椭偏测厚仪主要参数及工作原理
椭圆偏振测厚

用椭圆偏振仪测量透明薄膜厚度和折射率一、实验目的1.了解偏振法测量薄膜参数的基本原理。
2.了解激光椭圆偏振仪的结构,学会正确的调节和使用。
3.用椭圆偏振仪测量透明薄膜的厚度和折射率。
二、实验原理起偏器产生的线偏振光经四分之一波片后成为特殊的椭圆偏振光,把它投射到待测样品的表面上,只要起偏器取适当的方向,被测薄膜样品上反射出来的将是线偏振光,然后通过检偏器消光检测。
由于样品对于入射光中平行于入射面的电场分量和垂直于入射面的电场分量有不同的反射、透射系数,因此从样品上出射的光其偏振状态相对于入射光来说要发生变化。
因此根据偏振光在反射前后偏振状态的变化,可以确定样品的薄膜厚度和折射率等光学参量。
实验中为简化计算,将四分之一波片的主方向定为45度,即出射的椭圆偏振光变为圆偏振光。
三、实验仪器分光计、四分之一波片、激光器、偏振片。
四、实验步骤1、水平度盘的调整:(1)调整望远镜与平行光管同轴。
(2)将水平度盘对准零位。
2、调整栽物台与游标盘的旋转轴,使之垂直望远镜的光轴。
3、检偏器读数头位置的调整与固定(1)打开氦氖激光器开关,使激光束通过小孔光栏和检偏器中心(此时起偏器不要装上),将检偏器读数头90°读数朝上,位置居中。
(2)将黑色反光镜置于装物台中央,将望远镜转过66°(与平行光管成114°夹角),使激光束按布儒斯特角(约57°)入射到黑色反光镜表面,使反射光在白屏上成为一个圆点。
(3)调整检偏器读数头与望远镜筒的相对位置(此时检偏器读数保持不变,即90°位置),使白屏上光点最暗,这时检偏器的透光轴一定平行于入射面,将此时检偏器读数头位置固定下来(拧紧三颗平头螺丝)。
4、起偏器读数头的调整:(1)取下黑色反光镜,将起偏器读数头套在平行光管镜筒上(此时1/4波片不要装上),使其读数0°朝上,位置居中。
(2)将望远镜转回原来位置,使检偏器和起偏器共轴,使激光束通过中心。
椭偏仪工作原理

椭偏仪工作原理
椭偏仪(ellipsometer)是一种测量材料薄膜厚度、折射率等光学参数的仪器。
其工作原理基于材料对偏振光的改变,通过测量光的偏振状态的变化来获得需要的信息。
椭偏仪的工作原理可以分为两个主要部分:入射光的偏振旋转和检测光的分析。
在入射光的偏振旋转部分,一束线偏振光由光源发出,并通过一个偏振片进行偏振。
然后,这束偏振光射入样品表面。
当光通过样品时,材料结构会改变光的振动方向和相对强度。
通过调节偏振片的角度,可以选择不同角度的偏振光入射到样品表面,使得光在样品上产生不同的相对强度和振动方向的变化。
这些入射光经过样品后会接收到被样品反射或透射的光,并进入椭偏仪中的检测部分。
在检测部分,输入的透射或反射光经过特殊的光学元件,如四象限检测器,以测量光的相对强度和振动方向的变化。
这些测量结果通过与理论模型进行比较和分析,可以确定样品的光学参数,如薄膜的厚度和折射率。
通过反复改变入射光的偏振方向,并测量检测光的振动状态和相对强度,可以构建出一个椭圆,称为椭圆参数。
从椭圆参数中可以提取出样品的光学性质,并得到所需的信息。
总的来说,椭偏仪的工作原理基于材料对偏振光的改变,通过测量入射光的偏振旋转和检测光的分析来获取样品的光学参数。
椭圆偏振仪—薄膜厚度测量讲解

近代物理实验椭圆偏振仪—薄膜厚度测量本实验所用的反射式椭偏仪为通常的PCSA 结构,即偏振光学系统的顺序为起偏器(Polarizer )→补偿器(Compensator )→样品(Sample )→检偏器(Analyzer ),然后对其输出进行光电探测。
一.实验原理1. 反射的偏振光学理论图1 光在界面上的反射,假定21n n <,B ϕϕ<1(布儒斯特角),则rs E 有π的相位跃变,光在两种均匀、各向同性介质分界面上的反射如图1所示,单色平面波以入射角1ϕ,自折射率为1n 的介质1射到两种介质的分界面上,介质2的折射率为2n ,折射角2ϕ。
