物质结构基础
基础化学1第一章 物质结构基础
元素的氧化数(或称氧化值)是指某元素一个原子的形 式电荷数。这种电荷数是假设化学键中的电子指定给电负性 较大原子而所求得的。
氧化数反映元素的氧化状态,可为正、负、零或分数。 周期表中元素的最高氧化值呈周期性变化 ⅠA~ⅦA族(F除外)、ⅢB~ⅦB族元素:
最高氧化数=价电子总数=族序数
说明:其他主、副族元素的最高氧化数变化不规律
26Fe2+的核外电子分布是
[Ar]3d6
而不是
[Ar]3d44s2。
请写出25Mn2+核外电子分布的原 子实表示式。
三、元素性质的周期性变化
1.电负性(X)
原子在分子中吸引成键电子的能力,称为元素电负性。 元素电负性越大,原子在分子中吸引成键电子能力越强。
鲍林电负性值是指定最活泼非金属元素氟的电负性为4.0, 然后,借助热化学数据计算求得其他元素电负性(见表2-3)。
能级组
7p
7
6d 5f
(7s5f6d7p)
7s
6p 5d 4f
6s
6 (6s4f5d6p)
5p
能 量
4d 5s
4p 3d
4s
5 (5s4d5p)
4 (4s3d4p)
周期 . 七
六 五 四
3p 3s
2p 2s
3
(3s3p)
三
2
(2s2p)
二
1
1s
(1s)
一
n= 1 n= 2 n= 3 n= 4 n= 5 n= 6 n= 7
相同电子层,l值越大,电子能量越高。 不同亚层,其原子轨道(或电子云)的形状不同,如图2-3、 2-4所示,s亚层为球形;p亚层为无柄哑铃形;d亚层为四瓣花 形。 3.磁量子数(m) 磁量子数就是描述原子轨道(或电子云)在空间伸展方向 的量子数。 m取值是从+l到-l包括0在内的任何整数值。即
第一节生命物质基础和结构基础
第一节生命的物质基础和结构基础【知识结构】一、生物的基本特征严整的结构(物质基础和结构基础):结构(如禽流感病毒、HIV病毒、SARS病毒、噬菌体、烟草花叶病毒、乙型肝炎病毒等)、结构(生物如细菌、蓝藻等,生物如绝大多数植物、所有动物、酵母菌霉菌蘑菇等真菌)生理功能:新陈代谢、生长与调节、应激性与适应性、生殖和发育、遗传变异与变异,以为基础表现的生命现象二、生命的物质基础1.组成细胞的化学元素:含量最多的4种基本元素是(5(6)核三、生命的结构基础-----细胞四、实验【实验一】生物组织中可溶性还原糖、脂肪、蛋白质的鉴定1.原理:沸水加热可溶性还原糖 + 斐林试剂 _________________________。
脂肪 + 苏丹Ⅲ _________________________。
蛋白质 + 双缩脲试剂 _________________________。
2.过程:(1)鉴定可溶性还原糖选材制备组织样液取样 _______ _______ 观察(2)鉴定脂肪取材染色 _______ 制片 _______(3)鉴定蛋白质选材和制备样液加入 _______ 注入 _______ 观察3.注意事项(1)注意观察鉴定试剂加入前后的_______ 变化(2)斐林试剂需要现配现用,甲液和乙液要混合后使用(3)双缩脲试剂要先加A液,后加B液【实验二】高倍显微镜的使用和观察叶绿体1.原理:显微镜二次成像的结果是倒立的虚像,所以观察到的方向与实际方向_______,先低倍后高倍,换成高倍镜后,视野范围_______,亮度_______。
通常只需要调节_______。
2.过程:取材制片 _____ 下找到叶片细胞 _______观察叶绿体及细胞质的流动3.注意事项(1)材料的选择是成功的关键(2)细胞质的流动受_______和_______的影响【实验三】观察植物细胞的有丝分裂1.原理:细胞核内的染色体(染色质)能被碱性染料(如龙胆紫)染色,易观察2.过程:(1)洋葱根尖的培养(2)装片的制作取材:取根尖解离:放入解离液中解离3~5分钟,达到_______的目的。
第一章物质结构基础
第一章物质结构基础【知识导航】“上帝粒子”:希格斯玻色子(英语:Higgs boson)是粒子物理学标准模型中所预言的最后一种基本粒子(模型预言了62种基本粒子,已发现61种,包括质子、中子、电子、夸克等),以物理学者彼得·希格斯命名,是一种具有质量的玻色子,没有自旋,不带电荷,非常不稳定,在生成后会立刻衰变。
