二元一次方程解析式
初中数学-二次函数的解析式
∴a(2-1)2-2=3,得:a=5,
∴解析式为y=5(x- 1)2-2
注:此题运用了二次函数的顶点式
2.已知抛物线过三点:A(-1,2),B(0,1), C(2,-7),求二次函数的解析式.
解:设二次函数的解析式为: y ax bx 1
2
a b 1 2 由已知得: 4a 2b 1 7
∵抛物线过点C(1,2)
注:此题运用了
二次函数的双根式
解析式为: 1 y ( x 1)(x 3) 2
∴ a (1 1)(1 3) 2
4a 2 1 a 2
3 3.已知抛物线和y轴的交点(0,- 2 )
和x 轴的一个交点(-1,0),对称轴是x =1. (1)求图象是这条抛物线的二次函数的解析式; (2)判断这个二次函数是有最大值还是有最小值, 并求出这个最大值或最小值
2 2
y
A O
B
x
公式:AB | x2 x1 | |a|
b 2 4ac |a| |a|
y ax2 bx c, (a 0)
6.抛物线y=-2x2+4x+1 在 x轴上截得的线段长度
为
6
.
y
16 8 6 解: AB |a| 2
A O B
当x
b 1 1时 1 2a 2 2
y最小值
4ac b 2 4a
1 3 4 ( ) (1) 2 2 = 2 =-2 1 4 2
b 1 当x 1时函数有最小值 1 2a 2 2 1 2 3 y最小值 1 1 2 2 2
x1, x2 为方程: a(x-x1)(x-x2)=0的两个 根,即抛物线与x的两个交点的横坐标,
5.5二元一次方程组的图象解法
学生自己先思考 后,再分组讨论。 并让代表展示出 讨论结果.
x y 5 的解有什么关系? 2 x y 1
x-2y= - 2 2x–y=2
你能说理由吗? ﹙3﹚例:用作图象的方法解方程组
同学们你从本题中感悟到什么? 原来我们解二元一次方程组除了代入法和加减法外还可以 用图像法,那么用作图法来解方程组的步骤如下: (a)把二元一次方程化成一次函数的形式 (b)在直角坐标系中画出两个一次函数的图像,并标出交点。 (c)交点坐标就是方程组的解。 4、练一练 1、用作图象的方法解方程组 2x+y=4 2x-3y=12 2、在图中的两直线 l1、l2 的交点坐标可以看作 的解。 三、总结 1、我们可以得到:二元一次方程组无解<=>一 次 函数的图像平行(无交点)二元一次 方程组有一解<=>一次函数的图像相交 (有一个交点)二元一次方程组有无数个 解<=>一次函数的图像重合(有无数个交点) 2、二元一次方程的解实际上就是一次函数的 图像交点。用图像法可以解二元一次方程组, 原来我们还可以用几何的图像法来解代数问题。
八年级
苏科版数学学科导学案 编者:
课
题
5.5 二元一次方程组的图象解法
课型
新授
课时
第 1 课时
教学目标
1、使学生初步理解二元一次方程与一次函数的关系 2、能根据一次函数的图象求二元一次方程组的近似解. 3、通过学生的思考和操作,了解方程与图象之间的关系,引入二元一次方程组图象解法, 同时培养了学生初步的数形结合的意识和能力. 二元一次方程和一次函数的关系,能根据一次函数的图象求二元一次方程组的近似解。 方程和函数之间的对应关系即数形结合的意识和能力。
3 x
一次函数与二元一次方程
一次函数与二元一次方程我们知道一次函数的解析式就是一个二元一次方程,而任何一个二元一次方程都可以化为一次函数解析式的形式,如:y =2x +3是一次函数解析式,也是一个二元一次方程;而2x -y =-3是二元一次方程,不是函数解析式,但可以将其化为y =2x +3,即为一次函数解析式。
因此一次函数与二元一次方程是既有区别又有联系。
区别在于:(1)二元一次方程有两个未知数,而一次函数则有两个变量;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系.联系在于:(1)在直角坐标系中分别描出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上.(2)在一次函数图象上任取一点,它的坐标都适合相应的二元一次方程.由于二元一次方程可以转化为一次函数,在直角坐标系中可以画出函数的图象,所以将方程组中的两个方程都化为一次函数,再在同一直角坐标系中画两个一次函数图象,它们的交点坐标就是相应的二元一次方程组的解.这种将二元一次方程组转化为一次函数,通过画函数图像确定交点坐标,从而解出方程组的方法,我们称为二元一次方程组的图象解法。
