初中数学苏科版八年级上册《第三章 勾股定理3 1 勾股定理》教材教案
初中数学八年级上册苏科版3.1勾股定理教学设计
(二)过程与方法
1.通过引导学生观察、思考、探究,培养他们发现问题、分析问题和解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作能力和表达能力。
3.运用数形结合的方法,将勾股定理与图形结合,培养学生直观想象和空间思维能力。
4.培养学生尊重事实、追求真理的科学精神,使他们形成正确的价值观。
在教学过程中,教师要注重启发式教学,引导学生积极参与,充分调动他们的主观能动性。通过讲解、举例、练习等多种形式,使学生掌握勾股定理的知识与技能,提高他们的过程与方法能力,同时关注情感态度与价值观的培养,使学生在轻松愉快的氛围中学习数学,提高综合素质。
二、学情分析
八年级学生在学习勾股定理之前,已经掌握了直角三角形的定义及其性质,具备了一定的几何图形认知和空间思维能力。此外,他们在前期的数学学习中,积累了较多的代数运算经验,具备了一定的逻辑推理和问题解决能力。但考虑到勾股定理涉及几何与代数的综合运用,学生在理解与应用方面可能存在以下问题:
1.对勾股定理的理解不够深入,难以将其与实际图形结合起来进行推理。
4.反思总结:要求学生撰写学习反思,总结自己在学习勾股定理过程中的收获和不足,以及解决问题的策略和心得体会。
-引导学生从知识掌握、解题技巧、团队合作等方面进行反思,形成书面的学习报告。
-鼓励学生提出对课堂教学的建议,以促进教学相长,提高教学质量。
5.作业评价:在下次课堂上,安排时间让学生展示自己的作业成果,通过师生互评、生生互评等方式,对作业进行评价和反馈。
7.课后作业:
-设计具有挑战性的作业,鼓励学生自主探索,巩固所学知识。
-布置开放性问题,引导学生运用勾股定理解决实际问题,培养学生的创新意识和实践能力。
八年级数学苏科版上册 第三单元《单元复习》教学设计 教案
第三章 勾股定理教材知识全解一、勾股定理1、定义:直角三角形两条直接边的平方和等于斜边的平方2、验证:用拼图法,借助面积不变的关系来证明3、应用:在直角三角形中已知两边求第三边;在直角三角形中已知两直角边求斜边上的高二、勾股定理的逆定理1、定义:如果直角三角形的三边长分别为222,,c b a c b a =+,且,那么这个三角形是直角三角形2、勾股数:满足222c b a =+的三个正整数c b a ,,称为勾股数,常见的有3,4,5;5,12,13等三、应用1、勾股定理的简单应用:求几何表面上两点间的最短距离;解决实际应用问题2、勾股定理逆定理的应用:判定某个三角形是不是直角三角形经典例题全解题型一 利用勾股定理求几何图形的面积例1 已知,如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形,若AB=3,则图中阴影部分的面积为______________题型二勾股定理及其逆定理的综合应用例2 如图,在四边形ABCD中,已知AB=1,BC=2,CD=2,AD=3,且AB⊥BC,试证明AC⊥CD题型三用勾股定理解决实际问题例3 如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为_________________题型四用勾股定理解决距离最短问题例4 如图,要在河边修建一个水泵站,分别向张村(点A)和李庄(点B)送水,已知张村、李庄到河边(直线l)的距离分别为2千米和7千米,且CD=12千米(1)水泵站修建在什么地方,可使所用的水管最短?请你在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,请求出铺设水管的最少费用题型五利用勾股定理理解有关折叠问题例5 如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为____________题型六利用勾股定理求两点间线段的长度例6 如图,一个长方体盒子的高为30cm,底面是正方形,边长为20cm,现在A 处有一只小强想沿长方体盒子侧面去吃位于C处的一只虫子,问小强走的最短路程是多少?。
新苏科版八年级上册初中数学 3-3 勾股定理的简单应用 教学课件
D
D1
C
A 1 A1
3
C1 2
B1
AC1= = AB12 B12C12 42 22≈4.47(cm).
∵4.24<4.47<5.10,
∴最短路程约为4.24cm.
第十八页,共二十四页。
课堂小结
勾 股 定 理 的 简 单 应 用
生活中有关直角三角形的实际问题
勾股定理与其逆定理的应用
第十九页,共二十四页。
答:爬行的最短路程约为10.77cm.
第十二页,共二十四页。
新课讲解
如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面需要 爬行的最短路程又是多少呢?(精确到0.01cm)
B
B
10
A
A 10
10
C
解:最短路程即为长方形的对角线AB,
答:爬行的最短路程约是22.36cm,
第十三页,共二十四页。
第十六页,共二十四页。
新课讲解
(2)当蚂蚁经过前面和右面时,如图,最短路程为
D1
A1 D
A
B1 B
C1
A1 C
A
B1
C1
1
3
B2 C
ቤተ መጻሕፍቲ ባይዱ
AB= AC2 CC12 = 52 12≈5.10(cm).