2012年7月4日,CERN(欧洲核子研究组织)宣布LHC(大型强子对撞机)的紧凑渺子线圈探测到两种新粒子,这两个粒子极像希格斯玻色子,但还有待物理学者进一步分析确定。
——维基中文百科【重难点】1.原子的电子层结构原子核是由质子和中子组成的,原子核与核外电子又一同构成了原子。
由于单质和化合物的化学性质主要取决于核外电子的运动状态,因此,在化学中研究原子结构主要在于了解核外电子运动的规律。
(如图1-1)图1-1 原子的结构图1-2 核外电子运动2.核外电子运动的特性核外电子运动无法用牛顿力学来描述,具有测不准性。
(如图1-2)(1)核外电子运动规律的描述电子云:电子在原子核外空间出现的概率密度分布。
(如图1-3)是p电子云的形状。
离核越近,电子云密度越大;离核越远,电子云密度越小。
(如图1-4)图1-3 p亚层结构图1-4 核外电子概率分布(2)核外电子运动状态的描述——四个量子数(n、l、m、m s)多电子原子中,决定能量的量子数是n、l。
(3)核外电子的排布遵循能量最低原理、泡利不相容原理及洪特规则。
根据n+0.7l的整数部分相同,近似分成若干近似的能级组。
3.原子结构与周期律元素周期律:元素的性质(原子半径、电离能、电负性、金属性等)随着核电荷数的递增而呈现周期性的变化。
一般而言,同一周期元素,从左到右原子半径逐渐减小,电离能和电负性逐渐增大,金属性减弱,非金属性增强。
同一族元素,从上到下原子半径逐渐增大,电离能和电负性逐渐减小,金属性增强,非金属性减弱。
周期表中共有7个周期,16个族(7个主族、7个副族、1个0族、1个第Ⅷ族)。
第1章物质结构基础课件
1.1.4 概率密度和电子云
电子运动有规律,但无法确定其运动轨迹,而是 按一定的几率在空间出现。
概率-电子在某一区域出现的次数。 核外空间某些区域电子出现的机会多,概率大 核外空间某些区域电子出现的机会少,概率小
概率密度-电子在原子核外某处单位体积内出现的概
率。
电子云:|ψ |2的空间图象。通常用小黑点的疏密来表示。
直角坐标( x, y, z)与球坐标 (r,θ,φ) 的转换
r : 径向坐标, 决定了球面的大小
θ: 角坐标, 由 z轴沿球面延伸至 r 的弧线 所表示的角度.
φ: 角坐标, 由 r 沿球面平行xy面延伸至xz 面的弧线所表示的角度.
Ψ x, y, zΨ r,, RrY ,
↓
↓
径向波函数 角度波函数
具有波粒二象性的电子,已不再遵守经典力学规律,它 们的运动没有确定的轨道,只有一定的空间几率分布,即电 子的波动性与其微粒行为的统计性规律相联系。
1926年,奥地利物理学家薛定谔(E.schroding)提出了微 观粒子运动规律的波动方程:
2 2 2 82m x2 y2 z2 h2 (E V) 0
电子填入能级的顺序
多电子体系决定原子轨道能量的因素不仅与主
量子数 n 有关,还与角量子数 l 有关。
(1)当 l 相同时,轨道能级随 n 增加而升高。如: E1s < E2s < E3s < E4s, E2p < E3p < E4p
(2)当 n 相同时,轨道能级随 l 增加而升高。如: Ens < Enp< End < Enf。
(3)当 n 和 l 都不相同时,会出现能级交错现象。如: E4s < E3d。
第四章 物质结构基础
原子轨道角度分布图
n, l, m(
r,θ,φ)=R n, l (r)﹒Yl, m(θ,φ)
原子轨道角度分布图:由Y(θ ,φ )对θ ,φ 作图所 得,表示电子可能出现的区域。
3. 概率密度和电子云
概率:电子在核外空间某处出现机会的多少称为概率。 概率密度: 电子在核外空间某处单位体积中出现的概率 称为概率密度。 电子云: 用小黑点的疏密表示原子核外电子出现的概率
密度的大小,这种图像称为电子云。
所以,电子云是概率密度大小的形象化描述。黑点密集 的地方,表示电子出现的概率密度大。
4. 量子数
核外电子的运动状态用波函数或原子轨
道来描述,波函数或原子轨道是由一些参数
来确定的,这些参数都是量子化的(取值不
连续),叫做量子数。