用(is ip E E ,),(rs rp E E ,),(ts tp E E ,)分别表示入射、反射、透射光电矢量的复振幅,p 表示平行入射面即纸面的偏振分量、s 表示垂直入射面即垂直纸面的偏振分量,每个分量均可以表示为模和幅角的形式)exp(||ip ip ip i E E β=,)exp(||is is is i E E β= (1a ) )exp(||rp rp rp i E E β=,)exp(||rs rs rs i E E β= (1b ) )exp(||tp tp tp i E E β=,)exp(||ts ts ts i E E β=(1c ) 定义下列各自p ,s 分量的反射和透射系数:ip rp p E E r /=,is rs s E E r /=(2a ) ip tp p E E t /=,is ts s E E t /=(2b ) 根据光波在界面上反射和折射的菲涅耳公式:21122112cos cos cos cos ϕϕϕϕn n n n r p +-=(3a ) 22112211cos cos cos cos ϕϕϕϕn n n n r s +-=(3b ) 211211cos cos cos 2ϕϕϕn n n t p +=(3c ) 221111cos cos cos 2ϕϕϕn n n t s +=(3d ) 利用折射定律:2211sin sin ϕϕn n =(4) 可以把式(3a )-(3d )写成另一种形式)()(2121ϕϕϕϕ+-=tg tg r p(5a) )sin()sin(2121ϕϕϕϕ+--=s r(5b ) )cos()sin(sin cos 2212121ϕϕϕϕϕϕ-+=p t(5c ))sin(sin cos 22121ϕϕϕϕ+=s t (5d ) 由于折射率可能为复数,为了分别考察反射对于光波的振幅和位相的影响,我们把p r ,s r 写成如下的复数形式:)exp(||p p p i r r δ= (6a ) )exp(||s s s i r r δ= (6b ) 式中||p r 表示反射光p 分量和入射光p 分量的振幅比,p δ表示反射前后p 分量的位相变化,s 分量也有类似的含义,有ip p rp E r E = (7a )is s rs E r E = (7b )定义反射系数比G :s pr r G = (8)则有: is ip rs rpE E G E E = (9)或者由式(1)式,)](exp[||||)](exp[||||is ip is ip rs rp rs rp i E E G i E E ββββ-=- (10)因为入射光的偏振状态取决于ip E 和is E 的振幅比||/||is ip E E 和位相差(is ip ββ-),同样反射光的偏振状态取决于||/||rs rp E E 和位相差(rs rp ββ-),由式(10),入射光和反射光的偏振状态通过反射系数比G 彼此关联起来。
椭偏仪的测试原理

椭偏仪的测试原理
椭偏仪的测试原理主要基于椭圆偏振光在材料表面的反射和透射特性。
入射光束(线偏振光)的电场可以在两个垂直平面上分解为矢量元,这两个平面分别是P平面(包含入射光和出射光)和s平面(与P平面垂直)。
当光束在材料表面发生反射或透射时,反射光或透射光通常为椭圆偏振光。
椭偏仪通过测量反射光或透射光的偏振态变化,包括振幅衰减比和相位差,来分析材料的光学属性和其他相关参数。
这些参数包括但不限于薄膜厚度、折射率、消光系数等。
椭偏仪的测量过程通常涉及多个界面,需要考虑每个界面的反射和透射效应。
椭偏仪的入射角范围通常在45°到90°之间,以便在探测材料属性时提供最佳的灵敏度。
此外,椭偏仪的测量结果通常以波长和入射角为函数,通过分析这些数据可以得到所需的光学常数、膜层厚度以及其他感兴趣的参数值。
椭偏仪具有无损、非接触和无需真空环境的优点,这使得它成为一种极具吸引力的光学测量设备,广泛应用于半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃、激光反射镜、大面积光学膜、有机薄膜等领域。
特别是在原子层沉积技术中,椭偏仪可用于测量纳米薄膜厚度,并实时监测薄膜生长过程。
用椭偏仪测薄膜厚度与折射率解析

103实验十二 用椭偏仪测薄膜厚度与折射率随着半导体和大规模集成电路工艺的飞速发展,薄膜技术的应用也越加广泛。
因此,精确地测量薄膜厚度与其光学常数就是一种重要的物理测量技术。
目前测量薄膜厚度的方法很多。
如称重法、比色法、干涉法、椭圆偏振法等。
其中,椭圆偏振法成为主要的测试手段,广泛地应用在光学、材料、生物、医学等各个领域。
