交通灯外文翻译 2

合集下载

红绿灯的英文怎么读翻译及例句

红绿灯的英文怎么读翻译及例句

红绿灯的英文怎么读翻译及例句红绿灯的英文traffic lights英[trfik laits]美[trfk lats]红绿灯的词组习语plastic traffic light1.塑胶交通灯light traffic1.轻闲交通2.比较畅通的交通红绿灯的英文例句1. Just past the Barlby roundabout theres temporary traffic lights. 在刚过巴尔比环岛的地方,有一个临时红绿灯。

2. We drove through red traffic lights, the horn blaring.我们鸣着喇叭,闯过红灯。

3. The traffic lights were on amber.交通信号黄灯亮了。

4. Traffic lights have been placed at all major intersections.所有重要的交叉路口都安装了交通信号灯。

5. The car stopped at the traffic lights.汽车在交通信号灯前停了下来。

6. Turn left at the traffic lights.在交通信号灯处向左拐。

7. Cross over at the traffic lights, where the road is safe.在交通指挥灯处过马路, 那儿安全.8. Dont start moving until the traffic lights change to green.交通信号灯改变为绿灯之前,不要开动汽车.9. These lights flickered continuously like traffic lights which havegone mad.这些灯象发狂的交通灯一样不停地闪动着.10. There are traffic lights at each crossing.每个十字路口都有红绿灯.11. Cross with care at the traffic lights.横穿马路时要留心看交通指挥灯.12. The speedy car ignored the traffic lights and, with its horn blaring, roared down the street.那辆飞速的汽车无视交通信号灯, 响着喇叭,奔腾呼啸, 顺着大街开过去了.13. I had to stop at the traffic lights and put down the sun visor to shade my eyes from the light.我不得不在红绿灯处停车,然后放下遮阳板来遮挡阳光。

交通灯外文翻译(5篇范文)

交通灯外文翻译(5篇范文)

交通灯外文翻译(5篇范文)第一篇:交通灯外文翻译Traffic lights and PLCWith economic development, increased the number of vehicles, road congestion is becoming increasingly serious, intelligent traffic lights on the emerged.At present, the world's Intelligent Transportation System will be: a huge structure, management difficulties, such as the maintenance of large inputs.In order to improve the existing traffic conditions, and to overcome the existing shortcomings of intelligent transportation system I designed analog control traffic lights in urban and rural areas of small-scale smart traffic lights.It has small size, intelligence, maintenance into small, easy to install and so on.And other intelligent transportation system compared to the system to adapt to economic and social development, in line with the current status of scientific and technological development.Intelligent traffic lights are a comprehensive use of computer network communication technology, sensor technology to manage the automatic control system of traffic lights.Urban traffic control system is used for urban traffic data monitoring, traffic signal control and traffic management computer system;it is the modern urban traffic control system command and the most important component.In short, how to use the appropriate control method to maximize the use of costly cities to build high-speed roads, trunk road and the ramp to alleviate urban areas with the neighboring state of traffic congestion has become more and more traffic management and urban planning departments need to address the the main problem.Nowadays, traffic lights installed in each crossing, hasbecome the most common and dredge the traffic, the most effective means.The development of the society, people's consumption level unceasing enhancement, private vehicles unceasing increase.And more cars roads are narrow road traffic is clear.So adopting effective method to control the traffic light is imperative.PLC intelligent control principle is the core of the control system, PLC put the things direction or north-south direction according to quantity of vehicles, the corresponding scale what divides class given the green light direction between north and south direction according to certain rules too long.It can realize divides class according to a given the green cars duration scale of maximum car release, reduce crossroads vehicles, ease traffic congestion stagnation, realize the optimal control, so as to improve the efficiency of the traffic control system.The application of PLC is continuously, and drive to the deepening traditional control test new month benefit updates.It is simple in structure, programming and high reliability etc, convenient already widely used in industrial processes and position in the automatic control.Due to use of PLC has the characteristics of environmental adaptable, and its internal timer is very rich in resources, but the current widely used “progressive” lights, especially for precise control more than thecrossway control can be easily realized.So now increasingly applying PLC traffic light system.Meanwhile, PLC itself also has communication networking function, will the same path as part of a LAN signal unified dispatching management, can shorten the traffic wait times, realize scientific management.In real-time detection and automatic control of PLC application system, PLC is often used as a core components.In the 21st century, PLC willhave greater development.Technically, the computer technology can morely new achievements used in programmable controller design and manufacturing, there will be faster, storage and larger capacity, intelligent stronger varieties appear;Look from product size, can further to mini and super-large direction;Look from product compatibility, the variety of our products will be more rich, specification more complete, perfect man-machine interface and complete communication equipment can better adapt to all kinds of industrial control occasion demands;Look from the market, all countries to their production of multiple products with international competition intensifies and break, can appear a few brand monopoly international market situation, can appear international general programming languages;Judging from the development of the network, programmable controller and other industrial control computer networking constitute a large control system is programmable controller technology development direction.The current computer distributed control system DCS has already a lot of programmable controller applications.Along with the development of computer network, the programmable controller as automation control network and international general network will be an important part of the industry and industry, the numerous fields outside play an increasing role.In China the increasing amount of motor vehicles, many big cities like Beijing, Shanghai, nanjing and other ground appeared traffic overload running condition, traffic accidents problem also more and more serious.And because the various special vehicles(such as an ambulance, 119 120 car, police and various special vehicle 110 in emergency situations, by red under limited to traffic bring a lot of inconvenience, even cause traffic accident.And now, most traffic lights at the same moment willappear two or more than two direction at the same time for the green situation, and increase the incidence of the traffic accident.Therefore, design a kind of designed for special vehicles through and not cause any traffic accident, normal traffic control any time only one direction of modern intelligent traffic light green traffic control system is urgently needed.交通灯与PLC 随着经济的发展,车辆的数目不断增加,道路堵车现象日益严重,智能交通灯就应运而生了。

交通灯用英语怎么说

交通灯用英语怎么说

交通灯用英语怎么说交通灯是维持马路秩序的重要角色之一,有了它才能使交通变得有序。

那么你知道交通灯用英语怎么说吗?下面跟店铺一起学习一下交通灯的英语知识吧。

交通灯的英语说法traffic lighttrafficlight交通灯的相关短语在交通灯处 at the traffic lights智能交通灯 intelligen traffic light交通灯助手 Traffic Light Assist交通灯系列 Traffic Light Series交通灯是红色 Traffic lights are red订明交通灯 prescribed light signal行人触发交通灯 actuated signal黄色交通灯号 amber traffic signal light交通灯的英语例句1. More regard must be paid to safety on the roads.必须更加注意公路上的交通安全.2. These traffic regulations are decreed by governments for national traffic safety.这些交通规则是为国民交通安全着想而由各国政府颁布的.3. Measures must be taken to insure traffic safety.必须采取措施保证交通安全.4. Therefore, road safety evaluation of safety workers become the primary task.因此, 道路交通安全评价成为交通安全工作者的首要任务.5. To increase public knowledge of railway safety, railway track safety awareness specificity.提高公众铁路安全常识、铁路轨道交通安全特殊性的认识.6. Fifth, the management of industrial and traffic safety needs to be strengthened.五是加强生产、交通安全管理,健全安全责任制.7. This evidence shows that the importance of traffic safety cannot be overemphasized.例:这证据显示交通安全的重要性在怎么强调都不为过.8. The National Highway Traffic Safety Administration ( NHTSA ) ordered the Volvo recall.美国国家公路交通安全管理局要求沃尔沃强制性召回这些车辆.9. Now she is reminding her younger brother about road safety.她正在提醒她的弟弟交通安全.10. Which well - known saying, advertising verbals or slogan do have about traffic safety?关于交通安全有哪些名言, 广告词或标语?11. It's very important to teach the children about road safety.把交通安全常识教给孩子们是非常重要的.12. Finally, using MORT to improve the air - traffic management safety.最后, 引入MORT方法以提高空中交通安全管理的安全性.13. Reducing driving speed has an essential role to play in traffic safety.降低车速在交通安全议题上扮演了一个很重要的角色.14. All countries should enforce communications and improve handing in road traffic safety.各国应加强信息交流,相互学习与借鉴,共同提高道路交通安全水平.15. Is safety facilities product manufacturing, installation of comprehensive enterprise.是交通安全设施产品生产制造、安装的综合性企业.关于交通灯英文阅读:人工智能遇上交通灯交通堵塞或成历史Groundbreaking new traffic lights fitted with artificial intelligence could create safer roads and bring an end to rush hour gridlock.开创性的人工智能交通灯将为行人创造更为安全的道路环境,使路况高峰期的交通拥堵不再发生。

