你能读出北京、上海、哈尔滨三座城市的最低温度各是多少吗?2.在中国地形图上,可以看到我国有一座世界最高峰——珠穆朗玛峰,地图上标着8844,在西部有一吐鲁番盆地,地图上标着-155,这两个数表示的高度是相对于海平面来说的,你能说说8844,-155各表示什么吗?学生思考,讨论并尝试回答。
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。
沪科版七年级数学上册全册教案.docx
沪科版2017-2018学年七年级数学上册全册教案目录1.1 正数和负数1.2 数轴、相反数和绝对值1.3 有理数的大小1.4.1有理数的加法1.4.2有理数的减法1.4.3加、减混合运算1.5.1有理数的乘法1.5.2有理数的除法1.5.3乘、除混合运算1.6.1有理数的乘方1.6.2科学计数法1.7 近似数2.1.1用字母表示数2.1.3单项式与多项式2.1.4代数式的值2.2.1合并同类项2.2.2去括号、添括号及整式加减3.1.1一元一次方程及其解法(1)3.1.2一元一次方程及其解法(2)3.2.1一元一次方程的应用(1)3.2.2一元一次方程的应用(2)3.3.1二元一次方程组3.3.2消元解方程组(1)3.3.3消元解方程(2)3.4.1二元一次方程组的应用(1)3.4.2二元一次方程组的应用(2)3.5 三元一次方程组及其解法3.6 综合与实践4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践1.1 正数和负数【教学目标】1.借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种不同意义的量,会用符号表示正数和负数.【重点难点】重点:两种相反意义的量与对基准的理解. 难点:正数、负数的意义以及对基准的理解.对有理数的分类的理解.1.1 正数和负数有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数负整数分数⎩⎨⎧正分数负分数【教学反思】本节课紧密联系实际生活,使学生体会到数学的应用价值,在授课过程中充分体现了学生自主学习、小组合作交流的教学理念.在知识结构上与以前的知识相连接,体现了数学的1.2数轴、相反数和绝对值第1课时数轴【教学目标】了解数轴的概念,会画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.【重点难点】重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数和数轴上的点的对应关系.教学过程一、创设情境,导入新课1.古代部落酋长上任时先在绳上打个绳结表示财物往来.从0开始,如捕获一只羊就在红绳结右边顺次打一个结,每向其他部落借一只羊,就在红绳结左边顺次打一个结,你能解读图中A,B,C处绳结的含义吗?2.让学生阅读教科书上机器人走步取物实验.以小组为单位进行讨论.二、师生互动,探究新知【教学小结】【板书设计】第1课时数轴1.数轴2.任意一个有理数,都可以用数轴上的一个点来表示.【教学反思】从历史与现实生活实例引入新课,提高了学生的学习兴趣.在授课过程中教师注重了对学生自学能力的培养,让学生主动探究.在顺利完成本节课的内容之后,让学生预习下一节课的内容,培养学生良好的学习习惯.第2课时相反数【教学目标】1.了解相反数的意义.2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系.3.给出一个数,能说出它的相反数.【重点难点】重点:相反数的概念.难点:相反数的识别及理解.【教学过程设计】【教学小结】【板书设计】第2课时相反数1.只有符号不同的两个数互为相反数.2.0的相反数是0.3.两个互为相反数的数在数轴上所表示的点在原点的两旁,与原点的距离相等.【教学反思】借助数轴让学生直观地观察,得出了相反数的特点,充分发挥小组的合作优势,体现了学为主体、教为主导的教学理念.第3课时绝对值【教学目标】1.理解绝对值的意义,会求一个数的绝对值.2.理解绝对值与相反数的联系.3.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.【重点难点】重点:绝对值的意义.难点:绝对值的意义的学习.【教学过程设计】教学过程一、创设情境,导入新课师:如下图所示.小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同)________,他们行走的距离(即路程远近)________.生:口答.二、师生互动,探究新知【教学小结】【板书设计】 第3课时 绝对值1.定义:在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.2.|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)【教学反思】通过数轴设置情境并引导学生观察数轴得出绝对值的意义,在此基础上得出如何求一个数的绝对值,让学生初步感知数形结合思想.通过不同形式的练习题让学生掌握并巩固知识.1.3 有理数的大小【教学目标】1.得出比较有理数的大小的方法并能熟练地应用解决具体问题.2.经历探索比较有理数的大小的方法的过程,培养学生的探索能力.【重点难点】重点:比较有理数的大小的方法.难点:探索比较有理数的大小的方法的过程,熟练地应用解决具体问题.【教学小结】【板书设计】1.3有理数的大小1.数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.2.正数大于0,0大于负数,正数大于负数.3.两个负数比较大小,绝对值大的反而小.【教学反思】从学生已经学习的数轴入手,引导学生探究出了比较有理数大小的方法.在授课过程中充分发挥了小组合作的作用,增强了学生的合作意识.1.4有理数的加减第1课时有理数的加法【教学目标】1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能运用有理数的加法解决实际问题.【重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程设计】生:小组讨论之后分别列出算式:(1)(+2)+(+3)=+5.(2)(-2)+(-3)=-5.(3)(+2)+(-3)=-1.(4)(+3)+(-2)=+1.师:引导学生归纳两个有理数相加的几种情况.师:用课件出示以下5个问题:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了________米,这个问题用算式表示就是________.如图所示.(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走了多少米?很明显,两次共向西走了________米,这个问题用算式表示就是______________.如图所示.(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了________米,写成算式就是____________.这个问题用数轴表示如下图所示.【教学小结】【板书设计】第1课时有理数的加法有理数的加法法则:1.同号两数相加,取与加数相同的符号,并把绝对值相加.2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.一个数与0相加,仍得这个数.【教学反思】通过足球比赛这个实际例子引入新课,提高了学生的学习兴趣.利用数轴,充分发挥小组的合作优势,引导得出有理数的加法法则.教师设计的一系列问题由浅入深,非常恰当,充分体现了教师的主导作用.1.4有理数的加减第2课时有理数的减法【教学目标】1.掌握有理数的减法法则.2.能运用有理数的减法法则进行运算.3.通过对有理数减法法则的探究,体验数学的转化思想.4.通过对有理数减法法则的探讨,培养学生的创新思维.【重点难点】重点:有理数的减法法则.难点:对有理数的减法法则的探究.【教学过程设计】【教学小结】【板书设计】第2课时有理数的减法有理数减法法则:减去一个数,等于加上这个数的相反数.【教学反思】本节课从生活实例引入新课,提高了学生的学习兴趣.利用减法是加法的逆运算探究得出减法法则,体现了数学的转化思想.在教学中充分发挥学生的积极主动性,体现了学生为主体的教学思想.1.4有理数的加减第3课时加、减混合运算【教学目标】1.理解加减法统一成加法运算的意义.2.会将有理数的加、减混合运算转化为有理数的加法运算.3.通过对有理数的加、减混合运算的学习,体验数学中的转化思想.【重点难点】重点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.难点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.【教学过程设计】【教学小结】【板书设计】第3课时加、减混合运算1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)【教学反思】本节课是在学生学习了有理数的加法法则和减法法则的基础上进行的,所以本节课的关键是如何引导学生进行转化,这样有理数的加、减混合运算就转化成了有理数的加法运算.然后让学生认识到引入负数后加法的两个运算律仍然适用是本节课的重点,对计算器的使用,因为品种很多,程序和方法不尽相同,所以留作课下作业进行探究.1.5有理数的乘除第1课时有理数的乘法【教学目标】1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算.2.通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力.【重点难点】重点:有理数的乘法法则.难点:有理数乘法中的符号法则以小组为单位,先独立思考再小组交流.二、师生互动,探究新知问题2:如图,一只蜗牛沿数轴爬行.它现在位置恰在数轴上的点0.(1)如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分钟后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分钟前它在什么位置?以小组为单位交流、讨论.思考:一个数同0相乘,如何解释?问题3:正数乘正数积为________数.负数乘正数积为________数.正数乘负数积为________数.【教学小结】【板书设计】1.5有理数的乘除第2课时有理数的除法【教学目标】1.了解有理数除法的定义.2.经历有理数除法法则的探究过程,会进行有理数的除法运算.3.通过有理数除法法则的导出及运用,让学生体会转化思想.4.培养学生运用数学思想指导数学思维活动的能力.【重点难点】重点:正确运用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.【教学小结】【板书设计】第2课时有理数的除法有理数的除法法则:1.两数相除,同号得正,异号得负,并把绝对值相除.2.0除以一个不为0的数仍得0.0不能做除数.3.除以一个不为0的数,等于乘以这个数的倒数.1.5有理数的乘除第3课时乘、除混合运算【教学目标】1.掌握有理数加、减、乘、除运算的法则、运算顺序,能够熟练运算.2.能运用法则解决实际问题.【重点难点】重点:如何按有理数的运算顺序,正确而合理地进行计算.难点:如何按有理数的运算顺序,正确而合理地进行计算.【板书设计】第3课时 乘、除混合运算1.有理数乘、除的混合运算,从左到右依次计算,也可统一化为乘法运算.2.含加、减、乘、除的算式,如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算.3.乘法运算律⎩⎪⎨⎪⎧ab =ba (ab )c =a (bc )a (b +c )=ab +ac1.6有理数的乘方第1课时有理数的乘方【教学目标】1.正确理解有理数的乘方、幂、指数、底数等概念;会进行有理数的乘方运算.2.能确定有理数加、减、乘、除、乘方混合运算的顺序.3.会进行有理数的混合运算.【重点难点】重点:正确理解乘方的意义,掌握有理数乘方的符号规律.难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.