一次函数图像性质及应用测试题
中考数学专题复习之一次函数的图像及性质测试卷
中考数学专题复习之一次函数的图像及性质测试卷一.选择题1.若y =x +2﹣3b 是正比例函数,则b 的值是( )A .0B .﹣C .D .﹣2.函数y =(k ﹣1)x ,y 随x 增大而减小,则k 的范围是( )A .k <0B .k >1C .k ≤1D .k <13.已知点M (﹣2,m )和点N (3,n )是直线y =2x +1上的两个点,那么有( )A .m =nB .m >nC .m <nD .不能确定mn 的大小关系4.一次函数y =8x 的图象经过的象限是( )A .一、三B .二、四C .一、三、四D .二、三、四5.若点(1,2)M 关于y 轴的对称点在正比例函数(32)y k x =+的图象上,则k 的值为( )A .13B .13-C .43-D .06. 1(A x ,1)y 和2(B x ,2)y 是一次函数2(1)2y k x =++图象上的两点,且12x x <,则1y 与2y 的大小关系是( )A .12y y =B .12y y <C .12y y >D .不确定7.下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8.下列关于一次函数y =﹣2x +2的图象的说法中,错误的是( )A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小9.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>210.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.14二.填空题11.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1y2(填“>”或“<”).12.当m=时,函数y=(2m﹣1)x2m﹣2是正比例函数.13.一次函数y=mx+|m﹣1|的图象经过(0,3),且y随x增大而减小,则m=.14.定义:点P与图形W上各点连接的所有线段中,若线段P A最短,则线段P A的长度称为点P到图形W的距离,记为d(P,图形W).例如,在图1中,原点O(0,0)与直线l:x=3的各点连接的所有线段中,线段OA最短,长度为3,则d(O,直线x=3)=3.特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)=0.①在平面直角坐标系中,原点O(0,0)与直线l:y=x的距离d(O,y=x)=;②如图2,点P的坐标为(0,m)且d(p,y=2x﹣2)=,则m=.15.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n分别交于点A1,A2,A3,……A n;函数y=3x的图象与直线l1,l2,l3,……l n分别交于点B1,B2,B3,……B n,如果△OA1B1的面积记的作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2020=.16.如图,在平面直角坐标系中,点C的坐标是(0,4),作点C关于直线AB:y=x+1的对称点D,则点D的坐标是.三.解答题17.已知函数y=(m+2)x|m|﹣1+n+4.(1)当m,n为何值时,此函数是正比例函数?(2)当m,n为何值时,此函数是一次函数?18.如图,已知直线y=x+5与x轴交于点A,直线y=kx+b与x轴交于点B(1,0),且与直线y=x+5交于第二象限点C(m,n).(1)若△ABC的面积为12,求点C的坐标及关于x的不等式的x+5>kx+b解集;(2)求k的取值范围.19.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.21.如图,已知一次函数y=﹣x+6的图象与x轴、y轴分别交于点A和点B,与直线y =x相交于点C.过点B作x轴的平行线l,点P是直线l上的一个动点.①点C坐标是;②若点E是直线y=x上的一个动点,且处于直线AB下方,当△APE是以∠EAP为直角的等腰直角三角形时,点E的坐标是.22.如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(t,0)作x轴的垂线l,且0<t<4,交一次函数的图象于点B,交正比例函数的图象于点C,连接OB.(1)求a值;(2)设△OBP的面积为s,求s与t之间的函数关系式;(3)当t=2时,在正比例函数y=x与一次函数y=ax+7的图象上分别有一动点M、N,是否存在点M、N,使△CMN是等腰直角三角形,且∠CNM=90°,若存在,请直接写出点M、N的坐标;若不存在,请说明理由.23.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.。
一次函数测试题(最新人教版)
《一次函数》测试题一、选择题1.若正比例函数的图象经过点(—1,2),则这个图象必经过点…………………【 】 A. (1,2) B. (—1,—2) C. (2,—1) D. (1,—2)2.一次函数2y x =+的图象不经过………………………………………………【 】 A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3.如果关于x 的一次函数1y kx k =+-的图角经过第一、三、四象限,则K 的取值范围【 】 A. k >0 B. k <0 C. 0 <k <1 D.k >14.将直线y=2x 向上平移2个单位后所得的直线的解析式………【 】 A. 22y x =+ B. 22y x =- C. 2(2)y x =+ D. 2(2)y x =-5.下列图象中分别给出了变量x 与y 之间的对应关系,其中表示y 是x 的函数的是【 】6.函数y ax b y bx a =+=+与的图象在同一坐标系内的大致位置是……………………【 】7.过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B。
该一次函数的解析式是【 】A. 23y x =+B. 3y x =-C.1322y x =-D. 3y x =-+ 8.函数y=2x 和y=ax+4的图象相交于点A (m ,3A . x >32B .x <3C .x <32D .x >3二、填空题9.已知函数3y mx m =+-是正比例函数,则m=________; 10.将直线162y x =-向左平移2个单位,得到直线是___________ x xyxy O33211.若关于x 的函数44y mx m =+-的图象经过点(1,3),则m=__________; 12.若直线L 平行于直线34y x =+,且过点(1,—2),则直线L 的解析式是____________ 13.若一次函数(4)21y m x m =++-的图象与y 轴的交点在x 轴的下方,则m 的取值范围是______ 14.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P ,则这个正比例函数的表达式是 ______________15.已知关于x 的一次函数3y kx =+的图象如图所示,则不等式30kx +<的解集是________ 16.已知,函数y=3x 的图象经过点A (-1,y 1),点B (-2,y 2),则y 1 y 2 17.如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 . 18.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米. 三、解答题1.已知一次函数的图象经过M (1,3)和N (—2,12)两点。
中考数学复习《一次函数》经典题型及测试题(含答案)
中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。
中考数学 三轮冲刺专题:一次函数的图象与性质
2021中考数学 三轮冲刺专题:一次函数的图象与性质一、选择题1. 一次函数y =-2x +3的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6)3. 直线y=3x+1向下平移2个单位,所得直线的解析式是 ( ) A .y=3x+3 B .y=3x -2 C .y=3x+2D .y=3x -14. (2019•辽阳)若0ab <且a b >,则函数y ax b =+的图象可能是A .B .C .D .5. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )6. (2019•柳州)已知,A B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是A .4(0)y x x =≥B .343()4y x x =-≥C .34(0)y x x =-≥D .334(0)4y x x =-≤≤7. (2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是A .4y x =-+B .4y x =+C .8y x =+D .8y x =-+8. 如图,在Rt △ABO 中,∠OBA=90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 ( )A .(2,2)B .C .D .(3,3)二、填空题9. 已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.10. 如图,已知直线y=kx+b 过A (-1,2),B (-2,0)两点,则0≤kx+b ≤-2x 的解集为 .11. 若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第________象限.12. 将直线y=2x+1向下平移3个单位长度后所得直线的解析式是____________.13. 在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,-3)到直线y=-x+的距离为.14. (2019•上海)在登山过程中,海拔每升高1千米,气温下降6 °C,已知某登山大本营所在的位置的气温是2 °C,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y °C,那么y关于x的函数解析式是__________.15. 为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.16. 已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.三、解答题17. 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.18. 如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 为坐标原点)。
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。
一次函数图像练习题及答案
一次函数图像练习题及答案【篇一:一次函数习题集锦(含答案)】txt>一、试试你的身手(每小题3分,共24分)1.正比例函数y?? 21x中,y值随x的增大而 22.已知y=(k-1)x+k-1是正比例函数,则k=.3.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点(,0),(0,).5.已知直线y=ax-2经过点(-3,-8)和?,b?两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为(写出一个即可). 7.在同一坐标系内函数y?12111x?1,y?x?1,y?x的图象有什么特222点.8.下表中,y是x二、相信你的选择(每小题3分,共24分)1.下列函数中是正比例函数的是() a.y?8xb.y?82c.y?2(x?1) d.y?1)x32.下列说法中的两个变量成正比例的是() a.少年儿童的身高与年龄 b.圆柱体的体积与它的高c.长方形的面积一定时,它的长与宽 d.圆的周长c与它的半径r 3.下列说法中错误的是() a.一次函数是正比例函数 b.正比例函数是一次函数c.函数y=|x|+3不是一次函数d.在y=kx+b(k、b都是不为零的常数)中, y-b与x成正比例4.一次函数y=-x-1的图象不经过()a.第一象限 b.第二象限 c.第三象限 d.第四象限 5.函数y=kx-2中,y随x的增大而减小,则它的图象可以是()6.如图1,一次函数的图象经过a、b两点,则这个一次函数的解析式为() a.y?3x?2 2b.y?1x?2 2c.y?1x?2 2d.y?3x?2 27.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()a.x>1 b.x>2 c.x<1 d.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过() a.第一、二、三象限b.第一、二、四象限 c.第二、三、四象限d.第一、三、四象限三、挑战你的技能(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线; (2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过a(2,4)、b(0,2)两点,且与x轴相交于c点.(1)求直线的解析式.(2)求△aoc的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点p (-2,2),且一次函数的图象与y轴相交于点q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△poq的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形abcd的一边bc上的点p从b点运动到c点,设pb=x,梯形apcd的面积为s.(1)写出s与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚了多少钱?参考答案一、1.减小2.?13.174.?5,5 75.2,?16.略(答案不惟一) 7.三条直线互相平行8.y?2x?2,表格从左到右依次填?2,0,4 二、1.d 2.d 3.a 4.a 三、1.y??x(答案不惟一) 2.(1)y?x?2 (2)43.(1)正比例函数的解析式为y??x.一次函数的解析式为y?x?4 (2)图略;(3)4四、1.(1)s?4?x;(2)0?x?2;(3)图略 2.(1)y?5.d6.a7.d8.b8x(0≤x≤40); 5(2)50千克;(3)36元一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
《一次函数图象的应用》测试题
.
