空间向量在立体几何中的应用教案
教学单元设计:空间向量与立体几何

教学单元设计:空间向量与立体几何1. 单元概述1.1 单元目标本单元旨在通过空间向量与立体几何的研究,使学生掌握空间向量的基本概念、运算规则及其在立体几何中的应用。
通过本单元的研究,学生应能熟练运用空间向量解决立体几何中的相关问题,提高空间想象能力和解决问题的能力。
1.2 单元内容本单元共包括以下几个主要内容:1. 空间向量的基本概念及表示方法2. 空间向量的线性运算3. 空间向量的数量积与夹角4. 空间向量的坐标运算5. 空间向量在立体几何中的应用2. 教学目标2.1 知识与技能1. 掌握空间向量的基本概念及其表示方法2. 掌握空间向量的线性运算规则3. 掌握空间向量的数量积与夹角计算4. 掌握空间向量的坐标运算方法5. 能够运用空间向量解决立体几何中的相关问题2.2 过程与方法1. 通过实例分析,培养学生的空间想象力2. 运用图形演示和数学证明,提高学生的问题解决能力3. 培养学生运用空间向量解决实际问题的能力2.3 情感态度与价值观1. 培养学生对数学学科的兴趣和热情2. 培养学生克服困难的意志和团队协作精神3. 引导学生认识数学在实际生活中的应用价值3. 教学重点与难点3.1 教学重点1. 空间向量的基本概念及其表示方法2. 空间向量的线性运算规则3. 空间向量的数量积与夹角计算4. 空间向量的坐标运算方法5. 空间向量在立体几何中的应用3.2 教学难点1. 空间向量的数量积与夹角计算2. 空间向量的坐标运算方法3. 空间向量在立体几何中的应用4. 教学策略与方法4.1 教学策略1. 采用问题驱动的教学模式,引导学生主动探究2. 利用图形演示和数学证明,帮助学生直观理解3. 提供丰富的练题,巩固所学知识4. 注重个体差异,因材施教4.2 教学方法1. 讲授法:讲解空间向量的基本概念、运算规则及应用2. 案例分析法:分析实际问题,引导学生运用空间向量解决问题3. 小组讨论法:分组讨论,培养学生的团队协作能力4. 练法:提供课后练,巩固所学知识5. 教学评价5.1 评价目标1. 学生对空间向量基本概念的理解程度2. 学生掌握空间向量运算规则的程度3. 学生运用空间向量解决立体几何问题的能力5.2 评价方法1. 课堂问答:检查学生对空间向量基本概念的理解2. 课后作业:检验学生对空间向量运算规则的掌握3. 小组项目:评估学生运用空间向量解决立体几何问题的能力4. 期末考试:全面考核学生在本单元的研究成果6. 教学计划6.1 课时安排本单元共需安排12课时,具体分配如下:1. 空间向量的基本概念及表示方法(2课时)2. 空间向量的线性运算(3课时)3. 空间向量的数量积与夹角(2课时)4. 空间向量的坐标运算(3课时)5. 空间向量在立体几何中的应用(2课时)6.2 教学活动安排1. 第1-2课时:介绍空间向量的基本概念及表示方法2. 第3-5课时:讲解空间向量的线性运算规则3. 第6-7课时:讲解空间向量的数量积与夹角计算4. 第8-10课时:讲解空间向量的坐标运算方法5. 第11-12课时:应用空间向量解决立体几何中的相关问题7. 教学资源1. 教材:选用权威、系统的数学教材,如《高等数学》等2. 辅助教材:提供相关的辅导书、教辅材料,以丰富教学内容3. 网络资源:利用网络平台,提供相关教学视频、课件、题等资源4. 几何画板:利用几何画板软件,直观演示空间向量的运算和立体几何问题8. 教学反思在教学过程中,教师应不断反思教学方法、教学内容和学生研究情况,根据实际情况调整教学策略,以提高教学效果。
空间向量在立体几何中的应用教学设计

空间向量在立体几何中的应用教学设计一、教学目标1.知识目标:了解空间向量的概念和性质,掌握空间向量的基本运算法则。
2.能力目标:能够应用空间向量的知识解决立体几何中的问题,如线段长度、向量共线、线段垂直等。
3.情感目标:培养学生的观察力和分析问题的能力,增强解决问题的自信心。
二、教学重点与难点1.教学重点:空间向量的概念和运算法则。
2.教学难点:将空间向量的知识应用到立体几何问题中。
三、教学准备白板、黑板笔、投影仪、屏幕、计算器等。
四、教学过程Step 1 引入1.教师出示两个立方体模型并提问:你们能用线段表示两个立方体顶点之间的距离吗?2.引出空间向量的概念,并与平面向量进行比较,说明二者的区别。
Step 2 理论讲解1.教师通过投影仪将空间向量的定义、表示和性质呈现给学生,学生做好笔记。
2.教师讲解空间向量的基本运算法则,例如加法、数乘和点乘,并通过具体的例题演示计算过程。