【教学过程设计】一、复习旧知,导入新课师:到今天为止我们已经学了哪些运算?生:有理数的加、减、乘、除运算.师:你能说出有理数的乘法法则吗?生:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘得0.师:你能说出多个不为0的有理数相乘的符号法则吗?生:几个不为0的有理数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.师:今天我们将继续探究有理数的乘方运算.二、师生互动,探究新知师:用多媒体出示乘方的定义:一般地,几个相同的因数a相乘,记作a n,即这种求n个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在乘方运算a n中,a叫做底数,n叫做a的幂的指数.a n 既表示n个a相乘,又表示n个a相乘的结果.因此a n可读作a的n次方,或a的n次幂,如图所示.师:用多媒体出示:例如,在幂52中,底数是________,指数是________,52读作________(或5的平方)或5的2次幂.23读作【板书设计】第1课时有理数的乘方12.3.乘方法则:非0有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取______;负数的奇次乘方取________,负数的偶次乘方取________.0的正数次方是0.【教学反思】本节课从已经学过的知识入手,探究有理数的乘方运算,体现了知识之间的前后联系,在教学中先让学生试做,教师再根据实际情况进行校正,体现了先学后教,以学定教的教学思想.第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学过程设计】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n 等于原数的整数位数减1.1.6有理数的乘方第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学小结】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n等于原数的整数位数减1.1.7近似数【教学目标】1.理解近似数的意义.2.给一个近似数,能说出它精确到哪一位.3.了解近似数是在实践中产生的.【重点难点】重点:理解近似数的精确度.难点:正确把握一个近似数的精确度.【教学小结】【板书设计】1.7近似数1.近似数2.误差3.精确度2.1代数式第1课时用字母表示数【教学目标】1.经历探索规律并用字母表示规律的过程.2.能用字母表示以前学过的运算律和计算公式.3.体会字母表示数的意义,形成初步的符号感.【重点难点】重点:理解字母表示数的意义.难点:探索规律的过程及用字母表示规律的方法.你能继续唱下去吗?二、师生互动,探究新知师:出示问题1.问题12008年9月25日,我国成功发射了“神舟七号”载人飞船.它在椭圆形轨道上环绕地球飞过45周,历时约68h,试求:(1)该飞船绕地球飞行一周约需________min(精确到1min);(2)该飞船绕地球飞行n周约需________min.生:小组讨论回答.师:出示问题2.问题2能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数.设k表示任意一个整数,用含有k的代数式表示:(1)任意一个偶数;(2)任意一个奇数.生:小组讨论回答.师:出示问题3.问题3如图,月历中用长方形框任意框出的3个数错误!之间的关系是________(请用一个等式表示这个关系).生:小组讨论回答.师:从以上三个问题中你有什么发现?生:讨论得出:用字母表示数,可以把一些数量关系更简明地表【教学小结】【板书设计】第1课时用字母表示数1.明确地表明数量关系.2.给计算带来方便.【教学反思】本节课在教学内容上尽可能地以实际生活为问题情境呈现出来,使学生有亲切感,激发学生的学习兴趣,让学生感受到数学来源于生活,并为现实生活而服务,认识到学习数学的实用价值.在整节课中,充分地让学生进行合作学习,共同交流与探索,发现问题、解决问题,使他们在操作过程中建立起“用字母表示数、数量关系等”的数学模型,形成初步的符号感.2.1代数式第3课时单项式与多项式【教学目标】1.理解单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.掌握多项式的概念,进而理解整式的概念.3.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.【重点难点】重点:1.掌握单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.多项式的概念及多项式的项数、次数的概念.难点:识别单项式的系数与次数及多项式的次数.【教学小结】【板书设计】第3课时 单项式与多项式整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧定义:数与字母的积系数:单项式中的数字因数次数:所有字母的指数之和多项式⎩⎪⎨⎪⎧定义:几个单项式之和次数:次数最高的项的次数2.1代数式第4课时代数式的值【教学目标】1.会求代数式的值.2.通过求代数式的值,体会代数式实际上是由计算关系反映的一种数量间的关系.【重点难点】重点:1.会求代数式的值.2.理解字母表示数的意义,增强符号感.难点:求代数式的值.【教学小结】【板书设计】第4课时代数式的值定义:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果.步骤:(1)指出字母的值(2)抄写代数式(3)替换字母(4)计算结果2.2整式加减第1课时合并同类项【教学目标】1.理解多项式中同类项的概念,会识别同类项.2.掌握合并同类项法则.3.利用合并同类项法则来化简整式.【重点难点】重点:同类项的概念、合并同类项的法则及应用.难点:正确判断同类项;准确合并同类项.二、师生互动,探究新知师:出示下面两个问题(情景一):问题1:我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里.为何不把老虎与熊猫关在同一个笼子里呢?问题2:(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.(2)生活中处处有分类的问题,在数学中也有分类的问题吗?生:小组合作交流.师:出示下面的问题让学生议一议:10a和20a;2b2和6b2;-9xy和5xy;5ab和-13ab有什么共同点?生:小组合作交流.师:引导学生归纳同类项的定义.师:用多媒体出示情景二:4+2=64a+2a=(4+2)a4-=34x-x=3x师:通过情景二请同学们思考:如果一个多项式中含有同类项,【教学小结】【板书设计】第1课时合并同类项1.同类项:所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并在一起.3.法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.2.2整式加减第2课时去括号、添括号及整式加减【教学目标】1.初步掌握去括号、添括号的法则.2.会运用去括号、添括号法则,并根据要求去括号、添括号.3.能利用去括号法则将整式化简.【重点难点】重点:去括号法则;准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【教学小结】【板书设计】第2课时去括号、添括号及整式加减1.去括号法则2.添括号法则3.按某个字母降(升)幂排列3.1一元一次方程及其解法第1课时一元一次方程及其解法(1)【教学目标】1.理解移项法则,知道移项的依据.2.会熟练运用移项法则解方程.【重点难点】重点:会用移项法则解方程.难点:对移项法则的理解与应用.【教学小结】【板书设计】第1课时一元一次方程及其解法(1)定义:只含有一个未知数,未知数的次数都是1,且等式两边都是整式的方程.移项时注意改变符号.3.1一元一次方程及其解法第2课时一元一次方程及其解法(2)【教学目标】1.使学生掌握去括号的方法步骤.2.会把实际问题建成数学模型,会用去分母的方法解一元一次方程.【重点难点】重点:1.去括号解方程.2.会用去分母的方法解一元一次方程.难点:灵活地解含括号与含分母的方程.【教学小结】【板书设计】第2课时一元一次方程及其解法(2)解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤系数化为13.2一元一次方程的应用第1课时一元一次方程的应用(1)【教学目标】1.通过分析实际问题,探索等积变形问题和行程问题中所体现的数量关系,正确的列出一元一次方程.2.进一步理解一元一次方程在实际生活中的应用.【重点难点】重点:能正确地找出数量之间的等量关系.难点:找出题目中的等量关系并列出一元一次方程.【教学过程设计】。
2023年沪科版数学七年级上册全册教学设计
2023年沪科版数学七年级上册全册教学设计一. 教材分析《2023年沪科版数学七年级上册》教材以新课程标准为指导,贯彻“以人为本”的教育理念,以培养学生的数学素养为核心,注重知识的系统性、逻辑性,同时强调数学与生活、社会的联系。
本册书共有12个章节,内容包括有理数、不等式和方程、几何初步、数据的收集和处理等。
每个章节都有明确的学习目标,配有丰富的例题和练习题,有利于学生在掌握知识的同时,提高解决问题的能力。
二. 学情分析七年级的学生刚刚接触初中数学,对于一些概念、定理、公式可能还比较陌生,需要教师的耐心引导。
这个阶段的学生思维活跃,好奇心强,对于新知识有较强的求知欲,但也容易注意力不集中,需要教师通过生动有趣的教学方法吸引他们的注意力。
同时,由于学生之间的数学基础存在差异,教师在教学过程中要关注全体学生,既要照顾到基础较差的学生,又要给基础较好的学生提供拓展的机会。
三. 教学目标1.知识与技能:使学生掌握有理数、不等式和方程、几何初步、数据的收集和处理等基本概念、性质、定理和公式,提高学生的数学运算能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生独立思考、解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观:培养学生对数学的兴趣和好奇心,使学生认识到数学在生活和社会中的重要作用,培养学生的团队协作意识和克服困难的勇气。
四. 教学重难点1.教学重点:有理数、不等式和方程、几何初步、数据的收集和处理等基本概念、性质、定理和公式的理解和运用。
2.教学难点:对一些概念、定理、公式的深刻理解,以及解决实际问题的能力的培养。
五. 教学方法1.引导探究法:教师提出问题,引导学生独立思考,通过探究活动,使学生自主发现知识,提高学生的思维能力。
2.合作交流法:学生分组讨论,共同解决问题,培养学生的团队协作能力和沟通能力。
3.案例教学法:教师通过生动的案例,引导学生理解抽象的数学概念,提高学生的学习兴趣和理解能力。
沪科版七年级上册数学的教学计划(通用10篇)
沪科版七年级上册数学的教学计划沪科版七年级上册数学的教学计划(通用10篇)日子在弹指一挥间就毫无声息的流逝,我们的教学工作又将续写新的篇章,何不赶紧为即将开展的教学工作做一个计划呢?相信大家又在为写教学计划犯愁了吧,下面是小编为大家收集的沪科版七年级上册数学的教学计划,仅供参考,欢迎大家阅读。
沪科版七年级上册数学的教学计划篇1一、指导思想通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
80班、81班均是刚刚接手,对班上学生不了解,从原科任老师处得知:两班比较,81班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。
80班学生单纯,有少数同学基础特差,问题较严重。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析第十一章:一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。
了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。