第十七页,共二十四页。
新课讲解
(3)当蚂蚁经过左面和上底面时,如图,最短路程为
D1
A1 D
A
B1
B
C1
新课讲解
练一练
如果盒子换成如图长为3cm,宽为2cm,高为1cm的长方 体,蚂蚁沿着表面由A爬到C1需要爬行的最短路程又是多少呢 ?
D1 A1
D A
C1 B1
苏科版 《勾股定理》教学设计
勾股定理八年级数学(上)2.1 (苏科版)一、教学目标:1.知识目标:(1)经历探索发现并验证勾股定理的过程,进一步发展学生的推理能力;(2)理解并掌握勾股定理,会初步运用勾股定理解决一些简单的数学问题和实际问题.2.能力目标:(1)1.让学生经历“探索—发现—猜想—验证—应用”的学习过程,并体会“特殊—一般—特殊”的数学思想方法;(2)通过定理的证明过程体会数学的数形结合思想。
3.情感目标:(1)在探索勾股定理的过程中,让学生体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.通过获得成功的经验和克服困难的经历,增进数学学习的信心.(2)使学生在定理探索的过程中,感受数学之美,探究之趣.(3)通过了解我国古代辉煌的数学成就,体会勾股定理的文化价值,激发学生的爱国热情,激励学生发奋学习.二、教学重点、难点:经历探索和验证勾股定理的过程,会利用两边求三角形的另一边长;拼图法验证勾股定理三、教学方法与教学手段:以学生为主体的讨论探索法、多媒体辅助教学四、教学过程:(一)欣赏图片,激发兴趣师:(展示图片)2002年国际数学家大会在我国北京召开,它是世界上最高水平的数学科学学术会议。
(新图片)这就是本届大会的会徽。
它有什么特殊含义呢?此图被称为“赵爽弦图”,是我国汉代数学家赵爽在证明勾股定理时用到的,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。
本节课我们也来探索勾股定理(板书课题)首先,我们来了解什么叫勾、股、弦。
请大家阅读第二章引言的第一句话,然后说出此图中的勾、股、弦。
(黑板上的图)1.等腰直角三角形三边的关系许多伟大的科学成就都是在看似平淡无奇的现象中发现和研究出来的。
(展示图片)相传2500年前,毕达哥拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。
我们也来观察一下,你有什么发现?他发现了这样一个图形,并从这一图形发现了等腰直角三角形三边的关系。
苏科初中数学八上--勾股定理 教案 (2)
勾股定理教材分析:本节课在课程标准中属于空间与图形的学习,是在积累了一定的活动经验与掌握了一定的图形性质的基础上、在学生学习了勾股定理及其逆定理的基础上进行的,揭示了形与数之间的紧密联系,是对勾股定理应用的广泛性的初步认识。
既要注重知识的前后联系,也要体现了知识的实用性、趣味性和创新性特点。
教学中力求实现以教师为主导,以学生为主体,以知识为载体,以培养学生的思维能力,动手能力,探究能力为重点的教学思想。
尽量为学生创设“做数学”的情境,小组合作,探究交流得到了真正体现,真正体现了新课标的理念。
一、学情分析:在知识与方法上与学生已经学习的三角形、四边形等探索图形性质活动密切相关,通过本节课的学习作为学习实数的一个重要基础;进一步培养学生推理论证的一个题材。
让学生经历探索过程,掌握勾股定理及逆定理,能运用它们解决一些简单问题,发展合情推理能力,体会数形结合的思想。
本节课的学习是前面知识的继续和深化,对以后无论是教学内容还是解题思维,将起十分广泛的作用。
三、教学目标:1、知识和能力:灵活运用勾股定理解决问题,会构造直角三角形或运用勾股定理的逆定理判定一个三角形是直角三角形,从而为运用勾股定理解决问题创造条件。
2、数学思考、解决问题:在将实际问题抽象成几何图形过程中,学会观察图形,提高分析问题、解决问题的能力及渗透归纳、分类讨论、数形结合、数学建模的思想。
通过对解决问题过程的反思,获得解决问题的经验。
3、情感态度和价值观:通过有趣的问题提高学习数学的兴趣,体验数学学习的实用性,认识到数学是解决实际问题和进行交流的重要工具,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益。
四、教学重点难点:本节课的教学重点是灵活运用勾股定理解决问题,本节课的教学难点是勾股定理与几何的数形结合,以及勾股定理在实际生活中的应用。
充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课堂小结直至布置作业,有机地融入了知识归纳与讲解、典型例题剖析突出主线,层层深入,逐一突破重难点。
2022秋八年级数学上册 第3章 勾股定理3.1 勾股定理 2勾股定理的实际应用授课课件苏科版
感悟新知
总结
知2-讲
几何体的表面上两点间的最短路程问题的解决方法 是将几何体表面展开,即将立体问题转化为平面问题, 然后利用“两点之间,线段最短”去确定路线,最后利用 勾股定理计算.
