初中数学-集合的概念PPT教学课件

合集下载

集合课件ppt课件

集合课件ppt课件

函数与映射
集合在函数和映射的概念中起着关键 作用。函数可以看作是一种特殊的集 合关系,其中每个输入元素都与输出 元素相关联。
在计算机科学中的应用
数据结构
在计算机科学中,集合常被用作实现各种数据结构的基础 ,如哈希表、队列和栈等。集合提供了快速插入、删除和 查找等操作的方法。
算法设计与分析
在Hale Waihona Puke 法设计和分析中,集合用于表示问题实例、状态和转 换等。通过集合运算,我们可以实现各种算法逻辑,如排 序、搜索和图算法等。
统计学与社会学
在统计学和社会学中,集合用于描述人口分布、市场调查和民意调查 等。通过集合运算,我们可以分析数据并得出有意义的结论。
05 集合的扩展知识
无限集
无限集定义
无限集是包含无穷多个元素的集 合,无法完全列举其所有元素。
无穷大与无穷小
无限集中的元素可以按其数量大小 分为无穷大和无穷小,分别表示集 合中元素的数量趋于无穷和趋于零 。
A⊆B。
02
超集定义
如果集合A中的所有元素都是集合B中的元素,并且B中至少有一个元素
不属于A,则称B是A的超集,记作B⊇A。
03
子集与超集的性质
子集和超集之间存在互补关系,即对于任意集合A,存在一个与之对应
的超集A',使得A和A'的并集等于全集。
THANKS FOR WATCHING
感谢您的观看
数据库与信息检索
在数据库和信息检索中,集合用于表示数据记录、查询条 件和结果等。通过集合运算,可以实现高效的数据检索和 管理。
在日常生活中的应用
分类与分组
在日常生活中,集合的概念用于分类和分组事物。例如,将一组物 品分成几组、将人群分为不同年龄段或职业类别等。

集合的概念-课件PPT.ppt

集合的概念-课件PPT.ppt
集合与集合的表示方法 ——集合的概念
一、请回忆
我们常常做这样的题目:
1、将下列数字填入相应的集合: 自然数集合
1.1 , 3 , 5,0, ? , ? 2,3.14, 7.
4
2、不等式的解集(解的集合)
有理数集合
3、圆的定义:平面内到定点的距离等于定长 的点的集合
请关注我们的生活,会发现:
1.高一(6)班的全体学生 2.中国的直辖市 3. 2,4,6,8,10,12,14 4.我国古代的四大发明 5.2004年雅典奥运会的比赛项目
放在大括号内表示集合的方法 注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。 例如:book中的母的集合表示为:
{b,o,o,k} (×)
2、描述法
就是用确定的条件表示某些对象是 否属于这个集合的方法。其一般形式为:
{ x | p(x) }
X为该集合的 代表元素
p(x)表示该集 合中的元素x
二、集合的定义
一般地,一定范围内某些确定的、不同 的对象的全体构成一个集合(set),简称 集。
其中,集合中的每一个对象称为该集合 的元素(element),简称元。
并规定:用花括号“{ }”表示集合且常 用大写拉丁字母表示。集合的元素常用小 写拉丁字母表示。
1.高一(6)班的全体学生 A={高一(6)班的学生}
思考:直线y=x上的点集如何表示?
解:A={(x,y) | y=x }
八、课堂小结:
1、集合的概念:一定范围内某些特定 的、不同的对象的全体构成一个集合; 2、集合的表示:列举法和描述法; 3、常用数集及其表示; 4、“∈”关系及集合的相等。
或{X|X为方程x2-1=0的实数解
讨论:以上每题中的两个集合之间是 什么关系?