单片机交通灯中英文对照外文翻译文献

单片机交通灯中英文对照外文翻译文献

中英文对照外文翻译原文DESIGN OF TRAFFIC LIGHT BASED ON MCUBecause of the rapid development of our economy resulting in the car number of large and medium-sized cities surged and the urban traffic, is facing serious test, leading to the traffic problem increasingly serious, its basically are behaved as follows: traffic accident frequency, to the human life safety enormous threat, Traffic congestion, resulting in serious travel time increases, energy consumption increase; Air pollution and noise pollution degree of deepening, etc. Daily traffic jams become people commonplace and had to endure. In this context, in combination with the actual situation of urban road traffic, develop truly suitable for our own characteristics of intelligent signal control system has become the main task.PrefaceIn practical application at home and abroad, according to the actual traffic signal control application inspection, planar independent intersection signal control basic using set cycle, much time set cycle, half induction, whole sensor etc in several ways. The former two control mode is completely based on planar intersection always traffic flow data of statistical investigation, due to traffic flow the existence of variable sex and randomicity, the two methods have traffic efficiency is low, the scheme, the defects of aging and half inductive and all the inductive the two methods are in the former two ways based on increased vehicle detector and according to the information provided to adjust cycle is long and green letter of vehicle, it than random arrived adaptability bigger, can make vehicles in the parking cord before as few parking, achieve traffic flowing effectIn modern industrial production,current,voltage,temperature, pressure, and flow rate, velocity, and switch quantity are common mainly controlled parameter. For example: in metallurgical industry, chemical production, power engineering, the papermaking industry, machinery and food processing and so on many domains, people need to transport the orderlycontrol. By single chip microcomputer to control of traffic, not only has the convenient control, configuration simple and flexible wait for an advantage, but also can greatly improve the technical index by control quantity, thus greatly improve product quality and quantity. Therefore, the monolithic integrated circuit to the traffic light control problem is an industrial production we often encounter problems.In the course of industrial production, there are many industries have lots of traffic equipment, in the current system, most of the traffic control signal is accomplished by relays, but relays response time is long, sensitivity low, long-term after use, fault opportunity increases greatly, and adopts single-chip microcomputer control, the accuracy of far greater than relays, short response time, software reliability, not because working time reduced its performance sake, compared with, this solution has the high feasibility.About AT89C511.function characteristics description:AT89C51 is a low power consumption, high performance CMOS8 bit micro-controller, has the 8K in system programmable Flash memory. Use high-density Atmel company the beltpassword nonvolatile storage technology and manufacturing, and industrial 80S51 product instructions and pin fully compatible. Chip Flash allow program memory in system programmable, also suitable for conventional programmer. In a single chip, have dexterous 8 bits CPU and in system programmable Flash, make AT89C51 for many embedded control application system provides the high flexible, super efficient solution. AT89C51 has the following standard function: 8k bytes Flash, 256 bytes RAM, 32-bit I/O mouth line, the watchdog timer, two data pointer, three 16 timer/counter, a 6 vector level 2 interrupt structure, full-duplex serial port, piece inside crystals timely clock circuit. In addition, AT89C51 can drop to 0Hz static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, allowing the RAM, timer/counter, serial ports, interruption continue to work. Power lost protection mode, RAM content being saved, has been frozen, microcontroller all work stop, until the next interruption or hardware reset so far. As shown in figure 1 for the AT89C51 pins allotment.Figure 1 the AT89C51 pins allotment2.interrupt introductionAT89C51 has six interrupt sources: two external interruption, (and), three timer interrupt (timer 0, 1, 2) and a serial interrupts. Each interrupt source can be passed buy bits or remove IE the relevant special register interrupt allow control bit respectively make effective or invalid interrupt source. IE also includes an interrupt allow total control bit EA, it can be a ban all interrupts. IE. Six is not available. For AT89C51, IE. 5 bits are also not be used. User software should not give these bits write 1. They AT89 series for new product reserved. Timer 2 can be TF2 and the T2CON registers EXF2 or logical triggered. Program into an interrupt service, the sign bit can be improved by hardware qing 0. In fact, the interrupt service routine must determine whether TF2 or EXF2 activation disruption, the sign bit must also by software qing 0. Timer 0 and 1 mark a timer TF0 and TF1 has been presented in the cycle count overflow S5P2 074 bits. Their value until the next cycle was circuit capture down. However, the timer 2 marks a TF2 in count overflow of the cycle of S2P2 074 bits, in the same cycle was circuit capture down3.external clock driving characteristicsTable 14.leisure and power lost pattern external pins stateTable 2About 8255 chip1.8255 features:(1)A parallel input/output LSI chips, efficacy of I/O devices, but as CPU bus and peripheral interface.(2)It has 24 programmable Settings of I/O mouth, even three groups of 8 bits I/O mouth to mouth, PB mouth and PA PC mouth. They are divided into two groups 12 I/O mouth, A group including port A and C mouth (high four, PC4 ~ PC7), including group B and C port B mouth (low four, PC0 ~ PC3). A group can be set to give basic I/O mouth, flash control (STROBE) I/O flash controlled, two-way I/O3 modes, Group B can only set to basic I/O or flash controlled the I/O, and these two modes of operation mode entirely by controlling registers control word decision.2. 8255 pins efficacy:(1). RESET: RESET input lines, when the input outside at high levels, all internal registers (including control registers) were removed, all I/O ports are denoting input methods.(2). CS: chip choose a standard lamp line 1, when the input pins for low levels, namely/CS = 0, said chip is selected, allow 8255 and CPU for communications, / CS = 1, 8255 cannot with CPU do data transmission.(3). RD: read a standard lamp line 1, when the input pins for low levels, namely/RD = 0 and/CS = 0, allow 8255 through the data bus to the CPU to send data or state information, namely the CPU 8255 read from the information or data.(4). The WR: write a standard lights, when the input pins for low levels, namely/WR = 0 and/CS = 0, allows the CPU will data or control word write 8255.(5). D7: three states D0 ~ two-way data bus, 8255 and CPU data transmission channel, when the CPU execution input/output instruction, through its realization 8 bits of data read/write operation, control characters and status information transmitted through the data bus.(6). PA0 ~ PA7: port A input and output lines, A 8 bits of data output latches/buffers, an 8 bits of data input latches.(7). PB0 ~ PB7: port B input and output lines, a 8 bits of I/O latches, an 8 bits of input and output buffer.(8). PC0 ~ PC7: port C input and output lines, a 8 bits of data output latches/buffers, an 8 bits of data input buffer. Port C can through the way of working setting into two four ports, every 4 digit port contains A 4 digit latches, respectively with the port A and port B cooperate to use, can be used as control standard lights output or state standard lights input ports.(9). A0, A1: address selection line, used to select the PA 8255 mouth, PB mouth, PC mouth and controlling registers.When A0=0, A1= 0, PA mouth be chosen;When A0=0, A1 = 1, PB mouth be chosen;When A0=0, A1 = 1, PC mouth be chosen;When A0=1, A1= 1, control register is selected.Concerning seven section LED display introductionThrough light emitting diode chip appropriate link (including series and parallel) andappropriate optical structure. May constitute a luminous display light-emitting segments or shine points. By these luminous segments or shine point can be composed digital tube, symbols tube, m word pipe, tube, multilevel matrix display tube etc. Usually the digital tube, symbols tube, m word tube were called stroke display, but the stroke displays and matrix tube collectively referred to as character displays.1. The LED display classification(1) by word high marks: stroke monitors word high least 1mm (monolithic integrated type more digital tube word high in commonly 2 ~ 3mm). Other types of stroke display tiptop1.27 mm (0.5 inch) even up to hundreds of mm.(2) color-coded score red, orange, yellow, green and several kinds.(3) according to the structure points, reflecting cover type, a single point-elastic and monolithic integrated type.(4) from the luminous section electrode connection mode of points of anode and cathode two kinds.2. LED display parametersDue to the LED display is LED based, so its light, and the electrical characteristics and ultimate meaning of the parameters with most of the same light emitting diode. But because the LED monitor containing multiple light emitting diode, it must has the following specific parameters:(1) the luminous intensity ratioDue to the digital tube paragraphs in the same driving voltage, each are not identical, so positive current each different. The luminous intensity All segments of the luminous intensity values the ratio of the maximum and minimum values for the luminous intensity ratio. The ratio between 2.3 in 1.5 ~, the maximum cannot exceed 2.5.(2) pulse positive currentIF each segment of typical strokes displays for positive dc working current IF, then the pulse, positive current can be far outweigh.someotherwordpeopledontthinkoffirst. Pulse 390v smaller, pulse positive current can be bigger.Traffic signal control typeThe purpose of the traffic signal control are three: first,in time and space space intersection traffic in different directions,control traffic operation order; Second, make onplanar cross the road network on the people and objects of transport at the highest efficiency, Third, as the road users to provide necessary information, and help them to effectively use the traffic facilities. Road traffic signal control of basic types have many points method.According to the control geometry characteristic is divided into: single intersection control - point control, the traffic trunk lines of coordinated control - wire, traffic network coordination control surface controlling; -- According to the control principle differentiates: timing control, induced control and adaptive control.About watch-dog circuitBy single-chip computers.the micro computer system, because of single chip work often can be affected by external electromagnetic interference, causing program run fly while into dead circulation, the program's normal operation be interrupted by single chip microcomputer control system was unable to work, can cause the whole system of come to a standstill, happen unpredictable consequences, so out of microcontroller running status real-time.according consideration, they generate a specially used for monitoring microcontroller program running state of the chip, commonly known as "watchdog" (watchdog).MAX692 was slightly system monitoring circuit chip, have back-up battery switching, power lost discriminant functions monitoring, the watchdog. The encapsulation and pin instructions as figure2shows.Figure 2 MAX692 encapsulation and pinsWatch-dog circuit application, make SCM can in no condition to achieve continuous work, its working principle is: the watchdog chip and MCU an I/O pins are linked together, the I/O pins through program control it regularly to the watchdog of the pins on into high level (or the low level), this program statement is scattered on SCM other control statements,once among single-chip due to the interference makes application run into a fly after the procedures section into dead circulation state, write the watchdog pins program cannot be executed, this time, the watch-dog circuit will be without microcontroller sent signals, then at it and MCU reset pin connected pin reset signal give out a a, make SCM reposition occurs, namely the program from program memory splittext started, so we realized the MCU automatic reset.Infrared detection circuitThe infrared radiation photon in semiconductor materials stimutes the non-equilibrium carriers (electronic or holes), cause electrical properties change. Because carrier does not escape in vitro, so called within the photoelectric effect. Quantum photoelectric effect high sensitivity, response speed heat detectors much faster, is optional detectors. In order to achieve the best performance, generally need worked in low temperature. Photoelectric detector can be divided into:(1) optical type: also called photoconductive resistance. The incident photon stimulate the valence band uniform semiconductor electronic across forbidden band into the conduction band and left in valence band, cause cavitation increases, for electric conductance eigen light conductivity. From the band gaps of impurity level also can stimulate light into the conduction band or born carriers valence band, and for impurities light conductivity. The cutoff wavelength by impurity ionization energy (ie) decision. Quantum efficiencies below eigen optical and require lower working temperature.(2) photovoltaic type: mainly p - n knot of light born volts effect. Energy more than the width of infrared photonic band gaps in "area and its nearby of electrons cavitation. Existing "electric field make hole into p area, electronic into n area, two parts appear potentials. Deoxidization device have voltage or current signal. Compared with optical detectors, pv detector detect rate more than forty percent of figure limit, Don't require additional bias electric field and load resistance, no power consumption, having a high impedance. These characteristics of preparation and use of the focal plane array bring great benefits.(3) light emitting - Schottky potential barrier detector: metal and semiconductor contact, typically include PtSi/Si structure and form was Schott potential barrier, infrared photon through Si layer for PtSi absorption, electronic Fermi level, obtain energy leap over left cavitation potential barrier into the Si substrate, PtSi layer of electronic was collected,complete infrared detection. Make full use of Si integration technology, facilitate production, with lower cost and good uniformity wait for an advantage, but make it mass (1024 x 1024 even greater) focal plane array to make up for the defect of quantum low efficiency. Have strict low temperature requirements. With this kind of detector, both at home and abroad has already produced as qualitative good thermography. Pt Si/Si structure made of FPA is the earliest IRFPA.Timing counting and traffic calculationUsing MCS - 51 internal timer/counter for timing, cooperate software delay realizes the timer. This method hardware cost saving, cut allows the reader in timer/counter use, disruptions and programming get exercise and improve. Computation formula is as follows: TC = M - CType in, M for counter touch value, the value and the counter working way concerned.For a traffic intersection, it can in the shortest possible time to achieve maximum traffic, even reached the best performance, we call in unit of time to achieve the maximum flow multi-energy for cars.Use the equation: (traffic = traffic/time) to represent.译文:基于单片机的交通灯设计我国经济快速发展,汽车数量猛增,大中型城市的城市交通正面临着严峻的考验,交通问题日益严重,其主要表现如下:交通事故频发,对人类生命安全造成极大威胁;交通拥堵严重,导致出行时间增加,能源消耗加大;空气污染和噪声污染程度日益加深等。