感悟新知
知2-练
1 如图,圆柱的底面周长为6 cm,AC是底面圆的直
径,高BC=6 cm,P是母线BC上一点,且PC=
谢谢观赏
You made my day!
感悟新知
例 1 一个门框的尺寸如图所示,一块长3 m, 宽2.2 m的长方形薄木板能否从门框内通
知1-练
过?为什么? 分析:可以看出,木板横着或竖着都不能从门
框内通过,只能试试斜着能否通过.门框
对角线AC的长度是斜着能通过的最大长度.
求出AC,再与木板的宽比较,就能知道木板能否通过.
解:在Rt△ABC中,根据勾股定理,AC2 =AB2+BC2 =12+
2 3
BC.
一只蚂蚁从点A出发沿着圆柱的侧面爬行
到点P的最短距离是( B )
A.
4
+
6 π
cm
C.3 5 cm
B.5 cm D.7 cm
感悟新知
2 【 中考·营口】如图,在△ABC中,AC=BC, 知2-练 ∠ACB=90°,点D在BC上,BD=3,DC=1, 点P是AB上的动点,则PC+PD的最小值为( B ) A.4 B.5 C.6 D.7
(2)最长路线应该是依次经过长为5 cm,4 cm,5 cm, 4 cm,3 cm,4 cm,5 cm的棱.
感悟新知
知2-练
解:(1)将长方体与顶点A,B相关的两个面展开,共有三 种方式,如图所示.若蚂蚁沿侧面爬行,如图①, 则爬行的最短路程为 ( 5 3 ) 2 4 28 045 ( cm ) ; 若蚂蚁沿侧面和上面爬行,如图②③,
八年级数学上册《勾股定理》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。
《勾股定理》教学设计
《勾股定理》教学设计设计者教学内容《勾股定理》学时一课时学科(版本)初中数学·苏科版(八年级上册)章节第78-79页教学目标1、经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想2、能应用勾股定理求直角三角形中未知边的长3、发展有条理的思考与表达能力,感受勾股定理的文化价值学情分析八年级学生已有直角三角形、正方形等几何图形的基本认识,能利用直尺在方格纸中画出直角三角形和正方形,对图形旋转有一定的认识,有开展合作学习的能力,有初步的“数形结合”思想意识,能进行简单的逻辑推理,有利于探索发现勾股定理。
教学重点及解决措施教学重点:探索勾股定理解决措施:利用flash课件,让学生进行拼一拼、数一数、画一画等操作活动,发现数与形之间的联系,用大量的实践合情推理,探索勾股定理。
教学难点及解决措施教学难点:探索发现勾股定理的过程及其中以直角三角形斜边为边长的正方形面积计算和绘制环节解决措施:课件展示引导学生发现,多种方法演示以直角三角形斜边为边长的正方形面积的计算过程,让学生从大量操作中发现勾股定理。
教学资源准备教学一体机(白板)、视频展台教师:flash教学课件学生:直尺、方格纸、练习纸等教学环节教学内容活动设计活动目标信息技术使用及分析一、情境引入观察纪念邮票,初步感知1、展示1955年希腊为纪念毕达哥拉斯学派根据勾股定理设计并发行的纪念邮票。
2、观察邮票上有哪些图案及图案中各正方形内小方格的个数,你有哪些发现?激发学生探索勾股定理的热情【信息技术使用】展示1955年希腊为纪念毕达哥拉斯学派根据勾股定理设计并发行的纪念邮票。
【使用分析】运用呈现功能,向学生呈现出放大的、清晰的纪念邮票图片。
与课本中图片相比,图像更清晰,便于学生观察。
信息技术与学科深度融合二、探索活动探索勾股定理1、拼一拼⑴flash展示章头活动图,利用图形①—⑤拼成大正方形。
⑵学生在教学一体机(白板)上操作,拖动图形①—⑤,完成拼图。
苏科版数学八年级上册3.1《勾股定理》说课稿2
苏科版数学八年级上册3.1《勾股定理》说课稿2一. 教材分析《勾股定理》是苏科版数学八年级上册3.1节的内容,本节课的主要内容是引导学生探究直角三角形三边之间的关系,并通过实际问题引出勾股定理。
教材通过丰富的情境和实例,让学生感受数学与生活的联系,培养学生的数学应用意识。
在本节课中,学生将学习如何运用勾股定理解决实际问题,提高解决问题的能力。
二. 学情分析在八年级的学生已经掌握了实数、三角形等基本知识,具备了一定的观察、分析和逻辑推理能力。
但是,对于勾股定理的证明和应用,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,学会运用勾股定理解决实际问题。
2.过程与方法:通过观察、分析、猜想、验证等过程,培养学生的逻辑思维能力和探究能力。
3.情感态度与价值观:让学生感受数学与生活的联系,提高学生的数学应用意识,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生掌握勾股定理的内容,学会运用勾股定理解决实际问题。
2.教学难点:勾股定理的证明和应用。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、情境教学法和小组合作学习法等教学方法。
同时,利用多媒体课件和实物模型等教学手段,帮助学生更好地理解和掌握勾股定理。
六. 说教学过程1.导入:通过展示一些生活中的直角三角形实例,如篮球架、自行车等,引导学生观察并思考直角三角形三边之间是否存在某种特殊关系。
2.新课导入:介绍勾股定理的起源和发展,引导学生了解勾股定理在我国古代的辉煌成就。
3.知识探究:引导学生通过观察、分析、猜想、验证等过程,探究直角三角形三边之间的关系,得出勾股定理。
4.应用拓展:让学生运用勾股定理解决实际问题,如测量物体长度、计算距离等。
5.总结提升:对本节课的内容进行总结,强调勾股定理在生活中的应用价值。
八年级数学《勾股定理》教案8篇
八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。
勾股定理教学设计一等奖