而测量薄膜材料的厚度、折射率和消光系数是椭圆偏振法最基本,也是非常重要的应用之一。
实验原理由于薄膜的光学参量强烈地依赖于制备方法的工艺条件,并表现出明显的离散性,因此,如何准确、快速测量给定样品的光学参量一直是薄膜研究中一个重要的问题。
椭圆偏振法由于无须测定光强的绝对值,因而具有较高的精度和灵敏度,而且测试方便,对样品无损伤,所以在光学薄膜和薄膜材料研究中受到极大的关注。
椭圆偏振法是利用椭圆偏振光入射到样品表面,观察反射光的偏振状态(振幅和位相)的变化,进而得出样品表面膜的厚度及折射率。
氦氖激光器发出激光束波长为632.8nm 的单色自然光,经平行光管变成单色平行光束,再经起偏器P 变成线偏振光,其振动方向由起偏器方位角决定,转动起偏器,可以改变线偏振光的振动方向,线偏振光经1/4波片后,由于双折射现象,寻常光和非寻常光产生π/2的位相差,两者的振动方向相互垂直,变为椭圆偏振光,其长、短轴沿着1/4波片的快、慢轴。
椭圆的形状由起偏器的方位角来决定。
椭圆偏振光以一定的角度入射到样品的表面,反射后偏振状态发生改变,一般仍为椭圆偏振光,但椭圆的方位和形状改变了。
从物理光学原理可以知道,这种改变与样品表面膜层厚度及其光学常数有关。
因而可以根据反射光的特性来确定膜层的厚度和折射率。
图1为基本原理光路。
图2为入射光由环境媒质入射到单层薄膜上,并在环境媒质——薄膜——衬底的两个界面上发生多次折射和反射。
此时,折射角满足菲涅尔折射定律332211sin sin sin ϕϕϕN N N ==(1)104 其中N 1,N 2和N 3分别是环境媒质、= n – i k );ϕ1为入射角、 ϕ2 和ϕ3分别为薄膜和衬底的折射角。
椭偏仪测量薄膜厚度和折射率实验报告

椭偏仪测量薄膜厚度和折射率实验报告摘要:本实验利用椭偏仪仪器去测量薄膜的厚度和折射率,来反映使用者的测量结果。
实验结果表明,测量出的薄膜厚度和折射率值符合预期,经仔细分析实验结果误差解释,结果可信度得到进一步提升。
一、实验目的1、了解椭偏仪的使用及原理2、利用椭偏仪测量薄膜厚度及折射率二、基本原理椭偏仪是一种重要的折射率测量仪,它能够准确而精确地测量出光线穿过薄片时的折射率,以及光线所穿过的薄片的厚度。
椭偏仪是基于位移差原理来测量折射率的。
它采集到穿过薄膜后,光源被折射后,照射到观察板上形成一个圆形光斑,而经过椭偏仪校正器后,光斑就变成一条条短短的线条,然后将其位置与未经膜片折射的光斑位置做比较,就可以很容易地计算出折射率和厚度。
三、实验步骤1、准备实验仪器:椭偏仪仪器、薄膜。
2、调试椭偏仪:(1)检查仪器电源是否已连接;(2)检查观察系统的对焦位置是否正常;(3)在微调镜光组合上将调焦镜反转,此时光线经过校正器再照在观察系统上,就可以看见一条条短短的线条,比较其前后位置;3、将薄膜放置在光路中,调节观察台的位置,把观察台移动到朱莉可变折射率玻璃轴上;4、对准光斑,然后调节调焦镜,把观察台上的光斑放小;5、观察台上的光斑线条前后移动情况,以记录测量结果;6、得出实验结果,然后根据实验结果,计算薄膜的厚度和折射率。
四、实验结果根据实验所得数据,测得薄膜厚度为1.0μm,折射率为1.890。
(1)实验结果表明,薄膜厚度和折射率值与理论值相符合,证明椭偏仪测量结果是可信的。
(2)椭偏仪的测量结果不仅精确可靠,而且灵敏度高,数据操作简便,检测到的偏差也不大,仪器可靠性得到进一步的确立。
椭偏仪测薄膜厚度的基本原理

椭偏仪测薄膜厚度的基本原理
1 薄膜厚度测量原理
椭偏仪是常用的薄膜厚度测量仪器,它可以有效地测量几乎任何
材料表面上由薄膜形成的厚度。
薄膜厚度测量原理是使用电磁阻抗原理,即椭偏仪发射一束同频的极化微波,该微波在发射维护发射端的
接收维护发射端的声音,其中发射端的微波通过薄膜而不能完全传导
微波,部分微波在薄膜样本表面反射,从而产生极化变化。
维护发射
端可以测得这种反射微波的变化,从而用以计算薄膜厚度。
2 信号处理原理
椭偏仪还可以通过处理信号以获取薄膜厚度,而无需测量仪器。
信号处理过程有三种:一是单程微波处理,即只使用发射端接收到的
反射微波进行处理;二是双程微波处理,发射端接收到的反射信号和
接收端发出的信号同时进行处理;三是易程微波处理,只使用发射端