Step 3 实例分析1. 教师出示一道题目:“已知直线l: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$,过直线l上一点A(2,3,4),作与直线垂直的平面,并找出平面与原点O(0,0,0)的距离。
”2.请学生先思考如何解决这个问题,然后汇报自己的解题思路。
3.教师引导学生运用空间向量的知识来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 4 拓展应用1.教师设计一道拓展题:“已知线段AB与线段CD的中点E重合,向量BD的坐标为(1,2,3),向量CE的坐标为(4,5,6),求向量AD的坐标。
”2.学生尝试解答,提出自己的解题思路。
3.教师引导学生应用向量共线的性质来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 5 总结与归纳1.教师引导学生回顾本节课的学习内容,总结空间向量的基本性质和运算法则。
2.学生通过小组合作的方式归纳学习过程中的思考和解题方法。
空间向量与立体几何(整章教案)

空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时 空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
空间向量与立体几何教案

第三章空间向量与立体几何3.1空间向量及其运算(一)教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的. [师]空间向量的加法、减法、数乘向量各是怎样定义的呢? [生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:AB OA OB +==a +b , OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 92 练习 Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法. Ⅴ.课后作业⒈课本P 106 1、2、⒉预习课本P 92~P 96,预习提纲: ⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么? 板书设计:§9.5 空间向量及其运算(一)一、平面向量复习 二、空间向量 三、例1⒈定义及表示方法 ⒈定义及表示⒉加减与数乘运算 ⒉加减与数乘向量 小结 ⒊运算律 ⒊运算律教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用. 四、教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
用空间向量研究立体几何中的直线、平面的位置关系(课时教学设计)-高中数学人教A版2019选择性必修一

空间中直线、平面的平行、垂直教学设计(一)教学内容空间直线、平面间的平行、垂直关系的向量表示,证明直线、平面位置关系的判定定理.(二)教学目标通过用向量方法判断直线与直线、直线与平面、平面与平面的平行、垂直关系.发展用向量方法证明必修内容中有关直线、平面平行、垂直关系的判定定理的能力.提升学生的直观想象、逻辑推理、数学运算等素养.(三)教学重点及难点重点:用向量方法解决空间图形的平行、垂直问题.难点:建立空间图形基本要素与向量之间的关系,如何把立体几何问题转化为空间向量问题.(四)教学过程设计新课导入:因为空间向量可以表示空间中的点、直线、平面,所以自然地会联想到利用空间向量及其运算可以表示“直线与直线”“直线与平面”和“平面与平面”之间的平行、垂直等位置关系,解决此问题的关键是转化为研究直线的方向向量、平面的法向量之间的关系.教材对空间中直线、平面的平行和垂直两种位置关系分开研究,首先研究空间中直线、平面的平行.1.空间中直线、平面的平行问题1:由直线与直线、直线与平面或平面与平面的平行关系,可以得到直线的方向向量、平面的法向量间的什么关系?师生活动:学生思考,教师点拨.问题1.1由直线与直线平行,可以得到直线的方向向量间有什u1l1u2l2的方向向量分别为u,v ,则l 1//l 2u //v u =λv , λ∈R.问题1.2由直线与平面平行、平面与平面平行,可以得到直线与面平行.得出结论:直线与平面平行还可以用直线的方向向量与平面法向量垂直进行,平面平行可以转化为法向量共线,教师可以结合右图启发学生对此进行研究.