交通灯外文翻译

交通灯外文翻译

Traffic lights and PLC With economic development, increased the number of vehicles, road congestion is becoming increasingly serious, intelligent traffic lights on the emerged. At present, the world's Intelligent Transportation System will be: a huge structure, management difficulties, such as themaintenance of large inputs. In order to improve the existing traffic conditions, and to overcome the existing shortcomings of intelligent transportation system I designed analog control traffic lights in urban and rural areas of small-scale smart traffic lights. It has small size, intelligence, maintenance into small, easy to install and so on. And other intelligent transportation system compared to the system to adapt to economic and social development, in line with the current status of scientific and technological development. Intelligent traffic lights are a comprehensive use of computer network communication technology, sensor technology to manage the automatic control system of traffic lights. Urban traffic control system is used for urban traffic data monitoring, traffic signal control and trafficmanagement computer system; it is the modern urban traffic control system command and the most important component. In short, how to use the appropriate control method to maximize the use of costly cities to build high-speed roads, trunk road and the ramp to alleviate urban areas with the neighboring state of traffic congestion has become more and 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。

单片机交通灯中英文对照外文翻译文献

单片机交通灯中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文对照外文翻译原文DESIGN OF TRAFFIC LIGHT BASED ON MCUBecause of the rapid development of our economy resulting in the car number of large and medium-sized cities surged and the urban traffic, is facing serious test, leading to the traffic problem increasingly serious, its basically are behaved as follows: traffic accident frequency, to the human life safety enormous threat, Traffic congestion, resulting in serious travel time increases, energy consumption increase; Air pollution and noise pollution degree of deepening, etc. Daily traffic jams become people commonplace and had to endure. In this context, in combination with the actual situation of urban road traffic, develop truly suitablefor our own characteristics of intelligent signal control system has become the main task.PrefaceIn practical application at home and abroad, according to the actual traffic signal control application inspection, planar independent intersection signal control basic using set cycle, much time set cycle, half induction, whole sensor etc in several ways. The former two control mode is completely based on planar intersection always traffic flow data of statistical investigation, due to traffic flow the existence of variable sex and randomicity, the two methods have traffic efficiency is low, the scheme, the defects of aging and half inductive and all the inductive the two methods are in the former two ways based on increased vehicle detector and according to the information provided to adjust cycle is long and green letter of vehicle, it than random arrived adaptability bigger, can make vehicles in the parking cord before as few parking, achieve traffic flowing effectIn modern industrial production,current,voltage,temperature, pressure, and flow rate, velocity, and switch quantity are common mainly controlled parameter. For example: in metallurgical industry, chemical production, power engineering, the papermaking industry, machinery and food processing and so on many domains, people need to transport the orderly control. By single chip microcomputer to control of traffic, not only has the convenient control, configuration simple and flexible wait for an advantage, but also can greatly improve the technical index by control quantity, thus greatly improve product quality and quantity. Therefore, the monolithic integrated circuit to the traffic light control problem is an industrial production we often encounter problems.In the course of industrial production, there are many industries have lots of traffic equipment, in the current system, most of the traffic control signal is accomplished by relays, but relays response time is long, sensitivity low, long-term after use, fault opportunity increases greatly, and adopts single-chip microcomputer control, the accuracy of far greater than relays, short response time, software reliability, not because working time reduced its performance sake, compared with, this solution has the high feasibility.About AT89C511.function characteristics description:AT89C51 is a low power consumption, high performance CMOS8 bit micro-controller, has the 8K in system programmable Flash memory. Use high-density Atmel company thebeltpassword nonvolatile storage technology and manufacturing, and industrial 80S51 product instructions and pin fully compatible. Chip Flash allow program memory in system programmable, also suitable for conventional programmer. In a single chip, have dexterous 8 bits CPU and in system programmable Flash, make AT89C51 for many embedded control application system provides the high flexible, super efficient solution. AT89C51 has the following standard function: 8k bytes Flash, 256 bytes RAM, 32-bit I/O mouth line, the watchdog timer, two data pointer, three 16 timer/counter, a 6 vector level 2 interrupt structure, full-duplex serial port, piece inside crystals timely clock circuit. In addition, AT89C51 can drop to 0Hz static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, allowing the RAM, timer/counter, serial ports, interruption continue to work. Power lost protection mode, RAM content being saved, has been frozen, microcontroller all work stop, until the next interruption or hardware reset so far. As shown in figure 1 for the AT89C51 pins allotment.Figure 1 the AT89C51 pins allotment2.interrupt introductionAT89C51 has six interrupt sources: two external interruption, (and), three timer interrupt (timer 0, 1, 2) and a serial interrupts. Each interrupt source can be passed buy bits or remove IE the relevant special register interrupt allow control bit respectively make effective or invalid interrupt source. IE also includes an interrupt allow total control bit EA, it can be a ban all interrupts. IE. Six is not available. For AT89C51, IE. 5 bits are also not be used. User software should not give these bits write 1. They AT89 series for new product reserved. Timer 2 can be TF2 and the T2CON registers EXF2 or logical triggered. Program into an interruptservice, the sign bit can be improved by hardware qing 0. In fact, the interrupt service routine must determine whether TF2 or EXF2 activation disruption, the sign bit must also by software qing 0. Timer 0 and 1 mark a timer TF0 and TF1 has been presented in the cycle count overflow S5P2 074 bits. Their value until the next cycle was circuit capture down. However, the timer 2 marks a TF2 in count overflow of the cycle of S2P2 074 bits, in the same cycle was circuit capture down3.external clock driving characteristicsTable 14.leisure and power lost pattern external pins stateTable 2About 8255 chip1.8255 features:(1)A parallel input/output LSI chips, efficacy of I/O devices, but as CPU bus and peripheral interface.(2)It has 24 programmable Settings of I/O mouth, even three groups of 8 bits I/O mouth to mouth, PB mouth and PA PC mouth. They are divided into two groups 12 I/O mouth, A group including port A and C mouth (high four, PC4 ~ PC7), including group B and C port B mouth (low four, PC0 ~ PC3). A group can be set to give basic I/O mouth, flash control (STROBE) I/O flash controlled, two-way I/O3 modes, Group B can only set to basic I/O or flash controlled the I/O, and these two modes of operation mode entirely by controlling registers control word decision.2. 8255 pins efficacy:(1). RESET: RESET input lines, when the input outside at high levels, all internal registers (including control registers) were removed, all I/O ports are denoting input methods.(2). CS: chip choose a standard lamp line 1, when the input pins for low levels, namely/CS = 0, said chip is selected, allow 8255 and CPU for communications, / CS = 1, 8255 cannot with CPU do data transmission.(3). RD: read a standard lamp line 1, when the input pins for low levels, namely/RD = 0 and/CS = 0, allow 8255 through the data bus to the CPU to send data or state information, namely the CPU 8255 read from the information or data.(4). The WR: write a standard lights, when the input pins for low levels, namely/WR = 0 and/CS = 0, allows the CPU will data or control word write 8255.(5). D7: three states D0 ~ two-way data bus, 8255 and CPU data transmission channel, when the CPU execution input/output instruction, through its realization 8 bits of data read/write operation, control characters and status information transmitted through the data bus.(6). PA0 ~ PA7: port A input and output lines, A 8 bits of data output latches/buffers, an 8 bits of data input latches.(7). PB0 ~ PB7: port B input and output lines, a 8 bits of I/O latches, an 8 bits of inputand output buffer.(8). PC0 ~ PC7: port C input and output lines, a 8 bits of data output latches/buffers, an 8 bits of data input buffer. Port C can through the way of working setting into two four ports, every 4 digit port contains A 4 digit latches, respectively with the port A and port B cooperate to use, can be used as control standard lights output or state standard lights input ports.(9). A0, A1: address selection line, used to select the PA 8255 mouth, PB mouth, PC mouth and controlling registers.When A0=0, A1= 0, PA mouth be chosen;When A0=0, A1 = 1, PB mouth be chosen;When A0=0, A1 = 1, PC mouth be chosen;When A0=1, A1= 1, control register is selected.Concerning seven section LED display introductionThrough light emitting diode chip appropriate link (including series and parallel) and appropriate optical structure. May constitute a luminous display light-emitting segments or shine points. By these luminous segments or shine point can be composed digital tube, symbols tube, m word pipe, tube, multilevel matrix display tube etc. Usually the digital tube, symbols tube, m word tube were called stroke display, but the stroke displays and matrix tube collectively referred to as character displays.1. The LED display classification(1) by word high marks: stroke monitors word high least 1mm (monolithic integrated type more digital tube word high in commonly 2 ~ 3mm). Other types of stroke display tiptop1.27 mm (0.5 inch) even up to hundreds of mm.(2) color-coded score red, orange, yellow, green and several kinds.(3) according to the structure points, reflecting cover type, a single point-elastic and monolithic integrated type.(4) from the luminous section electrode connection mode of points of anode and cathode two kinds.2. LED display parametersDue to the LED display is LED based, so its light, and the electrical characteristics and ultimate meaning of the parameters with most of the same light emitting diode. But because the LED monitor containing multiple light emitting diode, it must has the following specificparameters:(1) the luminous intensity ratioDue to the digital tube paragraphs in the same driving voltage, each are not identical, so positive current each different. The luminous intensity All segments of the luminous intensity values the ratio of the maximum and minimum values for the luminous intensity ratio. The ratio between 2.3 in 1.5 ~, the maximum cannot exceed 2.5.(2) pulse positive currentIF each segment of typical strokes displays for positive dc working current IF, then the pulse, positive current can be far outweigh.someotherwordpeopledontthinkoffirst. Pulse 390v smaller, pulse positive current can be bigger.Traffic signal control typeThe purpose of the traffic signal control are three: first,in time and space space intersection traffic in different directions,control traffic operation order; Second, make on planar cross the road network on the people and objects of transport at the highest efficiency, Third, as the road users to provide necessary information, and help them to effectively use the traffic facilities. Road traffic signal control of basic types have many points method.According to the control geometry characteristic is divided into: single intersection control - point control, the traffic trunk lines of coordinated control - wire, traffic network coordination control surface controlling; -- According to the control principle differentiates: timing control, induced control and adaptive control.About watch-dog circuitBy single-chip computers.the micro computer system, because of single chip work often can be affected by external electromagnetic interference, causing program run fly while into dead circulation, the program's normal operation be interrupted by single chip microcomputer control system was unable to work, can cause the whole system of come to a standstill, happen unpredictable consequences, so out of microcontroller running status real-time.according consideration, they generate a specially used for monitoring microcontroller program running state of the chip, commonly known as "watchdog" (watchdog).MAX692 was slightly system monitoring circuit chip, have back-up battery switching, power lost discriminant functions monitoring, the watchdog. The encapsulation and pininstructions as figure2shows.Figure 2 MAX692 encapsulation and pinsWatch-dog circuit application, make SCM can in no condition to achieve continuous work, its working principle is: the watchdog chip and MCU an I/O pins are linked together, the I/O pins through program control it regularly to the watchdog of the pins on into high level (or the low level), this program statement is scattered on SCM other control statements, once among single-chip due to the interference makes application run into a fly after the procedures section into dead circulation state, write the watchdog pins program cannot be executed, this time, the watch-dog circuit will be without microcontroller sent signals, then at it and MCU reset pin connected pin reset signal give out a a, make SCM reposition occurs, namely the program from program memory splittext started, so we realized the MCU automatic reset.Infrared detection circuitThe infrared radiation photon in semiconductor materials stimutes the non-equilibrium carriers (electronic or holes), cause electrical properties change. Because carrier does not escape in vitro, so called within the photoelectric effect. Quantum photoelectric effect high sensitivity, response speed heat detectors much faster, is optional detectors. In order to achieve the best performance, generally need worked in low temperature. Photoelectric detector can be divided into:(1) optical type: also called photoconductive resistance. The incident photon stimulate the valence band uniform semiconductor electronic across forbidden band into the conduction band and left in valence band, cause cavitation increases, for electric conductance eigen light conductivity. From the band gaps of impurity level also can stimulate light into the conduction band or born carriers valence band, and for impurities light conductivity. Thecutoff wavelength by impurity ionization energy (ie) decision. Quantum efficiencies below eigen optical and require lower working temperature.(2) photovoltaic type: mainly p - n knot of light born volts effect. Energy more than the width of infrared photonic band gaps in "area and its nearby of electrons cavitation. Existing "electric field make hole into p area, electronic into n area, two parts appear potentials. Deoxidization device have voltage or current signal. Compared with optical detectors, pv detector detect rate more than forty percent of figure limit, Don't require additional bias electric field and load resistance, no power consumption, having a high impedance. These characteristics of preparation and use of the focal plane array bring great benefits.(3) light emitting - Schottky potential barrier detector: metal and semiconductor contact, typically include PtSi/Si structure and form was Schott potential barrier, infrared photon through Si layer for PtSi absorption, electronic Fermi level, obtain energy leap over left cavitation potential barrier into the Si substrate, PtSi layer of electronic was collected, complete infrared detection. Make full use of Si integration technology, facilitate production, with lower cost and good uniformity wait for an advantage, but make it mass (1024 x 1024 even greater) focal plane array to make up for the defect of quantum low efficiency. Have strict low temperature requirements. With this kind of detector, both at home and abroad has already produced as qualitative good thermography. Pt Si/Si structure made of FPA is the earliest IRFPA.Timing counting and traffic calculationUsing MCS - 51 internal timer/counter for timing, cooperate software delay realizes the timer. This method hardware cost saving, cut allows the reader in timer/counter use, disruptions and programming get exercise and improve. Computation formula is as follows: TC = M - CType in, M for counter touch value, the value and the counter working way concerned.For a traffic intersection, it can in the shortest possible time to achieve maximum traffic, even reached the best performance, we call in unit of time to achieve the maximum flow multi-energy for cars.Use the equation: (traffic = traffic/time) to represent.译文:基于单片机的交通灯设计我国经济快速发展,汽车数量猛增,大中型城市的城市交通正面临着严峻的考验,交通问题日益严重,其主要表现如下:交通事故频发,对人类生命安全造成极大威胁;交通拥堵严重,导致出行时间增加,能源消耗加大;空气污染和噪声污染程度日益加深等。

