第84讲、勾股定理与弦图---加深版
《勾股定理》PPT课件 图文
∴ a2 b2 c2
D
N
E
“新娘的轿椅”或“修士的头巾”
一、鲁迅是一个非常勤奋的人 鲁迅的勤奋,我想不用我细说大家都是 很明白 的。在 鲁迅的 散文《 百草园 和三味 书屋》 中,鲁 迅讲过 关于上 学迟到 的故事 ,后来 他在桌 子上刻 了个“ 早”字 ,当作 了他一 生的座 右铭。
鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人
总而言之,鲁迅的优点是多于缺点的, 而且, 最让笔 者敬佩 鲁迅的 是他有 一颗永 远和劳 苦大众 在一起 的赤子 之心。 他的一 生付出 的多, 索取的 少,这 就是他 的可贵 之处, 也是他 不朽崇 高的地 方。
然后是鲁迅先生长什么样: 浓黑的一字须,根根向上的头发,吸着 烟斗、 面目严 肃冷峻 ,这是 鲁迅通 常留给 我们的 印象, 他似乎 “对一 切人都 怀有忧 虑和敌 意”, 但实际 上,伟 人也和 普通人 一样, 拥有喜 怒哀乐 。他活 着的时 候,周 围有许 多文学 青年愿 意“亲 近”他 ,鲁迅 先生的 笑声是 明朗的 ,是从 心里的 欢喜。 若有人 说了什 么可笑 的话, 鲁迅先 生笑得 连烟卷 都拿不 住了, 常常是 笑得咳 嗽起来 。然后 是长相 。黄里 带白的 脸:瘦 得让人 担心: 头上竖 着寸把 长的头 发;牙 黄羽纱 的长杉 ;隶体 “一” 字似的 胡须; 手里捏 着一枝 黄色烟 嘴。 知道你的漫画将出版,正中下怀, 满心欢 喜。
你总该记得,有一个黄昏,白马湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
勾股定理ppt课件
我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦 . 图 1-1 称为“弦图 ”,最早是由三国时期的数学家赵爽在为《周髀算经 》作法时给出的 . 图 1-2 是在北京召开的 2002 年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图 ”,它标志着中国古代的数学成就.
a 勾
┏
2 2 2 a +b =c
证明1:
该图2002年8月在北京召开的国际数学家大会的会标示意 图,取材于我国古代数学著作《勾股圆方图》。
大正方形的面积可以表示为
2
c2
a
a
1 也可以表示为 (b a ) 4 ab 2 c 1 2 ∵ c2= (b a) 4 ab 2 2 2 =b -2ab+a + 2ab b =a2+b2
Sa+Sb=Sc
c
C
2 2 2 a +b =c
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现? a b
Sa+Sb=Sc
c
2 2 2 a +b =c
猜想两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和 等于斜边的平方.
弦 c
股 b
图1-1
图1-2
勾股定理(1)
(1)观察图2-1
C A B 图2-1 A B
正方形A中含有 9 个 小方格,即A的面积是 9 个单位面积。
C
正方形B的面积是
9 个单位面积。
正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结 果的?与同伴交流交流。
勾股定理共21页22页PPT
活动3
(3)如图,分别以Rt △ABC三边为边
向外作三个正方形,其面积分别用S1、
S2、S3表示,容易得出S1、S2、S3之间
有的关系式为 S1 S2S3 .
C
S3
A
S2
B
S1
活动3
(3)变式:你还能求出S1、S2、S3之间
的关系式吗?
S3
S2
S1
活动4
(1)这节课你有什么收获?
(2)作业
对 要角 求线 出AACC的 的A长 长1最 ,m大 怎, 样B因 求此呢需?
(3)有一个边长为50dm 的正方形洞口, 想用一个圆盖去盖住这个洞口,圆的直径 至少多长?(结果保留整数)
D
C 解:∵在Rt△ ABC中,∠B=90°,
AC=BC=50, ∴由勾股定理可知:
AC AB2 BC 2
40
A
90 C
160
B 40
应用知识回归生活
5.小明妈妈买了一部29英寸(74厘米)的电视 机.小明量了电视机的屏幕,发现屏幕只有58厘米 长和46厘米宽.他觉得一定是售货员搞错了,你同意 他的想法吗?你能解释这是为什么吗?
6.做一个长、宽、高分别为50厘米、40厘米、 30厘米的木箱,一根长为70厘米的木棒能否放入, 为什么?试用今天学过的知识说明.
谢谢
Thank you
勾股定理 — 2
活动1
勾股定理:直角三角形两直角边的平 方和等于斜边的平方.