用此方法解二元一次方程组一般有下列几个步骤:(1)将相应的二元一次方程改写成一次函数的解析式;(2)在同一直角坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解.我们可以总结为“画直线、找交点、确定解”。
例 用作图象的方法解二元一次方程组⎩⎨⎧=+=+.1,523y x y x 解:①由3x +2y =5,得y =-2523+x ,由x +y =1,得y =-x +1.②在同一直角坐标系内作出一次函数y =-2523+x 的图象L 1和y =-x +1的图象L 2, ③如图1,观察图象,得L 1、L 2的交点为(3,-2),即二元一次方程组⎩⎨⎧=+=+.1,523y x y x 的解是⎩⎨⎧-==.2,3y xL 2 图1评注:(1)第一步变形时,要保证移向第一步变形时,要保证移项变号;(2)作图必须非常准确,因为图形的偏差会导致我们获得方程组解的偏差,甚至导致错解。
人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)
x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是
。
考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4
5.7 用二元一次方程组确定一次函数表达式
探究新知
5.7 用二元一次方程组确定一次函数表达式
解:(1)设此一次函数表达式为:y=kx+b(k≠0) . 根据题意,可得方程组
5 60k b 10 90k b
解得
k 1 , 6
b 5.
所以 y 1 x 5.
6
(2)当y=0时,16 x 5 0 .解得x=30 所以当x>30时,y>0.
基础巩固题
1.若直线 y=0.5x+n 与 y=mx-1 相交于点(1,-2),则( C )
A.m=0.5,n=-2.5
B.m=0.5,n=-1
C.m=-1,n=-2.5
D.m=-3,n=-1.5
2.已知二元一次方程组
xx-+yy==51的解是
x=3 y=-2在同一平面直角坐
标系中,直线y=x﹣5 与直线 y=-x+1 的交点坐标为 (3,-2) .
答:当客户购买400kg,单价是860元.
探究新知
5.7 用二元一次方程组确定一次函数表达式
素养考点 1 已知两点坐标确定一次函数的表达式
例 已知一次函数的图象过点(-1,3)与(2,-3),
求这个一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(-1,3)与(2,-3)分别代入,得:
3.已知函数y=2x+b的图像经过点(a,7)和(-2,a),则这个函数
的表达式为____y_=_2_x_+_5___.
课堂检测
5.7 用二元一次方程组确定一次函数表达式
基础巩固题
4. 在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一
次函数.当所挂物体的质量为1kg时,弹簧长度为15cm;当所
七年级数学二元一次方程组解法
(2)若要使车间每天所获利润不低于24000元,你认
为至少要派多少名工人去制造乙种零件才合适?
课本P34 习题11.8 1,2
; 天臣娱乐,天臣娱乐官网,天臣娱乐开户,天臣娱乐注册 vgd69wjw
是好奇这是什么地方,心想会不会是还在做梦,于是捏了自己一把,发现是有痛觉的,但我又担心自己像盗梦空间那样,做梦 做得有真实的感受,于是开始抱着头摇来摇去的。小男孩见我不太正常,于是大喊着“玉儿姐姐”什么的。刚过没多久,门外 又进来一个人,是个女子,但在我眼中看来,年纪撑死就是个高中生。那女生穿着确实简朴,或者我从这木屋就该猜到,他们 并不是有钱人。我稍微从不可思议的穿越中(尽管我不确定是不是穿越)缓过一些神来,才开始有心思打量了一下这一男一女。 这小正太确实长得好可爱,又不缺乏秀气,长大之后肯定是高富帅;这女生长相略显平凡,但是也透漏出一种秀气,我想,大 概是她现在是素颜,没有任何打扮的模样吧。小男孩的衣服稍微比较鲜艳一点,也显得他比较活泼。他见他的姐姐来了,就跑 过去冲着她的耳朵说了些什么。这女生听后,把目光转向我,开口说道:“公子,身体可好了?”