设计意图: 实现将直线平行与直线的方向向量平行的互相转化,直线和平面的平行与直线的方向向量和平面法向量垂直的转化,平面平行与平面法向量共线的转化. 2.空间中直线、平面的平行例题例2. 已知:如图,a ⊄β,b ⊂β,a ⋂b =P , a //α,b //α. 求证:α//β.师生活动:学生读懂题意,尝试分析解答.老师引导分析.分析:设平面α的法向量为n ,直线a ,b 的方向向量分别为u ,v ,则由已知条件可得n·u =n·v =0,由此可以证明n 与平面β内的任意一个向量垂直,即n 也是β的法向量.学生完成证明, 教师示范解答. 证明:如图,取平面α的法向量n ,直线a ,b 的方向向量u ,v .αn 1βn 2a buvP αnβ因为a //α,b //α, 所以n·u =0,n·v =0.因为a ⊂β,b ⊂β,a ⋂b =P ,所以对任意点Q ∈β,存在x ,y ∈R,使得 PQ ⃗⃗⃗⃗⃗ =xu +yv . 从而n·PQ ⃗⃗⃗⃗⃗ =n·(xu +yv )=xn· u +yn· v =0. 所以,向量n 也是平面β的法向量.故α//β.设计意图:例2是用向量方法证明平面与平面平行的判定定理,设置例2的目的是使学生体会利用法向量证明两个平面平行的一般基本思路.例3.如图在长方体ABCD -A 1B 1C 1D 1中,AB=4,BC=3,CC 1=2. 线段BC 上是否存在点P ,使得A 1P//平面 ACD 1? 师生活动:学生读懂题意,尝试解答.老师引导分析.分析:根据条件建立适当的空间直角坐标系,那么问题中涉及的点、向量B 1C ⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,以及平面ACD 1的法向量n 等都可以用坐标表示.如果点P 存在,那么就有n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,由此通过向量的坐标运算可得结果.学生完成求解,教师示范解答.解:以D 为原点,DA ,DC ,DD 1,所在直线分别为x轴、y 轴、z 轴,建立如图所示的空间直角坐标系.因为A,C,D 1的坐标分别为(3,0,0),(0,4,0),(0,0,2), 所以AC ⃗⃗⃗⃗⃗ =(-3,4,0),AD ⃗⃗⃗⃗⃗ =(-3,0,2). 设n =(x,y,z )是平面ACD 1的法向量, 则n·AC ⃗⃗⃗⃗⃗ =0,n·AD ⃗⃗⃗⃗⃗ =0,即{−3x +4y =0−3x +2z =0),所以x =23z ,y =12z .取z =6,则x =4,y =3, 所以n =(4,3,6)是平面ACD 1的一个法向量,由A,C,B 1的坐标分别为(3,0,2),(0,4,0),(3,4,2), 得A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,4,0),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(-3,0,-2)DABC D 1A 1B 1C 1设点P 满足B 1P ⃗⃗⃗⃗⃗⃗⃗ =λB 1C ⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1), 则B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,0,-2λ),所以A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1P ⃗⃗⃗⃗⃗⃗⃗ =(-3λ,4,-2λ).令n·A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =0,得-12λ+12-12λ=0,解得λ=12,这样的点P 存在 所以,当B 1P ⃗⃗⃗⃗⃗⃗⃗ =12B 1C ⃗⃗⃗⃗⃗⃗⃗ ,即P 为B 1C 的中点时,A 1P//平面ACD 1.设计意图:例3是用向量方法判断直线与平面平行的问题,设置例3的目的是使学生体会利用法向量和坐标法解决直线与平面平行问题的一般思路.本题也可以利用共面的充要条件求解. 3.空间中直线、平面的垂直问题2:在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?师生活动:教师引导学生结合图形研究线与面垂直,两平面垂直.