集合的概念ppt课件

集合的概念ppt课件

(1) 1
N
(3) -12
Z (5) √2
R
(2) 0
N* (4) √3
Q (6) π
R
解析: (1) ∈ (3) ∈
(5) ∈
(2) ∉ (4) ∉ (6) ∈
03
集合的表示
一、合作探究
小组讨论:
1、小于5的自然数集合A,有哪些元素? 2、小于5的实数集合B,包括哪些元素?
1、集合A,包括元素:0,1,2,3,4。 集合A中的元素可以一 一列举。
③ 集合中元素的特征:确定性、无序性、互异性 ④ 集合的分类:有限集、无限集、空集 ⑤ 数集:N , N* , Z , Q , R ⑥ 集合的表示方法:列举法、描述法
06
课后作业
课后作业1
1、用符号“∈”或“∉”填空:
(1) -3
N, 0.5
N, 0.3
N
(2) 1.5
Z, -5
Z,
3
Z
(3)-0.2
第一章 集合与常用逻辑用语
1.1 集合的概念
目录
01 集合的概念
0 元素与集合 2
0 集合的表示 3
04 集合的分类
01
集合的概念
一、导入生活情景
情景1-上架商品:
如右图,“美汇”生活超市新进了一批果蔬:苹果, 葡萄,黄桃,柠檬,石榴,西瓜,土豆。茄子,西蓝 花等。
作为陈列员,你该如何分类摆放这些商品呢?
四、集合中元素的性质
集合中元素的性质
确定性
1 集合中的元素 必须是确定的
无序性
2 集合中的元素
无顺序之分 {a, b, c} = {a, c, d}
互异性
3 集合中的元素 是互不相同的

集合的概念-课件ppt

集合的概念-课件ppt

(一)集合的概念:
各种各样的事物或一些抽象的符号,都可以看作对象。
一般地,把一些能够确定的不同的对象看成一个整体,就
说这个整体是有这些对象的全体构成的集合(或集)。 构成集合的每个对象叫做这个集合的元素(或成员)
如:小于10的自然数 0,1,2,3,4,5,6,7,8,9 构成了一个集合
集合举例
3、文氏图:用一条封闭的曲线的内部来 表示一个集合.
例1:用列举法表示下列集合
(1)A {x N | 0 x 5} A {1,2,3,4,5} (2)B={2,3}
例2:用描述法表示下列集合
(1){1,1}; (2)大于3的全体偶数构成的集合;
(二)“元素”与“集合”:
1. 集合通常用大写英语字母A,B,C,…来表示,元 素通常用小写英语字母a,b,c,…来表示;
2、元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作 a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A, 记作要注意“∈”的方向,不能把a∈A颠倒过来写.
问题:正偶数的集合怎么表示, 能否使用列举法?
{x R | x能被2整除,且大于0} 或{x R | x 2n, n N}
问题解决:用集合中元素的特征性 质来描述
2、描述法: 在集合I中,属于集合A的任意元素x都 具有性质p(x),而不属于集合A的元 素都不具有性质p(x),则性质p(x)叫做 集合A的一个特征性质,于是集合A 可以表示如下:
3.空集
(1)考虑方程x+1=x+2的解的全体构成的集合.显然这 个集合不含任何元素.
(2)一般地,我们把不含任何元素的集合叫做空集, 记作Ф
知识探究
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?

集合的含义及表示ppt课件.ppt

集合的含义及表示ppt课件.ppt

思考3:我们用符号“ A B”表示集合A与B的 并集,并读作“A并B”,那么如何用描述法 表示集合A B? A B { x |x A ,或 x B }
思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合A B的关系如何? A B与B A的关系如何?
AA B BA B ABBA
理论迁移
例1 写出满足 { 1 ,2 } A { 1 ,2 ,3 ,4 }的所有集 合A.
{1,2},{1,2,3},{1,2,4},{1,2,3,4}
例2 已知集合 A{y|y(x1 )2,x0 }, B {y|yx2x 1 ,x R },试确定集合A与 B的关系.
A B
例3 设集合 A {2, a2} ,B{1,2,a},若 A B , 求实数 a 的值. -1或0
1.1.1 集合的含义与表示
第二课时 集合的表示
问题提出
1.集合中的元素有哪些特征?
确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的, 如“在平面直角坐标系中以原点为圆心,2 为半 径的圆周上的点”组成的集合,那么,我们可以 用什么方式表示集合呢?
称集合A是集合B的真子集.
思考4:如果集合A是集合B的真子集,我们怎 样用符号表示?
AB或 B A
思考5:若集合A是集合B的子集,则集合A一 定是集合B的真子集吗?若集合A是集合B的 真子集,则集合A一定是集合B的子集吗?
知识探究(二)
考察下列集合: (1){x|x是边长相等的直角三角形}; (2){xR|x210} ; (3){xR||x|20}.
思考1:上述三个集合有何共同特点? 集合中没有元素