在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。
教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十二章:数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。
沪科版七年级数学上册优秀教学案例:1.2数轴、相反数和绝对值
1.分组讨论:将学生分成小组,让他们在小组内讨论问题,共同探讨数的相反数和绝对值的概念及其关系。
2.小组汇报:每个小组选派代表,向全班汇报他们的讨论成果,培养学生的表达能力和团队合作意识。
3.评价与反馈:教师对小组合作的过程和成果进行评价,给予肯定和指导,促进学生的进一步发展。
(四)反思与评价
四、教学内容与过程
(一)导入新课
1.生活实例引入:通过一个简单的购物找零问题,让学生思考如何用数来表示商品的价格和找零金额,从而引出数轴的概念。
2.问题驱动:提出问题:“如何在坐标系中表示一个数?”引导学生思考数轴的作用和意义。
3.学生互动:邀请学生分享他们对数轴的已有知识,激发学生的学习兴趣和主动性。
1.作业布置:布置与本节课内容相关的作业,如数轴的绘制、相反数和绝对值的计算等,让学生在实践中巩固所学知识。
2.作业要求:明确作业的要求和提交时间,鼓励学生认真完成作业,培养他们的自主学习能力。
3.作业反馈:在作业提交后,及时给予学生反馈,指出他们的错误和不足,帮助他们纠正并提高。
作为一名特级教师,我深知教学内容与过程的重要性,它直接影响到学生的学习效果和能力的培养。因此,在教学过程中,我将注重启发式教学,引导学生主动探究,通过小组合作、讨论交流等方式,让学生充分参与课堂,提高他们的数学素养,使他们成为具有创新精神和实践能力的优秀人才。
4.反思与评价的环节:通过自我反思和同伴评价,让学生发现自己的优点和不足,明确今后的学习方向,促进他们的自我成长。
5.作业小结的设置:通过布置与课堂内容相关的作业,让学生在实践中巩固所学知识,培养他们的自主学习能力,同时及时给予反馈,提高他们的学习效果。
作为一名特级教师,我深知教学案例亮点的重要性,它们是教学过程中的关键环节,能够有效提升学生的学习兴趣和能力。在今后的教学中,我将继续探索和运用更多的教学策略和方法,为学生的全面发展贡献力量。
沪科版七年级数学上册优秀教学案例:1.2数轴、相反数和绝对值(3课时)
3.教师在学生解答问题过程中,给予适当的引导和提示,帮助学生克服困难,提高他们的自信心和坚持精神。
(三)小组合作
1.设计具有挑战性和实践性的团队任务,让学生在合作中交流思想,分享经验,培养他们的团队合作能力和沟通能力。
4.学生能够在实际问题中,运用数轴、相反数和绝对值的概念,解决实际问题,提高他们的数学应用能力。
(二)过程与方法
1.学生通过自主探究,发现问题、解决问题,培养他们的独立思考能力和问题解决能力。
2.学生通过合作交流,分享彼此的想法和经验,培养他们的团队合作能力和沟通能力。
3.学生通过观察、操作、思考、表达等实践活动,培养他们的动手操作能力、空间想象能力和数学思维能力。
3.学生能够在团队合作的活动中,学会尊重他人,理解他人,培养他们的合作精神和团队意识。
4.学生能够通过克服困难和解决问题,培养他们的自信心和坚持精神,培养他们的挫折抵抗能力和自我调节能力。
三、教学策略
(一)情景创设
1.通过生活实例的引入,激发学生的学习兴趣和好奇心,让学生感受到数学与生活的紧密联系。
二、教学目标
(一)知识与技能
1.学生能够理解数轴的概念,掌握数轴的构造和作用,能够在数轴上表示出各种有理数,并理解数轴与实数之间的关系。
2.学生能够掌握相反数的概念,能够找出任意一个数的相反数,并理解相反数的性质和规律。
3.学生能够理解绝对值的概念,能够计算任意一个数的绝对值,并理解绝对值的性质和规律。
3.学生分享彼此的想法和经验,进行互动交流,培养团队合作能力和沟通能力。
(四)总结归纳
1.教师引导学生总结数轴、相反数和绝对值的概念、性质和规律,加深学生对这些知识点的理解和记忆。
沪科版七年级上册数学教案
沪科版七年级上册数学教案沪科版七年级上册数学教案篇1教学目标1,驾驭数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会依据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数学问重点教学过程(师生活动)设计理念设置情境引入课题老师通过实例、课件演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?(多媒体出示3幅图,三个温度分别为零上、零度和零下)问题2:在一条东西向的公路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m 和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组探讨,沟通合作,动手操作)创设问题情境,激发学生的学习热忱,发觉生活中的数学点表示数的感性相识。
点表示数的理性相识。
合作沟通探究新知老师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在探讨的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必需满意什么条件?从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特殊强调数轴三要求。
从嬉戏中学数学做嬉戏:老师打算一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,假如规定第3个同学为原点,嬉戏还能进行吗?学生嬉戏体验,对数轴概念的理解找寻规律归纳结论问题3:1,你能举出一些在现实生活中用直线表示数的实际例子吗?2,假如给你一些数,你能相应地在数轴上找出它们的精确位置吗?假如给你数轴上的点,你能读出它所表示的数吗?3,哪些数在原点的左边,哪些数在原点的右边,由此你会发觉什么规律?4,每个数到原点的距离是多少?由此你会发觉了什么规律?(小组探讨,沟通归纳)归纳出一般结论,教科书第12的归纳。
沪科版数学七年级上册全册教学设计
沪科版数学七年级上册全册教学设计一. 教材分析沪科版数学七年级上册教材内容包括有理数、方程、不等式、函数、几何初步等。
整个教材内容由浅入深,逐步引导学生掌握数学的基本概念、性质、定理和公式。
教材注重培养学生的逻辑思维能力、运算能力和空间想象能力,为学生后续学习打下坚实的基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在数学学习上存在恐惧心理,对数学缺乏兴趣。
针对这种情况,教师需要关注学生的个体差异,激发学生的学习兴趣,提高学生的学习积极性。
同时,教师还需关注学生的学习习惯和方法,引导学生养成良好的学习习惯,提高学习效率。
三. 教学目标1.知识与技能:使学生掌握沪科版数学七年级上册的基本概念、性质、定理和公式,提高学生的逻辑思维能力、运算能力和空间想象能力。
2.过程与方法:培养学生独立思考、合作交流的能力,引导学生运用数学知识解决实际问题。
3.情感态度与价值观:激发学生的学习兴趣,提高学生对数学学科的认同感,培养学生勇于探索、坚持不懈的精神。
四. 教学重难点1.教学重点:沪科版数学七年级上册的基本概念、性质、定理和公式的掌握。
2.教学难点:对部分概念、性质、定理和公式的理解与应用,以及解决实际问题。
五. 教学方法1.情境教学法:通过生活实例、故事等形式,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:提问、讨论等方式,引导学生独立思考,培养学生的创新能力。
3.合作学习法:小组讨论、合作解决问题,提高学生的团队协作能力。
4.巩固练习法:通过适量练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教具准备:教材、PPT、黑板、粉笔、练习题等。
2.教学资源:网络资源、教辅资料、教学视频等。
3.教室环境:座位排列合理,方便学生交流、讨论。
七. 教学过程1.导入(5分钟)利用生活实例或故事,引出本节课的主题,激发学生的学习兴趣。
2.呈现(10分钟)讲解教材内容,通过PPT、板书等形式,展示基本概念、性质、定理和公式。
2023-2024学年沪科版七年级数学上册教学设计:1.1正数和负数教学设计
2023-2024学年沪科版七年级数学上册教学设计:1.1正数和负数教学设计一. 教材分析《沪科版七年级数学上册》第一章“生活中的数学”第一节“正数和负数”是全册的起始章节,具有举足轻重的地位。
本节内容主要介绍正数、负数的概念,以及它们在实际生活中的应用。
通过本节课的学习,学生能理解正数和负数的含义,掌握它们的性质,并能运用它们解决实际问题。
二. 学情分析七年级的学生已具备了一定的数学基础,但对于正数和负数的概念和应用可能还比较模糊。
因此,在教学过程中,需要注重引导学生从实际生活中发现数学问题,激发他们的学习兴趣,培养他们的观察能力和思维能力。
三. 教学目标1.知识与技能:理解正数和负数的概念,掌握它们的性质;能够运用正数和负数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:正数和负数的概念,它们的性质。
2.难点:正数和负数在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现数学问题,激发学习兴趣。
2.启发式教学法:引导学生思考、探索,培养学生的数学思维能力。
3.小组合作学习:鼓励学生互相讨论、交流,共同解决问题。
六. 教学准备1.准备相关的生活实例,如购物、温度等。
2.准备多媒体教学课件,帮助学生直观理解正数和负数。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如购物、温度等,引导学生发现数学问题,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,介绍正数和负数的概念,以及它们的性质。
在此过程中,引导学生积极思考、提问。
3.操练(10分钟)教师设计一些练习题,让学生运用所学的正数和负数知识解决问题。
教师引导学生互相讨论、交流,共同解决问题。
4.巩固(10分钟)教师通过一些实际生活中的问题,让学生运用正数和负数知识进行解答。
沪科版数学 七年级上册 教案