一 一
一 函 数 = x 6的 图 象 . 次 k + 当 = 0时 , : 3 Y
: 当
—
分)
—
二 、 择 题 ( 小 题 4分 , 2 选 每 共 4 9 若 关 于 的 函 数 2 一1 . :( a )
y l
>
>
\ 1 他 是 "- 在 数 字 的 “ 政 ” 治 之 下 的 . L活 暴 统
~
一
/
虽然 现代 人 不总 足认 识到 他所 受 到 的束缚 ,但 实际 上 —— 尼 古拉斯 ・ 伯施塔 特 ( 国当代 经济 学家) 埃 美
<
Hale Waihona Puke < 一、填 空题 ( 小题4 , 3 分 ) 每 分 共 2
1
1 2 D 8
) .
B. y=x C.v=一2 D .y=3 x
A . =矗 I 二
3
1 . 数y a+ f 图象 可 能 是 ( 3 函 = x a ̄ J
J I
) .
YI I yJ l
J l
\
\ 一
0
A
/
/
豢.中 生 诬 . 名 同 检 ● .学 效 化. 校 步 测 ● ● - . . ,
,一 l
C 【
C/ T/
\. A
( )
. \ 3 2 \ 一 4
1 6 8
l5/ 2
l
一
2 … . 0 /
:
1
/ ’
一 々 r 一
三 、 答 题 ( 5、 6 每 题 1 分 , 7、 8 每 题 1 分 , 4 5" 解 1 1题 0 1 1题 2  ̄ 4 3) 1 . 一 次 函 数 y 3 + 的 图 象 . -l 图 象 求 : 5作 = x 3  ̄ *用 t
(必考题)初中数学八年级数学上册第四单元《一次函数》测试(答案解析)(3)
一、选择题1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t (分钟),所走路程为s (米),s 与t 之间的函数关系如图所示,则下列说法中,错误的是( )A .小明中途休息用了20分钟B .小明在上述过程中所走路程为7200米C .小明休息前爬山的速度为每分钟60米D .小明休息前后爬山的平均速度相等2.如图,一次函数y=kx+b 图象与x 轴的交点坐标是(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx+b=0的解为x=2.其中说法正确的是( )A .①和②B .①和③C .②和③D .①②③都正确 3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 4.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 5.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 6.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D . 7.函数1y x =-x 的取值范围是( ) A .1x >B .1≥xC .1x ≥-D .1x ≠ 8.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 9.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A.B.C.D.10.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是()A.B.C.D.11.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则a,b的值分别为()A.1,8 B.0.5,12 C.1,12 D.0.5,812.已知点A(1,1y)和点B(a,2y)在y=-2x+b的图象上且1y>2y,则a的值可能是()A.2 B.0 C.-1 D.-2二、填空题13.小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是_______分钟.14.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________17.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 18.正比例函数y =kx 的图象经过点(2,3),则k =______.19.2x +有意义,则x 的取值范围为______.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.如图,,A B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以36/dm min 的流量从水箱B 中抽水注入水箱A 中,直至水箱A 注满水为止.设注水()t min ,水箱A 的水位高度为()yA dm ,水箱B 中的水位高度为()yB dm .根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)注水t 分钟时,A 水箱中水的体积为 3dm(2)分别求出yA yB 、与t 之间的函数表达式;(3)当注水2分钟时,求出此时两水箱中水位的高度差.(4)当水箱A 与水箱B 中的水的体积相等时,求出此时两水箱中水位的高度差. 22.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,4y =-,当1x =-时,6y =-.(1)求y 与x 的函数关系式;(2)判断点()1,4A -是否在此函数图像上,并说明理由.23.如图,平面直角坐标系中,A (0,a ),B (b ,0),OC =OA ,且a ,b 满足|a ﹣8|+6b +=0(1)求直线AB 的表达式;(2)现有一动点P 从点B 出发,以1米/秒的速度沿x 轴正方向运动到点C 停止,设P 的运动时间为t ,连接AP ,过点C 作AP 的垂线交射线AP 于点M ,交y 轴于点N ,请用含t 的式子表示线段ON 的长度;(3)在(2)的条件下,连接BM ,当S △ABM :S △ACM =3:7时,求此时P 点的坐标.24.已知一次函数y =kx +b 的图像经过点(1,﹣4),且与正比例函数y =0.5x 的图像交于点(4,a).(1)求a、k、b的值;(2)画出函数y=kx+b与y=0.5x的图像;(3)求两函数图像与y轴围成的三角形的面积.25.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,货车与甲地的距离是________千米;(2)在轿车行进过程中,轿车行驶多少时间两车相遇?(3)在轿车行进过程中,轿车行驶多少时间,两车相距15千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800-2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【详解】A 、小明中途休息的时间是:60-40=20分钟,故本选项正确;B 、小明在上述过程中所走路程为4800米,故本选项错误;C 、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确; D 、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选B .【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 2.D解析:D【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】解:由图象可知:图象过一、二、四象限,则0k <,0b >,当0k <时,y 随x 的增大而减小,故①,②正确,由图象得:与x 轴的交点为(2,0),则当2x =时0y =,故③正确,综上所述①②③都正确,故选:D .【点睛】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.3.D解析:D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.4.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5.D解析:D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.6.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.7.B解析:B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B.【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.8.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.9.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=1×4×(6-x)=-2x+12(0<x<6),2∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.10.A解析:A【分析】从下滑过程中速度与时间变化情况来看,速度随时间的增大而增大,不会保持不变,更不会减少,从而可得出结果.【详解】解:雪撬手从斜坡顶部滑下来,速度越来越快即速度随时间的增大而增大.符合条件的只有A .故选:A .【点睛】本题考查函数图象的判断,根据速度随时间的增大而增大确定函数图象是解题的关键. 11.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.5【分析】根据图象可知:小明从家骑车上学平路路程是1千米用3分钟;上坡的路程是1千米用6分钟则上坡速度是千米/分钟;下坡路长是2千米用3分钟因而速度是千米/分钟由此即可求出答案【详解】解:根据图象可 解析:5【分析】根据图象可知:小明从家骑车上学,平路路程是1千米,用3分钟;上坡的路程是1千米,用6分钟,则上坡速度是16千米/分钟;下坡路长是2千米,用3分钟,因而速度是23千米/分钟,由此即可求出答案. 【详解】解:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用6分钟, 则上坡速度是16千米/分钟; 下坡路长是2千米,用3分钟, 则速度是23千米/分钟, 他从学校回到家需要的时间为:2÷16+1÷23+3=16.5(分钟). 故答案为:16.5.【点睛】 此题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 14.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(-20)【分析】作点B关于x轴的对称点D连接AD则AD与x轴交点即为点P位置利用待定系数法求出AD解析式再求出点P坐标即可【详解】解:作点B 关于x轴的对称点D则点D坐标为(0-4)连接AD则AD与解析:(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴324k bb-+=⎧⎨=-⎩解得24 kb=-⎧⎨=-⎩∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.17.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C(7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S的最小值为2,最大值为3,解S=12|t﹣3|×2﹣12|t﹣3|×1=3,得t=9或﹣3,∵当S=2时,得t=7或﹣1,∴若S的最小值为2,最大值为3,点C的横坐标t的取值范围为7≤t≤9或﹣3≤t≤﹣1;故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.18.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:3 2【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx中,得2k=3,解得k=32,故答案为:3 2 .