如果在Rt△ ABC中,∠C=90°,
那么 a2b2 c2.
B
ac
C bA
结论变形
B
a
2 + b2
练习
(1)求出下列直角三角形中未知的边.
勾股与弦图
而勾股定理的证明呢,就在《周髀算经》上卷一[2]——
昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”
勾股定理
勾股定理
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公式中常写作a^2+b^2=c^2
概述
定义
简介
勾股定理指出
勾股数组
推广
勾股定理
定理
勾股定理的来源
毕达哥拉斯树
常见的勾股数
勾、股、弦的比例
《周髀算经》证明步骤
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。
“故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个勾三(圆周率三)、股四(四方)的矩,矩的两条边终点的连线应为5(径隅五)。
李国伟:论「周髀算经」“商高曰数之法出于圆方”章。刊於《第二届科学史研讨会汇刊》,台湾,1991年7月,227-234页。
李继闵:商高定理辨证。刊於《自然科学史研究》,1993年第12卷第1期,29-41页。
编辑本段勾股定理
定理
如果直角三角形两直角边分别为A,B,斜边为C,那么A^2+B^2=C^2
勾股定理的来源
勾股定理(含几何画板)PPT课件
走去,想搞清楚两个小孩到底在干什么,只见一个小男孩正俯着身
子,用树枝在地上画一个直角三角形,于是伽菲尔德便问,你
们在干什么?只见那个小男孩头也不抬地说:“请问先生,如
果直角三角形的两条直角边分别是3和4,那么斜边长为多少
呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两
条直角边分别为5和7,那么这个直角三角形的斜边长又是多
2020/4/2
9
2020/4/2
设图中直角三角形的两条直角边分别 为a、b,斜边为c,那么图中大正方形 的面积应该如何计算呢?学生会由正 方形的面积公式得出大正方形的面积, 也会从拼图活动中受到启发,将大正 方形分割为四个全等的直角三角形与 一个正方形。
解:大正方形的面积:c 2
小正方形的面积:(b a)2
2002年国际数学家大会会标
2020/4/2
3
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
毕达哥拉斯(公元 前572~前492), 古希腊著名的哲学 家、数学家、天文 学家。
2020/4/2
我们也来观察上图中的 地面,看看有什么发现?
人教版八年级(下)第十八章
勾股定理
2020/4/2
1
勾
股
在中国古代,人们把弯曲成直角的手臂的上半部
分称为"勾",下半部分称为"股"。我国古代学者
把直角三角形较短的直角边称为“勾”,较长的
直角边称为“股”,斜边称为“弦”.
2020/4/2
2
这是一个会标, 同学们认识这是什么大会的会标吗?
这个图案是我国 汉代数学家赵爽 在证明勾股定理 时用到的,被称 为“赵爽弦图”
勾股定理-课件
2.理解“勾股定 理”应该注意什 么问题?
3.你觉得“勾股 定理”有用么? 作用在哪里?
老师寄语
希望你们好好学习!
要养成用数学的思维去解读世界的习惯。 只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步。 其实数学在我们的生活中无处不在, 只要你是个有心人,就一定会发现在我们 的身边,我们的眼前, 还有很多像 “勾股定理”那样的知识等待着我们去探 索,等待着我们去发现……
a
c
b
语言表述 :直角三角形两直角边的平 方和等于斜边的平方.
解决实际问题:应用列举
例1、如下图,受台风影响,一棵树在离地面4米处断裂,树的 顶部落在离树根底部3米处,这棵树折断前有多高?
A 4米
B 3米 C
解:在直角△ABC中,由勾股定理得:
AC2 AB2 BC2 42 32 25
C A
B
图1-3
3.三个正方形A,B, C面积之间有什么关系?
SA+SB=SC
即:一个直角三角形两条直角 边上的正方形面积之和等于斜 边上的正方形的面积.
C A
B
图1-2
C A
B
图1-3
4.你能发现直角三角形 三边长度之间存在什么关 系吗?与同伴交流.
面积关系:SA+SB=SC
三边关系:a 2 + b2= c 2 5.分别以5厘米、12厘米 为直角边作出一个直角三 角形,并测量斜边的长 度.第4 题中的关系式对这 个三角形仍然成立吗?
作业快餐
作业一
•完成课本习题18.1(1、2、 3)(必做)
作业二
作业三
•课后小实验:如图,分别以直 角三角形的三边为直径作三 个半圆,这三个半圆的面积之 间有什么关系?为什么? (必 做)
(word完整版)初二数学--勾股定理讲义(经典)
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
勾股定理
动手操作折一折,验证定理
练一练
• 1..在Rt△ABC中,∠C=90°
• ①若a=5,b=12,则c=___________;
• ②若a=15,c=25,则b=___________; • ③若c=61,b=60,则a=__________; • ④若a∶b=3∶4,c=10则SRt△ABC =________。 • 2直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
勾股定理
13教育学
赵露
创设情境,导入新课
小区里有一块空地将要被 改成下图所示的绿地花园, 其中绿色的地方种草,红 色的地方种花,你能用几 种方法求这块花园的面积?
