初中数学_ 二元一次方程组教学课件设计
合集下载
《二元一次方程组》数学教学PPT课件(2篇)

项的次数是多少?
定义:含有两个未知数,并且含未知数的项的次 数都是一次的方程叫做二元一次方程.
未知数x、y为哪些值时能使 x+y=35?
二元一次方程的解:使二元一次方程两边相等的 两个未知数的值,叫二元一次方程的一组解.
x=30 解的写法:上下摆放,左弧号连接,如:
y=5
小结:二元一次方程的解有无数组.
紧扣相 关概念
Dx. y 1,
1 x
y
1
新课进行时
核心知识点二 二元一次方程组的解
问题:满足课堂开始篮球联赛问题中的方程x y 10 ,且
符合问题的实际意义的值有哪些?把它们填入表中。
xx 0 1 2 3 4 5 6 7 适合一y 个y10二元一9 次方8程的7一组6未知5数的4值, 3
叫做这个二元一次方程的一个解。
解:设安排第一道工序为x人,第二道工序为y人。
根据题意得
x y 7, 900x 1200y
新课进行时 针对练习
根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( D )
小红,你上周买的笔和笔记本 的价格是多少啊?
哦……我忘了!只记得先后 买了两次,第一次买了5支笔 和10本笔记本花了42元钱, 第二次买了10支笔和5本笔记 本花了30元钱。
新课进行时
x+y=10 2x+y=16
叫作方程组
方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共 有两个方程,像这样的方程组叫作二元一次方程组。
超越自我
下列方程组是二元一次方程组的是(B )
A. xy 1, B.x y 1,
x y 1
2 2 x y 1
Cxx .
z y
1, 1
《二元一次方程组》数学教学PPT课件(7篇)

练习 已知下列各方程:
其中二元一次方程的个数是( A )
A. 1
B. 2
C. 3
D. 4
鸡兔同笼 《孙子算经》是我国古代较为普及的算书,许多问题浅显有 趣.其中下卷第31题“鸡兔同笼”问题流传尤为广泛,飘洋过 海传到了日本等国.
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
鸡兔同笼 “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? ”解:设鸡有x只,兔有y只,根据题意,得
一场得1分.如果某队为了争取较好名次,想在全部10场比赛中
得16分,那么这个队胜负场数应分别是多少? 解:设胜x场,负(10-x)场,根据题意得: 2x+(10-x)=16
2x+10-x=16 2x-x=16-10 x=6
10-6=4 答:这个队胜6场,负4场.
思考
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负 一场得1分.如果某队为了争取较好名次,想在全部10场比赛中 得16分,那么这个队胜负场数应分别是多少?
二元一次方程的解
再来看前面例子中的方程x+y=10,符合问题的实际意义的 x
、y 的值有哪些?
x 0 1 2 3 4 5 … 10 y 10 9 8 7 6 5 … 0
使二元一次方程左右两边相等的未知数
一般地,一个二元一次方程 有无数个解.如果对未知数 的取值附加某些限制条件, 则可能有有限个解.
例题 下列哪些是二元一次方程组?如果不是为什么?
3x-2y=9 y+5x=0
x=2 x+y=1
x-3y+9z=8 y+3z=5
有三个未知数
xy+y=5 x-y=4
《二元一次方程组》ppt课件