交通灯外文翻译

交通灯外文翻译

Traffic lights and PLCWith economic development, increased the number of vehicles, road congestion is becoming increasingly serious, intelligent traffic lights on the emerged. At present, the world's Intelligent Transportation System will be: a huge structure, management difficulties, such as the maintenance of large inputs. In order to improve the existing traffic conditions, and to overcome the existing shortcomings of intelligent transportation system I designed analog control traffic lights in urban and rural areas of small-scale smart traffic lights. It has small size, intelligence, maintenance into small, easy to install and so on. And other intelligent transportation system compared to the system to adapt to economic and social development, in line with the current status of scientific and technological development.Intelligent traffic lights are a comprehensive use of computer network communication technology, sensor technology to manage the automatic control system of traffic lights. Urban traffic control system is used for urban traffic data monitoring, traffic signal control and traffic management computer system; it is the modern urban traffic control system command and the most important component. In short, how to use the appropriate control method to maximize the use of costly cities to build high-speed roads, trunk road and the ramp to alleviate urban areas with the neighboring state of traffic congestion has become more andmore traffic management and urban planning departments need to address the the main problem.Nowadays, traffic lights installed in each crossing, has become the most common and dredge the traffic, the most effective means. The developme nt of the society, people's consumption level unceasing enhancement, pri vate vehicles unceasing increase. And more cars roads are narrow road tra ffic is clear. So adopting effective method to control the traffic light is im perative. PLC intelligent control principle is the core of the control syste m, PLC put the things direction or north-south direction according to qua ntity of vehicles, the corresponding scale what divides class given the gre en light direction between north and south direction according to certain r ules too long. It can realize divides class according to a given the green ca rs duration scale of maximum car release, reduce crossroads vehicles, eas e traffic congestion stagnation, realize the optimal control, so as to impro ve the efficiency of the traffic control system.The application of PLC is continuously, and drive to the deepening traditi onal control test new month benefit updates. It is simple in structure, prog ramming and high reliability etc, convenient already widely used in indus trial processes and position in the automatic control. Due to use of PLC h as the characteristics of environmental adaptable, and its internal timer is very rich in resources, but the current widely used "progressive" lights, es pecially for precise control more than thecrossway control can be easily realized. So now increasingly applying P LC traffic light system.Meanwhile, PLC itself also has communication networking function, will the same path as part of a LAN signal unified dispatching management, can shorten the traffic wait times, realize scientific manage ment. In real-time detection and automatic control of PLC application sys tem, PLC is often used as a core components.In the 21st century, PLC will have greater development. Technically, the c omputer technology can morely new achievements used in programmable controller design and manufacturing, there will be faster, s torage and larger capacity, intelligent stronger varieties appear; Look fro m product size, can further to mini and super-large direction; Look from p roduct compatibility, the variety of our products will be more rich, specifi cation more complete, perfect man-machine interface and complete com munication equipment can better adapt to all kinds of industrial control oc casion demands; Look from the market, all countries to their production of multiple products with international competition intensifies and break, c an appear a few brand monopoly international market situation, can appea r international general programming languages; Judging from the develop ment of the network, programmable controller and other industrial control computernetworking constitute a large control system is programmable controller t echnology development direction. The current computer distributed contr ol system DCS has already a lot of programmable controller applications. Along with the development of computer network, the programmable con troller as automation control network andinternational general network will be an important part of the industry an d industry, the numerous fields outside play an increasing role.In China the increasing amount of motor vehicles, many big cities like Be ijing, Shanghai, nanjing and other ground appeared trafficoverload running condition, traffic accidents problem also more and m ore serious. And because the various special vehicles (such as an ambulance, 119 120 car, police and various special vehicle 110 in emergency situa tions, by red under limited to traffic bring a lot of inconvenience, even ca use traffic accident. And now, most traffic lights at the same moment will appear two or more than two direction at the same time for the green situa tion, and increase the incidence of the traffic accident. Therefore, design a kind of designed for special vehicles through and not cause any traffic ac cident, normal traffic control any time only one direction of modern intell igent traffic light green traffic control system is urgently needed.交通灯与PLC随着经济的发展,车辆的数目不断增加,道路堵车现象日益严重,智能交通灯就应运而生了。

毕业设计论文外文文献翻译智能交通信号灯控制中英文对照

毕业设计论文外文文献翻译智能交通信号灯控制中英文对照

英语原文Intelligent Traffic Light Controlby Marco Wiering The topic I picked for our community project was traffic lights. In a community, people need stop signs and traffic lights to slow down drivers from going too fast. If there were no traffic lights or stop signs, people’s lives would be in danger from drivers going too fast.The urban traffic trends towards the saturation, the rate of increase of the road of big city far lags behind rate of increase of the car.The urban passenger traffic has already become the main part of city traffic day by day and it has used about 80% of the area of road of center district. With the increase of population and industry activity, people's traffic is more and more frequent, which is unavoidable. What means of transportation people adopt produces pressure completely different to city traffic. According to calculating, if it is 1 to adopt the area of road that the public transport needs, bike needs 5-7, car needs 15-25, even to walk is 3 times more than to take public transits. So only by building road can't solve the city traffic problem finally yet. Every large city of the world increases the traffic policy to the first place of the question.For example,according to calculating, when the automobile owning amount of Shanghai reaches 800,000 (outside cars count separately ), if it distributes still as now for example: center district accounts for great proportion, even when several loop-lines and arterial highways have been built up , the traffic cannot be improved more than before and the situation might be even worse. So the traffic policy Shanghai must adopt , or called traffic strategy is that have priority to develop public passenger traffic of city, narrow the scope of using of the bicycle progressively , control the scale of growth of the car traffic in the center district, limit the development of the motorcycle strictly.There are more municipals project under construction in big city. the influence on the traffic is greater.Municipal infrastructure construction is originally a good thing of alleviating the traffic, but in the course of constructing, it unavoidably influence the local traffic. Some road sections are blocked, some change into an one-way lane, thus the vehicle can only take a devious route . The construction makes the road very narrow, forming the bottleneck, which seriously influence the car flow.When having stop signs and traffic lights, people have a tendency to drive slower andlook out for people walking in the middle of streets. To put a traffic light or a stop sign in a community, it takes a lot of work and planning from the community and the city to put one in. It is not cheap to do it either. The community first needs to take a petition around to everyone in the community and have them sign so they can take it to the board when the next city council meeting is. A couple residents will present it to the board, and they will decide weather or not to put it in or not. If not put in a lot of residents might be mad and bad things could happened to that part of the city.When the planning of putting traffic lights and stop signs, you should look at the subdivision plan and figure out where all the buildings and schools are for the protection of students walking and riding home from school. In our plan that we have made, we will need traffic lights next to the school, so people will look out for the students going home. We will need a stop sign next to the park incase kids run out in the street. This will help the protection of the kids having fun. Will need a traffic light separating the mall and the store. This will be the busiest part of the town with people going to the mall and the store. And finally there will need to be a stop sign at the end of the streets so people don’t drive too fast and get in a big accident. If this is down everyone will be safe driving, walking, or riding their bikes.In putting in a traffic light, it takes a lot of planning and money to complete it. A traffic light cost around $40,000 to $125,000 and sometimes more depending on the location. If a business goes in and a traffic light needs to go in, the business or businesses will have to pay some money to pay for it to make sure everyone is safe going from and to that business. Also if there is too many accidents in one particular place in a city, a traffic light will go in to safe people from getting a severe accident and ending their life and maybe someone else’s.The reason I picked this part of our community development report was that traffic is a very important part of a city. If not for traffic lights and stop signs, people’s lives would be in danger every time they walked out their doors. People will be driving extremely fast and people will be hit just trying to have fun with their friends. So having traffic lights and stop signs this will prevent all this from happening.Traffic in a city is very much affected by traffic light controllers. When waiting for a traffic light, the driver looses time and the car uses fuel. Hence, reducing waiting times before traffic lights can save our European society billions of Euros annually. To make traffic light controllers more intelligent, we exploit the emergence of novel technologies such as communication networks and sensor networks, as well as the use of more sophisticated algorithms for setting traffic lights. Intelligent traffic light control does not only mean thattraffic lights are set in order to minimize waiting times of road users, but also that road users receive information about how to drive through a city in order to minimize their waiting times. This means that we are coping with a complex multi-agent system, where communication and coordination play essential roles. Our research has led to a novel system in which traffic light controllers and the behaviour of car drivers are optimized using machine-learning methods.Our idea of setting a traffic light is as follows. Suppose there are a number of cars with their destination address standing before a crossing. All cars communicate to the traffic light their specific place in the queue and their destination address. Now the traffic light has to decide which option (ie, which lanes are to be put on green) is optimal to minimize the long-term average waiting time until all cars have arrived at their destination address. The learning traffic light controllers solve this problem by estimating how long it would take for a car to arrive at its destination address (for which the car may need to pass many different traffic lights) when currently the light would be put on green, and how long it would take if the light would be put on red. The difference between the waiting time for red and the waiting time for green is the gain for the car. Now the traffic light controllers set the lights in such a way to maximize the average gain of all cars standing before the crossing. To estimate the waiting times, we use 'reinforcement learning' which keeps track of the waiting times of individual cars and uses a smart way to compute the long term average waiting times using dynamic programming algorithms. One nice feature is that the system is very fair; it never lets one car wait for a very long time, since then its gain of setting its own light to green becomes very large, and the optimal decision of the traffic light will set his light to green. Furthermore, since we estimate waiting times before traffic lights until the destination of the road user has been reached, the road user can use this information to choose to which next traffic light to go, thereby improving its driving behaviour through a city. Note that we solve the traffic light control problem by using a distributed multi-agent system, where cooperation and coordination are done by communication, learning, and voting mechanisms. To allow for green waves during extremely busy situations, we combine our algorithm with a special bucket algorithm which propagates gains from one traffic light to the next one, inducing stronger voting on the next traffic controller option.We have implemented the 'Green Light District', a traffic simulator in Java in which infrastructures can be edited easily by using the mouse, and different levels of road usage can be simulated. A large number of fixed and learning traffic light controllers have already been tested in the simulator and the resulting average waiting times of cars have been plotted and compared. The results indicate that the learning controllers can reduce average waiting timeswith at least 10% in semi-busy traffic situations, and even much more when high congestion of the traffic occurs.We are currently studying the behaviour of the learning traffic light controllers on many different infrastructures in our simulator. We are also planning to cooperate with other institutes and companies in the Netherlands to apply our system to real world traffic situations. For this, modern technologies such as communicating networks can be brought to use on a very large scale, making the necessary communication between road users and traffic lights possible.中文翻译:智能交通信号灯控制马克·威宁我所选择的社区项目主题是交通灯。