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

集合的概念及其基本运算PPT教学课件

集合的概念及其基本运算PPT教学课件

在描述法表示集合时,描 述不清或描述错误导致集 合不确定。应该准确描述 元素的性质,确保集合的 确定性。
在进行集合运算时,忽略 空集的情况。空集是任何 集合的子集,因此在进行 交集、并集等运算时需要 考虑空集的情况。
在表示集合时,要确保元 素的互异性,即同一个元 素在一个集合中只能出现 一次。
在进行集合运算时,要遵 循运算规则,确保结果的 准确性。例如,在求交集 时要找两个集合中共有的 元素;在求并集时要将两 个集合中的所有元素合并 在一起并去掉重复元素。
偏序关系与等价关系
等价关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、对称性和 传递性,则称R是A上的一个等 价关系。
区别
偏序关系不满足对称性而等价关 系满足对称性;偏序关系具有方 向性而等价关系不具有方向性。
01
偏序关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、反对称性 和传递性,则称R是A上的一个 偏序关系。
说明。
感谢您的观看
THANKS
04
集合的应用举例
在数学领域的应用
数的分类
自然数集、整数集、有理数集、实数集等都 是数学中常见的集合,通过对这些集合的研 究,可以深入了解数的性质和分类。
函数定义域和值域
函数中的定义域和值域都是集合,通过对这 些集合的运算和研究,可以了解函数的性质 和特点。
方程和不等式的解集
方程和不等式的解集也是集合,通过对这些 集合的运算和研究,可以了解方程和不等式 的解的性质和特点。
02
03
联系
偏序关系和等价关系都是集合上 的二元关系,都满足自反性和传 递性。
04
序偶与笛卡尔积
序偶定义:由两个元素a和b按一定顺序排列成的二元 组称为序偶,记作(a,b)。序偶中的元素具有顺序性,即 (a,b)和(b,a)表示不同的序偶。 笛卡尔积的性质

集合的概念ppt课件

集合的概念ppt课件

(2) 设x B, 则x是整数,则x Z,且10 x 20. 因此, 用描述法表示为: B { x Z | 10 x 20}
因此,用列举法表示为 B {11, 12, 13, 14, 15, 16, 17, 18, 19}.
学习新知
我们约定, 如果从上下文的关系看, x R, x Z 是明确的, 那么, x R, x Z 可以省略, 只写其元素x.
学习新知
在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如:
自然数的集合
有理数的集合
不等式的解的集合
到一个定点的距离 等于定长的点的集合
到一条线段的两个端点 距离相等的点的集合
......
学习新知
观察下列实例:
1 1~10以内的所有奇数 2 方程x2-9=0的实数根 3 小于8的素数
集合
设A是一个集合,我们把集合A中,所有具有共同特征P(x)的元素x所组成的
集合表示为:
x A P(x)
我们称这种方法为描述法。
x为该集合的代表元素
P(x)表示该集合中的元素x所具有的性质
学习新知
例如,实数集R 中,有限小数和无限循环小数都具有 q ( p, q Z, p 0) 的 p
形式,这些数组成有理数集,我们将它表示为:
{0}.
(4) b
{a,b,c}.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系。
总结新知 判断元素与集合关系的两种方法
直接法:
如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否 出现即可,此时应先明确集合是由哪些元素构成的。
总结新知 思考:除字母表示法和自然语言之外,还能用什么方法表示集合?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档