数学八年级上册苏科版教学设计3.1.1勾股定理备课人:一、教材分析勾股定理是苏科版八年级上册第三章第一节所要探究的课题。
也是三角形三边关系的第一课时的内容。
它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它是解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析、画图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
由直观到抽象,提高学生的逻辑思维能力。
二、学情分析学生在已经学会了完全平方公式,具备一定的独立计算能力,为本节课的学习做好了铺垫。
八年级学生的思维较为活跃,求知欲望强烈,具有浓郁的好奇心,同时具有较强的推理能力,能够通过测量和猜想提出假设,对于勾股定理探究有一定的助力作用。
因此在教学素材的选取和呈现方式以及学习活动的安排上要设计学生可以动手操作并且具有一定挑战性的内容,才能帮助学生更好的掌握所学知识。
三、教学目标(一)核心素养目标1.主要核心素养(1)掌握并熟练运用勾股定理,求解具体直角三角形中发展运算能力;(2)在具体实际生活问题中,利用观察和归纳总结抽取出数量和图形之间的关系,发展数学抽象能力;2.次要核心素养(1)学生动手实践操作中发现和验证勾股定理的过程中,培养学生良好的数学思维习惯,发展逻辑推理能力;(2)利用教材和实际生活中的案例进行自主探究过程中,发展应用意识;(二)四基目标1.知识与技能目标(1)了解关于勾股定理的相关文化历史背景,经历勾股定理的探究过程,会用面积法来证明勾股定理;(2)了解利用画图来验证勾股定理的方法,理解勾股定理,会用勾股定理进行简单计算;2.数学思想目标(1)在具体动手操作中,体验勾股定理的发现和证明过程,将抽象的数学语言和直观图形结合,在“以形助数”中感受数形结合的思想;(2)在实际生活中应用勾股定理,通过从中抽取勾股定理,将未知转化为已知,体会化繁为简的数学转化思想;(3)在求解问题过程中,感受将问题中的条件转化为数学模型方程,体会数学方程思想;3.基本活动经验目标在合作探究中积累勾股定理计算的经验(三)四能目标1.发现和提出问题的目标能用数学的眼光发现和提出现实生活中与勾股定理有关的实际应用案例。
勾股定理教案2篇(一等奖)
勾股定理教案2篇(一等奖)教材分析:这节课是九年制义务教育课程标准实验教科书(苏科版),八年级上册第三章第一节“勾股定理”的第一课时、勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的重要性质,它把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,它是数形结合的典范,它可以解决许多直角三角形中的计算问题、学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解、教学目标:1、让学生经历从数到形再由形到数的转化过程,从探求三个正方形面积间的关系转化为三边数量关系的过程、培养学生主动探究意识,发展合理推理能力,体会数形结合思想、2、能说出勾股定理,并能用勾股定理解决简单问题、3、在经历数学知识的形成与应用过程中培养学生学习数学的兴趣;感受勾股定理的文化价值、教学重点:探索勾股定理的过程,会利用两边长求直角三角形的另一边长、教学难点:用割、补法求面积探索勾股定理、教学方法与教学手段:采用探究发现式教学,提供适当的问题情境、给学生自主探究交流的空间,引导学生有方向地探索、教学过程:(一)创设情境提出问题1、同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你能确定第三边的长吗?你能确定第三边的长的范围吗?2、如果这两边所夹的角确定了,那么第三边的长确定吗?第三边的长是多少?3、直角三角形两边长确定了,第三边的长确定吗?如何求第三边的长呢?这节课就让我们一起来探讨这个问题、板书:直角三角形三边数量关系、(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生的原有认知出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标、当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究)(二)实践探索猜想归纳1、(几何画板出示),观察图形,我们以直角三角形ABC三边为边向形外作三个正方形、若将图形①②③④⑤剪下,用它们可以拼一个与正方形ABDE 大小一样的正方形吗?(同桌同学合作拼图)通过拼图,你有什么发现?(以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积)(拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力,体现了活动——数学)2、拼图活动引发我们的灵感,运算推演证实我们的猜想、为了计算面积方便,我们可将这幅图形放在方格纸中、如果每一个小方格的边长记作“1”,请你求出此时三个正方形的面积(SP=9,SQ=16)你是如何得到的?(可以数,也可以通过正方形面积公式计算得到)如何求SR?(SR的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示)学生可能提出割、补、平移、旋转四种方法(旋转这种方法只适用于斜边为整数的情况,没有一般性,而且此时斜边的长还不能求出来.若有学生提出,应提醒学生)肯定学生的研究成果,进而让学生打开书回顾课本上的提示、从小明、小丽的方法中你能得到什么启发?(把图形进行“割”和“补“,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形、这种思想方法,称为化归思想)3、变化直角三角形,仿照以上方法计算直角边为5和3的直角三角形中以斜边为边的正方形面积(这是“割”和“补”思想的再一次应用、让学生感受所学即所用,体验成功的'乐趣)4、通过计算,你发现这三个正方形面积间有什么关系吗?