我这么一听,倒是听到了一 口流利的普通话,这让我有点小吃惊。这是,我略显慌张,抚了抚自己的喉咙,张口说道:“应该七七八八了吧?”“应该七 七八八?那是何解?”女子一脸疑惑的看着我。我又吃了一小惊,忙改口道:“就是说,我的身体好很多了。”“是这样啊。” 女子像完成了什么事情一样,说完舒了一口气。我一边纳闷这突如其来的改变,一边组织好想问的问题去问这女生。由于知道 我们语言并没什么阻碍,能正常交流,再加上我知道我的谈吐应该更文绉绉一点才会让她听懂,于是我便问道:“姑娘,能问 你几个问题吗?”“嗯。”我索性翻下床来,站到她身旁问起来,“你知道这是哪吗?这是什么年代?这是由皇帝来统治的 吗?”蓦地,又觉得自己问出一连串好夸张的问题,于是又感觉自己有点小失礼了。这时,这女生脸显现一片通红,我这才有 意识到,我刚才问问题的时候靠得她太近了。那也不能怪我,向来问别人问题,就应该靠近点好让对方挺清楚不是吗?“这是 南国,年代是吕王八年。”女子羞涩地回答道。我见状,先有礼貌的向这女生道个歉,说道:“姑娘,刚才失礼了,我只是还 没习惯说话却不靠近别人说啊。”话一讲完,又发现自己说了一些莫名其妙的话,这使我觉得,用这种方式谈吐,真突出一个 烦字啊。女子蓦地转过脸去,脸部抽搐了几下,想必是在偷笑吧。那也难怪,这样的言行是挺让这时代的人感到奇怪搞笑的 第001章 天不收地不留“我的妻,你在哪里?“恍惚间,一个磁性的男声不断在耳畔重复着如此
八年级数学上册(北师大版)用二元一次方程组确定一次函数解析式课件
解:当 0 ≤ x ≤ 0.5 时,设 y 与 x 的函数关系式为 y=kx+b,
因为函数图象经过点(0,25),(0.5,0),
= ,
= -,
所以
解得
所以 y=-50x+25.
. + = ,
= .
当 0.5<x ≤ 1.7 时,设 y 与 x 的函数关系式为 y=mx+n,
= ,
= ,
得
解得
所以 y= x+32.
+ = ,
= ,
经检验,其他几对 x, y 的值均能满足上述表达式,所
以 y 与 x 之间的函数表达式为 y=
x+32.
感悟新知
(3) 0°F 时的温度对应多少摄氏度?
解:当 y=0 时,
x+32=0,解得
所以 0°F 时的温度对应 -
2.[西安交大附中期末]已知
x=3, x=2,
A. 1
x
y
-2
3
)
D. - 3
C. 3
0
p
1
0
解题秘方:紧扣待定系数法求函数表达式的步骤
求解 .
感悟新知
解:设一次函数表达式为 y=kx+b,由表中对应值
可知,当x=-2 时, y=3;当 x=1 时, y=0.
- + = ,
= -,
由此得到
解得
+ = ,
= .
所以一次函数表达式为 y=-x+1.
解:设这个一次函数的表达式为y=kx+b.
把点(3,5)与(-4,9)分别代入,得:
22-1-8 用待定系数法求二次函数的解析式-2023学年九年级数学上册同步精品课堂(人教版)
因此,三元一次方程组的解为 b 3
c 1
2a 2b 2
a 2b 8
④
⑤
我们知道,由两点(两点的连线不与坐标轴平行)的坐标可以确定一次
函数,即可以求出这个一次函数的解析式.对于二次函数,探究下面的问题:
问题1:由几个点的坐标可以确定二次函数?这几个点应满足什么条件?
解:设所求二次函数为y=ax2+bx+c.由已知,函数图象经过(-1,10),(1,
4),(2,7)三点,
a b c 10
得关于a,b,c的三元一次方程组 a b c 4
4a 2b c 7
a 2
解这个方程组,得 b 3
5
因此,所求二次函数的解析式为y=2x2-3x+5.
的坐标,列出关于a,b,c的三元一次方程组就可以求出a,b,c的值.
我们知道,由两点(两点的连线不与坐标轴平行)的坐标可以确定一次
函数,即可以求出这个一次函数的解析式.对于二次函数,探究下面的问题:
问题2:如果一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,能
求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.
分析:确定一次函数,即写出这个一次函数的解析式y=kx+b,需求出k,
b的值.用待定系数法,由两点(两点的连线不与坐标轴平行)的坐标,列出
关于k,b的二元一次方程组就可以求出k,b的值.