交通信号灯中英文对照外文翻译文献

交通信号灯中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)PLC-based design of traffic lightsAbstract: One kind of traffic light control system using programmable logic controller (PLC), via software control traffic lights run automatically. In the system, the original line is the program instead of the relay, programmable logic controller (PLC) system hardware and software resources to be fair use. Normal operation and emergency transport for a detailed description and from the East and West emergencies can be mutually linked. Traffic signal systems and two seven-segment digital display in the countdown order; also discussed in detail the wiring of the hardware and PLC ladder. Traffic lights at the crossroads of the remote monitoring system design configuration software MCGS, real-time monitoring of traffic lights,1greatly improving the reliability of data transmission. At the same time, we can configure the traffic lights to change the status of photographs.Keywords: switching power,supply protection, circuit system design1 IntroductionWith the social development and progress, traffic flow becomes increasingly important. On the one hand, too many crossroads, more and more vehicles, which are causing serious traffic congestion. On the other hand, in the limited time it is necessary to maintain the vehicle and pedestrian fast and safe. Therefore, one kind of traffic light control system design, can be used to display time countdown, with computer controlled real-time data. In addition, the configuration technology for real-time images that reflect the traffic lights, understand the historical crossroads of work to get traffic lights visualization. The system consists of host computer and a low computer. MCGS configuration is installed in the host computer is lower by the PLC control system.Normal traffic signal timing diagram shown in Figure 1. But there are some urgent matters, for example. There are a number of ambulances to transport patients to the hospital or to deal with a number of fire engines and fire. Fire engines and ambulances rushed to take precedence over other traffic scene. According to urban traffic control system, under normal circumstances, two control methods and urgency traffic control factors into account. This process can show 14 segment encoder. U.S. traffic lights instant record of the monitoring process.Emergency control signals to control traffic emergency switch. If there is no emergency lights all work, but when an emergency open. In this case, the car is urgent priority pass. Once the emergency vehicle passes, emergency switch off immediately. The green light in the same direction of the vehicle quickly flashes three times, followed by the normal operation. If you were from the north-south and east-west two emergency vehicles, traffic control systems can respond quickly came early, and then another.22 Traffic Control System DesignA Hardware designCP1H series PLC as controller, display the procedure should stop when the time series of abnormal system operation, the time will not be displayed. When the emergency procedures are completed time series, countdown display program should be reset. At 220 V AC system is used to control traffic lights, 24 V DC control segment encoder, Figure 2 shows the scheme Eastern time display. CP1H series programmable logic controller (PLC) is a simple controller, which consists of 24 inputs and sixteen outputs. Because the output to twenty In this system, an I / O module must be extended. Circuit is shown in Figure 2.3B Control Program DesignSix timers and two special normal open pulse is used in this system, the green light flashes for all north-south and east-timer and a special pulse; eight kinds of interlocking internal relay is used to implement the urgency and transmit pulse two directions to PLC, shown in the figure. Two SDEC instructions are used to display the countdown display the corresponding light. As an important part of the countdown display program, east and west of the green light reflected in the view 4 in these programs downloaded to the programmable logic controller (PLC), all the traffic lights running accuracy, urgency, and things can be interlocked from north to south strictly, all the lights can be set back to the urgency of passing state. Therefore, these control program is correct, simple.C Monitoring System4Computer system has two main functions: an output signal acquisition and display real-time status of the programmable logic controller (PLC) to control traffic lights, traffic lights. Another notification robot status and history of the state real-time curve by examining the history and alarm window.This monitoring system design and configuration software MCGS configuration is easy. The serial communication is implemented as follows.Data inspection methods: double endedSerial Communications Number: COM0 endedThe minimum sampling period: 200 msProgrammable Logic Controller (PLC) The parameters are defined as follows:5The minimum sampling period of the basic properties: 200 msThree read / write channel: X0, X1, X2Six read-only access (read U.S. traffic lights): Q0-Q5All channels must be connected to a variable defined in a real-time database access visits and other parameters to their default values. After a successful relationship, PLC and computer control system is able to change the color of the analog signal lights in the picture on the PC being collected data through the serial port.. In contrast, by changing the parameters of the host, the corresponding value is written to the PLC internal relay control, intersection traffic lights can be implemented. Experimental results show that the system is usually good enough and animation. Online monitoring system of traffic lights in Figure 5:63 ConclusionExperimental results show that the system is usually configured with enough good photos. This system simplifies the programmable logic controller (PLC) and the communication between the host computer using industrial configuration software development time is greatly reduced. In particular, more suitable for complex control systems. We can control the traffic lights by the PLC and MCGS configuration, replace the original relay control, improve the system's lifetime. At the same time, this method can be applied to control the motor and fluid levels. Remote control and configuration combined with the simulation, can be applied to similar control zone.4 References[1] Whitworth, Duller, Jones D I. Aerial video inspection of overhead power lines [J].PowerEngineering Journal,2001,15:25-32.[2] Jan Axelson, Lakeview Research-Serial port complete [D]. USA:1999:91-135.7基于PLC的交通灯控制系统设计摘要:一种交通灯控制系统采用可编程序控制器(PLC), 通过软件控制交通灯自动运行。

英语教案trafficlight

英语教案trafficlight

英语教案traffic light一、教学目标:1. 让学生掌握基本的交通信号灯颜色和对应的英文表达。

2. 培养学生遵守交通规则的意识。

3. 提高学生的英语听说能力和团队协作能力。

二、教学内容:1. 交通信号灯的颜色:red, yellow, green。

2. 交通信号灯的英文表达:traffic light。

3. 交通规则的英文表达:stop at the red light, go at the green light, wt at the yellow light.三、教学重点与难点:1. 重点:交通信号灯的颜色和英文表达。

