《有理数的乘法》教案
有理数的乘法数学教案(精选7篇)
有理数的乘法数学教案(精选7篇)有理数的乘法数学教案篇一一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘, 积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备投影仪。
四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
七年级数学有理数的乘法教案及教学设计篇二一、知识与技能(1)能确定多个因数相乘时,积的符号, 并能用法则进行多个因数的乘积运算。
(2)能利用计算器进行有理数的乘法运算。
二、过程与方法经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳 验证等能力。
三、情感态度与价值观培养学生主动探索,积极思考的学习兴趣。
教学重、难点与关键1.重点:能用法则进行多个因数的乘积运算。
2.难点:积的符号的确定。
3.关键:让学生观察实例,发现规律。
教具准备投影仪。
四、教学过程1.请叙述有理数的乘法法则。
有理数的乘法教案
有理数的乘法(第一课时)
教学目标:
知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
情感态度与价值观:通过学生自己探索出法则,让学生获得成功的喜悦。
教学重点:运用有理数乘法法则正确进行计算。
教学难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
教材分析:
本节课是学生在小学本已学过正有理数的乘法,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。
因此,教材首先对照小学乘法的意义和负有理数的意义,结合在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。
然后通过具体例子说明如何具体运用法则进行计算。
接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。
同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。
最后,通过具体实例,说明了在含有加、减、乘的算式中,没有括号时的运算顺序。
本节课的重点是有理数乘法运算法则。
在实际教学中,要通过讲、练使学生能熟练地、准确地按照法则进行乘法运算。
本节课难点是符号的确定,特别是两负数相乘,积为正。
因而,要让学生牢记同号得正、异号得负。
教具: 多媒体课件
教学方法:发现探究法分层递进法
课时安排:1课时
附:板书设计。
有理数的乘法教案【6篇】
有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。
2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。
重点、难点:1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。
2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。
有理数的乘法。优秀教学设计(教案)
有理数的乘法。
优秀教学设计(教案)
教学设计方案
课程名称:有理数的乘法(第一课时)
研究目标:
1.掌握有理数乘法法则,能正确进行有理数乘法运算。
2.经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3.通过学生自己探索出法则,让学生获得成功的喜悦。
学情分析:
学生已经熟练掌握了两个正数之间、正数与零之间的乘法运算,并对负数参与运算有了一定的认识,明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
教学重点:
运用有理数乘法法则正确进行计算。
教学难点:
有理数乘法运算中积的符号的确定。
教学活动步骤:
一、复回顾,引入新课
1.复研究过的加法和减法的法则,并复两个有理数相加的步骤是先确定符号,再计算绝对值。
2.出示研究目标,让学生明确本节课的研究目标。
3.指导学生自学课本P.28-30的内容,完成相关问题,为总结出有理数的乘法法则做铺垫。
二、探究有理数乘法法则
1.分组讨论,让学生自己探究有理数乘法法则,归纳总结出乘法法则。
2.教师引导学生讨论,帮助学生理解和掌握乘法法则。
三、练运用乘法法则
1.教师出示乘法练题,让学生独立完成。
2.学生互相检查答案,教师纠正错误。
四、课堂小结
1.教师总结本节课的研究内容,让学生明确已经掌握的知识点。
2.学生自我评价,反思本节课的研究情况。
教学媒体选择:PPT
教学类型:教师课堂讲授为主,学生自主研究归纳;分组合作、探究研究。
七年级数学《有理数的乘方》教案设计优秀5篇
教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
有理数的乘法数学教案(优秀8篇)
有理数的乘法数学教案(优秀8篇)有理数的乘法数学教案篇一教材分析“数的运算”是“数与代数”学习领域的重要内容。
有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。
因此本节内容具有承前启后的重要作用。
学情分析1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
2.通过观察、归纳,提高学生的理性认识。
3.培养学生学会表达、学会倾听的良好品质。
教学目标1.知识技能:(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。
(2)掌握有理数乘法法则,能解决简单的的实际问题。