类似地,确定二次函数,即写出这个二次函数的解析式y=ax2+bx+c,需
求出a,b,c的值. 由不在同一直线上的三点(任意两点的连线不与y轴平行)
二元一次方程(组)与一次函数(基础)知识讲解
二元一次方程(组)与一次函数(基础)【学习目标】1.理解二元一次方程与一次函数的关系;2.能根据一次函数的图象求二元一次方程组的近似解;3.能利用二元一次方程组确定一次函数的表达式.【要点梳理】要点一、二元一次方程与一次函数的关系1.任何一个二元一次方程(0,)ax by c a b c +=≠、为常数都可以变形为-(0,)a c y x a b c b b=+≠、为常数即为一个一次函数,所以每个二元一次方程都对应一个一次函数.2.我们知道每个二元一次方程都有无数组解,例如:方程5x y +=我们列举出它的几组整数解有0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数y =5+-x 的图像上,反过来,在一次函数x y -=5的图像上任取一点,它的坐标也适合方程5x y +=.要点诠释:1.以二元一次方程的解为坐标的点都在相应的函数图像上;2.一次函数图像上的点的坐标都适合相应的二元一次方程;3.以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同. 要点二、二元一次方程组与一次函数1. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.要点诠释:1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数5y x =-与21y x =-图象的交点为(2,3),则23x y =⎧⎨=⎩就是二元一次方程组521x y x y +=⎧⎨-=⎩的解. 2.当二元一次方程组无解时,方程组中两方程未知数的系数对应成比例,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.2. 图像法解二元一次方程组求二元一次方程组的解,可以转化为求两条直线的交点的横纵坐标(即二元一次方程组的图像解法.)所以,解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.要点诠释:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法.利用待定系数法解决问题的步骤:1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.【典型例题】类型一、二元一次方程与一次函数1、一次函数的图象如图所示,则与此一次函数对应的二元一次方程为()A.x﹣3y=3 B.x+3y=3 C.3x﹣y=1 D.3x+y=1【答案】A【解析】直线过点(3,0),(0,﹣1).代入y=kx+b,得到二元一次方程组解方程组得到.∴一次函数解析式为,移向,并将系数化为1得到所对应的二元一次方程x ﹣3y=3.【总结升华】每个二元一次方程都对应一个一次函数,因此当求出一次函数的解析式时即也就求出了相应二元一次方程.举一反三:【变式】已知3=x ,2-=y 和0=x ,1=y 是二元一次方程03=++by ax 的两个解,则一次函数b ax y +=的解析式为( )A.、32--=x y B 、x y = C.、3+-=x y D 、 33--=x y【答案】D类型二、二元一次方程组与一次函数2、(2016•临清市二模)如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组的解是( )A .B .C .D .【思路点拨】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【答案】C.【解析】解:函数y=ax+b 和y=kx 的图象交于点P (﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.【总结升华】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.举一反三:【变式】(2015春•昌乐)在教学活动中我们知道,任何一个二元一次方程的图象都是一条直线,如图,已知直线y=ax﹣6过点P(﹣4,﹣2),则关于x、y的方程组的解是.【答案与解析】解:∵x=﹣4时,y=x=﹣2,∴点P(﹣4,﹣2)在直线y=x上,∴方程组的解为.故答案为.3、(2014•东莞模拟)在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.【思路点拨】利用两点法作出两直线的图象,交点坐标即为方程组的解.【答案与解析】解:如图,两直线的交点坐标为(0,1),所以,方程组的解是.【总结升华】用一次函数图象解方程是解二元一次方程组的又一解法,反映了一次函数与二元一次方程组之间的联系,能直观地看到怎样用图形来表示方程组的解.类型三、用二元一次方程组确定一次函数表达式4、某游泳池内现存水1890(m3),已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水﹣﹣清洗﹣﹣灌水”的过程,其中游泳池内剩余的水量y(m3)与换水时间t(h)之间的函数关系如图所示.根据图象解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y(m3)与换水时间t(h)之间的函数关系式,写出函数的定义域.【思路点拨】(1)由图象可知,该游泳池5个小时排水1890(m3),根据速度公式求出即可,求出灌水的速度和时间即可求出清洗该游泳池所用的时间;(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b求出即可.