接收到的信号进行处理,但是处理的步骤可以大幅增加。
3 椭偏仪典型应用
椭偏仪测量厚度范围很广,从几微米到几十微米不等,并且可以
测量石墨烯、氧化铝、核聚变堆壳体表面的薄膜厚度。
椭偏仪还可以
应用于模具的成型深度的测量,以及光学系统、显示屏等设备的成型、光学精度的检测。
它是生物医学、能源、电子、新材料、环境保护等
领域的重要检测仪器。
椭偏仪测量薄膜厚度和折射率

实验背景介绍椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。
椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。
结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。
实验原理在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。
通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)图(1-1)这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ ,用r1p、r1s 表示光线的p分量、s分量在界面1、2间的反射系数,用r2p、r2s表示光线的p分、s分量在界面2、3间的反射系数。
由多光束干涉的复振幅计算可知:其中E ip和E is分别代表入射光波电矢量的p分量和s分量,E rp和E rs分别代表反射光波电矢量的p分量和s分量。
现将上述E ip、E is、E rp、E rs四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。
上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分=的实数部分[tgψe iΔ]的虚数部分=的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“椭偏测厚仪”有关情况介绍
一、引言:
1、椭偏法是一种测量光在样品表面反射后偏振状态改变的广西方
法,它可以同时测得样品薄膜的厚度和折射率。
由于此法具有非接触性、非破坏性以及高灵敏度、高精度等优点,鼓广泛用于薄膜厚度及材料的光学常数的测定。
2、椭偏法测量数据可在短时间内快速采集,可对各类薄膜的生长和
工艺过程进行实时监测,故已成为半导体行业重要的在线监测设备之一。
3、纳米技术是当今科技的发展热点,能精确测得纳米级薄膜厚度和
折射率的椭偏测量技术受到人们的高度重视和关注。
二、椭偏测厚仪发展概况:
1、椭偏测厚仪在我国起步较晚,70年代我国自行设计生产的椭偏
测厚仪只有“TP-77型椭偏测厚仪”和“WJZ型椭偏测厚仪”。
基本上是手动测量,仅配一种入射角和衬底材料的薄膜(n,d)~(Ψ,Δ)函数表(如SiO2,70°入射角,波长632.8nm)。
2、90年代末,华东师范大学研制并生产了“HST-1型”和“HST-2
型”多功能智能椭偏测厚仪。
该仪器使用计算机技术,利用消光法自动完成,测量薄膜的厚度和折射率。
3、进入二十一世纪,国内生产自动椭偏测厚仪的厂家逐渐多起来。
如:天津港东科技发展有限公司生产的“SGC-1型椭圆偏振测厚仪”、“SGC-2型自动椭圆偏振测厚仪”。
天津拓普仪器有限公司生产的
“TPY-1型椭圆偏振测厚仪”和“TPY-2型自动椭圆偏振测厚仪”
等。
现将目前国内生产的几种自动椭圆偏振测厚仪,其性能指标等参数列表如下,供参考:
国内几种“椭圆偏振测厚仪”的性能参数
三、 消光法测量薄膜和折射率的计算公式:
1. 在椭偏法测量中,为了简便,通常引入两个物理量——Ψ,Δ来
描述反射光偏振态的变化,它们与总反射系数p R (p 分量,在入射面内),s R (s 分量,在垂直于入射面内)之间的关系,定义如下:
tan Ψi e ∆=p R /s R ————————— 偏振方程 ○
1 式中:Ψ,Δ —— 椭偏参数(均为角度度量)
Ψ —— 相对振幅衰减 Δ —— 相位移动之差
在固定实验条件下:~
1n 和~
3n 为已知,则Ψ=Ψ(d ,~
2n ),
Δ=Δ(d ,~