(1)主量子数(n) 【意义】描述电子出现概率最大的区域离核的距离 ,是决定电子能量高低的主要因素。 n越大,表示距 离越远,能量越高。 【取值范围】n只能取1,2,3,4…等正整数,常用 符号K、L、M、N…来表示。 (2)角量子数(L) 【意义】描述原子轨道或电子云的空间形状,在多 电子原子中与n共同决定电子的能量高低。 【取值范围】 L 只能取小于 n 的正整数。即对于给定 的n值,L可取0,1,2,3,…n-1,用符号 s,p,d,f…表示。
磁量子数 m 决定原子轨道在 空间的取向。同 一亚层(l 相同) 的几条原子轨道 在空间有不同的 取向,共有2l +1 种取向,每种取 向相当于一个原 子轨道。
m = 0, ± 1, ± 2, ..., ±l 数目 = 2l + 1
自旋量子数 m s
意义
电子层,决定核 外电子的能量和 离核的平均距离 。n 越大,电子 离核越远,电子 的能量越高。
物质结构基础试题及答案
物质结构基础试题及答案一、选择题1. 物质是由什么构成的?A. 分子B. 原子C. 电子D. 质子和中子答案:B2. 原子核由什么组成?A. 电子B. 质子和中子C. 原子D. 分子答案:B3. 元素的化学性质主要由什么决定?A. 原子核B. 电子C. 质子D. 中子答案:B4. 哪种粒子带有正电荷?A. 电子B. 质子C. 中子D. 分子答案:B5. 哪种粒子带有负电荷?A. 电子B. 质子C. 中子D. 分子答案:A二、填空题1. 原子由____和____组成,其中____带有正电荷,____带有负电荷。
答案:原子核,电子,质子,电子2. 原子核由____和____组成,它们都是不带电的粒子。
答案:质子,中子3. 元素周期表中的元素按照____和____的递增顺序排列。
答案:原子序数,电子层数三、简答题1. 描述原子的结构。
答案:原子由位于中心的原子核和围绕原子核运动的电子组成。
原子核由质子和中子组成,质子带有正电荷,中子不带电。
电子带有负电荷,位于原子核外的电子云中。
2. 什么是化学键?答案:化学键是原子之间通过共享、转移或吸引电子而形成的连接。
这种连接使得原子能够结合形成分子或化合物。
四、计算题1. 如果一个碳原子有6个电子,那么它有多少个质子?答案:6个2. 一个氧原子的原子序数是8,它的原子核中有多少个质子和中子?答案:氧原子的原子核中有8个质子和通常8个中子(氧的常见同位素是氧-16)。
第4专题 物质结构基础
第4专题物质结构基础一、原子结构1、原子是由居于中心的和构成的,原子核又由和构成,原子结构中,决定元素种类的是,决定原子质量的是,决定元素化学性质的是。
在原子中,原子序数===之和称为。
完成下表:2、人们把具有一定核一定的一种原子称为一种核素,化学上把、多电子原子中,由于电子的不同,电子运动的主要区域离核有远有近。
通常能量低的电子在离核的区域运动,而能量高的在离核的区域运动。
人们把核外电子运动的不同区域看成不同的电子层,各电子层由内向外的序数n依次为1、2、3、4、5、6、7……分别称为、、、、、、……电子层。
(1)核外电子排布规律①电子一般总是尽先排满的电子层;②各电子层最多可容纳的电子数为,即K层最多个,L层最多个,M层最多个;③最外层电子数不超过个(K层为最外层时不超过个),次外层不超过个。
(2)原子结构示意图(完成下表)。
二、元素周期律和元素周期表1、元素的性质随原子序数的递增呈现变化的规律称为元素周期律。
①除H、He元素外,随原子序数的递增,元素原子最外层电子重复出现从递增到,呈现变化。
②除H、He元素外,随原子序数的递增,元素原子半径重复出现由到,呈现变化。
除稀有气体外,同周期从左往右原子半径逐渐,同主族从上往下原子半径逐渐。
③随着原子序数的递增,元素最高化合价重复从到,一个周期的中部开始出现负价,负价从依次递增到,呈现变化。
元素的最高正价等于,最高正价与最低负价的绝对值之和等于。
④随着原子序数的递增,元素的金属性重复出现由到,非金属性由到,呈现变化。
同周期从左往右金属逐渐,非金属性逐渐;同主族从上往下金属性逐渐,非金属性逐渐。
元素的金属性越强,它的单质越和水或酸反应置换出氢气,该元素的性越。