2. 难点:交通规则的英文表达和应用。

四、教学方法:1. 游戏法:通过互动游戏让学生在实践中学习和掌握交通信号灯的颜色和英文表达。

2. 情景教学法:创设真实的交通场景,让学生在情景中学习交通规则的英文表达。

五、教学步骤:1. 引入:向学生展示交通信号灯的图片,引导学生说出交通信号灯的颜色。

2. 新课内容:讲解交通信号灯的英文表达和交通规则的英文表达。

3. 互动游戏:组织学生进行“交通信号灯颜色配对”游戏,增强学生的实践能力。

4. 情景模拟:分组进行交通场景的角色扮演,让学生在实际情境中运用所学知识。

5. 总结与反馈:对本节课所学内容进行总结,并对学生的表现进行评价和反馈。

6. 作业布置:让学生课后绘制一幅交通信号灯的图片,并用英文标注颜色和表达。

六、教学评估:1. 观察学生在互动游戏中的参与程度和表现,了解他们对交通信号灯颜色和英文表达的掌握情况。

2. 在情景模拟环节,记录学生在实际情境中运用交通规则英文表达的能力。

3. 收集学生的作业,评估他们对交通信号灯颜色和英文表达的掌握程度。

七、教学拓展:1. 邀请交通警察前来讲解交通规则,让学生更加深入地了解交通信号灯的重要性和遵守交通规则的必要性。

2. 组织学生参观交通监控中心,了解交通信号灯的工作原理和交通管理的运行机制。

交通灯外文文献

交通灯外文文献

FUZZY LOGIC TRAFFIC SIGNALCONTROLZEESHAN RAZA ABDYPREPARED FORDR NEDAL T. RATROUTINTRODUCTIONSignal control is a necessary measure to maintain the quality and safety of traffic circulation. Further development of present signal control has great potential to reduce travel times, vehicle and accident costs, and vehicle emissions. The development of detection and computer technology has changed traffic signal control from fixed-time open-loop regulation to adaptive feedback control. Present adaptive control methods, like the British MOV A, Swedish SOS (isolated signals) and British SCOOT (area-wide control), use mathematical optimization and simulation techniques to adjust the signal timing to the observed fluctuations of traffic flow in real time. The optimization is done by changing the green time and cycle lengths of the signals. In area-wide control the offsets between intersections are also changed. Several methods have been developed for determining the optimal cycle length and the minimum delay at an intersection but, based on uncertainty and rigid nature of traffic signal control, the global optimum is not possible to find out.As a result of growing public awareness of the environmental impact of road traffic many authorities are now pursuing policies to:− manage demand and congestion;− influence mode and route choice;− improve priority for buses, trams and other public service vehicles;−provide better and safer facilities for pedestrians, cyclists and other vulnerable road users;− reduce vehicle emissions, noise and visual intrusion; and− improve safety for all road user groups.In adaptive traffic signal control the increase in flexibility increases the number ofoverlapping green phases in the cycle, thus making the mathematical optimization very complicated and difficult. For that reason, the adaptive signal control in most cases is not based on precise optimization but on the green extension principle. In practice, uniformity is the principle followed in signal control for traffic safety reasons. This sets limitations to the cycle time and phase arrangements. Hence, traffic signal control in practice are based on tailor-made solutions and adjustments made by the traffic planners. The modern programmable signal controllers with a great number of adjustable parameters are well suited to this process. For good results, an experienced planner and fine-tuning in the field is needed. Fuzzy control has proven to be successful in problems where exact mathematical modelling is hard or impossible but an experienced human can control the process operator. Thus, traffic signal control in particular is a suitable task for fuzzy control. Indeed, one of the oldest examples of the potentials of fuzzy control is a simulation of traffic signal control in an inter-section of two one-way streets. Even in this very simple case the fuzzy control was at least as good as the traditional adaptive control. In general, fuzzy control is found to be superior in complex problems with multiobjective decisions. In traffic signal control several traffic flows compete from the same time and space, and different priorities are often set to different traffic flows or vehicle groups. In addition, the optimization includes several simultaneous criteria, like the average and maximum vehicle and pedestrian delays, maximum queue lengths and percentage of stopped vehicles. So, it is very likely that fuzzy control is very competitive in complicated real intersections where the use of traditional optimization methods is problematic. Benefits and disadvantages of fuzzy systemsFuzzy logic has been introduced and successfully applied to a wide range of automatic control tasks. The main benefit of fuzzy logic is the opportunity to model the ambiguity and the uncertainty of decision-making. Moreover, fuzzy logic has the ability to comprehend linguistic instructions and to generate control strategies based on priori communication. The point in utilizing fuzzy logic in control theory is to model control based on human expert knowledge, rather than to model the process itself. Indeed, fuzzy control has proven to be successful in problems where exact mathematical modelling is hard or impossible but an experienced human operator can control process. In general, fuzzy control is found to be superior in complex problems with multi-objective decisions.At present, there is a multitude of inference systems based on fuzzy technique. Most of them, however, suffer ill-defined foundations; even if they are mostly performing better that classical mathematical method, they still contain black boxes, e.g. de fuzzification, which are very difficult to justify mathematically or logically. For example, fuzzy IF - THEN rules, whichare in the core of fuzzy inference systems, are often reported to be generalizations of classical Modus Ponens rule of inference, but literally this not the case; the relation between these rules and any known many-valued logic is complicated and artificial. Moreover, the performance of an expert system should be equivalent to that of human expert: it should give the same results that the expert gives, but warn when the control situation is so vague that an expert is not sure about the right action. The existing fuzzy expert systems very seldom fulfil this latter condition.Many researches observe, however, that fuzzy inference is based on similarity. Kosko, for example, writes 'Fuzzy membership...represents similarities of objects to imprecisely defined properties'. Taking this remark seriously, we study systematically many-valued equivalence, i.e. fuzzy similarity. It turns out that, starting from the Lukasiewicz well-defined many-valued logic, we are able to construct a method performing fuzzy reasoning such that the inference relies only on experts knowledge and on well-defined logical concepts. Therefore we do not need any artificial defuzzification method (like Center of Gravity) to determine the final output of the inference. Our basic observation is that any fuzzy set generates a fuzzy similarity, and that these similarities can be combined to a fuzzy relation which turns out to a fuzzy similarity, too. We call this induced fuzzy relation total fuzzy similarity. Fuzzy IF - THEN inference systems are, in fact, problems of choice: compare each IF-part of the rule base with an actual input value, find the most similar case and fire the corresponding THEN-part; if it is not unique, use a criteria given by an expert to proceed. Based on the Lukasiewicz welldefined many valued logic, we show how this method can be carried out formally.Hypothesis and Principles of Fuzzy Traffic Signal Control Traffic signal control is used to maximize the efficiency of the existing traffic systems [6]. However, the efficiency of traffic system can even be fuzzy. By providing temporal separation of rights of way to approaching flows, traffic signals exert a profound influence on the efficiency of traffic flow. They can operate to the advantage or disadvantage of the vehicles or pedestrians; depend on how the rights of ways are allocated. Consequently, the proper application, design, installation, operation, and maintenance of traffic signals is critical to the orderly safe and efficient movement of traffic at intersections.In traffic signal control, we can find some kind of uncertainties in many levels. The inputs of traffic signal control are inaccurate, and that means that we cannot handle the traffic of approaches exactly. The control possibilities are complicated, and handling these possibilities are an extremely complex task. Maximizing safety, minimizing environmental aspects and minimizing delays are some of the objectives of control, but it is difficult to handle them together in the traditional traffic signal control. The causeconsequence- relationship is also not possible to explain in traffic signal control. These are typical features of fuzzy control.Fuzzy logic based controllers are designed to capture the key factors for controlling a process without requiring many detailed mathematical formulas. Due to this fact, they have many advantages in real time applications. The controllers have a simple computational structure, since they do not require many numerical calculations. The IFTHEN logic of their inference rules does not require much computational time. Also, the controllers can operate on a large range of inputs, since different sets of control rules can be applied to them. If the system related knowledge is represented by simple fuzzy IFTHEN- rules, a fuzzy-based controller can control the system with efficiency and ease. The main goal of traffic signal control is to ensure safety at signalized intersections by keeping conflict traffic flows apart. The optimal performance of the signalized intersections is the combination of time value, environmental effects and traffic safety. Our goal is the optimal system, but we need to decide what attributes and weights will be used to judge optimality.The entire knowledge of the system designer about the process, traffic signal control in this case, to be controlled is stored as rules in the knowledge base. Thus the rules have a basic influence on the closed-loop behaviour of the system and should therefore be acquired thoroughly. The development of rules is time consuming, and designers often have to translate process knowledge into appropriate rules. Sugeno and Nishida mentioned four ways to derive fuzzy control rules:1. operators experience2. control engineer's knowledge3. fuzzy modelling of the operator's control actions4. fuzzy modelling of the processZimmermann added three sources more5. crisp modeling of the process6. heuristic design rules7. on-line adaptation of the rules.Usually a combination of some of these methods is necessary to obtain good results. As in conventional control, increased experience in the design of fuzzy controllers leads to decreasing development times.FUSICO PROJECTThe main goals of FUSICO-research project are theoretical analysis of fuzzy traffic signal control, generalized fuzzy rules for traffic signal control using linguistic variables, validation of fuzzy control principles and calibration of membership functions, and development of a fuzzy adaptive signal controller. The vehicle-actuated control strategies, like SOS, MOV A and LHOVRA, are the control algorithms of the first generation. The fuzzy control algorithm can beone of the algorithms of the second generation, the generation of artificial intelligence (AI). The fuzzy control is capable of handling multi-objective, multi-dimensional and complicated traffic situations, like traffic signalling. The typical advantages of fuzzy control are simple process, effective control and better quality.FUSICO-project modelled the experience of policeman. The rule base development was made during the fall 1996. Mr. Kari J. Sane, experienced traffic signal planner, was working at the Helsinki University of Technology at this time. Everyday discussions and working groups helped us to model his experience to our rules.In particular pathological traffic jams or situations where there are very few vehicles in circulation; there first-in-first-out is the only reasonable control strategy. The Algorithm is looking for the most similar IF-part to the actual input value, and the corresponding THEN-part is then fired. Three realistic traffic signal control systems were constructed by means of the Algorithm and a simulation model tested their performance. Similar simulations were made to a non-fuzzy and classical Mamdani style fuzzy inference systems, too. The results with respect to average vehicle and pedestrian delay or average vehicle delay were in most cases better on fuzzy similarity based control than on the other control systems. Comparisons between fuzzy similarity based control and Mamdani style fuzzy control also strength an assumption that, in approximate reasoning, a fundamental concept is many-valued similarity between objects rather than a generalization of classical Modus Ponens rule of inference.FUSICO PROJECT RESULTSThe results of this project have indicated that fuzzy signal control is the potential control method for isolated intersections. The comparison results of Pappis-Mamdani control, fuzzy isolated pedestrian crossing and fuzzy two-phase control are good. The results of isolated pedestrian crossing indicate that the fuzzy control provides the effective compromise between the two opposing objectives, minimum pedestrian delay and minimum vehicle delay. The results of two-phase control and Pappis-Mamdani control indicate that the application area of fuzzy control is very wide. The maximum delay improvement was more than 20 %, which means that the efficiency of fuzzy control can be better than the efficiency of traditional vehicle-actuated control.According to these results, we can say that the fuzzy signal control can be multiobjective and more efficient than conventional adaptive signal control nowadays. The biggest benefits can, probably, be achieved in more complicated intersections and environments. The FUSICO-project continues. The aim is to move step by step to more complicated traffic signals and to continue the theoretical work of fuzzy control. The first example will be the public transport priorities.REFERENCES1. M.G.H. Bell, Future Directions in Traffic Signal Control, Transportation Research 26 (992) 303-313.2. R. Cignoli, M.L. D'Ottaviano, D. Mundici, Algebraic Foundations of many valued Reasoning, to appear.3. P. H'ajek, Metamathematics of fuzzy logic, Kluwer Acad. Publishers, Dordrecht, 1998.4. U. H"ohle, On the Fundamentals of Fuzzy Set Theory. J. of Math. Anal. and Appl. 201 (1996) 786-826.5. J. Niittym"aki, Isolated Traffic Signals - Vehicle Dynamics and Fuzzy Control, Thesis, Helsinki University of Technology, 1997.6. J. Niittym"aki, S. Kikuchi, Application of Fuzzy Logic of a Pedestrian Crossing Signal, Transportation Research Record No 1651. Intelligent Transportation Systems, Automated Highway Systems, Travel Information, and Artificial Intelligence. Washington D.C. 1998.7. B. Kosko, The probability monopoly, IEEE Transactions of fuzzy systems, 2 (1994) 32-33.8. C. Pappis, E. Mamdani, A fuzzy logic controller to a traffic junction,IEEE transaction on systems, man and cybernetics V ol SMC-7 No 10, 1977, 707-717.9. J. Pavelka, On fuzzy logic, I,II,III Zeitsch. f. Math. Logik. 25 (1979), 45-52, 119-134, 447-464.10. D. Teodorovic, Fuzzy logic systems for transportation engineering: the state of the art. Transportation Research Part A 33 (1999) 337-364.11. M. Sugeno, M. Nishida, Fuzzy control to model car. Fuzzy Sets and Systems 16 (1985) 103-113.12. E. Turunen, Mathematics behind Fuzzy Logic, Advances in Soft Computing, Physica- Verlag, Heidelberg, 1999.13. L. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353. 16. H.-J. Zimmermann, Fuzzy Set Theory, Kluwer, 1996.14. Optimising fuzzy logic traffic signal control systems, Stuart Clement , .au/tsc/index.html, Transport Systems Centre, University of South Australia.15. Fuzzy Traffic Signal Control - Principles and Applications Jarkko Niittymäki, Dissertation for the degree of Doctor of Science in Technology, Department of Civil and Environmental Engineering ,Helsinki University of Technology, Espoo, Finland.16. Traffic Signal Control on Total Fuzzy Similarity based Reasoning, Jarkko Niittym"aki Helsinki University of Technology, P.O. Box 2100, FIN-02015 HUT, Finland17. Chiu, S and Chand, S (1992) Adaptive traffic signal control using fuzzy logic, pp 98-107 of Proceedings of the Intelligent Vehicles Symposium Detroit, Michigan, USA.Clement, SJ Bell, MGH Cassir, C and Grosso, S (1997a) Experiences with the Path Flow Estimator on a Leicester City street network, pp 455-68 of Proceedings of the 21st Australasian Transport Research Forum Adelaide: University of South Australia.。