【点睛】此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数.19.x>-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x-3≠0再解即可【详解】由题意得:x+2≥0且x-3≠0解得:x>-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)6t ;(2)365yB t =-+;yA t =;(3)2.8dm ;(4)2dm ; 【分析】(1)根据题目中B→A 的速度求解即可;(2)根据A 的体积求出yA ,再根据长方体体积计算即可;(3)分别求出yA ,yB ,计算即可;(4)根据题意求出yB ,求出t ,即可得解;【详解】(1)∵注水t 分钟,水从B→A 以36/dm min , ∴()36A V t dm =; 故答案为6t ; (2)∵326A V yA t =⨯⨯=, ∴yA t =,又∵()5266yB t ⨯⨯-=,()1066yB t -=,365yB t =-+;(3)当2t =时,()2yA t dm ==,()33626 4.855yB t dm =-+=-⨯+=, ∴高度差()4.82 2.8dm =-=; (4)∵A 、B 水体积相等,∴B 箱中水抽走一半, ∴1525262yB ⨯⨯=⨯⨯⨯, ∴()3yB dm =,当3yB =时,3635t -+=, 5t =,当5t =时,()5yA t dm ==,∴高度差()532dm =-=.【点睛】 本题主要考查了一次函数的实际应用,准确计算是解题的关键.22.(1)24y x x =-+-;(2)在,理由见解析.【分析】(1)根据正比例函数的定义,设()113y k x =-;()2221k x y =+,代入当0x =和1x =-时的值,即可求出和1k 和2k ,即可得到函数解析式;(2)将1x =代入函数解析式中,得出y 的值,如果等于-4,则A 点在函数图像上,如果不等于-4则不在函数图像上.【详解】(1)由题意得:设()113y k x =-;()2221k x y =+ ∴()()12213y x k x k =-++, 由当0x =时,4y =-,当1x =-时,6y =-,得,()()()()12124030161311k k k k ⎧-=-++⎪⎨-=--++⎪⎩,解得1211k k =⎧⎨=-⎩ ∴y 与x 的函数关系式为24y x x =-+-;(2)当1x =时,21144y =-+-=-∴A 点在函数图像上.【点睛】本考查了正比例函数的定义,待定系数法求函数解析式,关键是掌握待定系数法. 23.(1)483y x =+;(2)6-t 或t ﹣6;(3)P (﹣1.8,0)【分析】(1)根据非负数的性质可得a 和b 的值,确定点A 和B 的坐标,利用待定系数法即可得出结论;(2)分两种情况:判断出△AOP ≌△CON ,即可得出结论;(3)先判断出BH :CM =3:7,进而判断出S △ABP :S △ACP =3:7,得出BP :CP =3:7,即可得出结论.【详解】解:(1)∵860a b -++=,∴80a -=,60b +=,∴a =8,b =6,∴A (0,8),B (﹣6,0),设直线AB 的表达式为:y kx m =+,则860m k m =⎧⎨-+=⎩,解得:438k m ⎧=⎪⎨⎪=⎩, ∴直线AB 的表达式为:483y x =+; (2)由(1)知,A (0,8),B (﹣6,0),∴OB =6,OA =8,∵OC =OA ,∴OC =8,∴C (8,0),①当点P 在x 轴负半轴时,即0≤t≤6时,如图1,由运动知,BP =t ,∴OP =6﹣t ,∵CM ⊥AP ,∴∠CMA =90°=∠AOP =∠AOC ,∵∠ANM =∠CNO ,∴∠OAP =∠OCN ,∵OA =OC ,∴△AOP ≌△CON (ASA ),∴ON =OP =6﹣t ;②当点P 在x 轴正半轴时,即6<t≤14,如图2,由运动知,BP =t ,∴OP =t ﹣6,同①的方法得,△AOP ≌△CON (ASA ),∴ON =OP =t ﹣6;(3)如图3,过点B 作BH ⊥AP 于H ,则S △ABM =12AM•BH ,S △ACM =12AM•CM , ∵S △ABM :S △ACM =3:7, ∴12AM•BH :12AM•CM =3:7, ∴37BH CM , ∵S △ABP =12AP•BH ,S △ACP =12A P•CM , ∴S △ABP :S △ACP =3:7,∵S △ABP =12BP•OA ,S △ACP =12CP•OA , ∴BP :CP =3:7,∴BP :BC =3:10,∵B (﹣6,0),C (8,0),∴BC =14,∴BP =4.2,∴OP =6﹣4.2=1.8,∴P (﹣1.8,0).【点睛】本题考查一次函数与三角形的综合动态问题,准确求取解析式,并根据题意适当分类讨论是解题关键.24.(1)a =2,k =2,b =-6;(2)答案见解析;(3)12.【分析】(1)直接把(4,a )代入y=0.5x 可求出a ,从而得到a 的值;把两点坐标代入y=kx+b 得到关于k 、b 的方程组,然后解方程组即可;(2)利用描点、连线,即可画出函数的图像;(3)先确定一次函数与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)把(4,a )代入y=0.5x 得a=2;把(1,-4)、(4,2)代入y=kx+b 得442k b k b +=-⎧⎨+=⎩, 解得:26k b =⎧⎨=-⎩; (2)函数图像如图所示:(3)一次函数解析式为y=2x-6,当x=0时,y=6-,,则一次函数与y 轴的交点坐标为(0,-6),所以这两个函数图象与y 轴所围成的三角形面积=164122⨯⨯=. 【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.25.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 26.(1)270;(2)y =110x ﹣195;(3)2.4小时;(3)轿车行驶2.1小时或2.7小时,两车相距15千米.【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD 对应的函数表达式,OA 和CD 交点横坐标即为所求;(3)根据题意和函数图象中的数据,可以计算出在轿车行进过程,轿车行驶多少时间,两车相距15千米.【详解】解:(1)(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),故答案为:270;(2)设线段CD对应的函数表达式是y=kx+b.∵点C(2.5,80),点D(4.5,300),∴2.580 4.5300k bk b+=⎧⎨+=⎩,解得110195 kb=⎧⎨=-⎩,即线段CD对应的函数表达式是y=110x﹣195,由图象可得:线段OA对应的函数解析式为y=60x,则60x=110x﹣195,解得:x=3.9,3.9﹣1.5=2.4答:轿车行驶2.4小时两车相遇;(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70.∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得:线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得:x1=3.6,x2=4.2.∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。
一次函数解决实际问题典型例题
本次课课堂教学内容 一次函数解决实际问题一、学习目标1、掌握一次函数的图像与性质2、能够运用一次函数的性质解决生活中实际问题二、知识梳理1.正比例函数性质:一般地,形如y=kx(k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) 必过点:(0,0)、(1,k ) (2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (4) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2.一次函数及性质一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数k(称为斜率)表示直线y=kx+b (k ≠0)的倾斜程度,b 称为截距 一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) 必过点:(0,b )和(kb-,0) (2)走向: 依据k 、b 的值分类判断,见下图(3)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (5)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.(6)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数3.一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.k>0k<04.正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,).上加下减,左加右减5.直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y轴上同一点: b1=b26.待定系数法一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.7.一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.8.一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.9.一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点. 10.关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;三、例题讲解【考点1 一次函数的应用—方案最优化问题】【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元. (1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x 个,学校购买这批篮球和足球的总费用为y (元),求y 与x 之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y 最小,并求出y 的最小值.【变式1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【例2】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m元(m<250).问怎么安排集装箱这批货物总运输费最少?【考点2 一次函数的应用—行程问题】【例3】甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B 地出发沿相同路线匀速驶向A地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数.(2)求甲车从B地返回A地的过程中,y与x的函数关系式(不需要写出自变量x的取值范围).(3)直接写出乙车出发多少小时,两车恰好相距80千米.【变式2】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的图象如图所示:(1)根据图象,分别写出y1、y2关于x的关系式(需要写出自变量取值范围);(2)当两车相遇时,求x的值;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.【例4】甲、乙两车同时从A地出发驶向B地.甲车到达B地后立即返回,设甲车离A地的距离为y1(千米),乙车离A地的距离为y2(千米),行驶时间为x(小时),y1,y2与x 的函数关系如图所示.(1)填空:A、B两地相距千米,甲车从B地返回A地的行驶速度是千米/时;(2)当两车行驶7小时后在途中相遇,求点E的坐标;(3)甲车从B地返回A地途中,与乙车相距100千米时,求甲车行驶的时间.【例5】杭州市水厂的水价调整与阶梯式水价改革方案已出台,自2010年9月1日(用水时间)起执行,为鼓励居民节约用水,对居民生活用水实行水费阶梯制(见表).…“一户一表”用水量不超过17立方米超过17立方米且不超过30立方米的部分单价(元/立方米) 2.40 3.35 …小芳家十月份用水x立方米.(1)当x≤17时,小芳家这月付水费多少元?(2)若小芳家这月用水20立方米,应付水费多少元?(3)若小芳家这月付了水费60.9元,她家该月用水多少立方米?【例6】某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015设超市每天从甲养殖场调运鸡蛋x斤,总运费为W元.(1)超市每天从乙养殖场调运鸡蛋(1200﹣x)斤(用含x的代数式表示).(2)求W与x的函数关系式.(3)如果合理安排调运,可以节省运费,每天最少需总运费2610 元(直接填空).【例7】如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1 B.x<﹣1 C.x≥3 D.x≥﹣1【变式】如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b13<x时,x的取值范围为.