元素的非金属性越强,它的单质越和氢气化合,得到的气态越,该元素的性越。
(1)元素周期表的横行称为,元素周期表共有个周期,其中有个短周期(分别为周期),个长周期(分别为周期)及个不完全周期(即第周期)。
第五章物质结构基础
5.1原子结构的近代概念
5.1.1氢原子光谱和玻尔理论 5.1.2微观粒子的波粒二象性 5.1.3波函数和原子轨道 5.1.4波函数和电子云的空间图像 5.1.5四个量子数
5.1.1 氢原子光谱和玻尔理论 经典物理学概念面临的窘境
Rutherford “太阳-行星模型 ”的要点 :1.所有原子都有一个核即原子核(nucleus);
象的图形称为电子云图。电子云不是一个 科学术语, 而只是一种形象化比喻.
不同运动状态的电子,电子云的形状是不相 同的,s 态的电子呈球形对称分布,在原子核 附近电子出现的概率最大。
p态电子云与角度有关,其电子云空间分布 图具有一定的方向性,呈“哑铃”形分布, 其几率密度最大的地方不是在原子核附近, 而是分别在三个坐标轴的方向上。
由于微观粒子具有粒子性和波动性,遵循 不确定原理和统计性,因此不能根据经典力 学的方法,用动量和坐标来描述核外电子的 运动状态,而只能用量子力学规律来描述。 微观粒子都具有波动性,可以用描述经典波 的方法来描述电子等微观粒子的运动状态。
任何微观粒子的运动状态都可以用一个波 函数来描述,通常波函数用(x,y,z)表示。
状态变化规律的基本方程之一,是二阶偏微分 方程。
对于一个质量为m的微粒来说,当它处于势 能为V的力场中运动时,其每一个定态可以用
满足这个方程的合理解的波函数来描写,与 每一个相应的常数E,就是微粒处在该定态
时的能量。
波函数是薛定谔方程的一个解。薛定谔方程
有无数个解,只有合理的解才能用作描述电子 运动状态的波函数。
(2)曲线是由若干个峰所组成的。它们符合 的规律是有n-l个峰。
(3)当n 相同,l 不相同时,虽然它们所具 有的峰数不一样,但是它们概率最大的主 峰却具有相似r值。
第二节 物质结构理论基础
第2节物质结构理论基础知识回顾世界是由物质构成的,构成物质的基本粒子有原子、离子、分子等,物质发生变化,都与其组成、结构、性质有关,而物质的性质则由其组成和结构决定。
所以我们认识宏观世界的性质,必须对微观的物质结构知识有一定的认识。
1.原子结构(1)原子结构原子是化学变化中的最小粒子,是由居于原子中心的带正电荷的原子核和核外带负电荷的电子表构成的,原子核是由质子和中子构成的。
由于核内质子数和核外电子数相等,所以原子不显电性,即核内质子数=核电荷数=核外电子数。
由于电子的质量仅为质子量的1/1836,所以可以认为质量数=质子数+中子数。
(2)原子结构示意图用原子结构示意图可简明、方便地表示原子结构。
小圈和圈内的数字表示原子核和核内质子数,弧线表示电子层,弧线上面的数字表示该层的电子数。
根据粒子结构示意图,可判断元素种类、粒子种类、元素的性质以及结构的稳定性。
①由质子数的电子数的差值判断粒子种类(原子、阳离子、阴离子);②由核内质子数决定元素种类,,核内质子数不同则表示不同元素;③由原子最外层电子数决定元素的性质,最外层电子数相同,性质相似;④由最外层电子数决定粒子结构的稳定性。
一般最外层电子数为8的结构称为“8电子稳定结构”。
2.元素周期表根据原子核外电子排布规律,把电子层数目相同的各种元素,按原子序数递增的顺序从左到右排成横行,再把不同横行中最外层的电子数相同的元素,按电子层数递增的顺序由上而下排成纵行,这样所得的表,即为元素周期表。
它反映了元素之间相互联系的规律,是学习化学的重要工具。
元素周期表共有7个周期,16个族(8、9、10三个纵行共同组成1个族)。
例1 已知每个电子的质量约为每个质子(或中子)质量的1/1836。
下表是教材上的内容。
通过此表,可总结出“在原子里质子数等电子数。
”还能总结出:(1);(2);(3);(4)。
例2 下图为核电荷数从1到18的元素的原子结构示意图:通过分析下图,你可得出的结论有:(1);(2);(3);(4)。
大学化学 第九章 物质结构基础
物质波的波函数如何求得?