(SP+SQ=SR,要给学生留有思考时间)5、利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积间也有如上关系吗?将网格线去掉,利用几何画板中的度量工具可以看到SP+SQ=SR(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多一般的情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻)6、我们这节课是探索直角三角形三边数量关系、至此,你对直角三角形三边的数量关系有什么发现?(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于斜边的平方)(这一问题的结论是本节课的点睛之笔,应充分让学生总结、交流、表达)7、用弯曲的手臂形象地表示勾、股、弦的概念,再给出勾股定理,进而给出字母表达式、一段紧张的探索过程之后,播放一段有关勾股历史的录音(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感)(三)学以致用体验成功1、完成课本第79-80页练习1、2(1)求下列直角三角形中未知边的长:(2)求下列图中未知数x、y、z的值:在学生回答的基础上,老师规范板书一题、(在对勾股定理基本应用的基础上,让学生体会知道直角三角形三边中的任意两边,可以求第三边)(四)课堂小结学生可以谈本节课的收获,也可以提出本节课的疑问、教师引导学生思考特殊的三角形直角三角形三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?这是我们今后将要探讨的内容、(学生总结本堂课的收获,从内容、应用,到数学思想方法,获取知识的途径等方面,给学生自由的空间,鼓励学生多说、这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力、最后提及的问题与引入首尾呼应,激发了学生深入研究的兴趣)(五)布置作业P82习题3.1第1、2题勾股定理教案(一等奖)一、教学内容分析这节课是人教版九年义务教育课程标准实验教材八年级第十八章勾股定理第一课时,是在前面学习了直角三角形一些性质的基础上学习的。
新苏科版数学导学案八年级第3章勾股定理
班级:学号:姓名:金果学堂3.1勾股定理(第一课时)※学习目标:1、经历探求三个正方形面积间的关系转化为三边数量关系的过程;2、经历探索勾股定理的过程,体会数形结合的思想,能应用数学知识验证勾股定理.※自主学习:阅读课本P78、79页探索如图①,在△ABC 中,BC =3,AC =4.⑴你知道AB 的长吗?你知道AB 长的范围吗?⑵如图②,如果添加∠C =90°,那么AB 的长确定吗?⑶如图③,把Rt △ABC 放在边长为1的网格中,并分别以这个直角三角形的各边为一边向三角形外部作正方形,则P S =,Q S =,R S =.⑷在图④的网格上,任意画一个顶点都在格点上的直角三角形,仿照⑶的作法,你所画的3个正方形面积之间有怎样的数量关系?请与同学交流.新知勾股定理:直角三角形的平方和等于的平方.1、求下列直角三角形中未知边的长.⑴由勾股定理得:⑵由勾股定理得:⑶222125x =+解得:2、求下列图中x 、y 、z 的值.⑴;⑵;⑶;课堂笔记栏※巩固练习:1、一个直角三角形的两直角边长分别为7和24,下列说法正确的是………………()A.斜边长为625B.三角形的周长为84C.斜边长为25D.三角形的面积为1682、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是………()A.536B.2512C.49D.以上均不正确3、如图,在△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为…………………………………………………………………………()A.5B.6C.8D.104、已知在Rt△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C所对的边.⑴若b=3,c=5,则a=;⑵若a=40,b=9,则c=;⑶若a=6,c=10,则b=;⑷若b=15,c=25,则a=.5、已知直角三角形的两条直角边长分别为6、8,那么斜边上的中线长是.6、求下列图形中阴影部分的面积:⑴正方形S=;⑵长方形S=;⑶半圆S=.7、如图,在四边形ABCD中,∠A=90°,∠DBC=90°,AD=3,AB=4,BC=12.求四边形ABCD的周长与面积.8、如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为边AB上的一点.求证:⑴△ACE≌△BCD;⑵2CD2=AD2+DB2.作业订正栏金果学堂课堂笔记栏⑵如图③,从整体看,图形看成个边长为大正方形,面积为作业订正栏3、如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为PQ,则线段BQ的长度为………………………………()55ABC中,∠C=90BC上的中线AD长为13.求边金果学堂Array课堂笔记栏※巩固练习:1、下列四组线段中,能组成直角三角形的是…………………………………………()A .a =1,b =2,c =3B .a =2,b =3,c =4C .a =2,b =4,c =5D .a =3,b =4,c =52、已知三角形的三边长分别为a 、b 、c .如果()()01215922=-+-+-c b a ,那么△ABC ……………………………………………………………………………()A .