教师引导学生类比已经经历了研究空间中直线、平面平行的过程,对直线与直线、直线与平面、平面与平面垂直关系的研究可以类似地进行,让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系,然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式.问题2.1 直线l 1,l 2的方向向量分别为v 1,v 2,直线l 1,l 2垂直时,方向向量v 1,v 2有什么关系?师生活动:让学生自主探究显现垂直时,直线方向向量v 1,v 2有什么关系,教师展示答案.问题 2.2:由直线与平面的垂直关系,可以得到直线的方向向量、平面的法向量间有什么关系呢?师生活动:让学生自主探究线面垂直时,直线的方向向量、平面的法向量间有什么关系,教师展示答案.问题2.3:由平面与平面的垂直关系,可以得到这两个平面的法向量间有什么关系呢?师生活动:让学生自主探究面面垂直时,两个平面的法向量间有什么关系,教师展示答案.设计意图:让学生自主探究,将研究直线、平面间的垂直关系转化为研究直线的方向向量、平面的法向量之间的关系.然后借助图形分别给出直线与直线、直线与平面、平面与平面垂直的向量表达式,进一步体会空间向量在研究直线、平面间位置关系中的作用. 4.空间中直线、平面的垂直例题例4 如图,在平行六面体ABCD A 1B 1C 1D 1中,AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°,求证:直线A 1C ⊥平面BDD 1B 1.师生活动:学生读懂题意,尝试解答,老师引导分析.分析:根据条件建立适当的基底向量,通过向量运算证明直线A 1C ⊥平面BDD 1B 1.证明:设AB a =,AD b =,1AA c =,则{,,}a b c 为空间的一个基底且1AC a b c =+-,BD b a =-,1BB c =.因为AB =AD =AA 1=1, ∠A 1AB =∠A 1AD =∠BAD =60°, 所以2221ab c ===,12a b b c c a ⋅=⋅=⋅=. 在平面BDD 1B 1上,取BD 、1BB 为基向量,则对于面BDD 1B 1上任意一点P ,存在唯一的有序实数对(λ,μ),使得1BP BD BB λμ=+. 所以,1111()()()0AC BP AC BD AC BB a b c b a a b c c λμλμ⋅=⋅+⋅=+-⋅-++-⋅=. 所以1AC 是平面BDD 1B 1的法向量. 所以A 1C ⊥平面BDD 1B 1.设计意图:设置例 4 的目的是使学生体会“基底法”比“坐标法”更具有一般性.教学时要注意让学生体会空间向量基本定理在证明中的作用,体会用空间向量解决问题的一般方法.例 5 证明“平面与平面垂直的判定定理”:若一个平面过另一个平面的垂线,则这两个平面垂直.师生活动:学生读懂题意,尝试解答.老师引导分析,学生完成证明.已知:如图,l⊥α,1⊂β,求证:α⊥β.证明:取直线 l 的方向向量u⃗,平面β的法向量n⃗.因为l⊥α,所以u⃗是平面α的法向量.因为1⊂β,而n⃗是平面β的法向量,所以u⃗⊥n⃗.所以α⊥β.设计意图:设置例 5 的目的是使学生体会利用法向量证明平面与平面垂直的一般思路.教学时要注意突出直线的方向向量和平面的法向量的作用,即通过直线的方向向量和平面的法向量,把直线与直线、直线与平面、平面与平面的关系完全转化为两个向量之间的关系,通过向量的运算,得到空间图形的位置关系.5.课堂小结,反思感悟(1)知识总结:(2)学生反思:①通过这节课,你学到了什么知识?②回顾这节课的学习,空间中用向量法判断直线、平面平行与垂直用的具体方法?③在解决问题时,用到了哪些数学思想?设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力,教给学生如何总结,提升学生的数学“学习力”. 6.课堂检测与评价1. 如图,在正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是面AB 1,面A 1C 1的中心. 求证:EF//平面ACD 1.证明:设正方体的棱长为2,以D 为坐标原点,BA ⃗⃗⃗⃗⃗ , DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ,的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz , 则根据题意A(2,0,0),C( 0,2,0),D 1(0,0,2 ),E( 2,1,1 ), F( 1,1,2 ) 所以EF ⃗⃗⃗⃗⃗ =(−1,0,1),AC ⃗⃗⃗⃗⃗ =(−2,2,0),AD 1⃗⃗⃗⃗⃗⃗⃗ =(−2,0,2), 设n=( x , y ,z )是平面ACD 1的一个法向量,则n ⊥AC ⃗⃗⃗⃗⃗ ,n ⊥AD 1⃗⃗⃗⃗⃗⃗⃗ . 