思考:电子运动能否用经典的牛顿力学来描述?为什么?
量子力学区别于牛顿力学:
1. 微观粒子的能量是量子化的,不连续的;
2. 只能描述电子在某位置上出现的概率为多大;
量子力学原理
概率
波函数Ψ平方
波函数(Ψ)可以通过薛定谔方程来求解:
2ψ x 2
Hβ
486.1
Hα
656.3
/nm
7.31 6.91
6.07
4.57
(1014) /s1
c 光c 速 2.99 18 8m 0s 1
玻尔理论
1) 核外电子只能在有确定半径和能量的轨道上 运动,且不辐射能量。
2) 通常,电子处在离核最近的轨道上,能量最 低—基态;原子得到能量后,电子被激发到高 能轨道上,原子处于激发态。
2ψ
y 2
2ψ
z 2
8π2 m
h2
(E
V
)ψ
0
为电子的波函数,又称原子轨道,是空间坐标x、y、z 的函数。
E 为核外电子总能量,V 为核外电子的势能,m 为电子的质量。
电子运动描述
电子云
波函数的平方[ψ]2可反映核外电子在空间某处单位体 积内出现的几率大小,即几率密度。以小黑点的疏密形象 化表示电子几率分布的图形称为电子云(图a)。
3. 磁量子数 m
m = 0, ±1, ±2, …, ±l, 共可取2l + 1个值 确定原子轨道的空间取向 除s轨道外,都是各向异性的
p轨道, m=-1, 0, +1有 三个空间取向
d轨道, m=-2, -1, 0, +1, +2 有五个空间取向
专题一生命活动的物质基础和结构基础
专题一生命活动的物质基础和结构基础绪论(选学)生物科学:研究生命现象和生命活动规律的科学,即研究生物的形态、结构、生理、分类、遗传和变异、进化、生态的的科学。
研究对象:地球上形形色色的生物。
一、生物的基本特征第一,生物体具有共同的物质基础和结构基础。
1、物质基础:蛋白质、核酸是生物体的基本组成物质。
蛋白质是生命活动的主要承担者,生命体现者。
核酸是遗传信息的携带者,绝大多数生物体的遗传信息都存在于脱氧核糖核酸(DNA)上。
2、结构基础:任何生物体都有严整的结构。
除病毒外,生物体都是由细胞构成的,细胞是生物体结构和功能的基本单位。
病毒是由蛋白质外壳和核酸芯子构成,可以在宿主细胞内增殖。
第二,生物体都有新陈代谢作用。
新陈代谢:是生物体内全部有序的化学变化的总称。
同化作用:生物不断地从外界摄取物质和能量,经过一系列的过程转变成自身的组成成分,并且储存能量。
异化作用:生物不断地分解自身的一部分物质,释放能量,并把产生的代谢终产物排出体外。
新陈代谢是生物进行一切生命活动的基础。
第三,生物体都有应激性。
应激性:在新陈代谢的基础上,生物对外界刺激发生反应的过程。
是一种动态反应,在比较短的时间内完成。
反射:是指多细胞高等动物通过神经系统对各种刺激发生的反应。
是应激性的一种表现形式,隶属于应激性。
适应性:是指生物体与环境表现相适合的现象。
通过长期的自然选择,需很长时间完成。
应激性结果使生物适应环境,是适应性的一种表现形式。
有些适应性可通过遗传传给子代,并非是生物体接受某种刺激后就能产生的,这与应激性不同。
eg,北极熊的白色,绿草中的蚱蜢呈绿色。
遗传性:是指亲代性状通过遗传物质传给后代的能力,也是指生物体要求的一定的生长发育条件,并对生活条件有一定反应的特性。
生物体表现出来的应激性、反射和适应性最终是由遗传性决定的。
第四,生物体都有生长、发育和生殖的现象。
1、生长:a、代谢方面:青年:同化>异化→生长。
成年:同化=异化,若同化>异化→发福。
高三物质结构基础知识点
高三物质结构基础知识点物质结构是物理学和化学的一个重要基础知识点。
了解物质结构可以帮助我们更好地理解物质的性质和行为。
在高中物理和化学课程中,我们会学习一些关于物质结构的基础知识。
本文将以“step by step thinking”(循序渐进的思考)的方式来介绍一些高三物质结构的基础知识点。