是以a 为斜边的直角三角形B .是以b 为斜边的直角三角形C .是以c 为斜边的直角三角形D .不是直角三角形3、如图,在△ABC 中,AB =10,AC =8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,则CD 的长为………………………………………………………………()A .3B .4C .8.4D .54、如图,在边长均为1的网格中的△ABC直角三角形(填“是”或“不是”).5、若一个三角形三边的长分别为15cm 、20cm 、25cm ,则最长边上的高为.6、已知一个三角形的三边长分别是12cm 、16cm 、20cm .求这个三角形的面积.7、如图,AD ⊥BC ,垂足为D .如果CD =1,AD =2,BD =4,那么∠BAD 是直角吗?证明你的结论.8、如图,在△ABC 中,AB =3,AC =5,AD 是边BC 上的中线,AD =ED =2.求△ABC 的面积.作业订正栏班级:学号:姓名:金果学堂3.3勾股定理的简单应用※学习目标:1、能运用勾股定理及直角三角形的判定条件解决实际问题;2、构造直角三角形,运用勾股定理解释生活中的实际问题.※自主学习:阅读课本P86、87页探索《九章算术》是中国古代第一部数学专著,总结了战国、秦、汉时期的数学成就.1、《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?2、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为l尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少尺?应用3、如图,在△ABC中,AB=AC=17,BC=16,求△ABC的面积.4、计算图中四边形ABCD的面积.课堂笔记栏※巩固练习:1、直角三角形的斜边比其中一条直角边大2,另一条直角边为6.则它的斜边长为()A .8B .9C .10D .122、如图,长、宽、高分别为4cm 、3cm 、12cm 的长方体盒子能容下的木棒最长为()A .11cmB .12cmC .13cmD .14cm3、如图,长方体纸箱的长、宽、高分别为50cm 、30cm 、60cm ,一只蚂蚁从点A 处沿纸箱的表面爬到点B 处.蚂蚁爬行的最短路程是cm .4、如图是一个透明的圆柱状玻璃怀,由内部测得其底面半径为3cm ,高为8cm .现有一根12cm 长的吸管任意斜放于杯中.若不考虑吸管的粗细,则吸管露在杯口外的长度至少为cm .5、甲、乙两人同时从同一地点出发,甲往北偏东45°方向走了4.8km ,乙往南偏东45°方向走了3.6km ,这时甲、乙两人相距km .6、在△ABC 中,AB =13cm ,AC =20cm ,边BC 上的高为12cm ,则△ABC 的面积为.7、如图,折叠直角三角形纸片ABC ,使直角边AC 落在斜边AB 上(折痕为AD ,点C 落到点E 处),已知AC =6cm ,BC =8cm .求CD 的长.8、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =9,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 、EC 的长.9、如图,以Rt △ABC 的三边为直径的3个半圆的面积之间有什么关系?请说明理由.作业订正栏班级:学号:姓名:金果学堂第3章勾股定理(复习)※学习目标:1、进一步理解和掌握勾股定理及勾股定理逆定理;2、运用勾股定理及勾股定理逆定理解决实际问题.※自主学习:阅读课本P88、89、90页1、直角三角形的斜边长是5,一直角边的长是3,则此直角三角形的面积为………()A .6B .215C .12D .152、下列长度的三条线段能组成钝角三角形的是………………………………………()A .3、4、4B .3、4、5C .3、4、6D .3、4、73、如图,在△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长为…………………………………………………………………………()A .9B .8C .7D .64、已知△ABC 的三边长a 、b 、c 满足等式c a a c b a 108650222++=+++,那么△ABC 是…………………………………………………………………………()A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形5、如图,在△ABC 中,AB =AC =5,BC =8,D 是线段BC 上的动点(不含端点B 、C ).若线段AD 长为正整数,则点D 共有…………………………………………………()A .5个B .4个C .3个D .2个6、若一个直角三角形中两条直角边长的比为3∶4,斜边长为20,则此直角三角形的面积为.7、如图,在△ABC 中,∠C =90°,AC =12,点D 在BC 上,∠ADC =2∠B ,AD =13,则BC 的长为.8、如图,直线l 上有三个正方形甲、乙、丙.若甲、丙的面积分别为5、11,则乙的面积为.9、如图是一个三级台阶,它的每一级的长、宽、高分别为100cm 、15cm 、10cm ,A 和B 是这个台阶的两个相对的端点,点A 上有一只蚂蚁想到点B 去吃可口的食物,则它所的最短路线的长为cm .10、如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是cm .11、如图,我国古代数学家赵爽的弦图是由四个全等的直角三角形和中间的小正方形拼成的大正方形.如果大正方形的面积为13,小正方形的面积为1,直角三角形较短的直角边长为a ,较长直角边长为b ,那么()2b a +的值为.课堂笔记栏12、如图是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.