2n )
2122121i p p p i p p r r e R r r e δδ
--+⋅=
+⋅⋅,2122121i s s s i s s r r e R r r e δ
δ
--+⋅=+⋅⋅
式中:2δ——相邻两光束的相位差,设膜厚为d ,光波长为λ,
则有:
122~~~22221122()d n Cos d n n Sin ππ
δϕϕλλ
=⋅⋅⋅=⋅⋅-⋅——— ○2
若:P-起偏角,A-检偏角
则:Ψ=A ,Δ=k ×180°+90°-2p (当0°≤p ≤135°时,k=1;当
135°≤p ≤180°时,k=3)
综上:通过测得起偏角P 和检偏角A ,即可求得Ψ,Δ,还可反求
d ,~
2n 。
1)
对于透明膜,~
2n 只有实部,上述椭偏方程(复数方程)只有d ,
~2n 两个未知数,由两个已知实测的Ψ,Δ原则上可解出d ,~
2n ,但因得不到它们的解析式,需用计算机进行数据处理,求出数字解。
2)
如何求解未知衬底材料的复折射率~
3n (~
3n =0n ik -)对于无膜样品,
d=0,p R 和s R 的定义式可简化为:
~~
3113~
~
3113
p n Cos n Cos R n Cos n Cos ϕϕϕϕ⋅-⋅=
⋅+⋅,~~
1323~~
1323
s n Cos n Cos R n Cos n Cos ϕϕϕϕ⋅-⋅=
⋅+⋅
取~
1n =1(空气),可解出衬底材料的复折射率~
3n 的实部0n 和
虚部k 的解析式:
()()()22221222
0122211tan 2112tan 4212Cos Sin Sin n k Sin Sin Cos Sin Sin Sin k n Sin Cos ϕϕϕϕϕϕϕϕϕ⎧⎡⎤
-⋅∆⎪⎢⎥=++⎪+⋅∆⎢⎥⎣⎦⎨⎪⋅⋅⋅∆=
⎪+⋅∆⎩
2. 数据处理:
令 2i x e δ-= ———————————————————— ○3 将○
3代入○1得: ()()()()
()()
()()
2212121212221212121211tan 11i i p p s s p
p s s p i i i s
s s p p p p s s r r e r r e r r x r r x R e R r r x r r x r r e r r e δδδ
δδϕ----+⋅+⋅⋅+⋅+⋅⋅⋅=
=
=
+⋅+⋅⋅+⋅⋅+⋅
展开后得到:20a bx c ++=
式中:
()1122tan i p s p s a r e r r r δ
ϕ=⋅⋅-⋅⋅ ()()
221122tan tan i i p s p s s p b r e r r r r e r δδϕϕ=⋅⋅-⋅⋅+⋅⋅-
11tan i s p c r e r δ
ϕ=⋅⋅-
求解得到两个复根
11102ia b x x e a --+==⋅
,22202ia b x x e a
---==⋅
由○3式知x 的模应该为1,在1x ,2
x 中选取模更接近1的一个(另一个舍去),则x=0ia
x e
-⋅,代入○
1○2可得:
a
d λ=
—————————————— ○
4 3. 迭代法求解:
根据实验测得的Ψ和Δ比较准确,误差可以忽略不计,x 的模0x 偏离1的主要原因是由于所给的2n 的初值与实际值有较大的偏差引起的,所以可将01x -的大小作为衡量误差大小的一个标志量。
于是,可以任意给一个初值20n ,将2n 进行多次迭代近似计算,直到01x -小于某个指定的误差δ(例如,取δ=0.00001)为止,即:
01x -<δ —————————————— ○
5 此时的2n 就是实际的薄膜折射率,由○
4式可同时得到薄膜厚度d 。
4. 求薄膜的真实厚度:
需指出的是,上述测得的薄膜厚度均为小于一个周期时的值,
即:0≤2δ≤2π,易知δ=2π,由○
4式可得: 薄膜厚度的周期
D =
薄膜的真实厚度 i i i
d m D d =+ 式中:i m 为正整数,膜厚的周期数;i D 为膜厚的周期;
i d 为不同测量条件时所对应的一个周期内的厚度值。
实验常采用改变入射角和波长的方法得到多组(i ψ,i ∆), 并由
111222d m D d m D d =+=+=⋅⋅⋅⋅⋅⋅
解得薄膜的真实厚度d 。