第一步:原子和元素物质的基本单位是原子。
原子由质子、中子和电子组成。
质子带正电荷,中子不带电,电子带负电荷。
原子的核心由质子和中子组成,电子绕核心运动。
元素是由相同类型的原子组成的物质,例如氧气是由两个氧原子组成的,记作O2。
元素可以通过化学方法氧化、还原、或者合成。
第二步:分子和化合物分子是由两个或多个原子组成的物质,例如水分子(H2O)由两个氢原子和一个氧原子组成。
化合物是由不同类型的原子组成的物质,例如水是由氢和氧组成的化合物。
化学式用来表示分子和化合物。
化学式中包含元素的符号和表示原子数量的下标,例如水的化学式是H2O,表示一个氧原子和两个氢原子。
第三步:晶体和非晶体晶体是由具有规则排列方式的原子、离子或分子组成的固体。
晶体具有规则的几何形状和平面,例如钻石和盐。
非晶体是由无规则排列的原子、离子或分子组成的固体。
非晶体没有明确的几何形状和平面,例如玻璃和橡胶。
第四步:金属结构金属是一种特殊的物质,具有一些独特的结构特点。
金属的原子排列成由正离子核心和自由移动的电子组成的晶格结构。
这种结构使金属具有良好的导电性和热传导性。
金属的结构还使其具有一些特殊的性质,例如延展性和韧性。
金属可以被拉伸成细丝,也可以被锤打成薄片,这些性质使金属成为制造工业产品的重要材料。
第五步:离子结构离子是带电的原子或分子。
正离子带正电荷,负离子带负电荷。
离子的结合形成离子结构。
离子结构的一个例子是盐,由钠离子(Na+)和氯离子(Cl-)组成。
钠和氯原子通过电子转移形成离子,然后由离子的吸引力形成稳定的结构。
第六步:共价结构共价结构是由共享电子形成的化学键形成的结构。
化学高一物质结构基础知识点
化学高一物质结构基础知识点一、原子结构在化学中,原子是物质的基本单位。
原子由原子核和围绕核旋转的电子构成。
原子核由质子和中子组成,质子带正电荷,中子不带电荷。
电子带负电荷,以质子和电子数量相等时,原子是电中性的。
二、元素和化学符号元素是由具有相同原子序数(即原子核内质子的数量)的原子组成的物质。
元素用化学符号表示,化学符号通常来自元素的英文名称或拉丁文名称的缩写,如H表示氢,O表示氧等。
三、原子量和摩尔质量原子量是指一个元素中一个原子的质量。
摩尔质量是一个物质中一摩尔(即阿伏伽德罗常数所标示的数量,约为6.0221×10^23个)粒子的质量。
摩尔质量可以通过元素的原子量来计算。
四、同位素同位素是指原子核中质子数相同,但中子数不同的原子。
同位素具有相同的化学性质,但物理性质可能会有所不同。
同位素通过原子核前面加上元素的原子质量或核素符号来表示。
五、电子结构和电子排布电子结构指的是一个原子或离子中电子分布在各种能级和轨道上的方式。
电子按照一定的规则填充在不同的能级和轨道上,其中能级数由原子的电子层数决定,轨道数由电子层内的子能级数量决定。
六、价电子和化合价价电子是指外层能级(最外层电子层)上的电子数。
元素的化合价是指元素在化合物中与其他元素结合时所带的电荷数,它决定了元素的化学性质和反应方式。
七、离子和离子化合物离子是指失去或获得一个或多个电子的原子或分子。
正离子是指失去一个或多个电子的原子或分子,带正电荷。
负离子是指获得一个或多个电子的原子或分子,带负电荷。
离子通过离子键结合形成离子化合物。
八、共价键和共价化合物共价键是指通过电子的共享而形成的一种化学键。
共价化合物是由共价键连接的原子组成的化合物。
共价键的形成使得原子能够达到稳定的电子配置。
九、金属键和金属晶体金属键是指金属中金属离子之间通过电子云的自由移动形成的一种化学键。
金属晶体是由金属离子通过金属键有序排列形成的晶体结构。
十、离子键和离子晶体离子键是由离子之间的静电相互作用形成的一种化学键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.核外电子排布规律