⑴在图①中画出等腰直角三角形MON ,使点N 落在格点上,且∠MON =90°;⑵在图②中以格点为顶点画一个正方形ABCD ,使正方形ABCD 的面积等于⑴中等腰直角三角形MON 的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(画出一种即可).13、如图,将一长方形纸片ABCD 折叠,使两个顶点A 、C 重合,折痕为FG .已知AB =4,BC =8,求△ABF的面积.14、如图,在一张长方形纸片ABCD 中,AB =8,BC =6,P 为AD 上的一点,将△ABP沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,求AP的长.15、如图,四边形ABCD 为长方形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,求()224-+y x的值.作业订正栏。
八年级数学上册勾股定理的教学设计
3.1 勾股定理(1)教材分析:这节课是九年制义务教育课程标准实验教科书(苏科版),八年级上册第三章第一节“勾股定理”的第一课时.勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的重要性质,它把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,它是数形结合的典范,它可以解决许多直角三角形中的计算问题. 学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.教学目标:1. 让学生经历从数到形再由形到数的转化过程,从探求三个正方形面积间的关系转化为三边数量关系的过程.培养学生主动探究意识,发展合理推理能力,体会数形结合思想.2. 能说出勾股定理,并能用勾股定理解决简单问题.3. 在经历数学知识的形成与应用过程中培养学生学习数学的兴趣;感受勾股定理的文化价值.教学重点:探索勾股定理的过程,会利用两边长求直角三角形的另一边长.教学难点:用割、补法求面积探索勾股定理.教学方法与教学手段:采用探究发现式教学,提供适当的问题情境.给学生自主探究交流的空间, 引导学生有方向地探索.教学过程:(一)创设情境提出问题1.同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你能确定第三边的长吗?你能确定第三边的 长的范围吗?2 •如果这两边所夹的角确定了,那么第三边的长确定吗?第三边的长是多少?3 •直角三角形两边长确定了,第三边的长确定吗?如何求第三边的长呢?这节课就让我们一起来探讨这个问题•板书:直角三角形三边数量关系.(这是对三角形三边的不等关系和三角形全等的判定的回顾, 从学生的原有 认知出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课 的目标•当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研 究.)(二)实践探索猜想归纳我们曾经利用图形面积探索过数学公式,大家还记得在哪用过吗?(学生讨论)课件展示:平方差公式、完全平方公式、单项式乘多项式、多项式乘多项式 4——b ——•*- a 2a 1 ■ ab aJ 1,b 1 b 2 ab(a + b ) (a — b) = a 2— b 2a (b +c +d )= ab + ac + ad(a+ b) (c+ d)= ac+ ad + bc+ bd今天,让我们试一试通过计算图形的面积能不能得到直角三角形三边数量关(a+ b) J a2+ 2ab+ b2(从学生已有认知出发,将探求边长之间的关系转化为探求面积之间的关系,让学生有探索问题的信心.)1.(几何画板出示),观察图形,我们以直角三角形 ABC 三边为边向形外作三个正方形•若将图形①②③④⑤剪下,用它们可以拼一个与正方形 ABDE 大小 一样的正方形吗?(同桌同学合作拼图)通过拼图,你有什么发现?(以BC 为边的正方形面积与以AC 为边的正方形面积的和等于以 AB 为边的正方形面积.)(拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间 思维能力和动手能力,体现了活动一一数学.)2•拼图活动引发我们的灵感,运算推演证实我们的猜想•为了计算面积方 便,我们可将这幅图形放在方格纸中.如果每一个小方格的边长记作“ T,请你 求出此时三个正方形的面积(S P = 9,S Q = 16).你是如何得到的?(可以数,也可以通过正方形面积公式计算得到.)如何求S R ? ( S R 的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示.)学生可能提出割、补、平移、旋转四种方法.系. N(旋转这种方法只适用于斜边为整数的情况,没有一般性,而且此时斜边的长还不能求出来.若有学生提出,应提醒学生.)肯定学生的研究成果,进而让学生打开书回顾课本上的提示. 从小明、小丽的方法中你能得到什么启发?(把图形进行“割”和“补“,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形•这种思想方法,称为化归思想. )3•变化直角三角形,仿照以上方法计算直角边为5和3的直角三角形中以斜边为边的正方形面积.(这是“割”和“补”思想的再一次应用•让学生感受所学即所用,体验成功的乐趣.)4.通过计算,你发现这三个正方形面积间有什么关系吗?(3+ S R,要给学生留有思考时间.)5.利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积间也有如上关系吗?将网格线去掉,利用几何画板中的度量工具可以看到 &+ S R.