所以{n ⋅AC⃗⃗⃗⃗⃗ =−2x +2y =0n ⋅AD 1⃗⃗⃗⃗⃗⃗⃗ =−2x +2z =0),取x = 1,则y =1,z = 1,所以n = ( 1,1,1 ) 又EF ⃗⃗⃗⃗⃗ ⋅n =(−1,0,1)·(1,1,1)= − 1+1=0,所以EF ⃗⃗⃗⃗⃗ ⊥n , 所以EF 平面ACD 1.2.如图所示,在直三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .证明:由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧ n 1·AA1→=0,n 1·AC→=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE→=0⇒⎩⎪⎨⎪⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0,令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .设计意图:第一题证明线面平行,第二题用向量法证明面面垂直,恰当建系向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度,可以使学生巩固课上所学习的知识.7.作业布置完成教材:第31页练习第1,2题第33页练习第1,2,3题第41 页习题1.4 第5,8,11题(六)教学反思1.认识与运用向量及其运算中数与形的关联,体会转化思想.教学中应结合几何图形予以探讨,特别要重视平行六面体、长方体模型作用,引导学生借助图形理解它们,注意避免不联系几何意义的死记硬背;2.深化理解向量运算的作用,正是有了向量运算,向量才显示其重要性.要引导学生结合几何问题,关注向量运算在分析解决问题中的作用;3.重视综合方法、基底向量方法、建立坐标系方法各自特点的分析与归纳,综合方法以逻辑推理作为工具解决问题,基底向量方法利用向量的概念及其运算解决问题,坐标方法利用数及其运算来解决问题,坐标方法常与向量运算结合起来使用,根据它们的具体条件和特点选择合适的方法.总之新的教材,让学生经历向量由平面向空间的推广,重视了知识的发生、发展过程,使学生学会数学思考和推理.。
空间向量与立体几何教案

空间向量与立体几何教案第一章:空间向量基础1.1 空间向量的概念向量的定义向量的几何表示向量的坐标表示1.2 空间向量的运算向量的加法向量的减法向量的数乘1.3 空间向量的性质向量的模向量的方向向量的长度第二章:立体几何基本概念2.1 立体图形的定义立体图形的概念立体图形的分类2.2 立体图形的性质立体图形的大小立体图形的角度立体图形的对称性2.3 立体图形的计算立体图形的面积计算立体图形的体积计算第三章:空间向量与立体图形的交点3.1 空间直线与平面的交点直线与平面的交点公式直线与平面的交点求解方法3.2 空间直线与立体的交点直线与立方体的交点求解方法直线与圆柱的交点求解方法3.3 空间平面与立体的交点平面与立方体的交线求解方法平面与圆柱的交线求解方法第四章:空间向量与立体图形的投影4.1 空间向量的投影向量的正交投影向量的斜交投影4.2 立体图形的投影立方体的正交投影立方体的斜交投影4.3 空间向量与立体图形的投影关系向量投影与立体图形的关系投影变换与立体图形的不变性第五章:空间向量与立体图形的运动5.1 空间向量的运动向量的平移向量的旋转5.2 立体图形的运动立体图形的平移立体图形的旋转5.3 空间向量与立体图形的运动关系运动变换与空间向量的关系运动变换与立体图形的不变性第六章:空间向量在立体几何中的应用6.1 空间向量与立体图形的判定使用空间向量判断立体图形的位置关系使用空间向量判断立体图形的类型6.2 空间向量与立体图形的证明使用空间向量证明立体图形的全等使用空间向量证明立体图形的相似6.3 空间向量与立体图形的构造使用空间向量构造立体图形使用空间向量解决立体几何问题第七章:空间向量的线性运算与立体几何7.1 空间向量的线性组合空间向量的线性组合定义空间向量的线性组合运算7.2 空间向量的线性关系与立体几何使用空间向量的线性关系判定立体图形的位置关系使用空间向量的线性关系解决立体几何问题7.3 