【答案与解析】解:(1)∵由图象可知,该游泳池5个小时排水1890(m3),∴该游泳池排水的速度是1890÷5=378(m3/h),由题意得该游泳池灌水的速度是378×=189(m3/h),由此得灌水1890m3需要的时间是1890÷189=10(h),∴清洗该游泳池所用的时间是21﹣5﹣10=6(h),(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b,得,解得:k=189,b=﹣2079,即灌水过程中的y(m3)与时间t(h)之间的函数关系式是y=189t﹣2079,(11<t≤21).【总结升华】本题考查了一次函数的应用,主要考查学生能否把实际问题转化成数学问题,题目比较典型,是一道比较好的题目.举一反三:【变式】为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度xcm 40.0 37.0桌子高度ycm 75.0 70.2(1)请确定y与x的函数关系式?(2)现有一把高39cm的椅子和一张高为78.2的课桌,它们是否配套?为什么?【答案】解:(1)设y=kx+b.根据题意得.解得.∴y=1.6x+11;(2)椅子和课桌不配套.∵当x=39时,y=1.6×39+11=73.4≠78.2,∴椅子和课桌不配套.。
中考数学冲刺复习二元一次方程组02二元一次方程组的解法
二元一次方程组的解法一、相关概念1.二元一次方程:含有个未知数,且未知数的指数均为的方程叫做2.二元一次方程组:像⎧⎨⎩x+y=1383x+5y=540这样,把两个二元一次方程合在一起,就组成了一个。
3.使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的。
4.二元一次方程组的两个方程的,叫做二元一次方程组的解。
二、二元一次方程组解法我们必须熟练使用二元一次方程组这个工具,才能解决更多的问题。
那么我们究竟怎么解决一个二元一次方程组呢?它的解法是怎样的?归根究底,我们要把二元一次方程组回归到以前会处理的一元一次方程问题。
二元一次方程组→一元一次方程.那么现在的问题就是二元怎样变为一元问题?这就是要大家去掌握“消元”的办法。
1.像回顾的问题当中,由二元一次方程组中一个方程,将一个未知数用2.含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进3.而求得这个二元一次方程组的解,这种方法叫做代入消元法。
一般步骤:a、求表达式,代入消元,回代求解b、把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程.这种解方程组的方法叫做加减消元法,简称加减法.三、例题例1.方程m+13n2x+5y=1是二元一次方程,则m=______,n=______。
例2.写出二元一次方程组x+2y=5的所有正整数解。
例3.与方程组⎧⎨⎩x+y-2=0x+2y=0有完全相同的解的是()A.x+y-2=0B.x+2y=0C.(x+y-2)(x+2y)=0D.2x+y-2+(x+2y)=0例4.已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y。
例5.解方程组⎧⎨⎩x+2y=9(1) 3x-2y=-1(2)例6. 解方程组:⎧⎨⎩2x+5y=7(1) 3x+2y=5(2)例7.解方程:(1)⎧⎪⎨⎪⎩2x-3y=2(1)2x-3y+5+2y=9(2) 7(2)⎧⎨⎩x-4y=5(1) x:y=4:3(2)例8. (1)已知关于x、y的二元一次方程组:(1)⎧⎨⎩x+my=4nx+3y=2的解为⎧⎨⎩x=1y=-3,求m+n。
13.4二元一次方程组的图象解法
13.4二元一次方程组的图象解法(第一课时)一 学习目标:使学生初步理解二元一次方程与一次函数的关系 二自主学习:从形式上看,通过移项,二元一次方程可以化为一次函数的形式,一次函数可以化为二元一次方程的形式。
那么二元一次方程的解与相应的一次函数也有关系吗?如果有关系,你能说出有怎样的关系?三 合作探究:方程3x+2y=6的解有多少个?请列出六组解,你能画出这个方程的解为坐标的所有点组成的图形吗?提示一:由3x+2y=6得x= ,y= .提示二:对于y= . 这个函数,任意给出自变量x 的的一些值,可以求都是方程3x+2y=6的解。
提示四:作图x提示五:二元一次方程3x+2y=6的图象就是一次函数的图象,它是一条直线。
四 巩固练习:1、在同一个平面直角坐标系内画出下列二元一次方程的图象。
(1)x-y=0 (2)x+y=0.x (第一题)(第四题)2、(1)下列的有序数对,哪些是二元一次方程3x+y=6的解?A(2,0) B(3,-3) C(5,-9) D(6,-10) E(-2,10) F(-3,15)(2)给出二元一次方程3x+y=6任意五组非整数解。
3、有五角、一元的硬币各若干个,从中取出一些凑成4元,问有多少种不同的取法?4、在同一直角坐标系内分别作出一次函数y=5-x和y=2x-1的图象,这两个图象有交点吗?如果有写出交点的坐标?5、一次函数y=5-x和y=2x-1的图象的交点坐标与方程组521ì+=ïïíï-=ïîx yx y的解有什么关系?13.4二元一次方程组的图象解法(第二课时)一 学习目标:1.能根据一次函数的图象求二元一次方程组的近似解. 2.通过学生的思考和操作,了解方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力. 二自主学习:. 二元一次方程组可以转化为两个一次函数,那么二元一次方程组的解与两个一次函数图象的交点坐标有怎样的关系? 三 合作探究:一般地,任何一个二元一次方程都可以转化为一次函数的形式,所以每一个二元一次方程的图象都是一条直线,这样,解二元一次方程,就转化为在平面直角坐标系里研究两条直线的交点问题了。