每个电子层最多外层容纳2n2个电子(n≤4)
最外电子层最外层容纳8个电子,若第一电子层为最 外层,则最多容纳2个电子
次外层最多容纳18个电子
倒数第三层最多容纳32个电子
电子尽先填充在能量最低的电子层里,然后由里往 外依次填充在能量逐渐升高的电子层里。
二.分子结构
1. 化学键 离子键 共价键 2. 离子键 离子键的形成 3.共价键 共价键的形成 由共价键构成的物质
相等 增加 减小(主族递减) 增大 (主族递增)
增加
递增 相等 增大 相等
负化合价
非金属性 金属性
数值减小(指非金属)
增强 减弱
相等
减弱 增强
变化项目 单 质 或 化 合 物 的 性 质 单质与水或酸
同周期从左到右
同主族从上到下
反应放出氢气
最高价氧化物
变难
碱性 两性 酸性 增强 (减弱) 变易 增强
电子式
1.会正确书写下列分子或物质的电子式:
N2、HCl、Cl2、CO2、NH3、H2O、Na2O2、NaCl、
NaOH、HClO、CH4、C2H4、C2H2
2. 用电子式表示MgCl2、Na2S等的形成过程.
化学用语
例.化学科学需要借助化学专用语言描述,下列有关化学用语 正确的是( B ) A.CO2的电子式 B. Cl-的结非金属性
单质的氧化性
单质的还原性 非金属单质形成氢化物的难易程度
非金属气态氢化物的稳定性 非金属气态氢化物水溶液的酸碱性 最高价氧化物对应水化物的酸碱性
变化项目 原 子 结 构 元 素 性 质
同周期从左到右
同主族从上到下
原子序数
电子层数 最外层电子数 原子半径 最高正价
递增
物质结构基础
会考要求:
1.知道元素、核素、同位素、质量数的涵义(a) 2.知道核电荷数、核外电子数、质子数、中子数、质量数之间的关系(a) 3.能画出1——18号元素的原子结构示意图(b) 4.能结合有关数据(原子核外电子排布、原子半径、元素的主要化合价等) 认识元素周期律(b) 5.了解元素周期表的结构(b) 6.认识元素在元素周期表中的位置与其原子的电子层结构的关系(b) 7.了解金属、非金属在元素周期表中的位置及其性质递变关系(b) 8.以第三周期为例,了解同一周期内元素性质的递变规律与原子结构的关系 (b) 9.认识化学键的涵义(b) 10.知道离子键和共价键的形成(a) 11.了解离子化合物、共价化合物的概念,能识别典型的离子化合物和共价 化合物(b) 12.能用电子式表示常见物质的组成(b) 13知道化学键的断裂和形成是化学反应中能量变化的主要原因(a)
C.乙烯的结构简式 C2H4 D.质量数为37的氯原子
17 37
Cl
元素周期表
(1)基本结构
(2)各周期的元素种数
(3)周期的分类
(4)周期的排列
(5)族的分类
(6)族的排列
(7)镧系和锕系的位置
元素周期表
1.周期表结构
元素性质与元素在周期表中的位置关系
同周期(从左到右)
原子核外电子层数 最外层电子数 原子半径 元素的最高正化合价 元素的负化合价 原子的得电子能力 原子的失电子能力 元素的金属性
7. 下列曲线分别表示元素的某种性质与核电荷数的关系(Z为核电 荷数,Y为元素的有关性质)。
请把与下面元素有关性质相符的曲线标号(a、b、c、d)填入相 应的空格中: b ①ⅡA族元素的最外层电子数 。 c ②第3周期元素的最高化合价 。 a ③F-、Na+、Mg2+、Al3+的离子半径 。
例8.下列各表为周期表的一部分(表中为 原子序数),其中正确的是( D )
变易
各异 减弱(增强) 变难 减弱
水化物酸性(碱性) 气态氢化物生成 气态氢化物稳定性
气态氢化物酸性
增强
增强