感谢您的观看
简化计算
在代数问题中,有时需要 通过复杂的运算来求解, 二元一次方程组可以简化 这些计算过程。
证明数学定理
在代数证明中,二元一次 方程组可以作为证明某些 数学定理的工具,例如 Cramer's Rule等。
几何问题中的应用
确定位置关系
在几何问题中,二元一次方程组 可以用来确定点、线、面的位置
关系。
05
习题与解答
基础习题
基础习题1:解方程组 2x + 3y = 10
3x - y = 4
基础习题
基础习题2:解方程组 3x + 4y = 12
x - 2y = 5
基础习题
基础习题3:解方程组
2x - y = 4
x + 2y = 7
进阶习题
进阶习题1:解方程组 3x + 4y = 15 x+y=4
详细描述
消元法是解二元一次方程组的一种常用方法。通过加减或代入的方式消去一个或多个变量,将二元一次方程组转 化为一元一次方程,然后求解这个一元一次方程即可得到原方程组的解。消元法可以分为加减消元法和代入消元 法两种。
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵求解二元一次方程组。
详细描述
在资源优化和分配问题中,二元 一次方程组可以用来找到最优的 方案,例如时间、成本、效益等
最小化或最大化。
交通和物流
在交通和物流领域,二元一次方 程组可以用来解车辆路线规划、
货物配载等问题。
04
二元一次方程组的扩展
二元一次方程组的变种
系数变种
在二元一次方程组中,可以通过改变方程的系数来形成新的方程 组,例如将常数项或系数乘以某个数,或将系数互换等。
简化计算
在代数问题中,有时需要 通过复杂的运算来求解, 二元一次方程组可以简化 这些计算过程。
证明数学定理
在代数证明中,二元一次 方程组可以作为证明某些 数学定理的工具,例如 Cramer's Rule等。
几何问题中的应用
确定位置关系
在几何问题中,二元一次方程组 可以用来确定点、线、面的位置
关系。
05
习题与解答
基础习题
基础习题1:解方程组 2x + 3y = 10
3x - y = 4
基础习题
基础习题2:解方程组 3x + 4y = 12
x - 2y = 5
基础习题
基础习题3:解方程组
2x - y = 4
x + 2y = 7
进阶习题
进阶习题1:解方程组 3x + 4y = 15 x+y=4
详细描述
消元法是解二元一次方程组的一种常用方法。通过加减或代入的方式消去一个或多个变量,将二元一次方程组转 化为一元一次方程,然后求解这个一元一次方程即可得到原方程组的解。消元法可以分为加减消元法和代入消元 法两种。
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵求解二元一次方程组。
详细描述
在资源优化和分配问题中,二元 一次方程组可以用来找到最优的 方案,例如时间、成本、效益等
最小化或最大化。
交通和物流
在交通和物流领域,二元一次方 程组可以用来解车辆路线规划、
货物配载等问题。
04
二元一次方程组的扩展
二元一次方程组的变种
系数变种
在二元一次方程组中,可以通过改变方程的系数来形成新的方程 组,例如将常数项或系数乘以某个数,或将系数互换等。
精选 《二元一次方程组》完整版教学课件PPT

把③代入②,得 5(3x 5) 1 3x 5
解得
x
31 12
把 x 31 代入③,得 y 11
12
4
∴方程组的解为
x y
31
12 11 4
.
中考链接:
1.[2015 咸宁]如果实数 x,y 满足方程组
x y 2
2x 2y 5
,那么
x2
y2
的值为
5
.
2.[2016
合肥]方程组
答:初期购得原材料 45 吨,
每天所耗费的原材料为 1.5 吨;
点悟: 1、将未知数的个数由多化少,逐一解决的消元思想是 解方程组的主要思路,代入消元法和加减消元法都可 以解任何二元一次方程组,可根据方程组的特点采用 更适合的方法来解.
2、二元一次方程组与一元一次不等式的应用,审清题 意得到相等关系或不等关系是解题的关键.
充原材料?
解:(1)设初期购得原材料 a 吨,
(2)设再生产 x 天后必须补充原材料,
每天所耗费的原材料为 b 吨
根据题意得
根据题意得
a a
6b 36 10b 30
45 161.5 1.5(1 20%)x ≤3 解得 x≥10
解得
a b
45 1.5
答:最多再生产 10 天后必须补充原材料.
【考点训练】 见配套《考点训练本》P119-120
第 8 课时 二元一次方程(组)
考点 1: 二元一次方程(组)的有关概念
二元一次 方程
含有 两个 未知数,并且含未知数的项 的次数都是 1 次 ,这样的方程叫做二元
一次方程.
二元一次 把具有相同未知数的两个二元一次方程合在 方程组 一起,就组成了一个二元一次方程组.
(完整版)二元一次方程组优秀课件PPT