中考数学专题练习 二元一次方程组(含解析)(1)(2021学年)
2017年中考数学专题练习二元一次方程组(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专题练习二元一次方程组(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专题练习二元一次方程组(含解析)(1)的全部内容。
二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得 .2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=;当m=2,n=﹣3时代数式的值是 .4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b=.9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4yb2x是同类项,则x,y的值是( )A.x=﹣3,y=2ﻩB.x=2,y=﹣3ﻩC.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是( )A.4b﹣9a=1ﻩB.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为( )A.3ﻩB.﹣3ﻩC.﹣4ﻩD.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数ﻩD.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1ﻩB.a<1ﻩC.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1ﻩC.a≠1ﻩD.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )A.x=u+4ﻩB.x=v+4 C.2x﹣u=4ﻩD.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值. 28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆)25乙种货车辆(辆)36累计运货吨数(吨)15.535ﻬ二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3.【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y=12x﹣20,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12.【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y 的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y=.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b 的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43.【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c=﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4yb2x是同类项,则x,y的值是()A.x=﹣3,y=2ﻩB.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是( )A.4b﹣9a=1ﻩB.3a+2b=1 C.4b﹣9a=﹣1ﻩD.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3ﻩC.﹣4ﻩD.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为( )A.正奇数ﻩB.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( ) A.a<﹣1ﻩB.a<1ﻩC.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为( )A.a≠0ﻩB.a≠﹣1 C.a≠1ﻩD.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5ﻩD.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )A.x=u+4ﻩB.x=v+4ﻩC.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆)25乙种货车辆(辆)36累计运货吨数(吨)15.535【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15。
加减法解二元一次方程组
第五章 二元一次方程组2. 求解二元一次方程组(第2课时)教学内容北师大版《义务教育课程标准实验教科书·数学》八年级上册第五章第二节《解二元一次方程组》第2课时-----加减消元法.内容解析《二元一次方程组》属于《数学课程标准》中“数与代数”领域的基本内容.“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程.因此,一旦解决了方程,一切问题将迎刃而解.”笛卡尔的这段话虽然夸大了方程的作用,但却说明了方程作为数学的一个重要分支,是刻画现实世界的一个有效数学模型.而二元一次方程组是七年级一元一次方程的继续和发展,同时又是今后学习线性方程组和平面解析几何等知识的基础.通过本章的学习,将使学生进一步体会方程的模型思想,感受代数方法的优越性,同时也将有助于巩固有理数、整式的运算、一元一次方程等知识。