精心整理第1章 有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.2.1.)2.,1.师:例例例例例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.2,(2)(2)增长值;(2)(2)如果上升米(,它的高度记作海拔.?2.一种零件的内径尺寸在图纸上是10±0.05(单位:mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸.?【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m; 2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.1.2数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点师:1.2.同时把1.(2)(3)(4)(5)个单位长度的2.负方向(第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上A、B、C、D各点表示的数.【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;1.联系;2.原点,1.2.习习惯.一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.-3的相反数是7.-3的相反数是3.+11.2表示这个数的相反数例如-(-4)=4,-(+5.5)=-5.5;在一个1.5,-1,3,2.6,-1.2,0.9,-9五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.师:1.2.3.,离开.那么互师:1.|-2.,=(1)即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0.3.绝对值的非负性.由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.三、例题讲解【例1】求下列各数的绝对值:-7,+,-4.75,10.5.【答案】=7;=;|-4.75|=4.75;|10.5|=10.5【例2】计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.2|;(3)|-|-(-).分析求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】(1)0.62;(2)0;(3).四、巩固练习课本P11~P12练习的第1~5题.1.2.师:1.任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?2.1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?二、讲授新课1.发现、总结:(1)师:同学们,请仔细观察温度计的刻度,发现上面的温度总比下面的高,与之类似,在数轴上表示的两个数,右边的数总比左边的数大.(2)在数轴上,所有的负数都在0的左边,所有的正数都在0的右边,这说明了什么?(3)由学生归纳出:正数都大于0,负数都小于0;正数大于一切负数;(4)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(5)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.例如:(1)比较-3,0,2的大小;(2)比较两个负数-和-的大小.(1)解法一先在数轴上分别找出表示-3,0,2的点,由右边的数总比左边的数大,得到-3<0<2.解法二直接由“正数大于0,负数小于0,正数大于负数”的规律得出-3<0<2.(2)①先分别求出它们的绝对值:==,==.②比较绝对值的大小:∵>∴>3.(1)(2)(3)师:-(4)-(-.【答案】(1)这是两个负数比较大小∵∴(2)(3)∵∴-(-0.3)>-.(4)分别化简两数-(-)=,-=-,∵正数大于负数,∴-(-)>-.说明:①要求学生严格按此格式书写,训练学生逻辑推理的能力;②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行;④异分母分数比较大小时要通分,将分母化为相同.【例2】用“>”连接下列各数:2.6,-4.5,,0,-2.分析多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比、负数和负数比.【答案】 2.6>>0>-2>-4.5.四、巩固练习课本P15练习第1~3题.【答案】略五、课堂小结教师引导学生小结:1.先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导2.和用法..1.数,2.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题得不到确定的答案,因为问题中并未指出行走方向.二、讲授新课1.发现、总结:师:同学们,我们必须把问题说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算术就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处.这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(-20)+(-30)=-50.思考:还有哪些可能情形?你能把问题补充完整吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示如图:写成算式是(+20)+(-30)=-10,即这位同学位于原来位置的西方10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是:(-20)+(+30)=(),即这位同学位于原来位置的()方()米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次:你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(-3)=();(+3)+(-10)=();(-5)+(+7)=();(-6)+2=().再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=().(6)2.师:(1)(2);(3)(4)这与小(3)(-1【答案】(1)(2)(3)=-(1+)=-2;(4)=+(4.3-3.4)=0.9..(2),净胜数为+=;黄队共进球,失球,净胜球数为+=;蓝队共进球,失球,净胜球数为+=.?四、巩固练习课本P19练习的第1、2题.【答案】略五、课堂小结1.这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号与计算“和”的绝对值这两个问题.第2课时有理数的加法(2)教学目标【知识与技能】理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算.【过程与方法】通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力.【情感、态度与价值观】在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯.教学重难点师:1.2.(4))+(-通过练习巩固加法法则1.(1)师:的吗?(2).(3)让学生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c).这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化.三、例题讲解教师板书例题并和学生共同完成.【例1】计算:(1)(+26)+(-18)+5+(-16);(2)(-1)+1+(+7)+(-2)+(-8).【答案】(1)原式=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3.(2)原式=[(-1)+(-2)]+[1+(-8)]+7=(-4)+(-7)+7=(-4)+[(-7)+7]=(-4)+=-(4-)=-3.从几个例题中你能发现应用运算律时,通常将哪些加数结合在一起,能使运算简便吗?【例2】运用加法运算律计算下列各题:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5);(2)(+3)+(-2)+(-3)+(-1)+(+5)+(+5);(3)(+6)+(+)+(-6.25)+(+)+(-)+(-).分析利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分反数时,(2))+(5+)+[-(2+)]+[-(1+)]+(5+)+[-(3+)]=3+5++(-2)+(-1)+(-)+5+(-3)+)=7.(3))+(-6.25)+()+(-)+(-10袋小麦的质量(单位:kg)分别如下这1090答:: 1.2.3.4.数拆开后的两部分要保持原来分数的符号.第3课时有理数的减法教学目标【知识与技能】理解并掌握有理数减法法则,会进行有理数的减法计算.【过程与方法】1.经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力.2.通过减法到加法的转化,让学生初步体会化归的数学思想.【情感、态度与价值观】使学生感受事物之间的相互联系,培养他们的辩证唯物主义的思想.教学重难点【重点】有理数减法法则.【难点】法则本身的推导和理解.教学过程一、复习导入师:同学们,上课之前老师先问你们几个问题,看大家对上节课的知识掌握得怎么样.1.指名学生叙述有理数的加法法则.2.计算:(1)(-2)+(-6);(2)(-8)+(+6).3.1.(1)师:3)=-8,(2)(3)(4)12-21=12+(-21)=-9.【例2】某次法律竞赛中规定:抢答题答对一题得20分,答错一题扣10分,答对一题与答错一题得分相差多少分?【答案】20-(-10)=20+10=30(分),即答对一题与答错一题相差30分.四、巩固练习课本P21~P22练习的第1~4题.【答案】略五、课堂小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,把引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数不变.第4课时有理数的加减混合运算教学目标【知识与技能】理解有理数的加减法可以互相转化,并了解代数和概念.【过程与方法】让学生进一步体会到有理数减法可以转化为加法进行计算,能熟练地进行有理数的加减混合运算,并体会师:1.2.3.4.5.6.师:1.以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数.同样,(-11)-7+(-9)-(-6)按减法法则应为(-11)+(-7)+(-9)+(+6),这样便把加减法统一成加法算式.几个正数或负数的和称为代数和.再看16-(-2)+(-4)-(-6)-7写成代数和是16+2+(-4)+6+(-7).既然都可以写成代数和,正号可以省略,每个括号都可以省略,如:(-11)+(-7)+(-9)-(-6)=-11-7-9+6,读作“负11、负7、负9、正6的和”,运算上可读作“负11减7减9加6”;16+2+(-4)+6+(-7)=16+2-4+6-7,读作“正16、正2、负4、正6、负7的和”,运算上读作“16加2减4加6减7”.2.加法运算律的运用:既然是代数和,当然可以运用有理数加法运算律:a+b=b+a,(a+b)+c=a+(b+c).三、例题讲解【例1】把(+)+(-)-(+)-(-)-(+1)写成省略正号的和的形式,并把它读出来.【答案】原式=(+)+(-)+(-)+(+)+(-1)=--+-1=-1.读作:“、-、-、、-1的和”.【例2】计算:(1)(+7)-(+8)+(-3)-(-6)+2;(2)+(-)--(-).【答案】(1)(+7)-(+8)+(-3)-(-6)+2+(--(-+(-)+(++)(=【例3】五、课堂小结教师引导学生小结:1.有理数的加减法可统一成加法.2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.1.5有理数的乘除第1课时有理数的乘法(1)教学目标【知识与技能】了解有理数乘法的意义,掌握有理数乘法法则,并熟练进行两个有理数乘法的运算.【过程与方法】经历对有理数乘法法则的探索过程,加深对法则的理解并能熟练使用.【情感、态度与价值观】通过师生交流合作,让学生体会从特殊到一般的归纳方法,提高学生的认知水平.教学重难点【重点】有理数乘法的运算.【难点】有理数乘法中的符号法则.师:1.2.)3.符号问题)4.1.(1)(2)“-6”,一般地,我们有:把一个因数换成它的相反数,所得的积是原来的积的相反数.(3)这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.此外,把(-3)×0=0同3×0=0作比较.(4)综合上面的各种情况,引导学生自己归纳出有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.(5)继而教师强调指出:“同号得正”中正数乘以正数得正数就是小学时期学习的乘法,有理数中特别注意“负负得正”和“异号得负”.用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法变得较复杂了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.因为,在进行有理数乘法运算时更需时时强调:先定符号后定值.