2.原子序数从11~17的元素,随着核电荷数的递增而渐 增大或增强的是( A ) A.最外层电子数 B. 电子层数 C. 原子半径 D.元素的金属性 3.下列比较不正确的是( C ) A. 稳定性 HCl > H2S B. 酸性 H2CO3 > H2SiO3 C. 中子数 16O > 14C D. 原子半径 P > O
非极性键→ 共价单质(共价化合物) 原子+原子→ 共价键 极性键→ 共价化合物
由离子键构成的物质
1. 32He可作为核聚变的材料,下列有关32He的叙述正确的
是( C )
A 32He和31H互为同位素
B
3 2He原子核内中子数为2
C 32He原子核外电子数为2 D 32He代表原子核内有2个质子和3个中子的氦原子
答案:(1)否(若在者处于同一周期,则最 外层电子数之和不可能为17)(2)N O S(3)硫酸铵 (NH4)2SO4
A、B、C、D、E为短周期元素,原子序数依次增大。其中A与 E同主族,B的最外层电子数是次外层电子数的2倍,C的最 高价氧化物对应的水化物与其氢化物反应生成一种盐X。 A、B、D、E可组成化合物A2D2、B2A2、E2D2,它们都含有 非极性共价键。 (1)C元素在周期表中的位置是_____________,写出B的最 高价氧化物的电子式__________。 (2)X的水溶液显_______________(填“酸”、“碱”或 “中”)性,理由是(用离子方程式表示) ____________________,溶液中各种子浓度由大到小的顺 序为____________________________________________。 (3)A、B、D、E四种元素组成的化合物中原子个数最少的化 合物的化学式为______________。 (4)火箭推进器中装有液态的C2A4和液态A2D2,它们发生化 学反应时生成气态C单质和水蒸气,并放出大量的热。已知 0.4 mol液态C2A4跟液态A2D2完全反应时,放出256.6kJ热 量,该反应的热化学方程式为 ____________________________________________。
(A)
2 3 11 19 4
(B)
2 10 11
18
19
(C)
6
(D)
6 7
11
12
24
13
31
14
32
18.(全国卷26)(9分) X、Y、Z和W代表原子序数依次增大的四种短周期元素, 它们满足以下条件;①元素周期表中,Z与Y相邻,Z与W 也相邻; ②Y、Z和W三种元素的原子最外层电子数之和为17。 请填空: (1)Y、Z和W三种元素是否位于同一周期(填“是” 或“否”):______,理由是_____________; (2)Y是_____,Z是_________,W是_______; (3)X、Y、Z和W可组成一化合物,其原子个数之比 为8:2:4:1。写出该化合物的名称及化学式 ___________________。
4.下列关于ⅠA族和ⅡA族元素的说法正确的是( B ) A.ⅠA族和ⅡA族的元素均为金属元素 B.在同一周期中,单质与水反应,ⅠA族比ⅡA族剧烈 C.在同一周期中,单质的熔点,ⅠA族比ⅡA族高 D.ⅠA族与ⅡA族阳离子核外电子排布与同周期的稀有 气体原子相同
5.下列物质中,含有两种化学键的是( A ) A. NaOH B. Na2O C. CH4 D. H2O 6.下列有一种元素与其他三种元素不在周期 表的同一周期内,该元素是( C ) A. Cl B. Mg C. N D. Si
物质结构
核电荷数、原子序数和元素种类
决定
原子核
一、原子结构
质子(Z) 中子(N)
决定
质量 数
核外电子 排布规律 1.能量最低原理
2.每层最多电子数
3.外层电子数
1. 构成原子三微粒的相互关系
电量关系
质子数 = 核电荷数 = 核外电子数 = 原子序数 质量关系
质子数 + 中子数 = 质量数 质量数近似等于该同位素原子的相对原子质量