四、课堂检测1.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y295250=x B.y300250=x C.y295250=x+5 D.y300250=x+52.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点 B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等 D.从出发到13.7秒的时间段内,乙队的速度慢3.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+84.某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15 B.9:20 C.9:25 D.9:305.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.46.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.8.某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目空调彩电进价(月/台)5400 3500售价(月/台)6100 3900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?9.快车和慢车分别从甲、乙两地同时出发,匀速相向而行,快车到达乙地后,慢车继续前行,设出发x小时后,两车相距y千米,图中折线表示从两车出发至慢车到达甲地的过程中y 与x之间的函数关系式,根据图中信息,解答下列问题.(1)甲、乙两地相距千米,快车从甲地到乙地所用的时间是小时;(2)求线段PQ的函数解析式(写出自变量取值范围),并说明点Q的实际意义.(3)求快车和慢车的速度.本次课课后练习1.一次函数y 1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2 C.b1>b2D.当x=5时,y1>y22.如图所示,直线l1:y32=x+6与直线l2:y52=-x﹣2交于点P(﹣2,3),不等式32x+6 52->x﹣2的解集是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣23.等腰三角形周长为20cm,底边长y cm与腰长x cm之间的函数关系是()A.y=20﹣2x B.y=20﹣2x(5<x<10)C.y=10﹣0.5x D.y=10﹣0.5x(10<x<20)4.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是.5.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.6.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05 mL.若小明同学在洗手时,没有把水龙头拧紧,当小明离开xh后水龙头滴了ymL水,则y与x之间的函数关系式为_______.7.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.8.某农产品店利用网络将优质土特产销往全国,其中销售的核桃和花生这两种商品的相关信息如下表.根据下表提供的信息,解答下列问题:商品核桃花生规格1kg/袋2kg/袋利润10元/袋8元/袋(1)已知今年上半年,该店销售上表规格的核桃和花生共3000kg,获得利润21000元,求上半年该店销售这种规格的核桃和花生各多少袋?(2)根据之前的销售情况,估计今年下半年,该店还能销售上表规格的核桃和花生共2000kg,其中,核桃的销售量不低于600kg.假设今年下半年,销售上表规格的核桃为x(kg),销售上表规格的核桃和花生获得的总利润为W(元),写出W与x之的函数关系式,并求下半年该店销售这种规格的核桃和花生至少获得的总利润.9.2019年元旦期间,某商场打出促销广告,如表所示:优惠条件一次性购物不超过200元一次性购物超过200元优惠办法一律按九折优惠其中200元仍按九折优惠超过200元部分按八折优惠小颖一次性购物x元,实际付款y元(1)写出y与x之间的函数关系式及自变量x的取值范围;(2)这次购物小颖实际付款196元,问:所购物品的原价是多少元?10.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.。
一次函数(二)初中数学试卷(14)
一次函数的图像和性质测试题一.选择题(共16小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.一次函数y=x+2的图象大致是()A.B.C.D.3.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.4.直线y=x﹣1的图象经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限5.下列函数中,其图象同时满足两个条件①y随着x的增大而增大②y与x轴的正半轴相交.则它的解析式为()A.y=﹣2x﹣1 B.у=﹣2x+1 C.у=2x﹣1 D.у=2x+16.已知一次函数y=kx﹣k,若y随x的增大而减小,则该函数的图象经过()A.第一,二,三象限 B.第一,二,四象限 C.第二,三,四象限 D.第一,三,四象限7.一次函数y=(k﹣2)x+3的图象如图所示,则k的取值范围是()A.k>2 B.k<2 C.k>3 D.k<38.已知一次函数y=﹣x+b的图象经过第一、二、四象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.29.下列四个点,在正比例函数的图象上的点是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣210.直线y=kx﹣1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,﹣1)11.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<212.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集为()A.x>﹣3 B.x<﹣3 C.x>3 D.x<313.两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A. B.C.D.14.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.15.两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)16.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x+10 D.y=﹣x﹣1二.填空题(共2小题)17.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x=_________.18.一元一次方程3x﹣1=5的解就是一次函数_________与x轴的交点横坐标.三.解答题(共6小题)19.已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.20.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.21.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(a,b)在线段AB上移动,则a、b应如何取值.22.某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么?并指出自变量的取值范围.23.用解析式表示下列函数关系.(1)某种苹果的单价是1.6元/kg,当购买x(kg)苹果时,花费y(元),y(元)与x(kg)之间的函数关系._________;(2)汽车的速度为20km/h,汽车所走的路程s(km)和时间t(h)之间的关系._________.24.甲、乙两地相距520km,一辆汽车以80km/h的速度从甲地开往乙地,行驶t(h)后停车在途中加水.(1)写出汽车距乙地路程s(km)与行驶时间t(h)之间的函数关系式_________;(2)请写出自变量t的取值范围_________.答案与评分标准一.选择题(共16小题)1.(2006•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。
一次函数经典测试题及解析
30x+15x=30-10
x= ,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
得x=
∴④错误.
选C.
【点睛】
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..
∴AD=a.
∴ DE•AD=a.
∴DE=2.
当点F从D到B时,用 s.
∴BD= .
Rt△DBE中,
BE= ,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a2=22+(a-1)2.
本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
5.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )
A. B. C. D.
2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2C. D.2
【答案】C
【解析】
【分析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD= ,应用两次勾股定理分别求BE和a.
北师大版八年级上册一次函数之图像测试题含答案与详细解析
八上数学——一次函数综合提升测试题一.填空题(共15小题)1.(2011•呼和浩特)已知关于x一次函数y=mx+n 图象如图所示,则可化简为__ __ .2.(2004•包头)已知一次函数y=ax+b(a≠O)图象如图所示,则|a+b|﹣(a﹣b)= ___ .3.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3k值,则所得一次函数中y随x增大而增大概率是.4.一次函数y=k(x﹣k)(k>0)图象不经过第象限.5.已知一次函数y=kx+b,kb<0,则这样一次函数图象必经过公共象限有个,即第象限.6.若一次函数y=ax+1﹣a中,它图象经过一、二、三象限,则|a﹣1|+= .7.已知一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限,化简+结果是.8.(2013•镇江)已知点P(a,b)在一次函数y=4x+3图象上,则代数式4a﹣b﹣2值等于.9.在平面直角坐标系中,点O是坐标原点,过点A(1,2)直线y=kx+b与x轴交于点B,且S△AOB=4,则k值是.10.如图,已知直线l:y=x,过点A(0,1)作y轴垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴垂线交直线l于点B1,过点B1作直线l垂线交y轴于点A2;…按此作法继续下去,则点A2013坐标为.11.(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则值为.12.(2004•郑州)点M(﹣2,k)在直线y=2x+1上,点M到x轴距离d= .13.将直角坐标系中一次函数图象与坐标轴围成三角形,叫做此一次函数坐标三角形.例如,图中一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数坐标三角形,一次函数坐标三角形周长是(第1题图) (第2题图) (第10题图) (第13题图)14.(2013•浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴距离是4,那么点P坐标是.15.(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x取值范围是_________ .二.解答题(共15小题)16.(2012•花都区一模)直线l:y=mx+n(m、n是常数)图象如图所示,化简:.17.若函数y=(a+3b)x+(2﹣a)是正比例函数且图象经过第二、四象限,试化简:.18.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9交点在y轴上;(3)k为何值时,图象平行于y=﹣2x图象;(4)k为何值时,y随x增大而减小.19.