三、例题讲解【例1】计算:(1)(-5)×(-6);(2)(-)×;(3)(-)×(-); (4)8×(-1.25).(2)(-=-()=-(3)(-)=+()=1.×(-1.25)=-(8×1.25)=-10.气温1.2.3.通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生实事求是、善于质疑和独立思考的良好学习习惯.教学重难点【重点】乘法的符号法则和乘法的运算律.【难点】积的符号的确定.教学过程一、复习导入1.师:同学们,你们谁能叙述一下有理数的乘法法则?2.指名口算:(1)5×(-6);(2)(-6)×5;(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)].二、讲授新课1.师生共同研究有理数乘法运算律:(1)问题:在小学里,我们曾经学过乘法的交换律、结合律、分配律.这三个运算律在有理数乘法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.□×○和○×□..(3)(4)(5)生:定,2.(1)(2)-)××××(3)(-10)×(-)×(-0.1)×6=;?(4)(-10)×(-)×(-0.1)×(-6)=.?【答案】(1)-2(2)2(3)-2(4)2我们可以发现:一般地,几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.【例2】计算:(1)8+(-0.5)×(-8)×;(2)(-3)××(-1)×(-0.25);(3)×(8-1-);(4)4×(-12)+(-8)×(-5)+16.【答案】(1)原式=8+××8=8+3=11.(先乘后加)(2)原式=-3×××(先定符号)=-1.(后定值)(3)原式=×8-×-×=6-1-=4.(4)还有.1.2.一、复习导入师:在新课开始之前,我们先来回顾一下前面的知识.1.教师指名学生叙述有理数乘法法则.2.叙述有理数乘法的运算律.3.计算:(1)(-6)×;(2)(-0.5)×(-1)××(-8)×1;(3)(-3)×(+7)-9×(-6);(4)÷().二、讲授新课1.师生共同研究有理数除法法则:(1)问题:“一个数与2的乘积是-6,这个数是几?”你能否回答?这个问题写成算式有两种:2×(?)=-6,(乘法算式)也就是(-6)÷2=(?)(除法算式)由2×(-3)=-6,我们有(-6)÷2=-3.另外,我们还知道:(-6)×=-3.所以,(-6)÷2=(-6)×.这表明除法可以转化为乘法来进行计算.(2)探索:8÷6÷-6-6(3)2.(2)(-)(-);(3)÷(-).×(2)(-)÷(-)=(-)×(-)=.(3)÷(-)=×(-)=-.【例2】化简下列分数:(1);(2).【答案】(1)原式=(-12)÷3=-(12÷3)=-4.(2)原式=(-24)÷(-16)=24÷16=1.【例3】计算:(1)(-)÷(-);(2)(-24)÷(-6);(3)-3.5÷×(-).【答案】(1)原式=÷=×=.[或原式=(-×(-)=](2)原式=(24+)×=4+=4.(3)原式=××=3.四、巩固练习1.2.果.1.2.师:1.指名学生计算:(1)8+5×(-4);解(1)原式=8+(-20)(先乘后加)=-12.(2)(-3)×(-7)-9×(-6).解(2)原式=21-(-54)(先乘后减)=75.2.再次强调:在有理数乘法计算中,首先要掌握积的符号法则,当符号确定后又归结到小学数学的乘法运算上,四则运算顺序也同小学一样,先进行第二级运算,再进行第一级运算,若有括号先算括号里的式子.二、例题讲解【例1】计算:×(-)×÷.学生板演,教师点评,然后分析:既要考虑运算顺序,又要考虑运算法则.【答案】原式=×(-)××=-.【例2】计算:(1)8+(-0.5)×(-8)×;(2)(-3)××(-1)×(-0.25);(3)×教师点评学生解法=8+(2)×=-1(3)×=-+(4)=-5+(1-=-5+)=-5-.【例3计算-+0.4);【答案】(1)×-30×(2)(-5)=(5-0.02)×(-5)=-25+0.1=-24.9.课本P36~P37练习的第1~3题.【答案】略四、课堂小结通过本节课的学习,你获得了哪些新的知识,你认为你有哪些方面的进步?学生自主总结,教师补充完善.三个优先:运算顺序优先考虑,运算结合的符号优先考虑,能运用运算律的优先考虑.1.6有理数的乘方第1课时乘方(1)教学目标【知识与技能】理解有理数乘方的概念,掌握有理数乘方的运算.【过程与方法】培养学生的观察、比较、分析、归纳、概括能力以及探索精神.【情感、态度与价值观】通过在现实背景中理解有理数乘方的意义,体会数学的应用价值.教学重难点【重点】有理数乘方的运算.【难点】有理数乘方运算的符号法则.1.2.的立方(或a1.即,数,n2.(3)(-2)(2)(3)3.根据有理数乘法运算法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.你能把上述的结论用数学符号语言表示吗?当a>0时,a n>0(n是正整数);当a<0时,当a=0时,a n=0(n是正整数)(以上为有理数乘方运算的符号法则).a2n=(-a)2n(n是正整数);a2n-1=-(-a)2n-1(n是正整数);a2n≥0(a是有理数,n是正整数).4.试一试.(-2)6读作什么?其中底数是什么?指数是什么?(-2)6是正数还是负数?43=();(-)2=();(-1)5=();(-0.1)3=().【答案】略三、课堂小结教师引导学生回忆,做出小结:1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.第2课时乘方(2)教学目标【知识与技能】1.进一步掌握有理数的运算法则和运算律.2.的信心.师:1.(10)1×(-2);(12)(-3)(-8)2.乘法交换律:ab=ba.乘法结合律:(ab)c=a(bc).乘法分配律:a(b+c)=ab+ac.二、讲授新课1.师:同学们,请观察下面的算式里有哪几种运算?3+50÷22×(-)-1.在这个算式里,含有有理数的加、减、乘、除、乘方等多种运算,这种运算称为有理数的混合运算.2.有理数混合运算的运算顺序.(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.②可以应用运算律,适当改变运算顺序,使运算简便.3.试一试.师:指出下列各题的运算顺序:(1)-50÷2×();(2)6÷(3×2);(3)6÷3×2;(4)17-8÷(-2)+4×(-3);.=(-×10=-师:这里要注意三点:(1)(2)(3)(2)(-+(-[(-)【答案】(1)-10+8(-2)-(-4)(2)(-+(-)[(-=(-)×+(-)[(-)-]=(-×+(-)=-5+1=-4.5.(1)想一想:①2÷(-2)与2÷-2有什么不同?②2÷(2×3)与2÷2×3有什么不同?(2)试一试:计算:2×(-)÷(-2).【答案】(1)①运算顺序不同,前者结果是-;后者结果是2.②运算顺序不同,前者结果是;后者结果是3.(2).四、课堂小结教师引导学生一起总结有理数混合运算的规律:1.先乘方,再乘除,最后加减.2.同级运算按从左到右的顺序运算.3.若有括号,先小再中最后大,依次计算.第3课时科学记数法教学目标【知识与技能】1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算.2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.【过程与方法】.师:1.2.×)(-)(-×××;.3.计算:10,10,10,10,10,10,1010.n次幂的n次米/秒,数法.师:?(1)10n=1,n恰巧是1后面0的个数;(2)10n=,比运算结果的位数少1.反之,1后面有多少个0,10的幂指数就是多少,如1=107.2.练习.(1)把下面各数写成10的幂的形式:1 000,100 000 000,100 000 000 000.(2)指出下列各数是几位数:103,105,1012,10100.3.科学记数法.(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式.如:100=1×100=1×102;6 000=6×1 000=6×103;7 500=7.5×1 000=7.5×103.第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1 000,变成10的n次幂的形式就行了.(2)科学记数法的定义.根据上面的例子,我们把大于10的数记成a×10n的形式,其中a的整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.一般地,把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数(即1≤a<10),n是正整数,这种记数法叫做科学记数法.三、例题讲解【例1】用科学记数法表示下列各数:(2)(3)(4)1.2.1.使学生初步理解近似数的概念,并由给出的近似数,说出它精确到哪一位.2.给出一个数,能熟练地按要求四舍五入取近似数.【过程与方法】通过近似数的学习,体会近似数的意义及其在生活中的作用.【情感、态度与价值观】通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想.教学重难点。
沪科版七年级数学上册教学设计:4
1.作业要求书写工整、作图清晰,体现学生的认真态度和良好习惯。
2.家长要关注学生的学习过程,协助学生完成作业,并在作业上签字,以便教师了解学生在家的学习情况。
3.教师在批改作业时,要关注学生的作图方法和步骤,及时给予反馈和指导,帮助学生纠正错误,提高作图能力。
二、学情分析
针对沪科版七年级数学上册4.6节“用尺规作线段与角”,考虑到学生的年龄特点和知识背景,进行分析如下:
1.学生年龄处于青春期,思维活跃,好奇心强,对新鲜事物充满兴趣,但注意力容易分散,需要教师运用生动有趣的教学方法吸引学生。
2.学生在之前的数学学习中,已经掌握了基本的几何图形和性质,具备了一定的几何基础,但对尺规作图这一部分内容尚属初次接触,需要在教师的引导下逐步掌握。
-适时给予学生鼓励和表扬,增强学生的自信心,激发学生的学习热情。
4.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,如课堂参与度、动手操作能力等。
-结合终结性评价,通过测试等方式,评估学生对尺规作图知识和技能的掌握程度。
-注重评价的多元性,结合自评、互评和师评,全面了解学生的学习状况。
5.教学拓展:
(二)讲授新知
1.尺规作线段的方法:
-介绍尺规作线段的原理,如通过两个固定点作一条直线,利用圆规画弧等方法。
-分步骤演示如何用尺规作出给定长度的线段,强调作图过程中的精确度控制。
-引导学生观察、模仿,并解释每个步骤的关键点,确保学生能够理解并掌握。
2.尺规作角的方法:
-介绍尺规作角的原理,如利用圆规画圆、画弧等方法。
3.学生在小组合作学习中,表现出较强的交流欲望,但部分学生可能存在依赖心理,需要教师适时引导,培养学生的独立思考能力。
数学沪科版七年级教案4篇
