人教版初中数学《概率初步》课件1

合集下载

概率初步PPT人教版1

概率初步PPT人教版1
● A.两张卡片的数字之和等于 B.两张卡片的数字之和大于或等于C.两张 卡片的数字之和等于 D.两张卡片的数字之和等于
● 5.下列事件是必然事件的是( )
● A.乘坐公共汽车恰好有空座 B.同位角相等C.打开手机就有未接电话 D.三角形内角和等于180°
【课前预习】答案
●1.D ●2.A ●3.B ●4.C ●5.D
随机事件特征:
事先不能预料即具有不确定性。
概率初步PPT人教版1(精品课件)
概率初步PPT人教版1(精品课件)
判断下列事件中哪些是必然事件,哪些是不可能事 件,哪些是随机事件。 1、度量三角形内角和,结果是360° (不可能事件) 2、正常情况下水加热到100°C,就会沸腾 (必然事件) 3、经过城市中某一有交通信号灯的路口,遇到红灯 (随机事件) 4、同一枚骰子连续掷两次,朝上一面出现点数之和为14
● 其中为随机事件的是( )
● A.①②
B.①④ C.②③ D.②④
● 2.下列事件中,是必然事件的是( )
● A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路 口,遇到红灯D.任意画一个三角形,其内角和是180°
● 3.下列说法正确的是( )
● A.“任意画出一个三角形,其内角和为”为必然事件B.可能性是的事件在一次试验中 一定不会发生C.检测某批次灯泡的使用寿命,适宜用全面检查D.“任意画出一个等边 三角形,它是轴对称图形”是随机事件
下午放学后,我开始写作业。今天作业太多了,我不停的写 啊,一直写到太阳从西边落下。
概率初步PPT人教版1(精品课件)
概率初步PPT人教版1(精品课件)
摸球试验:袋中装有4个黄球,2个白球,这些球的形状、 大小、质地等完全相同,在看不到球的条件下,随机地 从袋子中摸出一个球。 (1)这个球是白球还是黄球? (2)如果两种球都有可能被摸出,那么摸出黄球和摸出 白球的可能性一样大吗?

人教版教材《概率初步》ppt课件1

人教版教材《概率初步》ppt课件1
1 下列事件发生的概率为0的是( ) C A.射击运动员只射击1次,就命中靶心 B.任取一个实数x,都有|x|≥0 C.画一个三角形,使其三边的长分别为8 cm, 6 cm,2 cm D.拋掷一枚质地均匀且六个面分别刻有1到6的 点数的正方体骰子,朝上一面的点数为6
人教版九年级数学上册 第二十五章 概率初步 25.1.2 概率课件
人教版九年级数学上册 第二十五章 概率初步 25.1.2 概率课件
总结
概率的大小反映了事件发生的可能性的大小, 但不能肯定是否发生.只有概率为0或1的事件, 才能肯定事件是否发生.
人教版九年级数学上册 第二十五章 概率初步 25.1.2 概率课件
人教版九年级数学上册 第二十五章 概率初步 25.1.2 概率课件
A. 1 B. 1 C. 1 D.1 2 34
● 2.下列说法正确的是( )
● A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上 的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表 示买100张彩票一定会中奖D.“抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表 示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数
● 3.下列说法中正确的是( )
● A.通过多次试验得到某事件发生的频率等于这一事件发生的概率B.某人前9次掷出的 硬币都是正面朝上,那么第10次掷出的硬币反面朝上的概率一定大于正面朝上的概率
● C.不确定事件的概率可能等于1
● D.试验估计结果与理论概率不一定一致
● 4.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等 奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是( )

人教版《概率初步》_教学课件

人教版《概率初步》_教学课件

【获奖课件ppt】人教版《概率初步》 _教学 课件1- 课件分 析下载
通过列举试验结果求概率
4.(4分)从-2,-1,2这三个数中任取两个不同的数作为
点的坐标,该点在第四象限的概率是__13______.
5.(4分)将长度为8厘米的木棍截成三段,每段长度均为整 数厘米.如果截成的三段木棍长度分别相同算作同一种截 法(如:5,2,1和1,5,2),那么截成的三段木棍能构成
2.(4 分)在 x2□2xy□y2的空格□中,分别填上“+”或“-”,
在所得的代数式中,能构成完全平方式的概率是( C )
A.1
3 B.4
1 C.2
1 D.4
通过列举试验结果求概率
3.(4分)如图所示,每一个标有数字的方块均是可以翻动 的木牌,其中只有两块木牌的背面贴有中奖标志,则随机
翻动一块木牌中奖的概率为____1____. 3
【获奖课件ppt】人教版《概率初步》 _教学 课件1- 课件分 析下载
【获奖课件ppt】人教版《概率初步》 _教学 课件1- 课件分 析下载
12.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转
两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,
那么可配成紫色的概率是( D )
1
31
1
A.4 B.4 C.3 D.2
4 ____9____.
【获奖课件ppt】人教版《概率初步》 _教学 课件1- 课件分 析下载
【获奖课件ppt】人教版《概率初步》 _教学 课件1- 课件分 析下载
用列表法求概率 9.(8分)一个口袋中有4个相同的小球,分别写有字母A, B,C,D,随机地抽取一个小球后放回,再随机抽取一个 小球. (1)试用列表法列举出两次抽出的球上字母的所有可能结 果; (2)求两次抽出的球上字母相同的概率.