5
13 12
a
b c
5 13 12
a
c
b
S=?
5 13 12
a c
b
5 12
3
a
c
b
5 12
3
a
c
b
勾股定理
勾股定理:
直角三角形两条直角边的平方和等 于斜边的平方。
• 3..已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
• A、25 B、14 C、 7 D、7或25
• 4..等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) • A、56 B、48 C、40 D、32
勾股定理(讲义)
勾股定理(讲义) -CAL-FENGHAI.-(YICAI)-Company One1勾股定理一、知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c2.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC∠=︒,则c=b=,a=∆中,90C②知道直角三角形一边,可得另外两边之间的数量关系二、题型题型一:直接考查勾股定理例1. 在ABC∠=︒∆中,90C⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15解:题型二:应用勾股定理建立方程例2.⑴在ABCBC=cm,CD AB⊥于D,CD=AB=cm,3∠=︒,5∆中,90ACB⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为21DCB AAB CD E例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m三、勾股定理的逆定理知识归纳 1. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
2. 常用的平方数112=_______,122=_______,132=_______,142=_______,152=_______,162=_______,172=_______,182=_______,192=_______,202=_______,252=_______.注意.如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。
勾股定理课件ppt
过程需要运用数学归纳法和反证法等数学方法。
05
勾股定理的挑战和未 解之谜
寻找最大的整数勾股数
总结词
寻找最大的整数勾股数是一个挑战,因为随着数字的增大,计算量也急剧增加 。
详细描述
目前已知的最大勾股数是(377, 384, 405),这是一个非常大的数,计算过程中 需要大量的计算资源和时间。寻找更大的勾股数是一个未解之谜,需要借助计 算机和数学算法来解决。
勾股定理在日常生活中也有广泛的应 用,如建筑、工程、航海、航空等领 域。
在航海和航空领域,勾股定理可以用 于确定航向、航程、高度等导航参数 ,以及解决与直角三角形相关的导航 问题。
在建筑和工程领域,勾股定理可以用 于确定建筑物的稳定性,计算建筑结 构的承载能力,以及解决与直角三角 形相关的工程问题。
古巴比伦人
在约公元前1800年至公元前500年之 间,巴比伦数学文献《默森尼默斯》 中记载了直角三角形的边长关系。
欧几里得与《几何原本》
• 欧几里得(约公元前330年-公元前275年):古希腊数学家, 他在《几何原本》中首次完整地证明了勾股定理,并给出了基 于该定理的多种证明方法。
中国的勾股之学
勾股定理课件
目录
• 勾股定理的起源和历史 • 勾股定理的证明方法 • 勾股定理的应用 • 勾股定理的推广和变种 • 勾股定理的挑战和未解之谜
01
勾股定理的起源和历 史
古代文明中的勾股定理
古埃及人
古希腊人
在建筑金字塔和尼罗河泛滥后测量土 地时,使用了直角三角形的边长关系 。
毕达哥拉斯学派在公元前6世纪发现 了直角三角形三边的关系,但未形成 完整的定理。
《周髀算经》
约成书于公元前1世纪,书中记载 了周朝初期的数学家商高提出了 “勾三股四弦五”的勾股定理的 特例。
第84讲、勾股定理与弦图---加深版
第84讲、勾股定理与弦图-----加深版知识导引一、基础知识;我国是最早了解勾股定理的国家之一,在直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
二、图形的构造定理;1、勾股定理: 在直角三角形中,两条直角边的平方和等于斜边的平方和。
a c 222cb a =+b2、勾理的证明:大家注意到,每个长方形可用一条对角线分为两个同样大小的直角三角形,如下图。
设这个直角三角形的两条直角边为a ,b ,斜边为c ,则4个直角三角形可以拼成一个斜边为c 的正方形。
中间空一格边长为a-b 的小正方形。
显然这个图形是大正方形ABCD 的一部分。
由图中可见。
b2)(b a -证明:ab b a c 214)(22⨯+-= ab b a 2)(2+-=ab b ab a 2222++-= 22b a += =a 2-2ab+b 2+2ab完全平方和公式:2222)(b ab a b a ++=+完全平方差公式:2222)(b ab a b a +-=-知识窗金典例题1.四个完全一样的长方形木板,拼成如图的正方形,大正方形周长32厘米,小正方形周长24厘米。
求:每块长方形木板的面积和周长。