2.数学思考:通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。
3.问题解决:通过自主探索和合作交流,发展学生逆向思维及化归思想。
4.情感态度价值观:通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。
教学重点和难点教学重点是:有理数的乘法法则的理解和运用。
教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
七年级数学有理数的乘法教案及教学设计篇二一、内容和内容解析1.内容有理数乘法法则2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算。
有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。
本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。
与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。
由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。
《有理数的乘法(1)》数学教案
《有理数的乘法(1)》数学教案
教案名称:有理数的乘法(1)
教学目标:
1. 学生能掌握有理数的乘法法则,并能在实际问题中运用。
2. 培养学生的逻辑思维能力和运算能力。
3. 提高学生对数学的兴趣和自信心。
教学内容:
1. 有理数的乘法法则
2. 有理数的乘法运算
教学过程:
一、导入新课(约5分钟)
教师通过提问:“同学们,我们之前学习了有理数的加减法,那么你们知道有理数的乘法应该怎么做吗?”引发学生思考,然后引出本节课的主题——有理数的乘法。
二、讲解新课(约40分钟)
1. 介绍有理数的乘法法则
教师首先解释有理数的乘法法则,即“同号得正,异号得负”,并给出具体的例子进行说明。
例如:3*(-2)=-6,-5*7=-35等。
2. 进行有理数的乘法运算
教师引导学生根据乘法法则进行有理数的乘法运算,如:(-3)*(-4)=12,
(2/3)*(3/4)=1/2等。
在运算过程中,教师应强调运算顺序和符号的重要性。
三、课堂练习(约20分钟)
1. 设计一些简单的有理数乘法题目让学生进行练习,以巩固他们对有理数乘法法则的理解和应用。
四、课堂小结(约5分钟)
教师总结本节课的主要内容,包括有理数的乘法法则和运算方法,并提醒学生注意运算中的符号问题。
五、作业布置(约5分钟)
教师布置适量的课后作业,要求学生运用所学知识解决一些实际问题。
六、教学反思
教师在课后反思自己的教学过程,评估学生的学习效果,以便于下次更好地进行教学。
有理数的乘法教案
教学方法:引导学生自主探索
组织教学:学生16人,要求积极思考,和老师互动,探究新知
教 案 内 容
第一环节:问题情境,引入新课
活动内容:(1)5 × 3 =
27(2)341(3)04
⨯=
⨯=∴ 我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢?
从而引出课题:有理数的乘法.问题1:怎样计算
(1) (-4) ×(-8)=
(2) (-5) × 6 =
第二环节:师生互动探究新知
问题2
如图,一只蜗牛沿直线L爬行:它现在位置恰在L上的点0.
0 2 4 x
(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟后它在什么位置?
(+2)×(+3)=+6
(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟后它在什么位置?
(-2)×(+3)=-6
(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟前它在什么位置?
(+2)×(-3)=-6
(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟前它在什么位置?
(-2)×(-3)=+6
思考:一个数同0相乘,如何解释?
问题3:
正数乘正数积为数。
2.7《有理数的乘法第2课时》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用计算器或卡片模拟乘法运算,直观展示乘法规则。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,其结果是符号由两数符号决定,绝对值为两数绝对值相乘的结果。它是数学运算的基础,帮助我们解决生活中的许多问题。
2.案例分析:接下来,我们来看一个具体的案例。如果一家商店对商品进行8折促销,我们如何计算打折后的价格?这个案例展示了有理数乘法在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数学建模意识:通过实际问题的引入和解决,使学生学会将现实问题转化为数学模型,感受数学在生活中的应用,提高数学建模能力。
4.培养学生的合作交流意识:在小组讨论和交流中,鼓励学生积极表达自己的观点,倾听他人意见,提高合作解决问题的能力。
5.激发学生的创新意识:鼓励学生尝试不同的解题方法,培养学生的创新思维和解决问题的多样化策略。
有理数的乘法(第一课时)教案
1.4.1有理数的乘法(第一课时)一、教学目标知识与技能1.使学生在了解乘法的基础上,理解有理数乘法法则.2.能熟练地进行有理数乘法运算过程与方法在积极参与探索有理数乘法法则的数学活动中,体会有理数的实际意义,发展应用数学知识的意识与能力.情感态度与价值观通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、重点、难点重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;难点:有理数乘法中的符号法则三、学情分析本节课是在学习了有理数的概念及数轴的基础上学习的,主要内容是有理数的乘法运算。