(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多一般的情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻.)6. 我们这节课是探索直角三角形三边数量关系.至此,你对直角三角形三边的数量关系有什么发现?(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于斜边的平方. )(这一问题的结论是本节课的点睛之笔,应充分让学生总结、交流、表达. )7. 用弯曲的手臂形象地表示勾、股、弦的概念,再给出勾股定理,进而给出字母表达式.一段紧张的探索过程之后,播放一段有关勾股历史的录音.(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感. )8. 自主阅读课本.(教师进行巡视,对有困难的同学给予帮助,促进全班同学共同进步,体现面向全体的教学原则.)(三)学以致用体验成功1.完成课本第79-80 页练习1、2.(1 )求下列直角三角形中未知边的长:在学生回答的基础上,老师规范板书一题.(在对勾股定理基本应用的基础上,让学生体会知道直角三角形三边中的任意两边,可以求第三边.)2 .算一算:如图,一块长约80米、宽约60米的长方形草坪,被不自觉的学生沿对(2)求下列图中未知数角线踏出了一条斜“路”,类似的现象也时有发生.请问同学们:(1)走斜“路”的客观原因是什么?为什么?(2)斜“路”比正路近多少?(这是一道贴近学生生活的实例,使学生进一步了解勾股定理的广泛应用.题目中渗透了德育教育.)(四)课堂小结学生可以谈本节课的收获,也可以提出本节课的疑问.教师引导学生思考特殊的三角形直角三角形三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?这是我们今后将要探讨的内容.(学生总结本堂课的收获,从内容、应用,到数学思想方法,获取知识的途径等方面,给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.最后提及的问题与引入首尾呼应,激发了学生深入研究的兴趣. )(五)布置作业P82习题3.1第1、2题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 勾股定理
教学目标:
1.知识目标:
(1)能说出勾股定理,并能应用勾股定理解决简单问题;
(2)学生在经历用数格子与割补等办法探索勾股定理的过程中,发展合情合理的推理能力,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。
2.能力目标
在探索勾股定理的过程中,让学生经历“观察—猜想—归纳”的数学思想,并体会数形结合的
数学思想方法,培养学生的观察能力、抽象概况能力、创造想象能力的能力。
3.情感目标:
(1)通过实践、猜想、画图等操作使学生深刻感受数学知识的发生发展过程;
(2)通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感。
使学生从经历定理探索的过程中,感受数学之美,探究之趣。
教学重点:掌用面积法探索勾股定理,理解并掌握勾股定理的内容及其简单应用。
教学难点:体验勾股定理的探索过程。
教学方法:选择引导探索法。
采用“问题情境——建立模型——解释——应用”的模式进行教学。
教学准备:多媒体课件,若干张方格纸。
教学过程
一、创设情境导入新课
1955年希腊发行了一枚纪念邮票,邮票上的图案是根据一个著名的数学定理设计的。
请观察这
枚邮票上的图案和图案中各正方形内小方格的个数,你有什么发现?
二、师生互动探索新知
活动1:观察图形,计算正方形P 、Q 、R 的面积.
如图,小方格的面积看做1,以AC 为一边的正方形的面积是____,以BC 为一边的正方形的面
积是____,以AB 为一边的正方形的面积是_____。
这三个正方形的面积之间有着什么关系?
A C
B 活动2:在方格纸上,任意画一个顶点都在格点上的直角三角形;并分别以这个直角三角形的各边为一边向三角形外作正方形,仿照上面的方法计算以直角边、斜边为一边的正方形的面积。
你又有什么发现?
活动3:通过上面三个小正方形面积的探究,你对直角三角形三边之间的数量关系有什么猜想?
P Q
R
归纳: 勾股定理 直角三角形两直角边的平方和等于斜边的平方。
如图,直角三角形中,两直角边长分别为a 、b ,斜边长为c ,
则有222c b a =+. 说明:我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
读一读:勾股世界
练习:
1
x 、y 、z 的值.
2.求下列直角三角形中未知边的长.
三、例题教学 如图,在△ABC 中,∠ACB=900,AB=5cm,BC=3cm,CD ⊥AB 与D,
求:(1)AC 的长; (2)△ABC 的面积; (3)CD 的长。
四、课堂练习——巩固新知
1.如图,一个高 3 米,宽 4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长度为 ( )
A .3米
B .4米
C .5米
D .6米
2.湖的两端有两点A 、B ,从与BA 方向成直角的BC 方向上的点C 测得CA=13千米,CB=12千米,则AB
为 ( )
A. 5千米
B.12千米
C.10千米
D.13千米
3.已知:Rt △ABC 中,AB=4,AC=3,则BC 2的长为 .
五、课堂分享体会
说说这节课的收获。
六、作业
1.课本82页习题3.1第1、2题;数学《补充习题》中3.1勾股定理(1)中的习题.
2. 查阅有关勾股定理的历史资料,关注验证勾股定理的方法. b c
a D C A x 14481y 144169z 576625。