本章的主要知识有:二元一次方程和二元一次方程组的有关概念、二元一次方程组的解法、二元一次方程组的应用,其知识结构如下:方程组是方程内容的深化与发展,二元一次方程组是方程组内容的开端,用消元法解二元一次方程组的方法是解方程组的基本思想方法。
本单元的内容是学习二元一次方程组及其它方程组必备的基础知识,二元一次方程组在数学学科和实际生活中都有着广泛的应用。
在平面几何和立体几何中,方程组是计算和证明问题中一种非常重要的代数方法;在函数中,方程组是确定一次函数和二次函数的解析式的一种重要的数学方法;在解析几何中方程组是研究两曲线位置关系的一种重要手段;在实际应用问题中方程组也是解应用题的一种重要工具。
本单元要让学生通过探索、尝试、比较等活动让学生去发现二元一次方程组的解法,体会消元化归的数学思想。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧应用图象法加减消元法代入消元法解法含义二元一次方程组丰富的问题情境-----根据以上原因本节课的教学重点应为:用加减消元法解二元一次方程组。
而加减消元法的本质是消元,加减只是消元的基本技能,消元的过程中却蕴含着“化未知为已知”的化归思想,在教学时尤其要重视对这些数学思想方法的渗透。
二元一次函数图像易错题
用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是x+y-2=02x-y-1=0x+y-2=02x-y-1=0.考点:一次函数与二元一次方程(组).分析:因为函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应该先用待定系数法求出两条直线的解析式,联立两条直线的解析式所组成的方程组即为所求的方程组.解答:解:由图知,两函数经过的点的坐标为:(0,-1),(1,1),(0,2),分别求出图中两条直线的解析式为y=2x-1,y=-x+2;因此所解的二元一次方程组是x+y-2=02x-y-1=0.点评:在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解,反过来,以二元一次方程组的解为坐标的点,一定是相应的两个一次函数的图象的交点.(2008•南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.x+y-2=0 3x-2y-1=0 B.2x-y-1=0 3x-2y-1=0C.2x-y-1=0 3x+2y-5=0 D.x+y-2=0 2x-y-1=0考点:一次函数与二元一次方程(组).专题:数形结合.分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.解答:解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是x+y-2=02x-y-1=0.故选D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,一次函数y=3-x与y=3x-5的图象交点坐标是(2,1),它可以看作是二元一次方程组x+y=33x-y=5x+y=33x-y=5的解.考点:一次函数与二元一次方程(组).专题:计算题.分析:解y=3-xy=3x-5,即可得出交点坐标,把一次函数化为方程的形式即可得出要求的方程组.解答:解:由题意得:y=3-xy=3x-5,解得:x=2y=1,故其可看成x+y=33x-y=5的解,故答案为:(2,1),x+y=33x-y=5.点评:本题考查了一次函数与二元一次方程组,属于基础题,关键是掌握两个一次函数的交点即为方程组的解.如图,是用图象法解某二元一次方程组的图象,则这个二元一次方程组是( )A . 2x-y-2=03x-2y-1=0B . x+y-2=02x-y-1=0C . x+y-2=03x-2y-1=0D . 3x-y-2=03x+2y-5=0考点:一次函数与二元一次方程(组). 专题:数形结合.分析:根据图象,求出两条直线的解析式,由这两条直线的解析式组成的方程组即为所求. 解答:解:由图象知,①直线l 1过点(0,2)、(2,0),设此直线的解析式为y=kx+b ,∴ b=22k+b=0, 解得: b=2k=-1,∴y=-x+2, 整理得:x+y-2=0;②直线l 2过点(1,1)、(0,-1),设解析式为y=mx+n ,同理可得:2x-y-1=0;∴这个二元一次方程组是由直线l 1、直线l 2的解析式组成,即 x+y-2=0菁优网更多试题》试题小亮用作图象的方法解二元一次方程组时,在同一直角坐标系中作出了相应的两个一次函数图象如图所示,则他解的这个方程组是y=-2x+2y=-12x-1y=-2x+2y=-12x-1.考点:一次函数与二元一次方程(组).分析:两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.解答:解:设经过点(0,2)与点(2,-2)的直线的解析式为y=kx+b,则b=22k+b=-2,解得k=-2b=2.∴直线的解析式为y=-2x+2;设经过点(-2,0)与点(2,-2)的直线的解析式为y=mx+n,则-2m+n=02m+n=-2,解得m=-12n=-1.∴直线的解析式为y=-12x-1.故他解的这个方程组是y=-2x+2y=-12x-1.