如图,直线y=x+b(b>0)与x轴负半轴、y轴正半轴分别交于A、B两点,正比例函数y=kx(k<0)图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=10,BN=3,(1)求A、B两点坐标;(用b表示)(2)图中有全等三角形吗?若有,请找出并说明理由.(3)求MN长.20.若点(m,n)在一次函数y=2x﹣8图象上,先化简,再求值:.21.在平面直角坐标系中,已知直线y=mx+n(m<0,n>0),若点A(﹣2,y1)、(﹣3,y2)、C(1,y 3)在直线y=mx+n上,则y1、y2、y3大小关系为: ____(请用“<”符号连接).22.已知:直线y=x+1与x轴交于点A,与y轴交于点B.(1)分别求出A、B两点坐标.(2)过A点作直线AP与y轴交于点P,且使OP=2OB,求△ABP面积.23.已知一次函数y=ax+b图象经过点,,C(﹣2,c)求a2+b2+c2﹣ab﹣bc﹣ca值.24.如图,平面直角坐标系中,直线y=x﹣2与x轴相交于点A,点B(4,3),(1)求点A坐标;(2)画出线段AB绕点A逆时针旋转90°后线段A B′,并求出点B′坐标.25.已知A、B坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m值.26.(2003•甘肃)如图,在梯形ABCD中,BC∥AD,∠A=90°,AB=2,BC=3,AD=4,E为AD中点,F为CD中点,P为BC上动点(不与B、C重合).设BP为x,四边形PEFC面积为y,求y关于x函数关系式,并写出x取值范围.27.如图,在直角△ABC中,∠B=90°,∠C=30°,AC=4,D是AC边上一个动点(不与A、C点重合),过点D作AC边垂线,交线段BC于点E,点F是线段EC中点,作DH⊥DF,交射线AB于点H,交射线CB于点G.(1)求证:GD=DC.(2)设AD=x,HG=y.求y关于x函数解析式,并写出它定义域.28.当k为何值时,函数y=(k2+2k)是正比例函数?29.已知:是一次函数,求m值.30.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF长.八上数学——一次函数综合提升测试题参考答案与试题解析一.填空题(共15小题)1.(2011•呼和浩特)已知关于x一次函数y=mx+n图象如图所示,则可化简为n .考点:二次根式性质与化简;一次函数图象与系数关系.专题:数形结合.分析:根据一次函数图象与系数关系,确定m、n符号,然后由绝对值、二次根式化简运算法则解得即可.解答:解:根据图示知,关于x一次函数y=mx+n图象经过第一、二、四象限,∴m<0;又∵关于x一次函数y=mx+n图象与y轴交于正半轴,∴n>0;∴=n﹣m﹣(﹣m)=n.故答案是:n.点评:本题主要考查了二次根式性质与化简、一次函数图象与系数关系.一次函数y=kx+b(k≠0,b≠0)图象,当k>0时,经过第一、二、三象限;当k<0时,经过第一、二、四象限.2.(2004•包头)已知一次函数y=ax+b(a≠O)图象如图所示,则|a+b|﹣(a﹣b)=﹣2a.考点:一次函数图象与系数关系.专题:探究型.分析:先根据一次函数图象判断出a、b符号及大小,再根据绝对值性质进行解答即可.解答:解:令x=﹣1,则y>0,即﹣a+b>0;令x=1,则y<0,即a+b<0,故a<b<0,故原式=﹣(a+b)﹣a+b=﹣a﹣b﹣a+b=﹣2a.故答案为:﹣2a.点评:本题考查是一次函数图象与系数关系,根据题意判断出a、b符号及大小是解答此题关键.3.(2008•宁夏)从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3k值,则所得一次函数中y随x增大而增大概率是.考点:概率公式;一次函数图象与系数关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小,函数y=1•x+3和y=2•x+3都是y随x增大而增大,所以符合题意概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到知识点为:概率=所求情况数与总情况数之比;一次函数未知数比例系数大于0,y随x增大而增大.4.一次函数y=k(x﹣k)(k>0)图象不经过第二象限.考点:一次函数图象与系数关系.分析:根据k,b符号判断一次函数一次函数y=k(x﹣k)图象经过象限.解答:解:由已知,得y=kx﹣k2,又k>0,则b=﹣k2<0.故图象必经过第一、三、四象限.即不经过第二象限.点评:能够根据k,b符号正确判断直线所经过象限.5.已知一次函数y=kx+b,kb<0,则这样一次函数图象必经过公共象限有 2 个,即第一、四象限.考点:一次函数图象与系数关系.专题:函数思想.分析:根据k,b取值范围确定图象在坐标平面内位置.解答:解:∵kb<0,∴k、b符号相反;∴当k>0 b<0 时,一次函数y=kx+b图象经过一、三、四象限.当k<0 b>0 时,一次函数y=kx+b图象经过一、二、四象限.所以一次函数y=kx+b图象必经过公共象限有2个,即第一、四象限.故答案是:2,一、四.点评:本题主要考查一次函数图象在坐标平面内位置与k、b关系.解答本题注意理解:直线y=kx+b所在位置与k、b符号有直接关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.若一次函数y=ax+1﹣a中,它图象经过一、二、三象限,则|a﹣1|+= 1 .考点:一次函数图象与系数关系;二次根式性质与化简.分析:根据一次函数图象所经过象限求得a取值范围,然后根据a取值范围去绝对值、化简二次根式.解答:解:∵一次函数y=ax+1﹣a中,它图象经过一、二、三象限,∴,解得,0<a<1,则|a﹣1|+=1﹣a+a=1,故答案是:1.点评:本题主要考查一次函数图象在坐标平面内位置与k、b关系.解答本题注意理解:直线y=kx+b所在位置与k、b符号有直接关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.已知一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限,化简+结果是5﹣2m .考点:一次函数图象与系数关系;二次根式性质与化简.分析:首先根据一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限确定m取值范围,然后根据m取值范围进行化简即可.解答:解:∵一次函数y=(m﹣2)x+3﹣m图象经过第一、二、四象限,∴∴+==2﹣m+3﹣m=5﹣2m.故答案为:5﹣2m.点评:本题考查了一次函数图象与系数关系及二次根式性质与化简,解题关键是根据一次函数图象经过位置确定m取值范围.8.(2013•镇江)已知点P(a,b)在一次函数y=4x+3图象上,则代数式4a﹣b﹣2值等于﹣5 .考点:一次函数图象上点坐标特征.分析:把点P坐标代入一次函数解析式可以求得a、b间数量关系,所以易求代数式4a﹣b﹣2值.解答:解:∵点P(a,b)在一次函数y=4x+3图象上,∴b=4a+3,∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2值等于﹣5.故答案是:﹣5.点评:本题考查了一次函数图象上点坐标特征,经过函数某点一定在函数图象上9.(2013•牡丹江)在平面直角坐标系中,点O是坐标原点,过点A(1,2)直线y=kx+b与x轴交于点B,且S △AOB=4,则k值是k=或﹣.考点:一次函数图象上点坐标特征.专题:计算题.分析:先表示出B点坐标为(﹣,0);再把A(1,2)代入y=kx+b得k+b=2,则b=2﹣k,然后根据三角形面积公式得到|﹣|•2=4,即||=4,所以||=4,然后解方程即可.解答:解:把y=0代入y=kx+b得kx+b=0,解得x=﹣,所以B点坐标为(﹣,0);把A(1,2)代入y=kx+b得k+b=2,则b=2﹣k,∵S△AOB=4,∴|﹣|•2=4,即||=4,∴||=4,解得k=或﹣.故答案为k=或﹣.点评:本题考查了一次函数图象上点坐标特征:一次函数y=kx+b(k≠0)图象上点满足其解析式.10.(2013•东营)如图,已知直线l:y=x,过点A(0,1)作y轴垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴垂线交直线l于点B1,过点B1作直线l垂线交y轴于点A2;…按此作法继续下去,则点A2013坐标为(0,42013)或(0,24026).考点:规律型:点坐标;一次函数图象上点坐标特征.专题:压轴题.分析:根据所给直线解析式可得l与x轴夹角,进而根据所给条件依次得到点A1,A2坐标,通过相应规律得到A2013坐标即可.解答:解:∵直线l解析式为:y=x,∴l与x轴夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0,16),…,∴A2013纵坐标为:42013,∴A2013(0,42013).故答案为:(0,42013).点评:本题考查是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题突破点;根据含30°直角三角形特点依次得到A、A1、A2、A3…点坐标是解决本题关键.11.(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则值为﹣.考点:一次函数图象上点坐标特征.分析:将点(3,5)代入直线解析式,可得出b﹣5值,继而代入可得出答案.解答:解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.点评:本题考查了一次函数图象上点坐标特征,注意直线上点坐标满足直线解析式.12.(2004•郑州)点M(﹣2,k)在直线y=2x+1上,点M到x轴距离d= 3 .考点:一次函数图象上点坐标特征.专题:计算题.分析:将x=﹣2代入即可求得点M到x轴距离.解答:解:∵点M(﹣2,k)在直线y=2x+1上,∴k=2×(﹣2)+1=﹣3,故点M到x轴距离d=|﹣3|=3.点评:解答此题要熟知一次函数图象上点坐标特点,即一次函数图象上点纵坐标绝对值即为点到x轴距离.13.(2013•杨浦区二模)将直角坐标系中一次函数图象与坐标轴围成三角形,叫做此一次函数坐标三角形.例如,图中一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数坐标三角形,一次函数坐标三角形周长是12 .14.(2013•浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴距离是4,那么点P坐标是.15.(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x取值范围是x≥0且x≠3且x≠2.二.解答题(共15小题)16.(2012•花都区一模)直线l:y=mx+n(m、n是常数)图象如图所示,化简:.17.若函数y=(a+3b)x+(2﹣a)是正比例函数且图象经过第二、四象限,试化简:.18.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9交点在y轴上;(3)k为何值时,图象平行于y=﹣2x图象;(4)k为何值时,y随x增大而减小.19.如图,直线y=x+b(b>0)与x轴负半轴、y轴正半轴分别交于A、B两点,正比例函数y=kx(k<0)图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=10,BN=3,(1)求A、B两点坐标;(用b表示)(2)图中有全等三角形吗?若有,请找出并说明理由.(3)求MN长.20.若点(m,n)在一次函数y=2x﹣8图象上,先化简,再求值:.21.在平面直角坐标系中,已知直线y=mx+n(m<0,n>0),若点A(﹣2,y1)、(﹣3,y2)、C(1,y 3)在直线y=mx+n上,则y1、y2、y3大小关系为:y3<y1<y2(请用“<”符号连接).22.已知:直线y=x+1与x轴交于点A,与y轴交于点B.(1)分别求出A、B两点坐标.(2)过A点作直线AP与y轴交于点P,且使OP=2OB,求△ABP面积.23.已知一次函数y=ax+b图象经过点,,C(﹣2,c).求a2+b2+c2﹣ab ﹣bc﹣ca值.24.如图,平面直角坐标系中,直线y=x﹣2与x轴相交于点A,点B(4,3),(1)求点A坐标;(2)画出线段AB绕点A逆时针旋转90°后线段A B′,并求出点B′坐标.25.已知A、B坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m值.26.(2003•甘肃)如图,在梯形ABCD中,BC∥AD,∠A=90°,AB=2,BC=3,AD=4,E为AD中点,F为CD中点,P为BC上动点(不与B、C重合).设BP为x,四边形PEFC面积为y,求y关于x函数关系式,并写出x取值范围.。