详细描述
代入法的基本步骤是先将一个方程中的变量用另一个方程中 的变量表示出来,然后将其代入另一个方程中,消去一个变 量,得到一个简单的一元一次方程,最后求解这个一元一次 方程即可。
消元法
总结词
通过对方程进行加、减、乘、除等运 算,消去一个变量,得到一个简单的 一元一次方程。
详细描述
消元法的基本步骤是先将两个方程进 行加、减、乘、除等运算,消去一个 变量,得到一个简单的一元一次方程 ,然后求解这个一元一次方程即可。
二元一次方程组的实际应用
应用场景
二元一次方程组在日常生活和生 产中有着广泛的应用,如路程问 题、价格问题、工作效率问题等 。
示例
一个工人加工零件,x小时加工了 y个零件,已知x+y=10, 2x-y=5 ,求该工人加工零件的效率。
02
二元一次方程组的解法
代入法
总结词
通过将一个方程中的变量用另一个方程中的变量表示出来, 从而消去一个变量,得到一个简单的一元一次方程。
详细描述
在距离问题中,我们常常需要计算两地之间的距离、速度和时间等参数。例如,一辆汽车从A地开往B 地,已知速度和时间,需要求出两地之间的距离。通过设立二元一次方程组,我们可以方便地解决这 类问题。
分配问题
总结词
分配问题是二元一次方程组在经济领域的应用,主要涉及到资源的合理分配和最大化利 用。
详细描述
示例
x+y=10, 2x-y=5
二元一次方程组的解法
解法
通过消元法或代入法,将二元一 次方程组转化为一个或两个一元 一次方程,然后求解得到未知数
的值。
消元法
通过加减或代入的方式消去一个未 知数,将二元一次方程组转化为一 元一次方程。
代入法的基本步骤是先将一个方程中的变量用另一个方程中 的变量表示出来,然后将其代入另一个方程中,消去一个变 量,得到一个简单的一元一次方程,最后求解这个一元一次 方程即可。
消元法
总结词
通过对方程进行加、减、乘、除等运 算,消去一个变量,得到一个简单的 一元一次方程。
详细描述
消元法的基本步骤是先将两个方程进 行加、减、乘、除等运算,消去一个 变量,得到一个简单的一元一次方程 ,然后求解这个一元一次方程即可。
二元一次方程组的实际应用
应用场景
二元一次方程组在日常生活和生 产中有着广泛的应用,如路程问 题、价格问题、工作效率问题等 。
示例
一个工人加工零件,x小时加工了 y个零件,已知x+y=10, 2x-y=5 ,求该工人加工零件的效率。
02
二元一次方程组的解法
代入法
总结词
通过将一个方程中的变量用另一个方程中的变量表示出来, 从而消去一个变量,得到一个简单的一元一次方程。
详细描述
在距离问题中,我们常常需要计算两地之间的距离、速度和时间等参数。例如,一辆汽车从A地开往B 地,已知速度和时间,需要求出两地之间的距离。通过设立二元一次方程组,我们可以方便地解决这 类问题。
分配问题
总结词
分配问题是二元一次方程组在经济领域的应用,主要涉及到资源的合理分配和最大化利 用。
详细描述
示例
x+y=10, 2x-y=5
二元一次方程组的解法
解法
通过消元法或代入法,将二元一 次方程组转化为一个或两个一元 一次方程,然后求解得到未知数
的值。
消元法
通过加减或代入的方式消去一个未 知数,将二元一次方程组转化为一 元一次方程。
《二元一次方程组的解法》数学教学PPT课件(3篇)

用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 五组 6题
六组 7题
• 刘权达
思考题
今有雉兔同笼,上有 三十五头,下有九十四 足。问雉、兔各几何?
题目中的“雉”(读 “zhì”),就是野鸡。
若设鸡有x只,兔子有
y只,根据题意,列出
方程组为
)
二、知识树 验证
无数 数个解
书写 形式
二元一次
方程的解
共有两个 未知数
次数都 是1
二元一次方 程组
未 共知 含项 有的 两次 个数 未是 知1数二元一次方程组
二元一次方程组的解
一个解 验证法
三、深度探究
• 先尝试独立完成学案中的探 究题,探究中遇到的问题可 以与组员合作完成。
四、深度展示
• 展示分工(每组选派代表展示
• 展示时,要说清理由及做法);
• 一组 1题
二组 2题
• 三组 3、4题 四组 5题
• 3、会列二元一次方程组解决实际问题。
一、深 度 自 学
• 1、根据学案,自学教材,并完 成学案中的自主先学部分;
• 2、自学中遇到困难时,可以与 组员互学,互教。
• 3、组长记录小组自学中遇到的 共性问题。
两个未知数
未知项的次数是 1二元一次方程
整式方程
二元一次方程的解
无数个 特殊解有限个 验证法
二元一次方 程
二元
一次
二元一次
方程组的
二
解
元
应用
一 次
验证 解法
方
程
组Байду номын сангаас
达标测评
• 独立完成达标题目
• 答案:
• 1、⑵⑷
2、c
•
3、无数
x 1 x 2
y
4
y
2
• 4、m=2
• 5、略
4x 3y 16
• 6、
y
x
0.5
• •
③ 一次4x方 3程 1的有;_④_②_③_4x__3__1 _
中,是一元 。
5、x=3是方程2x-5=1的解吗?
学习目标
• 1、通过对实际问题的分析,进一步体会 方程及方程组是刻画现实世界的有效数 学模型。
• 2、了解二元一次方程、二元一次方程 组及其解的概念,并会判定一个数是不 是已给出的二元一次方程(组)的解。
今有雉兔同笼, 上有三十五头, 下有九十四足 问雉、兔各几何?
第七章 二元一次方程组
• 1、含有未知数的 等式 叫方程。
• 2、含有 1 个未知数,含未知数的项 的次数是 1 的整式方程,叫一元一次 方程。
• 3、使方程左右两边_相_等____的未知数的 值叫方程的解。
• 4、在① 2x 3 ;② 2x 5 1 ;