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.(2006•太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A.y=-2x+2 y=12x-1 B.y=-2x+2 y=-xC.y=3x-8 y=12x-3 D.y=-2x+2 y=-12x-1考点:一次函数与二元一次方程(组).专题:数形结合.分析:两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.解答:解:由图可知:直线l1过(2,-2),(0,2),因此直线l1的函数解析式为:y=-2x+2;直线l2过(-2,0),(2,-2),因此直线l2的函数解析式为:y=-12x-1;因此所求的二元一次方程组为y=-2x+2y=-12x-1;故选D点评:本题主要考查二元一次方程组与一次函数的关系.函数图象交点坐标为两函数解析式组成的方程组的解.有一个二元一次方程组无解,小明以此二元一次方程组的两个方程作为一次函数所画的两条直线无交点.考点:一次函数与二元一次方程(组).分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.当方程组无解时,以此二元一次方程组的两个方程作为一次函数所画的两条直线无交点.解答:解:二元一次方程组无解,即不存在能使两式同时成立的x,y的值,则以此二元一次方程组的两个方程作为一次函数所画的两条直线无交点.故填:无.点评:方程组解的情况与一次函数的图象之间的关系大致有三种:二元一次方程组无解,此时一次函数的图象平行(无交点);二元一次方程组有一解,此时一次函数的图象相交(有一个交点);二元一次方程组有无数个解,此时一次函数的图象重合(有无数个交点).一次函数y=3x+7的图象与y轴的交点在二元一次方程-2x+by=18上,则b=187187.考点:一次函数与二元一次方程(组).专题:计算题.分析:本题可先求出直线y=3x+7与y轴的交点坐标,然后将其代入二元一次方程中,可求出b的值.解答:解:一次函数y=3x+7中,令x=0,则y=7,即一次函数与y轴的交点是(0,7);把x=0,y=7代入-2x+by=18,得:7b=18,即b=187.点评:本题主要考查了一次函数与二元一次方程的关系.在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点,一定是相应的两个一次函数的图象的交点.以一个二元一次方程组中的两个方程作为一次函数画图象,所得的两条直线()A.有一个交点B.有无数个交点C.没有交点D.以上都有可能考点:一次函数与二元一次方程(组).分析:二元一次方程组中的两个方程的解的个数可能有一个,或两个方程有无数个解,或无解,因而以一个二元一次方程组中的两个方程作为一次函数画图象,所得的两条直线有一个交点或有无数个交点或没有交点.解答:解:由于方程组的解即为两个函数的交点坐标,而方程组的解有三种可能:①方程组无解;②有一个解;③有无数个解(此时两直线重合);所以A、B、C的情况都有可能.故选择D.点评:一次函数的解析式就是二元一次方程,因而把方程组的解中的x的值作为横坐标,以y的值为纵坐标得到的点,就是一次函数的图象的交点坐标.方程组解的个数就是直线交点的个数.试题如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组y=ax+by=kx的解是x=-4y=-2x=-4y=-2.考点:一次函数与二元一次方程(组).分析:根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组y=ax+by=kx的解.解答:解:根据题意可知,二元一次方程组y=ax+by=kx的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组y=ax+by=kx的解是x=-4y=-2.点评:此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.。
函数解析式及函数有意义条件
1、汽车开始行使时油箱内有油40升,如果每 小时耗油5升,那么油箱内余油量Q升与行使 时间t小时的关系是 Q=40-5t (.0≤t≤8) 并指出其中的常量与变量?
2、小明到商店买练习簿,每本单价2元,购置 的总数x〔本〕与总金额y〔元〕的关系式, 可以表示为 y=2x (x≥0且.x为整数)
根据使函数表示的实际问题有意义的条 件,以及使函数解析式中的数学式子有意义 的条件,列出不等式或不等式组,求出它或它 们的解集,即为自变量的取值范围.
实际问题的函数解析式中自变量取值范围:
1. 函数自变量的取值范围既要使实际问题有意 义,同时又要使解析式有意义.
2.实际问题有意义主要指的是: (1)问题的实际背景(例如自变量表示人数
时,应为非负整数等) . (2)保证几何图形存在(例如等腰三角形底
角大于0度小于90度等).
例1: 汽车油箱有汽油50 L,如果不再加油,那么油箱
试一试:看谁的眼光准
判断以下变量关系是不是函数?
(1)等腰三角形的面积与底边长.
(2)关系式y=± x 中, y是x的函数吗?
判断一个式子是不是函数,一看结构, 二看它的数学式子中的变量之间是否满足 函数的定义.
函数关系式
用来表示函数关系的等式叫做函 数关系式,也称为函数的解析式.
S = 60 t
〔2〕当0<x≤3和x>3时,y都是x的函数吗?为什么?
解:〔1〕当0<x≤3时,y=8; 当x>3时,y=8+1.8〔x-3〕=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4. 〔2〕当0<x≤3和x>3时,y都是x的函数,因为对于x的每一
个确定的值,y都有唯一确定的值与其对应.