CBADABC2. 如图,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,求四边形ABCD 的面积3、以直角三角形ABC 各边为直径的三个半圆围成两个新月形(阴影部分),已知AC 长3厘米,长4米.则新月形(阴影部分)的面积和是多少平方厘米。
4、同样大小的长方形小纸片摆成了下图所示的图形,已知小纸片的宽是12厘米,求阴影部分的总面积。
基础入门1、所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积之和为cm2.B ADBAOBA2、如下图所示,小圆直径与大圆直径在同一条直线上,弦AB=10厘米,弦AB 与直径平行且与小圆相切,求阴影面积。
勾股与弦图
勾股定理勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。
数学公式中常写作a^2+b^2=c^2目录概述定义简介勾股定理指出勾股数组推广勾股定理定理勾股定理的来源毕达哥拉斯树常见的勾股数勾、股、弦的比例最早的勾股定理应用《周髀算经》中勾股定理的公式与证明加菲尔德证明勾股定理的故事多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)证法9习题及答案定义介绍勾股定理逆定理概述定义简介勾股定理指出勾股数组推广勾股定理定理勾股定理的来源毕达哥拉斯树常见的勾股数勾、股、弦的比例最早的勾股定理应用《周髀算经》中勾股定理的公式与证明加菲尔德证明勾股定理的故事多种证明方法证法1证法2证法3证法4证法5(欧几里得的证法)证法6(欧几里德(Euclid)射影定理证法)证法七(赵爽弦图)证法8(达芬奇的证法)证法9习题及答案定义介绍勾股定理逆定理展开编辑本段概述定义在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方。
勾股定理(6张)简介勾股定理是余弦定理的一个特例。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。
(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。
他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。
目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
直角三角形两直角边的平方和等于斜边的平方。
如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第84讲、勾股定理与弦图
-----加深版
一、基础知识;
我国是最早了解勾股定理的国家之一,在直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
二、图形的构造定理;
1、勾股定理: 在直角三角形中,两条直角边的平方和等于斜边的平方和。
a c 2
2
2c
b
a=
+
b
2、勾理的证明:大家注意到,每个长方形可用一条对角线分为两个同样大小的直角三角形,如下图。
设这个直角三角形的两条直角边为a,b,斜边为c,则4个直角三角形可以拼成一个斜边为c的正方形。
中间空一格边长为a-b的小正方形。
显然这个图形是大正方形ABCD的一部分。
由图中可见。
证明:ab
b
a
c
2
4
)
(⨯
+
-
=
ab
b
a2
)
(2+
-
=
ab
b
ab
a2
22
2+
+
-
=
=a2-2ab+b2+2ab
=a2+b2
完全平方和公式:
完全平方差公式:
1. 四个完全一样的长方形木板,拼成如图的正方形,大正方形周长32厘米,小正方
形周长24厘米。
求:每块长方形木板的面积和周长。
2. 如图,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,求四边形
ABCD 的面积
3、以直角三角形ABC 各边为直径的三个半圆围成两个新月形(阴影部分),已知AC 长3厘米,长4米.则新月形(阴影部分)的面积和是多少平方厘米。
4、同样大小的长方形小纸片摆成了下图所示的图形,已知小纸片的宽是12厘米,求阴影部分的总面积。
1、所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为 cm2.
2、如下图所示,小圆直径与大圆直径在同一条直线上,弦AB=10厘米,弦AB 与直径平行且与小圆相切,求阴影面积。
3、如图,大小两个半圆,它们的直径在同一直线上,弦AB 与小半圆相切,且与直径平行,弦AB 长12厘米,求阴影部分的面积。
4、 科技小组演示自制的机器人,若机器人从A 点向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再想东行走2米,最后又向南行走1米到达B 点,则B 点到A 点的直线距离是多少米?
1、如图,正方形ABCD ,以各边为直径作4个半圆,且A 、B 、C 、D 为正方形EFGH 各边的中点。
再以正方形EFGH 各边的一半作为直径作8个小半圆。
这样形成的8个月牙形的总面积为8平方厘米,问:正方形ABCD 的面积是多少平方厘米?正方形EFGH 的面积又是多少平方厘米?
1. 右图中的正方形的边长为 10, 则阴影部分的面积为。
(十九届华赛初赛试题)
1、两个大小不同的正方体积木粘在一起, 构成右图所示的立体图形,其中, 小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点. 如果大积木的棱长为 3, 则这个立体图形的表面积为________. (十八届华赛决赛试题)。