交通灯控制系统外文翻译

交通灯控制系统外文翻译

本科生毕业设计(论文)外文文献翻译毕业设计题目:交通灯智能控制系统学院:信息科学与工程学院专业班级:测控技术与仪器0703班学生姓名:王欣指导教师:桑海峰2011年3月19日外文原文Intelligent Traffic Light Control Marco Wiering, Jelle van Veenen, Jilles Vreeken, and Arne Koopman IntelligentSystems GroupInstitute of Information and Computing Sciences Utrecht UniversityPadualaan 14, 3508TB Utrecht, The Netherlandsemail: marco@cs.uu.nlJuly 9, 2004AbstractVehicular travel is increasing throughout the world, particularly in large urban areas.Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm based on reinforcement learning. We have implemented a traffic light simulator, Green Light District, that allows us to experiment with different infrastructures and to compare different traffic light controllers. Experimental results indicate that our adaptive traffic light controllers outperform other fixed controllers on all studied infrastructures.Keywords: Intelligent Traffic Light Control, Reinforcement Learning, Multi-Agent Systems (MAS), Smart Infrastructures, Transportation Research1 IntroductionTransportation research has the goal to optimize transportation flow of people and goods.As the number of road users constantly increases, and resources provided by current infrastructures are limited, intelligent control of traffic will become a very important issue in the future. However, some limitations to the usage of intelligent traffic control exist. Avoiding traffic jams for example is thought to be beneficial to both environment and economy, but improved traffic-flow may also lead to an increase in demand [Levinson, 2003].There are several models for traffic simulation. In our research we focus on microscopic models that model the behavior of individual vehicles, and thereby can simulate dynamics of groups of vehicles. Research has shown that such models yield realistic behavior [Nagel and Schreckenberg, 1992, Wahle and Schreckenberg, 2001].Cars in urban traffic can experience long travel times due to inefficient traffic light control. Optimal control of traffic lights using sophisticated sensors and intelligent optimization algorithms might therefore be very beneficial. Optimization of traffic light switching increases road capacity and traffic flow, and can prevent traffic congestions. Traffic light control is a complex optimization problem and several intelligent algorithms, such as fuzzy logic, evolutionary algorithms, and reinforcement learning (RL) have already been used in attempts to solve it. In this paper we describe a model-based, multi-agent reinforcement learning algorithm for controlling traffic lights.In our approach, reinforcement learning [Sutton and Barto, 1998, Kaelbling et al., 1996] with road-user-based value functions [Wiering, 2000] is used to determine optimal decisions for each traffic light. The decision is based on a cumulative vote of all road users standing for a traffic junction, where each car votes using its estimated advantage (or gain) of setting its light to green. The gain-value is the difference between the total time it expects to wait during the rest of its trip if the light for which it is currently standing is red, and if it is green. The waiting time until cars arrive at their destination is estimated by monitoring cars flowing through the infrastructure and using reinforcement learning (RL) algorithms.We compare the performance of our model-based RL method to that of other controllers using the Green Light District simulator (GLD). GLD is a traffic simulator that allows us to design arbitrary infrastructures and traffic patterns, monitor traffic flow statistics such as average waiting times, and test different traffic light controllers. The experimental results show that in crowded traffic, the RL controllers outperform all other tested non-adaptive controllers. We also test the use of the learned average waiting times for choosing routes of cars through the city (co-learning), and show that by using co-learning road users can avoid bottlenecks.This paper is organized as follows. Section 2 describes how traffic can be modelled, predicted, and controlled. In section 3 reinforcement learning is explained and some of its applications are shown. Section 4 surveys several previous approaches to traffic light control, and introduces our new algorithm. Section 5 describes thesimulator we used for our experiments, and in section 6 our experiments and their results are given. We conclude in section 7.2 Modelling and Controlling TrafficIn this section, we focus on the use of information technology in transportation.A lot of ground can be gained in this area, and Intelligent Transportation Systems (ITS) gained interest of several governments and commercial companies [Ten-T expert group on ITS, 2002, White Paper, 2001, EPA98, 1998].ITS research includes in-car safety systems, simulating effects of infrastructural changes, route planning, optimization of transport, and smart infrastructures. Its main goals are: improving safety, minimizing travel time, and increasing the capacity of infrastructures. Such improvements are beneficial to health, economy, and the environment, and this shows in the allocated budget for ITS.In this paper we are mainly interested in the optimization of traffic flow, thus effectively minimizing average traveling (or waiting) times for cars. A common tool for analyzing traffic is the traffic simulator. In this section we will first describe two techniques commonly used to model traffic. We will then describe how models can be used to obtain real-time traffic information or predict traffic conditions. Afterwards we describe how information can be communicated as a means of controlling traffic, and what the effect of this communication on traffic conditions will be. Finally, we describe research in which all cars are controlled using computers.2.1 Modelling Traffic.Traffic dynamics bare resemblance with, for example, the dynamics of fluids and those of sand in a pipe. Different approaches to modelling traffic flow can be used to explain phenomena specific to traffic, like the spontaneous formation of traffic jams. There are two common approaches for modelling traffic; macroscopic and microscopic models.2.1.1 Macroscopic models.Macroscopic traffic models are based on gas-kinetic models and use equations relating traffic density to velocity [Lighthill and Whitham, 1955, Helbing et al., 2002].These equations can be extended with terms for build-up and relaxation of pressure to account for phenomena like stop-and-go traffic and spontaneous congestions [Helbing et al., 2002, Jin and Zhang, 2003, Broucke and Varaiya, 1996]. Although macroscopic models can be tuned to simulate certain driver behaviors, they do not offer a direct, flexible, way of modelling and optimizing them, making them less suited for our research.2.1.2 Microscopic models.In contrast to macroscopic models, microscopic traffic models offer a way of simulating various driver behaviors. A microscopic model consists of an infrastructure that is occupied by a set of vehicles. Each vehicle interacts with its environment according to its own rules. Depending on these rules, different kinds of behavior emerge when groups of vehicles interact.Cellular Automata. One specific way of designing and simulating (simple) driving rules of cars on an infrastructure, is by using cellular automata (CA). CA use discrete partially connected cells that can be in a specific state. For example, a road-cell can contain a car or is empty. Local transition rules determine the dynamics of the system and even simple rules can lead to chaotic dynamics. Nagel and Schreckenberg (1992) describe a CA model for traffic simulation. At each discrete time-step, vehicles increase their speed by a certain amount until they reach their maximum velocity. In case of a slower moving vehicle ahead, the speed will be decreased to avoid collision. Some randomness is introduced by adding for each vehicle a small chance of slowing down. Experiments showed realistic behavior of this CA model on a single road with emerging behaviors like the formation of start-stop waves when traffic density increases.Cognitive Multi-Agent Systems. A more advanced approach to traffic simulation and optimization is the Cognitive Multi-Agent System approach (CMAS), in which agents interact and communicate with each other and the infrastructure. A cognitive agent is an entity that autonomously tries to reach some goal state using minimal effort. It receives information from the environment using its sensors, believes certain things about its environment, and uses these beliefs and inputs toselect an action. Because each agent is a single entity, it can optimize (e.g., by using learning capabilities) its way of selecting actions. Furthermore, using heterogeneous multi-agent systems, different agents can have different sensors, goals, behaviors, and learning capabilities, thus allowing us to experiment with a very wide range of (microscopic) traffic models.Dia (2002) used a CMAS based on a study of real drivers to model the drivers’ response to travel information. In a survey taken at a congested corridor, factors influencing the choice of route and departure time were studied. The results were used to model a driver population, where drivers respond to presented travel information differently. Using this population, the effect of different information systems on the area where the survey was taken could be simulated. The research seems promising, though no results were presented.A traffic prediction model that has been applied to a real-life situation, is described in [Wahle and Schreckenberg, 2001]. The model is a multi-agent system (MAS) where driving agents occupy a simulated infrastructure similar to a real one. Each agent has two layers of control; one for the (simple) driving decision, and one for tactical decisions like route choice. The real world situation was modelled by using detection devices already installed. From these devices, information about the number of cars entering and leaving a stretch of road are obtained. Using this information, the number of vehicles that take a certain turn at each junction can be inferred. By instantiating this information in a faster than real-time simulator, predictions on actual traffic can be made. A system installed in Duisburg uses information from the existing traffic control center and produces real-time information on the Internet. Another system was installed on the freeway system of North Rhine-Westphalia, using data from about 2.500 inductive loops to predict traffic on 6000 km of roads.中文译文智能交通灯控制马克威宁,简丽范威,吉尔威瑞肯,安瑞库普曼智能系统小组乌得勒支大学信息与计算科学研究所荷兰乌得勒支Padualaan14号邮箱:marco@cs.uu.nl2004年7月9日摘要世界各地的车辆运行逐渐增多,尤其是在一个大的本地区域。

100个交通规则专用英语单词!

100个交通规则专用英语单词!

100个交通规则专用英语单词!转载自:每日学英语 daily-english如有版权问题,请联系我们!特此感谢!•o 1. 交通规则 traffic regulationo 2. 路标 guide posto 3. 里程碑 milestoneo 4. 停车标志 mark car stopo 5. 红绿灯 traffic lighto 6. 自动红绿灯 automatic traffic signal light o7. 红灯 red lighto8. 绿灯 green lighto9. 黄灯 amber lighto10. 交通岗traffic posto11. 岗亭police boxo12. 交通警traffic policeo13. 打手势pantomimeo14. 单行线single lineo15. 双白线double white lineso16. 双程线dual carriage-wayo17. 斑马线zebra stripeso18. 划路线机traffic line markero19. 交通干线artery traffico20. 车行道carriage-wayo21. 辅助车道lane auxiliaryo22. 双车道two-way traffico23. 自行车通行cyclists onlyo24. 单行道one way onlyo25. 窄路narrow roado26. 潮湿路滑slippery when weto27. 陡坡steep hillo28. 不平整路rough roado29. 弯路curve road ; bend road o30. 连续弯路winding roado31. 之字路double bend roado32. 之字公路switch back roado33. 下坡危险dangerous down grade o34. 道路交叉点road junctiono35. 十字路cross roado36. 左转 turn lefto37. 右转 turn righto38. 靠左 keep lefto39. 靠右 keep righto40. 慢驶 slowo41. 速度 speedo42. 超速 excessive speedo43. 速度限制 speed limito44. 恢复速度 resume speedo45. 禁止通行 no through traffico46. 此路不通 blockedo47. 不准驶入 no entryo48. 不准超越 keep in line ; no overhead o49. 不准掉头 no turnso50. 让车道 passing bayooo51. 回路 loopo52. 安全岛 safety islando53. 停车处 parking placeo54. 停私人车 private car parko55. 只停公用车 public car onlyo56. 不准停车 restricted stopo57. 不准滞留 restricted waitingo58. 临街停车 parking on-streeto59. 街外停车 parking off-streeto60. 街外卸车 loading off-streeto61. 当心行人 caution pedestrian crossing o62. 当心牲畜 caution animalso63. 前面狭桥 narrow bridge aheado64. 拱桥 hump bridgeo65. 火车栅 level crossingo66. 修路 road workso67. 医院 hospitalo68. 儿童 childreno69. 学校 schoolo70. 寂静地带 silent zoneo71. 非寂静地带 silent zone endso72. 交通管理 traffic controlo73. 人山人海 crowded conditionso74. 拥挤的人 jam-packed with peopleo75. 交通拥挤 traffic jamo76. 水泄不通 overwhelmo77. 顺挤 extrusion directo78. 冲挤 extrusion impacto79. 推挤 shovedo80. 挨身轻推 nudgingo81. 让路 give wayo82. 粗心行人 careless pedestriano83. 犯交通罪 committing traffic offenceso84. 执照被记违章 endorsed on driving license o85. 危险驾驶 dangerous drivingo86. 粗心驾车 careless drivingo87. 无教员而驾驶 driving without an instructor o88. 无证驾驶 driving without licenseo89. 未经车主同意 without the owner's consent o90. 无第三方保险 without third-party insurance o91. 未挂学字牌 driving without a 'L' plateo92. 安全第一 safety firsto93. 轻微碰撞 slight impacto94. 迎面相撞 head-on collisiono95. 相撞 collidedo96. 连环撞 a chain collisiono97. 撞车 crasho98. 辗过 run overo99. 肇事逃跑司机 hit-run drivero100. 冲上人行道drive onto the pavement。