在原有正数及0的乘法运算经验中,通过一系列活动进行学习,激起学生的学习兴趣.教学环节的设计与展开,以问题解决为中心,在探索后经小组合作,尝试练习,总结自己的观点;同时,让尽可能多的学生自觉参与到学习活动中来。
五、设计思路本节课在引入部分利用回顾旧知为巩固加法法则也为总结乘法法则设台阶,在探索新知时利用数轴上蜗牛运动的例子激发学生的兴趣,使学生能在兴趣的指引下逐步开展探究,在例子中,把表示具有相反意义的量的正负数在实际问题中求积的问题与小学算术乘法相结合,通过小组讨论合作学习的方式得出结论。
在归纳法则的过程中,既培养学生的概括能力,观察能力及口头表达能力,也让学生通过归纳体验从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。
通过气温变化问题,引导学生关注身边的数学,体现数学来源于实践又服务于实践的思想。
在练习设计与作业布置中体现分层次教学的要求,让不同层次的学生都能主动参与并能得到成功的体验。
附:学案1.4.1有理数的乘法(第一课时)一、自主探究问题:一只蜗牛沿直线L爬行,它现在的位置恰好在点O上. 我们规定:向左为负,向右为正,现在前为负,现在后为正.看看它以相同速度沿不同方向运动后的情况吧.−0−→(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?算式:(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?算式:(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?算式:(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?算式:观察上面的算式,你能发现什么规律?2、总结有理数的乘法法则:二、尝试应用1、计算(1)(-5)×(-3)(2)(-7)×4(3)(-3)×9(4)(-21)×(-2)2、用正负数表示气温的变化量,上升为正,下降为负。
有理数的乘方的教案(优秀6篇)-最新
有理数的乘方的教案(优秀6篇)作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。
那么应当如何写教案呢?下面是整理的6篇《有理数的乘方的教案》,在大家参考的同时,也可以分享一下给您的好友哦。
有理数的乘方教案篇一一、学习目标1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;3.偶次幂的非负性的应用。
二、知识回顾1.在2+ ×(-6)这个式子中,存在着3种运算。
2.上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解1.偶次幂的非负性若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2.有理数的混合运算顺序①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究1.有理数混合运算的顺序意识【例1】计算:-1-3×(-2)3+(-6)÷总结:做有理数的混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +2.有理数混合运算的转化意识【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:3.有理数混合运算的符号意识【例3】计算:-42-5×(-2)× -(-2)3总结:在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
有理数的乘法
有理数的乘法篇一:初一数学有理数的乘法教案一、教学目标1、知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感态度与价值观:通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程一、导课:计算:5某3解:5某3=1527277解:34346011解:0044我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢怎样计算(1)48(2)56二、问题探究:一只蜗牛沿直线L爬行,它现在的位置恰好在L上的点O。
(1)如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置?(2)(3)6(2)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置?(-2)(+3)=-6(3)如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置?(+2)(-3)=-6(4)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置?(-2)(-3)=+6观察(1)-(4)式,根据你对有理数乘法的思考,填空:正数乘正数积为___数;负数乘正数积为___数;正数乘负数积为___数;负数乘负数积为___数;乘积的绝对值等于各乘数绝对值的___.综合如下:(1)2某3=6(2)(-2)某3=-6(3)2某(-3)=-6(4)(-2)某(-3)=6(5)被乘数或乘数为0时,结果是0三、得出结论有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