数学沪科版七年级教案4篇数学沪科版七年级教案篇1【学习目标】1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.【学习重点】利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.【学习难点】两个负数大小的比较.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题旧知回顾:1.什么是绝对值?答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.2.正数、负数、0的绝对值分别是什么?答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.自学互研生成能力知识模块一用数轴比较有理数的大小阅读教材P14~P15的内容,回答下列问题:问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.学习笔记:行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是(A)A.abcB.acbC.bcaD.cba仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是(C)A.-aC.a-1-a D.a-a-1仿例2:把下列各数在数轴上表示出来,并用“”连接各数.-1.5,-0.5,-3.5,-5.解:将这些数在数轴上表示出来,如图:从数轴上可看出:-5-3.5-1.5-0.5.知识模块二用法则比较有理数的大小阅读教材P15的内容,回答下列问题:问题:两个负数怎样比较大小?答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较.典例:比较大小:(1)-2.11;(2)-3.2-4.3;(3)-1213; (4)-140.仿例1:比较-12、-13、14的大小结果正确的是(A)A.-12-1314B.-1214-13C.14-13-12D.-13-1214仿例2:比较下列各对数的大小:(1)-(-3)与|-2|;解:∵-(-3)=3,|-2|=2,∴-(-3)|-2|;(2)-(-6)与|-6|.解:∵-(-6)=6,|-6|=6,∴-(-6)=|-6|.变例:整数x满足|x|3,则x=-2、-1、0、1、2,负整数x满足3|x|≤6,则x=-4、-5、-6.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一用数轴比较有理数的大小知识模块二用法则比较有理数的大小检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:_____________________________________________________________________ ___2.困惑:_____________________________________________________________________ ___数学沪科版七年级教案篇2教学目的:(一)知识点目标:1.了解正数和负数在实际生活中的应用。
最新沪科版数学 七年级上册 教案
最新沪科版数学七年级上册教案1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】(1)与去年相比,某乡今年的水稻种植面积扩大了10hm2(公顷),小麦的种植面积减少了5hm2,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.【答案】(1)与去年相比,该乡今年的水稻种植面积增加了10hm2,小麦种植面积增加了-5hm2,油菜种植面积增加了0hm2.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】(1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%,德国 1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.四、巩固练习1.-10表示支出10元,那么+50表示;如果零上5度记作5℃,那么零下2度记作;如果上升10m记作10m,那么-3m表示;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔;比海平面低30m的地方,它的高度记作海拔.2.一种零件的内径尺寸在图纸上是10±0.05(单位:mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸.【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m; 2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.1.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上A、B、C、D各点表示的数.【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】判断下列说法是否正确:(1)-5是5的相反数.( )(2)5是-5的相反数.( )(3)5与-5互为相反数.( )(4)-5是相反数.( )【答案】(1)√(2)√(3)√(4)×【例2】(1)分别写出5、-7、-3、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】(1)5的相反数是-5.-7的相反数是7.-3的相反数是3.+11.2的相反数是-11.2.我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】化简下列各数:(1)-(+10); (2)+(-0.15);(3)+(+3); (4)-(-20).【答案】(1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本P10练习的第1~3题.【答案】 1.5,-1,3,2.6,-1.2,0.9,-.2.(1)2.8 -3.2 (2)4 -7 (3)-8 9 3.C五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.教学过程一、复习导入师:同学们,我们先来做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5,3.5,0及它们的相反数所对应的点.2.在数轴上找出与原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义.从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)|+2|= ,= ;(2)|0|= ;(3)|-3|= ,|-0.2|= .师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0.3.绝对值的非负性.由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.三、例题讲解【例1】求下列各数的绝对值:-7,+,-4.75,10.5.【答案】=7;=;|-4.75|=4.75;|10.5|=10.5【例2】计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.2|;(3)|-|-(-).分析求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】(1)0.62; (2)0; (3).四、巩固练习课本P11~P12练习的第1~5题.【答案】 1.略 2.3,1.5,0,5,0.02,,,100 3.(1)17 (2)1 (3)0 (4)6 4.D 5.8,8,,五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.1.3 有理数的大小教学目标【知识与技能】会借助数轴直观比较两个有理数的大小.【过程与方法】培养学生的逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力.【情感、态度与价值观】通过两个负数大小比较的推理分析,培养学生良好的思维能力.教学重难点【重点】有理数比较大小的法则.【难点】比较两个负数的大小.教学过程一、复习引入师:同学们,上节课我们学习了什么知识?一起来回顾一下吧!1.任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?2.1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?二、讲授新课1.发现、总结:(1)师:同学们,请仔细观察温度计的刻度,发现上面的温度总比下面的高,与之类似,在数轴上表示的两个数,右边的数总比左边的数大.(2)在数轴上,所有的负数都在0的左边,所有的正数都在0的右边,这说明了什么?(3)由学生归纳出:正数都大于0,负数都小于0;正数大于一切负数;(4)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(5)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.例如:(1)比较-3,0,2的大小;(2)比较两个负数-和-的大小.(1)解法一先在数轴上分别找出表示-3,0,2的点,由右边的数总比左边的数大,得到-3<0<2.解法二直接由“正数大于0,负数小于0,正数大于负数”的规律得出-3<0<2.(2)①先分别求出它们的绝对值:==,==.②比较绝对值的大小:∵> ∴>③得出结论:-<-.3.归纳:有理数大小比较的一般法则:(1)负数小于0,0小于正数,负数小于正数;(2)两个正数,应用已有的方法比较;(3)两个负数,绝对值大的反而小.三、例题讲解师:下面一起来做几个例题巩固一下吧!【例1】比较下列各对数的大小:(1)-1与-0.01;(2)-|-2|与0;(3)-(-0.3)与-;(4)-(-)与-.【答案】(1)这是两个负数比较大小.∵|-1|=1,|-0.01|=0.01,且1>0.01,∴-1<-0.01.(2)化简:-|-2|=-2,因为负数小于0,所以-|-2|<0.(3)这是一个正数、一个负数比较大小,∵-(-0.3)=0.3,正数大于负数,∴-(-0.3)>-.(4)分别化简两数,得:-(-)=,-=-,∵正数大于负数,∴-(-)>-.说明:①要求学生严格按此格式书写,训练学生逻辑推理的能力;②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行;④异分母分数比较大小时要通分,将分母化为相同.【例2】用“>”连接下列各数:2.6,-4.5,,0,-2.分析多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比、负数和负数比.【答案】 2.6>>0>-2>-4.5.四、巩固练习课本P15练习第1~3题.【答案】略五、课堂小结教师引导学生小结:1.先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定.学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了.2.要求学生严格按格式书写,训练学生逻辑推理的能力,提醒学生注意符号“∵”、“∴”的写法、读法和用法.1.4 有理数的加减第1课时有理数的加法(1)教学目标【知识与技能】使学生了解有理数加法的意义,理解有理数加法的法则,能熟练地进行有理数加法运算.【过程与方法】在有理数加法法则的导出和运用过程中,注意培养学生独立分析问题和口头表达以及运用数形结合的方法解决问题的能力.【情感、态度与价值观】通过观察、归纳、比较,体验数学学习交流的探索性和创造性,在运用知识解决问题时体验成功的喜悦.教学重难点【重点】有理数加法法则.【难点】异号两数相加的法则.教学过程一、复习导入1.师:同学们,在小学里我们已经学过了正整数、正分数(包括正小数)及数0的四则运算.现在引入了负数,数的范围扩大到了有理数,那么如何进行有理数的运算呢?2.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题得不到确定的答案,因为问题中并未指出行走方向.二、讲授新课1.发现、总结:师:同学们,我们必须把问题说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算术就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处.这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(-20)+(-30)=-50.思考:还有哪些可能情形?