一次函数经典测试题附答案解析
一次函数经典测试题附答案解析一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】 【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.5.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【答案】B【解析】【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.6.已知正比例函数y=kx (k≠0)经过第二、四象限,点(k ﹣1,3k+5)是其图象上的点,则k 的值为( )A .3B .5C .﹣1D .﹣3【答案】C【解析】【分析】把x=k ﹣1,y=3k+5代入正比例函数y=kx 解答即可.【详解】把x=k ﹣1,y=3k+5代入正比例函数的y=kx ,可得:3k+5=k (k ﹣1),解得:k 1=﹣1,k 2=5,因为正比例函数的y=kx (k≠0)的图象经过二,四象限,所以k <0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.7.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
一次函数的图像和性质及答案
一次函数的图像和性质 进门测1.一次函数的图象不经过(B ) A .第一象限 B .第二象限C .第三象限D .第四象限2.下表给出的是关于一次函数y =kx +b 的自变量x 及其对应的函数值y 的若干信息:则根据表格中的相关数据可以计算得到m 的值是( C ) A .0 B .1 C .2D .33. 对于函数x y 21-=,下列说法不正确的是( D ) A .其图象经过点(0,0) B. 其图象经过点(-1,21)C. 其图象经过第二、四象限D. y 随x 的增大而增大 4.已知点A (x l ,y 1)、B (x 2,y 2)在直线y =-2x +3上,当x 1<x 2则y 1与y 2的大小关系是( A )A. y 1>y 2 B .y 1<y 2 C .y l = y 2 D .y 1与y 2的大小关系不定5. 一次函数的图象如图所示,则不等式50<+≤b kx 的解集为 20≤<x .例题解析学习目标:熟练掌握k 、b 与象限判断 教学过程:例1.已知:一次函数y =(a -1)x +b 的图象如图所示,那么a 的取值范围是( A )A .a >1B .a <1C .a >0D .a <0学习目标:熟练掌握一次函数的增减性判断 教学过程:例2.若点A (-3,y 1),B (2,y 2),C (4,y 3)是函数2(0)y kx k =+<图像上的点,则( B )34y x =-b kx y +=A .321y y y <<B .321y y y >>C .231y y y <<D .132y y y >>学习目标:熟练掌握直线的平移与平行 教学过程:例3.函数y =kx +b (k ≠0)的图象平行于直线y =2x +3,且交y 轴于点(0,-1),则其函数表达式是______12-=x y ________.学习目标:熟练掌握一次函数与不等式综合 教学过程:例4.一次函数的图像经过点(1,-2).(1)判断:点(2,-1)是否在此函数的图像上?说明理由; 在 (2)当为何值时,≤0? 3≤x学习目标:熟练掌握一次函数与等腰三角形综合 教学过程:例5.在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示),点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交点D ,连接OD ,设P 在x 轴的正半轴上,若△POD 为等腰三角形,则点P 的坐标为:____()()⎪⎭⎫⎝⎛06250,60,5,或或____.同步练习1.一次函数y =kx +b ,y 随x 的增大而减小,且kb >0,则在直角坐标系内它的大致图象是( C )A .B .C .D .2.如图,函数2y x =-和y kx b =+的图像相交于点(,3)A m ,则关于x 的不等式20kx b x -+>的解集为____23>x _______.3-=kx y x y3.如图,有一种动画程序,屏幕上正方形区域ABCD 表示黑色物体甲.已知A (2,2),B (4,2),C (4,4),D (2,4),用信号枪沿直线2y x b =-+发射信号,当信号遇到区域甲(正方形ABCD )时,甲由黑变白.则b 的取值范围为 126≤≤b 时,甲能由黑变白.4. 已知:y +2与3x 成正比例,且当x =1时,y 的值为4. (1)求y 与x 之间的函数关系式; 26-=x y(2)若点(-1,a )、点(2,b )是该函数图象上的两点,试比较a 、b 的大小,并说明理由. b a <拓展延伸1.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为( D ) A . x y -= B .x y 43-= C .x y 53-= D .x y 109-=2. 如图,∠AOB =45°,在OA 上截取OA 1=1,OA 2=3,OA 3=5,OA 4=7,OA 5=9,…,过点A 1、A 2、A 3、A 4、A 5分别作OA 的垂线与OB 相交,得到并标出一组阴影部分,它们的面积分别为S 1,S 2,S 3,….观察图中的规律,第n 个阴影部分的面积Sn 为( A )A .8n -4B .4nC .8n+4D .3n+23. 已知一次函数28y mx m =++与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在∠OAB 的直角边上找一点E ,使得∠DCE 构成等腰三角形,则点E 的坐标为()()()()()()242224225,10,12,06,0-++-,或,或或或或 .4. 如图,在平面直角坐标系中,直线AB 交x 轴于点A (-4,0),交y 轴于点B (0,2),P 为线段OA 上一个动点,Q PQ =P A ,OQ =OB . (1)求直线AB 的函数关系式; 221+=x y (2)若 ∠OPQ Q 是否在直线AB 上.(2)①当︒=∠90Q 时,⎪⎭⎫ ⎝⎛-0,25P ,⎪⎭⎫⎝⎛-56,58Q 在直线AB 上;②当︒=∠90P 时,不符合题意,舍出门测试1. 如图,把Rt ∠ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、 (4,0).将∠ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( C )A .4B .8C .16D .822. 如图,已知函数y 1=2x -1和y 2=x -3的图像交于点P (-2,-5),则根据图像可得不等式y 1>y 2的解集是_______2->x _______ .3. 已知一次函数y =(3m -7)x +m -1 (1)当m 为何值时,函数图象经过原点? 1=m (2)若图象不经过三象限,求m 的取值范围. 371<≤m (3)图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求整数m 的值. 2=m4. 如图,一次函数y = 12x +2的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第二象限内作等腰直角∠ABC ,∠BAC = 90º(1)求点A 、B 的坐标; ()0,4-A ,()2,0B(2)求点C 的坐标; ()4,6-C(3)你能否在x 轴上找一点M ,使∠MCB 的周长最小?如果能,请求出点M 的坐标;如果不能,说明理由. 能,()0,2-M课后练习11.点A (a ,y 1)、B (a +1,y 2)都在一次函数y =−2x +3的图象上,则y 1、y 2的大小关系是( C )A .y 1>y 2B .y 1=y 2C .y 1 <y 2D .不能确定 2. 正比例函数y kx =(0k ≠)的函数值y 随x 的增大而减小,则一次函数k kx y +-=的图象大致是( B )3.正方形11122213332,,A B C O A B C C A B C C ,按如图所示的方式放置,点.....,,321A A A 在直线(0)y kx b k =+>,点.....,,321C C C 在x 轴上,已知点1(1,1)B ,2(3,2)B ,则5B 的坐标是( D ) A .(33,32) B .(31,32) C .(33,16) D .(31,16)4. 已知正比例函数y 1=k 1x 的图像与一次函数y 2=k 2x -9的图像交于点P (3,-6). (1)求k 1、k 2的值; 1,221=-=k k(2)在同一直角坐标系中画出y 1。
专题01 一次函数的概念与图像(真题测试)(解析版)
专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。
精品2019届中考数学一轮复习第三章函数及其图象第3节一次函数的应用试题79
第三节一次函数的应用课标呈现指引方向能用一次函数解决简单实际问题.考点梳理夯实基础1.利用一次函数性质解决实际问题的步骤:(1)确定实际问题中的自变量和因变量.(2)根据条件中的等量关系确定一次函数表达式及自变量的取值范围.(3)利用函数性质解决实际问题.2.结合一次函数的图象解决实际问题:(1)通过函数图象获取信息时,要分清楚是一个一次函数问题还是几个一次函数问题;要读懂横纵坐标表示的实际意义,要注意平面直角坐标系中点的特征与意义,还需学会将图象中的点的坐标转化为数学语言,建立一次函数模型.(2)数形结合是解决与一次函数应用题的关键方法,能起到事半功倍的作用.考点精析专项突破考点一利用一次函数解析式解决实际问题【例1】(2016洛阳)如图,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行跟踪记录,根据所记录的数据绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?图乙))图甲解题点拨:(1)用待定系数法分别求出0≤x≤15、15<x≤20时销售量y关于销售时间x的函数关系式;(2)由图乙先求出0≤x<10、10≤x≤20时销售单价p关于销售时间x的函数关系式,再求出x=10和x=15时的销售单价,最后根据销售额=销售单价×销售量分别求之;(3)分别求出0≤x≤15、15<x≤20时销售量y≥24时x的范围。
可知共有多少天,再结合上述x的范围根据一次函数性质求p的最大值即可.解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵y=k1x过点(15,30),∴15k1=30,解得k1=2,∴y=2x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,30),(20,0)在y=k2x+b的图象上,∴221530200k b k b +=⎧⎨+=⎩,解得26120k b =-⎧⎨=⎩,∴y =-6x +120(15<x ≤20);综上,可知y 与x 之间函数关系式为:y =2(015)6120(1520)x x x x ⎧⎨-+⎩≤≤<≤.(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x ≤20时,设销售单价p (元/千克)与销售时间x (天)之间的函数解析式为p =mx +n ,∵点(10,10),(20,8)在p =mx +n 的图象上,∴1010208m n m n +=⎧⎨+=⎩,解得1512m n ⎧=-⎪⎨⎪=⎩,∴p =-15x +12(10≤x ≤20),当x =10时,p =10,y =2×10=20,销售金额为:10×20=200(元), 当x =15时,p =-15×15+12=9,y =30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元. (3)若日销售量不低于24千克,则y ≥24.当0≤x ≤15时,y =2x ,解不等式2x ≥24,得x ≥12;当15<x ≤20时,y =-6x +120,解不等式-6x +120≥24,得x ≤16, ∴12≤x ≤16,∴“最佳销售期”共有:16-12+1=5(天);∵p =-15x +12(10≤x ≤20),-15<0,∴p 随x 的增大而减小,∴当12≤x ≤16时,x 取12时,p 有最大值,此时p =-15×12+12=9.6(元/千克).故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元. 