练习1:确定下列积的符号:(1)5某(-3)积的符号为负(2)(-4)某6积的符号为负(3)(-7)某(-9)积的符号为正(4)0.5某0.7积的符号为负正例如:(—5)某(—3)(同号两数相乘)解:(—5)某(—3)=+()(得正)5某3=15(把绝对值相乘)∴(—5)某(—3)=15又如:(—7)某4(异号两数相乘)解:(—7)某4=—()(得负)7某4=28(把绝对值相乘)∴(—7)某4=-28注意:有理数相乘,先确定积的符号,在确定积的值四、例题讲解例一、计算:1(1)39(2)22(3)71(4)0.81解:(1)39271(2)212(3)717(4)0.810.8注意:乘积是1的两个数互为倒数.一个数同+1相乘,得原数,一个数同-1相乘,得原数的相反数。
有理数的乘除教案
有理数的乘除教案篇一:有理数的乘法教案1.4.1 有理数的乘法教学任务分析教学流程安排教学过程设计一、创设情景,引入本节课要研究的问题――有理数的乘法前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.等于多少?表示什么?答案是:,表示3个2相加,即:.2.请将写成乘法算式?它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探索新知,归纳法则以下各个问题由学生自主进行探索研究,发现有理数乘法的合理性,进而归纳出有理数的乘法法则,注意其中的关键――对含有负因数的两个有理数相乘的含义的理解要让学生进行解释.在数轴上,向东运动2米,记作2米,向西运动2米应记作什么?(-2米)看下面的例子:(1)其中2看作向东运动2米,看作沿此方向运动3次.用数轴表示如下:结果怎样呢?(向东运动了6米),所以有:.(2)其中-2看作向西运动2米,看作沿此方向运动3次.用数轴表示如下:结果怎样?(向西运动了6米),所以有:.(3)其中2看作向东运动2米,向西运动了6米.所以有:看作沿与此相反的方向运动3次,即向西运动了3次,共.(4)请同学们说出对此式的理解,并说出结论.其中-2看作向西运动2米,×(-3)看作沿与此方向相反的方向运动了3次,即向东运动了3次,共向东运动了6米.(5),,,请同学们说说对这四个式子的理解,并得出结论.(都等于0)从上面一组题中,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系?②积的绝对值与两个因数的绝对值又有什么样的关系?(学生活动时间2分钟)学生回答,老师完善,得出有理数乘法的法则:有理数乘法法则同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;0与任何有理数相乘仍得0.三、应用法则、巩固法则我们已经探索出了有理数的乘法法则,下面我们来应用其解决一些问题1.尝试训练,巩固练习(出示投影)(1)确定下列两个有理数积的符号:① ② ③ ④(学生口答,解释原因)(2)计算:① ② ③ ④ ⑤ ⑥ ⑦ ⑧(学生自主完成,查漏补缺)2.例题1 计算:① ②(由学生口述,教师板书,共同归纳出有理数乘法得解题步骤:(1)确定积的符号;(2)计算积的绝对值)巩固练习(出示投影)① ② ③ ④3.例题2 计算:① ② ③教师活动设计:通过这几个题是想让同学们体会在绝对值的计算过程中怎样处理假分数.4.从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题.确定下列积的符号,你能从中发现什么?① ② ③ ④学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.巩固练习:判断下列积的符号(口答)① ② ③ ④四、主体活动,探索乘法运算律探索1:任意选择两个有理数(至少有一个是负数)填入下式的□和○中,并比较结果:□×○ ○×□.归纳(乘法交换律):两个有理数相乘,交换因数的位置,积不变,即:ab=ba.篇二:有理数乘除法教案学习目标1.掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。
数学教案有理数的乘法
有理数的乘法一、教学目标:1. 让学生理解有理数乘法的基本概念和运算法则。
2. 培养学生运用有理数乘法解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
二、教学内容:1. 有理数乘法的定义和运算法则。
2. 有理数乘法在实际问题中的应用。
三、教学重点与难点:1. 教学重点:有理数乘法的定义和运算法则。
2. 教学难点:有理数乘法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解有理数乘法的定义和运算法则。
2. 采用案例分析法,分析有理数乘法在实际问题中的应用。
3. 采用小组讨论法,培养学生的合作学习和积极思考能力。
五、教学过程:1. 导入:通过复习有理数加法、减法、除法,引出有理数乘法。
2. 新课讲解:讲解有理数乘法的定义和运算法则,举例说明。
3. 案例分析:分析有理数乘法在实际问题中的应用,如计算购物时的折扣、计算面积等。
4. 小组讨论:让学生分组讨论,分享各自找到的有理数乘法应用案例。
5. 课堂练习:布置练习题,让学生独立完成,巩固所学知识。
6. 总结:对本节课内容进行总结,强调有理数乘法的重要性和应用。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学目标:1. 使学生能够正确进行有理数的乘法运算。
2. 培养学生解决实际问题时,运用有理数乘法的能力。
3. 培养学生通过合作、探究的方式,深入理解有理数乘法运算的性质。
七、教学内容:1. 有理数的乘法运算规则。
2. 有理数乘法在实际问题中的应用。
3. 有理数乘法的运算性质。
八、教学重点与难点:1. 教学重点:有理数的乘法运算规则,以及乘法运算的性质。
2. 教学难点:有理数乘法运算在实际问题中的应用。