初中英语单词分类-交通-道路平安 (2).doc

初中英语单词分类-交通-道路平安 (2).doc

初中英语单词分类-交通-道路安全signals 信号(总称)traffic signs, roadsigns 道路标志信号hand signals 手示信号no right turn 禁止右转弯no U-turns 禁止掉头traffic lights 红绿灯,交通指挥灯red light 红色圆形标志牌flashing amber 闪光指示器stop 停车right of way 可通行to give way 让路,让行horn 喇叭lights 灯光headlights 大灯headlights on full beam 远光灯dipped headlights 会车灯,近光灯to dip one's headlights 关闭远光灯开启近光灯sidelights 位置灯,边灯direction indicator, indicator 方向指示器safety belt, seat belt 保险带初中英语单词分类-交通-道路安全signals 信号(总称)traffic signs, roadsigns 道路标志信号hand signals 手示信号no right turn 禁止右转弯no U-turns 禁止掉头traffic lights 红绿灯,交通指挥灯red light 红色圆形标志牌flashing amber 闪光指示器stop 停车right of way 可通行to give way 让路,让行horn 喇叭lights 灯光headlights 大灯headlights on full beam 远光灯dipped headlights 会车灯,近光灯to dip one's headlights 关闭远光灯开启近光灯sidelights 位置灯,边灯direction indicator, indicator 方向指示器safety belt, seat belt 保险带黑卫医函〔2017〕21 号关于印发2017年度县级医院骨干医师培训和儿科医师转岗培训项目管理方案的通知各市(行署)卫生计生委,绥芬河市、抚远市卫生计生局,各有关医疗机构:现将《黑龙江省2017年度卫生计生人才能力建设项目(县级医院骨干医师培训)管理方案》和《黑龙江省2017年度卫生计生人才能力建设项目(儿科医师转岗培训)管理方案》印发给你们,请按照项目方案要求,做好项目管理工作。

红绿灯的英文形式及标准读音

红绿灯的英文形式及标准读音

红绿灯的英文形式及标准读音红绿灯的英文形式及标准读音大家对于红绿灯都不陌生,但是对于它正确的英文形式以及标准的英语读音就有点陌生了。

一起来看看店铺为大家整理收集了红绿灯的英文形式及标准读音吧,欢迎大家阅读!红绿灯的英文形式:traffic light读音如音标所示:英 ['trfk lat] 美 [trfk lat]1. Please let me get off at the next traffic light.一请让我在下一个红绿灯处下车。

2. Location: Corner Office LUI Jinzhou district Shilibao three streets surrounding municipal perfect, enjoys convenient traffic, the light rail planning will also be passing by here, Shenyang-Dalian, and major highways, Harbin-Dalian railway, the development of a regional follow-up and transport provide the greatest protection, with the city government to the regional economy in succession planning, Lingang Industrial Area and planned to enter the new airport, there is a poised to unlimited business opportunities.地理位置:绿景园地处金州区三十里堡街道,周边市政配套完善,交通方便,规划中的轻轨也将路经于此,沈大高速,黑大公路,哈大铁路,为地区后续发展以及交通提供了最大的保障,随着市政府对地区经济的陆续规划,临港工业区和规划中的新机场的进入,这里无疑是一处商机无限的风水宝地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当今时代是一个自动化时代,交通灯控制等很多行业的设备都与计算机密切相关。

因此,一个好的交通灯控制系统,将给道路拥挤,违章控制等方面给予技术革新。

随着大规模集成电路及计算机技术的迅速发展,以及人工智能在控制技术方面的广泛运用,智能设备有了很大的发展,是现代科技发展的主流方向。

本文介绍了一个智能交通的系统的设计。

该智能交通灯控制系统可以实现的功能有:对某市区的四个主要交通路口进行控制:个路口有固定的工作周期,并且在道路拥挤时中控制中心能改变其周期:对路口违章的机动车能够即时拍照,并提取车牌号。

在世界范围内,一个以微电子技术,计算机和通信技术为先导的,一信息技术和信息产业为中心的信息革命方兴未艾。

而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。

本文主要从单片机的应用上来实现十字路口交通灯智能化的管理,用以控制过往车辆的正常运作。

研究交通的目的是为了优化运输,人流以及货流。

由于道路使用者的不断增加,现有资源和基础设施有限,智能交通控制将成为一个非常重要的课题。

但是,智能交通控制的应用还存在局限性。

例如避免交通拥堵被认为是对环境和经济都有利的,但改善交通流也可能导致需求增加。

交通仿真有几个不同的模型。

在研究中,我们着重于微观模型,该模型能模仿单独车辆的行为,从而模仿动态的车辆组。

由于低效率的交通控制,汽车在城市交通中都经历过长时间的行进。

采用先进的传感器和智能优化算法来优化交通灯控制系统,将会是非常有益的。

优化交通灯开关,增加道路容量和流量,可以防止交通堵塞,交通信号灯控制是一个复杂的优化问题和几种智能算法的融合,如模糊逻辑,进化算法,和聚类算法已经在使用,试图解决这一问题,本文提出一种基于多代理聚类算法控制交通信号灯。

在我们的方法中,聚类算法与道路使用者的价值函数是用来确定每个交通灯的最优决策的,这项决定是基于所有道路使用者站在交通路口累积投票,通过估计每辆车的好处(或收益)来确定绿灯时间增益值与总时间是有差异的,它希望在它往返的时候等待,如果灯是红色,或者灯是绿色。

等待,直到车辆到达目的地,通过有聚类算法的基础设施,最后经过监测车的监测。

我们对自己的聚类算法模型和其它使用绿灯模拟器的系统做了比较。

绿灯模拟器是一个交通模拟器,监控交通流量统计,如平均等待时间,并测试不同的交通灯控制器。

结果表明,在拥挤的交通条件下,聚类控制器性能优于其它所有测试的非自适应控制器,我们也测试理论上的平均等待时间,用以选择车辆通过市区的道路,并表明,道路使用者采用合作学习的方法可避免交通瓶颈。

本文安排如下:第2部分叙述如何建立交通模型,预测交通情况和控制交通。

第3部分是就相关问题得出结论。

第4部分说明了现在正在进一步研究的事实,并介绍了我们的新思想。

The times is a automation times nowadays,traffic light waits for much the industey equipment to go hand in hand with the computer under the control of.Therefore,a good traffic light controls system,will give road aspect such as being crowded,controlling against rules to give a technical improvement.With the fact that the large-scale integrated circuit and the computer art promptness develop,as well as artificial intelligence broad in the field of control technique applies,intelligence equipment has had very big development,the main current being that modern science and technology develops direction.The main body of a book is designed having introduccd a intelligence traffic light systematically.The function being intelligence traffic light navar’s turn to be able to come true has:The crossing carries out supervisory control on four main traffic of some downtown area;Every crossing has the fixed duty period,charges centrefor being able to change it’s period and in depending on a road when being crowded;The motro vehicle breaking rules and regulations to the crossing is able to take a photo immediately,abstracts and the vehicle shop sign.Within world range ,one uses the microelectronics technology,the computer and the technology communicating by letter are a guide’s,centering on IT and IT industry information revolution is in the ascendant.But,how,computer art applies more effective union and there is an effect’s brought it’s effect into play with reality is the most popular topic of scientific community,is also that computer applications is hit by the unparalleled active field nowadays.The main body of a book is applied up mainly from slicing machine’s only realizing intellectualized administration of crossroads traffic light,use operation in controlling the vehicular traffic regularity.Transportation research has the goal to optimize transportation flow of people and goods.As the number of road users constantly increases, and resources provided by current infras-tructures are limited, intelligent control of traffic will become a very important issue in thefuture. However, some limitations to the usage of intelligent tra?c control exist. Avoidingtraffic jams for example is thought to be beneficial to both environment and economy, butimproved traffic-flow may also lead to an increase in demand [Levinson, 2003].There are several models for traffic simulation. In our research we focus on microscopicmodels that model the behavior of individual vehicles, and thereby can simulate dynam-ics of groups of vehicles. Research has shown that such models yield realistic behavior[Nagel and Schreckenberg, 1992, Wahle and Schreckenberg, 2001].Cars in urban traffic can experience long travel times due to inefficient traffic light con-trol. Optimal control of traffic lights using sophisticated sensors and intelligent optimizationalgorithms might therefore bevery beneficial. Optimization of traffic light switching increasesroad capacity and traffic flow, and can prevent tra?c congestions. Traffic light control is acomplex optimization problem and several intelligent algorithms, such as fuzzy logic, evo-lutionary algorithms, andreinforcement learning (RL) have already been used in attemptsto solve it. In this paper we describe a model-based, multi-agent reinforcement learningalgorithm for controlling traffic lights.In our approach, reinforcement learning [Sutton and Barto, 1998, Kaelbling et al., 1996]with road-user-based value functions [Wiering, 2000] is used to determine optimal decisionsfor each traffic light. The decision is based on a cumulative vote of all road users standingfor a traffic junction, where each car votes using its estimated advantage (or gain) of settingits light to green. The gain-value is the difference between the total time it expects to waitduring the rest of its trip if the light for which it is currently standing is red, and if it is green.The waiting time until cars arrive at their destination is estimated by monitoring cars flowingthrough the infrastructure and using reinforcement learning (RL) algorithms.We compare the performance of our model-based RL method to that of other controllersusing the Green Light District simulator (GLD). GLD is a traffic simulator that allows usto design arbitrary infrastructures and traffic patterns, monitor traffic flow statistics such asaverage waiting times, and test different traffic light controllers. The experimental resultsshow that in crowded traffic, the RL controllers outperform all other tested non-adaptivecontrollers. We also test the use of the learned average waiting times for choosing routes ofcars through the city (co-learning), and show that by using co-learning road users can avoidbottlenecks.。

相关文档
最新文档