考点二 综合一次函数解析式和图象解决实际问题 【例2】(2016无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y (万元)与月份x (月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p (万元)与销售额y (万元)之间函数关系的图象如图2中线段AB 所示.(万元)图2图1(月)(1)求经销成本p (万元)与销售额y (万元)之间的函数关系式; (2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出 200万元?(利润=销售额-经销成本) 解题点拨:(1)设p =ky +b ,A (100,60),B ( 200,110),代入即可解决问题. (2)根据利润=销售额-经销成本,即可解决问题.(3)设最早到第x 个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.解:(1)设p=ky+b,A(100,60),B(200,110),代入得10060200110k bk b+=⎧⎨+=⎩,解得1210kb⎧=⎪⎨⎪=⎩,∴p=12y+10.(2)∵y=150时,p=85,∴三月份利润为150-85=65万元.∵y=175时,p=97.5,∴四月份利润为175-97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.∵5月份以后的每月利润为90万元,∴65+77.5+90(x-2)-40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.课堂训练当堂检测1.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km.下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系,则下列说法正确的有()个①小明骑车在平路上的速度为15km/h;②小明途中休息了0.1h;③如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地5.75km.A.0 B.1 C.2 D.3/h【答案】C2.(2015连云港)如图是某地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元天)图②图①天)【答案】C 3.(2016重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.t小茜小静(秒)200150【答案】120 4.(2016武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信其中为常数,且3≤≤5.(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式; (2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.解:(1)y 1=(6-a )x -20(0<x ≤200),y 2=-0.05x 2+10x -40(0<x ≤80); (2)甲产品:∵3≤a ≤5,∴6-a >0,∴y 1随x 的增大而增大, ∴当x =200时,y 1max =1180-200a (3≤a ≤5).乙产品:y 2=-0.05x 2+10x -40(0<x ≤80) ∴当0<x ≤80时,y 2随x 的增大而增大, ∴当x =80时,y 2max =440(万元).∴产销甲种产品的最大年利润为(1180-200a )万元,产销乙种产品的最大年利润为440万元; (3)1180-200a >440,解得3≤a <3.7时,此时选择甲产品; 1180-200a =440,解得a =3.7时,此时选择甲乙产品; 1180-200a <440,解得3.7<a ≤5时,此时选择乙产品.∴当3≤a <3.7时,生产甲产品的利润高;当a =3.7时,生产甲乙两种产品的利润相同;3.7<a ≤5时,生产乙产品的利润高. 中考达标模拟自测A组基础训练一、选择题1.(2016宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【答案】C2.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【答案】A3.(2016安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B.原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )【答案】A4.(2016荆门)如图,正方形ABCD的边长为2cm.动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x( cm),在下列图象中,能表示△ADP的面积y(2cm)关于x( cm)的函数关系的图象是()【答案】A二、填空题5.(2016重庆)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.【答案】1756.(2016沈阳)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲,乙两车分别从A、B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y( km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发 h时,两车相距350km.【答案】3 27.(2016苏州)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各组单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.【答案】830或910三、解答题8.某政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x-8000) ×50% =0.5x-4000;③当30000<x≤50000时.y=(30000-8000)×50%+(x-30000)× 60%= 0.6x-7000:(2)当花费30000元时,报销钱数为:y=0.5×30000-4000=11000,∵20000>11000.∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x-7000中得:20000=0.6x-7000,解得:x= 45000.答:他住院医疗费用是45000元.9.(2016荆门)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台.D乡需要农机36台,从A城往C.D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?解:(1)W=250x+200( 30-x) +150( 34-x) +240( 6+x)= 140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28.∵x≤30.∴28≤x≤30.∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.(3)W=(250-a)x+200( 30-x) +150( 34-x) +240( 6+x)=(140一a)x+12540.所以当a= 200时,y最小=- 60x +12540,此时x=30时y最小=10740元.此时的方案为:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.B组提高练习10.(2016衢州)如图,在△ABC中,AC=BC=25,AB= 30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y.则下列图象能大致反映y与x之间的函数关系的是()(提示:如图,作CM⊥AB于M.∵CA=CB,AB=30,CM⊥AB,∴AM=BM=15,CM=20,∵DE⊥BC,∴∠DEB =∠CMB =90°,∵∠B =∠B ,∴△DEB ∽△CMB ,∴BD DE EB BC CM BM==,∴252015x DE EB==,∴DE =45x ,EB =35x ,∴四边形ACED 的周长为y =25+(25-35x )+45x +30-x =-45x +80.∵0<x <30,∴图象是D【答案】D11.(2016重庆巴蜀)如图,在平面直角坐标系xOy 中,直线y =32x 与双曲线y =6x相于A 、B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若△PBC 的面积是24,则点C 的坐标为 .【答案】(6,1)提示:设BC 交y 轴于D ,如图,设C 点坐标为(a ,6a ),解方程组326y x y x⎧=⎪⎪⎨⎪=⎪⎩得 23x y =⎧⎨=⎩或23x y =-⎧⎨=-⎩,∴A 点坐标为(2,3),B 点坐标为(―2,―3),设直线BC 的解析式为y =kx +b ,把B (―2,―3)、C (a ,6a )代入得236k b ak b a -+=-⎧⎪⎨+=⎪⎩,解得363k ab a ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 的解析式为y =3x a +6a ―3,当x =0时,y =3x a +6a ―3=6a ―3,∴D 点坐标为(0,6a ―3),设直线AC 的解析式为y =mx +n ,把A (2,3),C (a ,6a),代入得236m n am n a +=⎧⎪⎨+=⎪⎩,解得363m an a ⎧=-⎪⎪⎨⎪=+⎪⎩,∴直线AC 的解析式为y =―3x a +6a +3,当x =0时,y =―3x a +6a +3=6a +3,∴P 点坐标为(0,6a +3),PD =(6a +3)―(6a―3)=6,∵PBCPBD CPD S S S =+,∴12×2×6+12×a ×6=24,解得a =6,∴C 点坐标为(6,1).12.(2014扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示,该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式:(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数:(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元? 解:(1)当40≤x ≤58时,设y 与x 的函数解析式为y =1k x +1b ,由图象可得 111140605824k b k b +=⎧⎨+=⎩,解得112140k b =-⎧⎨=⎩.∴y =-2x +140. 当58<x ≤71时,设y 与x 的函数解析式为y =2k x +2b ,由图象可得 222258247111k b k b +=⎧⎨+=⎩,解得22182k b =-⎧⎨=⎩,∴y =-x +82. 综上所述:y =()()21404058825871x x x x ⎧-+⎪⎨-+⎪⎩≤≤<≤.(2)设人数为a ,当x =48时,y =-2×48+140=44,∴(48-40)×44=106+82a ,解得a =3; 答:该店员工人数为3人.(3)设需要b 天,该店还清所有债务,则:b [(x -40)·y -82×2-106]≥68400,∴b ≥()6840040822106x y -⋅-⨯-,当40≤x ≤58时,∴b ≥()()68400402140270x x --+-=26840022205870x x -+-,x =()22022-⨯-=55时,-22x +220 x -5870的最大值为180,∴b ≥68400180-,即b ≥380; 当58<x ≤71时,b ≥()()684004082270x x --+-=2684001223550x x -+-,当x =()12221-⨯-=61时,-2x +122 x -3550的最大值为171,∴b ≥68400171,即b ≥400. 综合两种情形得b ≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.※精品试卷※推荐下载。
一次函数图像测试题(经典)精选全文