九、教学方法:1. 采用互动式教学法,引导学生积极参与有理数乘法运算的讨论。
2. 采用情境教学法,让学生在具体的情境中,理解有理数乘法的应用。
3. 采用小组合作学习法,培养学生的团队协作能力。
十、教学过程:1. 复习导入:通过复习上节课的内容,引导学生自然地过渡到本节课的主题。
有理数的乘法法则教案
有理数的乘法法则教案一、教学目标:1. 知识与技能:掌握有理数的乘法法则,能够灵活运用有理数的乘法法则进行计算。
2. 过程与方法:培养学生的逻辑思维能力,引导学生探究有理数的乘法法则的规律。
3. 情感态度与价值观:培养学生的合作意识和探究精神,激发学生学习数学的兴趣。
二、教学重点与难点:1. 教学重点:有理数的乘法法则的掌握和运用。
2. 教学难点:有理数的乘法法则的灵活运用。
三、教学过程:1. 导入新课:通过一个实际问题引入有理数的乘法法则,激发学生的学习兴趣。
2. 概念讲解:首先讲解有理数的乘法法则的定义和性质,引导学生理解有理数的乘法是在数轴上的对称性。
然后通过具体的例子,让学生感受有理数的乘法法则的运用。
3. 练习与训练:设计一些有理数的乘法练习题,让学生在课堂上进行练习和训练,巩固所学的知识。
4. 拓展应用:引导学生通过实际问题,运用有理数的乘法法则进行解决,培养学生的数学建模能力。
5. 归纳总结:让学生总结有理数的乘法法则的规律,提炼出解题的一般步骤和方法。
6. 课堂小结:对本节课所学的内容进行小结,强调有理数的乘法法则的重要性和实际应用。
四、教学手段:1. 多媒体教学:通过多媒体教学展示有理数的乘法法则的概念和运用。
2. 教学实例:设计丰富多样的实例,让学生在实际问题中感受有理数的乘法法则的运用。
3. 小组讨论:组织学生进行小组讨论,让学生在合作中学习,培养学生的合作意识和团队精神。
五、教学反思:有理数的乘法法则是中学数学中的重要内容,对于学生的数学素养和逻辑思维能力有着重要的影响。
在教学中,我们要注重培养学生的数学建模能力,引导学生通过实际问题运用有理数的乘法法则进行解决,提高学生的数学运用能力和实际问题解决能力。
同时,我们要注重激发学生学习数学的兴趣,让学生在轻松愉快的氛围中学习有理数的乘法法则,提高学生的学习积极性和主动性。
有理数乘法教案
有理数乘法教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、信息技术教案、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, information technology lesson plans, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please pay attention!有理数乘法教案有理数乘法教案一、教材分析(一)课标基本要求: 掌握有理数乘法的意义和法则.教材的前后联系: 有理数的乘法是继有理数的加法、减法之后的又一种运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘法
一、教学目的:
1. 知识与技能:
体会有理数乘法的实际意义,掌握有理数乘法的运算法则和乘法法则,灵活的运用运算律简化运算。
2. 过程与方法;
经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中小学数学中的乘法运算的重要区别,通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。
3. 情感、态度和价值观:
通过类比和分类的思想归纳乘法法则,发展举一反三的能力。
二、教学过程:
(一)复习引入:
1.我们已经熟悉的正数及0的乘法运算:
32⨯ 1441
=⨯ 02⨯
(二)讲授新课:
研究实际问题:
如图一,一只蜗牛沿直线l 爬行,它现在的位置恰在l 上的点O
l
(1) 如果蜗牛以每分2cm 的速度向右爬行,3分钟后它在什么位置?
(为区分方向,规定向右为正,向左为负;为区分时间,规定现在前为正,现在后为负) 答:3分钟后蜗牛应在直线l 上点O 右边6cm 处,表示为:
6)3()2(+=+⨯+ 图视为:
l
O 246
(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟后它在什么位置? 答:3分钟后蜗牛应在直线l 上点O 左边6cm 处,表示为:
6)3()2(-=+⨯- 图视为:
l
-6-4-2O
(3)如果蜗牛以每分2cm 的速度向右爬行,3分前它在什么位置?
答:3分钟前蜗牛应在直线l 上点O 左边6cm 处,表示为:
6)3()2(-=-⨯+ 图视为:
l
-6-4-2O
(4)如果蜗牛以每分2cm 的速度向左爬行,3分钟前它在什么位置?
答:3分钟前蜗牛应在直线l 上点O 右边6cm 处,表示为:
6)3()2(+=-⨯- 图视为:
l O
246
观察(1)~(4)得:
正数乘正数得正数;
正数乘负数得负数;
负数乘负数得正数; 负数乘正数得负数。
乘积的绝对值等于各乘数绝对值的积。
综上得有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘都得0.
计算:00)3(=⨯- 003=⨯
0)3(0=-⨯ 030=⨯
即,任何数同0相乘都得0.
例1:)3()5(-⨯- …… ……同号两数相乘
())3()5(+=-⨯-……得正
1535=⨯…… ……把绝对值相乘
所以15)3()5(=-⨯-
注:有理数相乘,先确定积的符号,在确定积的绝对值。
计算:(1)9)3(⨯- (2)1)2()21
(=-⨯-
例2 用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?
解:183)6(-=⨯-
答:气温下降18℃。
三、课堂小结:谈谈学完这节课你有哪些收获。
四、布置作业:练习题1、2。