你能把问题补充完整吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示如图:写成算式是(+20)+(-30)=-10,即这位同学位于原来位置的西方10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是:(-20)+(+30)=( ),即这位同学位于原来位置的( )方( )米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次:你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(-3)=( ); (+3)+(-10)=( );(-5)+(+7)=( ); (-6)+2=( ).再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=( ).(6)第一次向西走了30米,第二次没走.写成算式是:(-30)+0=( ).我们不难得出它们的结果.2.概括.师:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同.三、例题讲解教师出示例题.【例1】计算:(1)(+2)+(-11); (2)(+20)+(+12);(3)(-1)+(-); (4)(-3.4)+4.3.【答案】(1)原式=-(11-2)=-9;(2)原式=+(20+12)=+32=32;(3)原式=-(1+)=-2;(4)原式=+(4.3-3.4)=0.9.【例2】足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.分析(1)每队进球总数记为正,失球总数记为负,这两个数的和为该队的净胜球数.(2)比赛双方中一方的进球数也是对方的失球数.三场比赛中,红队共进球,失球,净胜数为+ = ;黄队共进球,失球,净胜球数为+= ;蓝队共进球,失球,净胜球数为+ = .四、巩固练习课本P19练习的第1、2题.【答案】略五、课堂小结1.这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号与计算“和”的绝对值这两个问题.第2课时有理数的加法(2)教学目标【知识与技能】理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算.【过程与方法】通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力.【情感、态度与价值观】在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯.教学重难点【重点】有理数加法运算律.【难点】灵活运用运算律使运算简便.教学过程一、复习导入师:上节课我们学习了什么,一起来复习一下吧!1.指名学生叙述有理数加法法则.2.计算:(1)6.18+(-9.18);(2)(+5)+(-12);(3)3.75+2.5+(-2.5);(4)+(-)+(-)+(-).说明:通过练习巩固加法法则,突出计算简化问题,引出新课.二、讲授新课1.发现、总结.(1)提出问题:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.□+○和○+□任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个算式的运算结果.(□+○)+◇和□+(○+◇)(3)总结:让学生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c).这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化.三、例题讲解教师板书例题并和学生共同完成.【例1】计算:(1)(+26)+(-18)+5+(-16);(2)(-1)+1+(+7)+(-2)+(-8).【答案】(1)原式=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3.(2)原式=[(-1)+(-2)]+[1+(-8)]+7=(-4)+(-7)+7=(-4)+[(-7)+7]=(-4)+=-(4-)=-3.从几个例题中你能发现应用运算律时,通常将哪些加数结合在一起,能使运算简便吗?【例2】运用加法运算律计算下列各题:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5);(2)(+3)+(-2)+(-3)+(-1)+(+5)+(+5);(3)(+6)+(+)+(-6.25)+(+)+(-)+(-).分析利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分母相同的分数结合起来,将带分数拆开,计算比较简便.一定要注意不要遗漏括号.相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,这样计算比较简便.【答案】(1)原式=(66+11.3+8.1)+[(-12)+(-7.4)+(-2.5)]=85.4+(-21.9)=63.5.(2)原式=(3+)+(5+)+[-(2+)]+[-(1+)]+(5+)+[-(3+)]=3+5+++(-2)+(-1)+(-)+(-)+5+(-3)++(-)=7.(3)原式=(+6)+(-6.25)+(+)+(-)+(-)=-.【例3】10袋小麦的质量(单位:kg)分别如下:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1,这10袋小麦一共多少kg?如果每袋小麦以90kg为标准,10袋小麦总计超过多少kg或不足多少kg?【解】91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4(kg).90×10=900(kg),905.4-900=5.4(kg).答:这10袋小麦一共905.4kg.如果每袋小麦以90kg为标准,10袋小麦总计超过5.4kg.四、巩固练习课本P20练习的第4、5题.【答案】略五、课堂小结师引导学生小结:三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算.常见技巧有:1.凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.2.同号集中:按加数的正负分成两类分别结合相加,再求和.3.同分母结合:把分母相同或容易通分的结合起来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】(1)与去年相比,某乡今年的水稻种植面积扩大了10hm2(公顷),小麦的种植面积减少了5hm2,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.【答案】(1)与去年相比,该乡今年的水稻种植面积增加了10hm2,小麦种植面积增加了-5hm2,油菜种植面积增加了0hm2.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】(1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%, 德国 1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.四、巩固练习1.-10表示支出10元,那么+50表示;如果零上5度记作5℃,那么零下2度记作;如果上升10m记作10m,那么-3m表示;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔;比海平面低30m的地方,它的高度记作海拔.2.一种零件的内径尺寸在图纸上是10±0.05(单位:mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸.【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m; 2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.1.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?个单位长度的B点表示什么数?(5)原点向右0.5个单位长度的A点表示什么数?原点向左1122.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上A、B、C、D各点表示的数.【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-32,+3.5;3(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-312与312,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-312与312,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律. 学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数. 理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0. 说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数. 三、例题讲解教师出示例题.【例1】 判断下列说法是否正确: (1)-5是5的相反数.( ) (2)5是-5的相反数.( ) (3)5与-5互为相反数.( ) (4)-5是相反数.( )【答案】 (1)√ (2)√ (3)√ (4)×【例2】 (1)分别写出5、-7、-312、+11.2的相反数;(2)指出-2.4是什么数的相反数. 【答案】 (1)5的相反数是-5.-7的相反数是7.-312的相反数是312.+11.2的相反数是-11.2. 我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数. 【例3】 化简下列各数:(1)-(+10); (2)+(-0.15); (3)+(+3); (4)-(-20).【答案】 (1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20. 四、巩固练习课本P 10练习的第1~3题.【答案】 1.5,-1,3,2.6,-1.2,0.9,-12. 2.(1)2.8 -3.2 (2)4 -7 (3)-8 9 3.C 五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.教学过程一、复习导入师:同学们,我们先来做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5,3.5,0及它们的相反数所对应的点.2.在数轴上找出与原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义.从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:|= ;(1)|+2|= ,|15(2)|0|= ;(3)|-3|= ,|-0.2|= .师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0. 3.绝对值的非负性.由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0. 三、例题讲解【例1】 求下列各数的绝对值:-712,+110,-4.75,10.5. 【答案】 |-712|=712;|+110|=110;|-4.75|=4.75;|10.5|=10.5 【例2】 计算:(1)|0.32|+|0.3|; (2)|-4.2|-|4.2|; (3)|-23|-(-23).分析 求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】 (1)0.62; (2)0; (3)43. 四、巩固练习课本P 11~P 12练习的第1~5题.