精选全文完整版(可编辑修改)一次函数的图像和性质测试题 一、选择题(每小题3分,共30分)1.关于x 的一次函数21y kx k =++的图象可能正确的是( )2.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )3、一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )4、下列图形中,表示一次函数y=mx+n 与正比例函数y=mnx(m 、 n 是常数且mn ≠0),图象是( )O xy AO xy BO xy COxyD5.一次函数y kx b =+的图象只经过第一、二、三象限,则( ) A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,6.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那么对k 和b 的符号判断正确的是( )A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<,7 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( ) A .m ﹤OB .m >0C .m ﹤21D .m >M8.若函数是一次函数,则应满足的条件是( ) A.且B.且C.且D.且9.函数y =x -2+31-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 10.直线y =-x +2和直线y =x -2的交点P 的坐标是( ) A .(2,0) B .(-2,0) C .(0,2) D .(0,-2) 二、填空题(每小题3分,共30分) 11.如图,直线为一次函数的图象,则,.12.一次函数的图象与轴的交点坐标是 ,与轴的交点坐标是 .13.已知地在地正南方3千米处,甲乙两人同时分别从、两地向正北方向匀速直行,他们与地的距离(千米)与所行的时间(时)之间的函数图象如图所示,当行走3时后,他们之间的距离为_________千米. 14.若一次函数与一次函数的图象的交点坐标为(,8),则y xO y xO y xO y xO D.1 O x y -1 1 O x y -1 1 O x y -1 1 O x y -1 1 O x y 1 第2题图 A B C DS tO 4 2B A C_________.15.已知点都在一次函数为常数)的图象上,则与的大小关系是________;若,则___________.16.已知点(,4)在连接点(0,8)和点(,0)的线段上,则______.17.已知一次函数与的图象交于轴上原点外的一点,则=+b a a________. 18.已知一次函数与两个坐标轴围成的三角形面积为4,则________.19、已知正比例函数的图象过点(,5),则的值为________20、若函数和有相等的函数值,则的值为________三、解答题(共60分)21、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2019—2020年最新浙教版数学八年级上册5.4《一次函数的图象和性质》练习题【精心整理测试卷】.doc
5.4一次函数的图象和性质一、选择题1.已知一次函数y kx k=-,若y随着x的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R和2R的两个电阻,其两端电压U关于电流强度I的函数图象如图,则阻值(A)1R>2R(B)1R<2R(C)1R=2R(D)以上均有可能4.若函数bkxy+=(b k,为常数)>y时,x 的取值范围是A 、1>xB 、2>xC 、1<xD 、2<x 5.下列函数中,一次函数是(). (A)(B )(C )(D )6.一次函数y=x+1的图象在().(A )第一、二、三象限(B )第一、三、四象限 (C )第一、二、四象限(D )第二、三、四象限 7.将直线y=2x 向上平移两个单位,所得的直线是A .y=2x+2B .y=2x-2C .y=2(x-2)D .y=2(x+2) 8.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为 A.(0,0)B.11(,)22-C.22-D.11(,)22- 9.如图,把直线l沿x 轴正方向向右平移2个单位得到直线l′,则直线l /的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-2 10.直线y=kx+1一定经过点()A .(1,0)B .(1,k)C .(0,k)D .(0,1)11.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,yxE DCA且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=45xC.y=54xD.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-1二、填空题1.若正比例函数y=mx(m≠0)和反比例函数y=nx(n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数()1f x x=+,那么()1f=3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:____出发的早,早了____小时,先到达,先到_____小时,电动自行车的速度为____km/h,汽车的速度为____km/h.h )第16题图6.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.7.若一次函数y=ax+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则|a ―= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数图像性质及应用 (一)选择题
1、一次函数y = kx -2中,y 随x 的增大而减少,它的图象经过第( )象限。
A 、 二、三、四 B 、 一、二、三 C 、 一、三、四 D 、 一、二、四
2、下面函数图象不经过第二象限的为( )
A 、y=3x+2
B 、y=3x -2
C 、y=-3x+2
D 、y=-3x -2
3、已知点(-4,y 1),(2,y 2)都在直线y=- 1
2 x+2上,则y 1 y 2大小关系是( )
A 、y 1 >y 2
B 、y 1 =y 2
C 、y 1 <y 2
D 不能比较 4、直线y =-x -2与直线y =x +3的交点为( )
A 、(
27,21) B 、(-25,2
1) C 、(0,-2) D 、(0,3) 5、无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
6、下面哪个点不在函数y=-2x+3的图象上( )A.(-5,13)B.(0.5,2)C.(3,0) D.(1,1)
7、若正比例函数的图像经过点(-1,2),则这个图像必经过点( ) A .(1,2)
B .(-1,-2)
C .(2,-1)
D .(1,-2)
8、一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=1
2
x-3 二.填空题:
1、如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于
2、已知函数y =3x -6,当x =0时,y =__________;当y =0时,x =__________.
3、已知函数x y 3=的图象经过点),1(1y A -,点),2(2y B -,则1y _________ 2y
4、已知一次函数y kx b =+的图象经过),3,1(),1,1(--B A 两点,则k 0
5、若直线b kx y +=平行直线43+=x y ,且过点)2,1(-,则=b .
6、函数
的图象上存在点P ,使得P •到•轴的距离等于3,则点P •的坐标为 .
7、如图,一个正比例函数图像与一次函数1+-=x y 的图像 相交于点P ,则这个正比例函数的表达式是____________. 8.如图,已知一条直线经过点)2,0(A 、点)0,1(B , 将这条直线向左平移与x 轴、y 轴分别交与点C 、点D . 若CD DB =,则直线CD 的函数解析式为 .
(二)解答题:
1.已知直线l 与直线y =2x +1的交点的横坐标为2,与直线y =-x +8的交点的纵坐标为-7,求直线的表达式.
2.已知直线b kx y +=经过点)0,4(A 与y 轴交于点B 且12=∆AOB S (O 为坐标原点),求这条直线的函数解析式。
3、已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数y= 1
2 x 的图象相交于点(2,a),求
(1)a 的值 (2)k ,b 的值
(3)这两个函数图象与x 轴所围成的三角形的面积。
4、如图,直线的解析表达式为,且与轴交于点
,直线经过点
,直线,交于点
.(1)
求点
的坐标;
(2)求直线的解析表达式; (3)求
的面积;
(4)在直线上存在异于点
的另一点
,使得
与
的面积相等,请直接..
写出点的坐标.
5、求一次函数32+-=x y 的图像关于y 轴对称的函数图像的关系式,和关于x 轴对称的函数图像的关系式
6.求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式; (1)求已知直线与y 轴交点M 的坐标;
(2)若直线y=kx+b 与已知直线关于y 轴对称,求k ,b 的值。
7、某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费, 请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式. (2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
8、某生物小组观察一植物生长,得到植物高度y (单位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴). (1)该植物从观察时起,多少天以后停止长高? (2)求直线AC 的解析式,并求该植物最高长多少厘米?
9、“五一节“期间,申老师一家自驾游去了离家170千米的某地,下面是分们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象。
(1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式
(3) 他们出发2小时时,离目的地还有多少千米?
10.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (厘米)与燃烧时间x (小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽所用的时间分别是 。
(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;
(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?
6.甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: (1)求乙车所行路程y 与时间x 的函数关系式; (2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
A O
D
P
B F
C
E
y (千米) x (小时)
480
6
8
10 2
4.5
7、小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为 S 1 m ,小明爸爸与家之间的距离为S 2 m,,图中折线OABD ,线段EF 分别是表示S 1、S 2与t 之间函数关系的图像.
(1)求S 2与t 之间的函数关系式:
(2)小明从家出发,经过多长时间在返回途中追上爸爸? 这时他们距离家还有多远?
8.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的
距离y (千米)与行驶时间 x (小时)之间的函数图象.
(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.
9.四川汶川发生里氏8.0级强力地震。
某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区。
乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时)。
图中的折线、线段分别表示甲、乙两组所走路程
(千米)、
(千米)与时间x (小时)之间的函数关系对应的图像。
请根据图像所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途中停留了_________小时;(2分)
(2)甲组的汽车排除故障后,立即提速赶往灾区。
请问甲组的汽车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不过25千米。
请通过计算说明,按图像所表示的走法是否符合约定。
x/小时 y /千米 600
14 6 O F E
C D (第6题)。