空间向量的基底与立体几何空间向量的基底定义使用空间向量的基底表示立体图形第八章:空间向量的内积与立体几何8.1 空间向量的内积定义空间向量的内积概念空间向量的内积运算8.2 空间向量的内积与立体图形的性质使用空间向量的内积判断立体图形的角度使用空间向量的内积解决立体几何问题8.3 空间向量的内积与立体图形的投影使用空间向量的内积解释立体图形的投影使用空间向量的内积解决立体几何问题第九章:空间向量的外积与立体几何9.1 空间向量的外积定义空间向量的外积概念空间向量的外积运算9.2 空间向量的外积与立体图形的性质使用空间向量的外积判断立体图形的位置关系使用空间向量的外积解决立体几何问题9.3 空间向量的外积与立体图形的构造使用空间向量的外积构造立体图形使用空间向量的外积解决立体几何问题第十章:空间向量在立体几何中的综合应用10.1 空间向量与立体图形的轨迹使用空间向量研究立体图形的轨迹使用空间向量解释立体图形的运动10.2 空间向量与立体几何的综合问题解决综合性的立体几何问题使用空间向量进行立体几何的综合分析10.3 空间向量与立体图形的应用案例分析实际案例中的空间向量与立体几何问题解决实际案例中的空间向量与立体几何问题重点解析空间向量的概念、几何表示和坐标表示空间向量的加法、减法和数乘运算空间向量的模、方向和长度的性质立体图形的定义、分类和性质立体图形的大小、角度和对称性立体图形的面积和体积计算空间直线与平面的交点求解方法空间直线与立体的交点求解方法空间平面与立体的交线求解方法空间向量的正交投影和斜交投影立体图形的正交投影和斜交投影空间向量与立体图形的关系投影变换与立体图形的不变性空间向量的平移和旋转立体图形的平移和旋转运动变换与空间向量的关系运动变换与立体图形的不变性空间向量判断立体图形的位置关系空间向量判断立体图形的类型空间向量证明立体图形的全等和相似空间向量构造立体图形空间向量解决立体几何问题空间向量的线性组合和运算空间向量的线性关系判定立体图形的位置关系空间向量的基底表示立体图形空间向量的内积的定义和运算空间向量的内积判断立体图形的角度空间向量的内积解释立体图形的投影空间向量的外积的定义和运算空间向量的外积判断立体图形的位置关系空间向量的外积构造立体图形空间向量研究立体图形的轨迹空间向量解释立体图形的运动解决综合性的立体几何问题使用空间向量进行立体几何的综合分析分析实际案例中的空间向量与立体几何问题解决实际案例中的空间向量与立体几何问题。
空间向量在立体几何中的应用教案(教师使用)

空间向量在立体几何中的应用(一)授课时间:2014年5月11日第7节课 授课班级:高二(9)班 授课教师:高志华教学目标 1、知识与技能(1) 进一步理解向量垂直的充要条件; (2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法; 2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感, 从而激发学数学、用数学的热情。
教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。
教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。
教学方法启发式教学、讲练结合 教学媒体ppt 课件学法指导交流指导,渗透指导. 课型 新授课教学过程一、知识的复习与引人 自主学习1.若OP =x i +y j +z k ,那么(x ,y ,z )叫做向量OP 的坐标,也叫点P 的坐标.2. 如图,已知长方体D C B A ABCD ''''-的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么b a ±=(x 1±x 2,y 1±y 2, ), a ⊥b ⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示位置关系向量表示直线l 1的方向向量为1l , 直线l 2的方向向量为2l , 直线a 的方向向量为a , 直线b 的方向向量为b .l 1⊥ l 21l ⊥2l ⇔l 1⊥αl 1⊥a ,l 1⊥b, ,a b αα⊂⊂,a ∩b=o ,[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。
空间向量在立体几何中的应用教案