【答案】 1.略 2.3,1.5,0,5,0.02,34,16,100 3.(1)17 (2)1 (3)0 (4)6 4.D 5.8,8,14,14五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.1.3 有理数的大小教学目标 【知识与技能】会借助数轴直观比较两个有理数的大小. 【过程与方法】培养学生的逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力. 【情感、态度与价值观】通过两个负数大小比较的推理分析,培养学生良好的思维能力. 教学重难点【重点】有理数比较大小的法则. 【难点】比较两个负数的大小. 教学过程 一、复习引入师:同学们,上节课我们学习了什么知识?一起来回顾一下吧!1.任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?2.1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?二、讲授新课1.发现、总结:(1)师:同学们,请仔细观察温度计的刻度,发现上面的温度总比下面的高,与之类似,在数轴上表示的两个数,右边的数总比左边的数大.(2)在数轴上,所有的负数都在0的左边,所有的正数都在0的右边,这说明了什么? (3)由学生归纳出:正数都大于0,负数都小于0;正数大于一切负数;(4)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(5)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.例如:(1)比较-3,0,2的大小;(2)比较两个负数-34和-23的大小.(1)解法一 先在数轴上分别找出表示-3,0,2的点,由右边的数总比左边的数大,得到-3<0<2. 解法二 直接由“正数大于0,负数小于0,正数大于负数”的规律得出-3<0<2. (2)①先分别求出它们的绝对值:|-34|=34=912,|-23|=23=812. ②比较绝对值的大小:∵912>812 ∴34>23 ③得出结论:-34<-23. 3.归纳:有理数大小比较的一般法则:(1)负数小于0,0小于正数,负数小于正数; (2)两个正数,应用已有的方法比较; (3)两个负数,绝对值大的反而小. 三、例题讲解师:下面一起来做几个例题巩固一下吧! 【例1】 比较下列各对数的大小: (1)-1与-0.01; (2)-|-2|与0; (3)-(-0.3)与-13; (4)-(-19)与-|-110|. 【答案】 (1)这是两个负数比较大小.∵|-1|=1,|-0.01|=0.01,且1>0.01, ∴-1<-0.01.(2)化简:-|-2|=-2,因为负数小于0,所以-|-2|<0. (3)这是一个正数、一个负数比较大小, ∵-(-0.3)=0.3,正数大于负数, ∴-(-0.3)>-13. (4)分别化简两数,得: -(-19)=19,-|-110|=-110,∵正数大于负数,∴-(-19)>-|-110|.说明:①要求学生严格按此格式书写,训练学生逻辑推理的能力; ②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行; ④异分母分数比较大小时要通分,将分母化为相同. 【例2】 用“>”连接下列各数: 2.6,-4.5,110,0,-223.分析 多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比、负数和负数比.【答案】 2.6>110>0>-223>-4.5. 四、巩固练习课本P 15练习第1~3题. 【答案】略 五、课堂小结教师引导学生小结:1.先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定.学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了.2.要求学生严格按格式书写,训练学生逻辑推理的能力,提醒学生注意符号“∵”、“∴”的写法、读法和用法.1.4 有理数的加减第1课时 有理数的加法(1)教学目标 【知识与技能】使学生了解有理数加法的意义,理解有理数加法的法则,能熟练地进行有理数加法运算. 【过程与方法】在有理数加法法则的导出和运用过程中,注意培养学生独立分析问题和口头表达以及运用数形结合的方法解决问题的能力. 【情感、态度与价值观】通过观察、归纳、比较,体验数学学习交流的探索性和创造性,在运用知识解决问题时体验成功的喜悦. 教学重难点【重点】有理数加法法则. 【难点】异号两数相加的法则. 教学过程 一、复习导入1.师:同学们,在小学里我们已经学过了正整数、正分数(包括正小数)及数0的四则运算.现在引入了负数,数的范围扩大到了有理数,那么如何进行有理数的运算呢?2.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题得不到确定的答案,因为问题中并未指出行走方向. 二、讲授新课1.发现、总结:师:同学们,我们必须把问题说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算术就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处.这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(-20)+(-30)=-50. 思考:还有哪些可能情形?你能把问题补充完整吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示如图:写成算式是(+20)+(-30)=-10,即这位同学位于原来位置的西方10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是:(-20)+(+30)=( ),即这位同学位于原来位置的( )方( )米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次:你能发现和与两个加数的符号和绝对值之间有什么关系吗? (+4)+(-3)=( ); (+3)+(-10)=( ); (-5)+(+7)=( ); (-6)+2=( ). 再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=( ).(6)第一次向西走了30米,第二次没走.写成算式是:(-30)+0=( ).我们不难得出它们的结果. 2.概括.师:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得0; (4)一个数同0相加,仍得这个数. 注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同. 三、例题讲解教师出示例题. 【例1】 计算:(1)(+2)+(-11); (2)(+20)+(+12); (3)(-112)+(-23); (4)(-3.4)+4.3. 【答案】 (1)原式=-(11-2)=-9; (2)原式=+(20+12)=+32=32;(3)原式=-(112+23)=-216; (4)原式=+(4.3-3.4)=0.9.【例2】 足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 分析 (1)每队进球总数记为正,失球总数记为负,这两个数的和为该队的净胜球数.(2)比赛双方中一方的进球数也是对方的失球数.三场比赛中,红队共进 球,失 球,净胜数为 + = ;黄队共进 球,失 球,净胜球数为 + = ;蓝队共进 球,失 球,净胜球数为 + = . 四、巩固练习课本P 19练习的第1、2题. 【答案】 略 五、课堂小结1.这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号与计算“和”的绝对值这两个问题.第2课时 有理数的加法(2)教学目标 【知识与技能】理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算. 【过程与方法】通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力. 【情感、态度与价值观】在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯. 教学重难点【重点】有理数加法运算律. 【难点】灵活运用运算律使运算简便. 教学过程 一、复习导入师:上节课我们学习了什么,一起来复习一下吧! 1.指名学生叙述有理数加法法则. 2.计算:(1)6.18+(-9.18); (2)(+5)+(-12);(3)3.75+2.5+(-2.5); (4)12+(-23)+(-12)+(-13).说明:通过练习巩固加法法则,突出计算简化问题,引出新课. 二、讲授新课1.发现、总结. (1)提出问题:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.□+○和○+□任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个算式的运算结果.(□+○)+◇和□+(○+◇)(3)总结:让学生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c). 这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化. 三、例题讲解教师板书例题并和学生共同完成. 【例1】 计算:(1)(+26)+(-18)+5+(-16); (2)(-123)+112+(+714)+(-213)+(-812).【答案】 (1)原式=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3.(2)原式=[(-123)+(-213)]+[112+(-812)]+714=(-4)+(-7)+714=(-4)+[(-7)+714]=(-4)+14=-(4-14)=-334. 从几个例题中你能发现应用运算律时,通常将哪些加数结合在一起,能使运算简便吗? 【例2】 运用加法运算律计算下列各题:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5); (2)(+325)+(-278)+(-3512)+(-118)+(+535)+(+5512); (3)(+614)+(+12)+(-6.25)+(+13)+(-79)+(-56).分析 利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分母相同的分数结合起来,将带分数拆开,计算比较简便.一定要注意不要遗漏括号.相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,这样计算比较简便.【答案】 (1)原式=(66+11.3+8.1)+[(-12)+(-7.4)+(-2.5)]=85.4+(-21.9)=63.5.(2)原式=(3+25)+(5+35)+[-(2+78)]+[-(1+18)]+(5+512)+[-(3+512)] =3+5+25+35+(-2)+(-1)+(-78)+(-18)+5+(-3)+512+(-512)=7. (3)原式=(+614)+(-6.25)+(12+13)+(-56)+(-79)=-79.【例3】 10袋小麦的质量(单位:kg)分别如下:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1,这10袋小麦一共多少kg?如果每袋小麦以90kg 为标准,10袋小麦总计超过多少kg 或不足多少kg?【解】 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4(kg). 90×10=900(kg),905.4-900=5.4(kg).答:这10袋小麦一共905.4kg.如果每袋小麦以90kg 为标准,10袋小麦总计超过5.4kg. 四、巩固练习课本P 20练习的第4、5题. 【答案】 略。