空间向量在立体几何中的应用教案教案标题:空间向量在立体几何中的应用一、教学目标:1. 理解空间向量的概念和性质;2. 掌握空间向量的运算法则;3. 理解和掌握空间向量在立体几何中的应用。
二、教学内容:1. 空间向量的概念和性质;2. 空间向量的运算法则;3. 空间向量在立体几何中的应用。
三、教学过程:1. 知识导入通过复习二维向量的性质和运算法则,引入空间向量的概念。
2. 理论讲解讲解空间向量的概念、性质和运算法则,包括向量的加法、减法、数量积和向量积等。
3. 练习与讨论以几何问题为例,引导学生运用空间向量的知识解决相应的几何问题。
例如,通过向量积的应用求解三角形的面积、判断四边形是否是平行四边形等。
4. 实例分析选择一些典型的例题进行详细分析和讲解,帮助学生理解和巩固概念和运算法则。
例如,通过两条直线的法向量来判断直线的位置关系。
5. 拓展应用通过讨论一些拓展性和应用性的问题,帮助学生将空间向量的知识应用到更多的实际问题中。
例如,利用向量的数量积求解棱柱的体积,利用向量的向量积判断平面和直线的位置关系等。
6. 归纳总结对本节课所学内容进行总结和概括,帮助学生加深对空间向量的理解和掌握。
四、教学资源:1. 教科书和课外参考书;2. 相关的几何题目和练习题;3. 板书和投影仪等。
五、教学评价:1. 课堂讨论和提问,查看学生对空间向量的理解和应用能力;2. 批改学生的练习题和作业,评估学生的掌握程度;3. 考试或小测验,检验学生对空间向量知识的吸收和应用能力。
六、教学延伸:可以运用计算机软件或在线平台进行立体几何模拟和实践,帮助学生更加直观地理解和掌握空间向量的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量在立体几何中的应用
教学目标:
(1)掌握空间向量的线性运算及其坐标表示。
(2)能运用向量的数量积判断向量的共线与垂直
(3)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题 重点与难点: 用向量方法解决线面角、二面角问题 教学过程:
1.利用空间向量求两异面直线所成的角的方法及公式为: 异面直线所成角
设分别为异面直线的方向向量,则
2.利用空间向量求直线与平面所成的角的方法及公式为: 线面角
设是直线l 的方向向量,n
是平面的法向量,则
3.利用空间向量求二面角的方法及公式为: 二面角)1800(00≤≤θθ 设
分别为平面
的法向量,则θ与
互补或相等,
注意:运用空间向量坐标运算求空间角的一般步骤为: (1)建立恰当的空间直角坐标。
(2)求出相关点的坐标。
(3)写出向量坐标。
(4)结合公式进行论证、计算。
(5)转化为几何结论。
例1:已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=1
2AB ,N 为AB 上一点,
AB=4AN,M,S 分别为PB,BC 的中点. (1)证明:CM ⊥SN ;
(2)求SN 与平面CMN 所成角的大小.
分析:本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。
解:设PA =1,以A 为原点,射线AB 、AC 、AP 分别为x,y,z 轴正方向建立空间直角坐标
系,如图。
则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, 12),N(12,0,0),S(1,1
2,0)
(1)
111(1,1,),(,,0),
222
11
00
22
1
(II)(,1,0),
2
(,,)CMN 022,(2,1,2)
1021
-1-22|cos |=
22
32
SN CMN CM SN CM SN CM SN NC a x y z z x y x a x y a SN =-=--=-++=⊥=-=⎧-+=⎪⎪==-⎨⎪-+=⎪⎩<>=⨯
因为所以设为平面的一个法向量,则令得因为所与平面所成的o
45角为
例2:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,
2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点。
(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。
分析:本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。
解:
,,//,,,,,,,.
ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥ 四边形为正方形,又且,平面又为中点,且平面
A
E
F
B
C D
H
G
X
Y
Z
H HB GH HF
如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系,
1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则
(1)
(0,0,1),
(0,0,1),////HF HF
GE HF HF ∴==∴⊂⊄∴ 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB
(2)
(2,2,0),(0,0,1),0,.AC AC AC AC AC =-=∴=∴⊥⊥∴⊥ GE GE GE 又BD,且GE BD=G ,平面EBD.
(3)
1111111(1,,),(1,1,1),(2,2,0).
010,10,220011,0y z BE BD BE y z y z y BD ==--=--⎧=--+=⎧⎪=-=⎨⎨--==⎩
⎪⎩∴=-
1111设平面BDE 的法向量为n n 由即,得,n n (,)
2222222(1,,),(0,2,0),(1,1,1).
00,01,10010,-1y z CD CE CD y y z y z CE ==-=-⎧==⎧⎪==-⎨⎨-+==⎩
⎪⎩∴=
2222设平面CDE 的法向量为n n 由即,得,n n (,)
1212121211
cos ,,2
||||22,60,n n n n n n n n ∴<>===∴<>=
即二面角B-DE-C 为60。
例3:如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC
上的点,2CF AB CE ==,
1::1:2:4AB AD AA = (1)求异面直线EF 与1A D 所成角的余弦值; (2)证明AF ⊥平面1A ED
(3)求二面角
1A ED F --的正弦值。
分析:本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。
解:(1)以A 为坐标原点,AB 所在直线为X 轴,AD 所在直线为Y 轴建立空间直角坐标系
(如图所示),设1AB =,依题意得(0,2,0)D ,(1,2,1)F ,1
(0,0,4)A ,31,,02E ⎛⎫
⎪
⎝⎭
易得
10,,12EF ⎛⎫
= ⎪⎝⎭ ,1(0,2,4)A D =-
,于是1113cos ,5EF A D EF A D EF A D
==-
,
所以异面直线EF 与1A D 所成角的余弦值为3
5。
(2)证明:已知(1,2,1)AF = ,
131,,42EA ⎛⎫=-- ⎪⎝⎭ ,11,,02ED ⎛⎫=- ⎪
⎝⎭ 于是AF ·1EA =0,AF ·ED
=0.因此,
1AF EA ⊥,AF ED ⊥,又1EA ED E ⋂= 所以AF ⊥平面1
A ED
(3)解:设平面EFD 的法向量(,,)u x y z =
,则00u EF u ED ⎧=⎪⎨=⎪⎩ ,即1
02
102y z x y ⎧+=⎪⎪⎨
⎪-+=⎪⎩
不妨令X=1,可得
(1,21u →
=-)。
由(2)可知,AF →
为平面
1
A ED 的一个法向量。
于是
2cos
,==3
||AF AF |AF|
u u u →
→
→
→
→→∙,从而
5sin
,=
3AF u →→
所以二面角1
A -ED-F 的正弦值为5
3
本课小结:利用空间向量方法求线线角,线面角,二面角
巩固练习:
1,如图,在四棱锥P —ABCD 中,底面ABCD 是矩形PA ⊥平面ABCD ,AP=AB=2, BC=22,E ,F 分别是AD,PC 的中点. (Ⅰ)证明:PC ⊥平面BEF ;
(Ⅱ)求平面BEF 与平面BAP 夹角的大小。
.
2. 某组合体由直三棱柱111C B A ABC -与正三棱锥ACD B -组成,如图所示,其中,
BC AB ⊥.它的正视图、侧视图、俯视图的面积分别为22+1,1,22+1.
(1)求直线1CA 与平面ACD 所成角的正弦;
(2)在线段1AC 上是否存在点P ,使⊥P B 1平面ACD ,若存在,确定点P 的位置;若不存在,说明理由.。