(人教版)概率初步PPT课件1

(人教版)概率初步PPT课件1

第25章复习 ┃ 要点
► 要点3.直接列举求简单事件的概率. 例3.一个袋中装有6个黑球3个白球,这些球除颜色 外,大小、形状、质地完全相同,在看不到球的情 况下,随机的从这个袋子中摸出一个球,摸到白球 的概率是( B)
1 A . 9
1 B . 3
1 C . 2
2 D . 3
例4.掷一枚质地均匀的正方体骰子,骰子的六个面 上分别刻有1到6的点数,掷得面朝上的点数为奇数的 概率为( D )
第25章复习 ┃ 知识归类 2.概率的意义 一般地,如果在一次试验中,有n种可能的结果,并且它们 发生的可能性都相等,事件A包含其中的m种结果,那么事件A m 发生的概率P(A)= n . [注意] 事件A发生的概率的取值范围 0 ≤P(A)≤ 1 ,当A
为 必 然 事 件 时 , P(A) = = 0 .
1 A . 6
1 B. 3
1 C. 4
D.
1 2
第25章复习 ┃ 要点

要点三
例5
用合适的方法计算概率
在一个布口袋中装有只有颜色不同,其他都相同的
白、红、黑三种颜色的小球各 1 只,甲、乙两人进行摸球游 戏,甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸 出一球. (1) 试用树形图 ( 或列表法 ) 表示摸球游戏所有可能的结果;
驶向胜利 的彼岸
第 一 次

反 反 正 反
第 二 次 第 三 次
.



反 正
第25章复习 ┃ 考点 ► 考点四 用频率估计概率
例6 在一个不透明的布袋中,红色、黑色、白色的玻璃球 共有 120 个,除颜色外,形状、大小、质地等完全相同.小刚
通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 36 个. 15%和55%,则口袋中白色球的个数很可能是________

人教版《概率初步》示范课件1

人教版《概率初步》示范课件1
六.归纳小结
布置作业
-12-
1.归纳小结: (1)用列表法或树状图法求概率时,应注意各种结果出现的可能 性务必相同,其目的是保证列举的不重不漏. (2)当实验包含两步时,用列表法较方便,当然也可以用画树状 图法(尤其是“抽取不放回”类问题),如果事件是三步或三步以 上 的实验时,采用树状图法较为方便,此时难以用列表法。 (3)列表法和画树状图求概率体现数形结合及分类的思想, 我们常常借助分类的方法把复杂问题转化为简单问题来解决。
解: P(都是绿)灯1 8
人教版《概率初步》课件完美版1(PP T优秀 课件)
人教版《概率初步》课件完美版1(PP T优秀 课件)
-9-
五.课堂练习,巩固练习
练习2.经过某十字路口的汽车,它可能继续直行,也可能向左
转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这 个十字路口时,求下列事件的概率: (1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转;
定出两人去的概率。
方法2: 手心—A
手背—B
A
B
A
B
A
B
A
BA
BA
BA
B
所以:一次游戏就确定出两人去的概率是3/4。
人教版《概率初步》课件完美版1(PP T优秀 课件)
人教版《概率初步》课件完美版1(PP T优秀 课件)
-5-
四.典例精析 应用新知
例题1.甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若 干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球, 分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I; 现要从3个盒中各随机取出一个小球.求 (1)取出的3个小球中恰好有1个,2个,3个写有元音字母的 概率各是多少? (2)取出的3个小球上全是辅音字母的概率是多少?

课件《概率初步》完美版_人教版1

课件《概率初步》完美版_人教版1

2、会用树状图求出简单事件的概率;
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.
1.设口袋中有个完全相同的小球,它们的标号分别为现从中随机摸出(同时摸出)两个小球并记下标号,则标号之和大于的概率是( )
(1)取出的3个小球上恰好有1个、2个和3个 元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是 多少? 本题中元音字母: A E I
辅音字母: B C D H
A
B
C
D
E
C
D
E
H
IH
IH
IH
IH
IH
I
A
AA
AA
A
BBB
BBB
C
CD
DE
E
CCD
DEE
H
IH
IH
I
HIH
IHI
解:由树形图得,所有可能出现的结果有12个,它们出现的可能性 相等。
1、可能出现的结果只有有限个;
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
当一次试验涉及两个因素时,且可 能出现的结果较多时,为不重复不 遗漏地列出所有可能的结果,通常 用列表法
当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为 不重复不遗漏地列出所有可能的结 果,通常用树形图
例4、甲口袋中装有2个相同的小球,它们分别 写有字母A和B;乙口袋中装有3个相同的小球, 它们分别写有字母C、D和E;丙口袋中装有2个 相同的小球,它们分别写有字母H和I。从3个 口袋中各随机地取出1个小球。

人教版九年级数学上册 《概率》概率初步PPT(第1课时)

人教版九年级数学上册 《概率》概率初步PPT(第1课时)
概率的定义是什么?
概率:一般地,对于一个随机事件A,我们把刻画其发生可能性 大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表 示为P(A).
第六页,共十七页。
【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随机事件
的基本属实.
第七页,共十七页。
合作探究,形成新知
问题1至问题4有什么共同特点? 共同特点: (1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.
现的可能性大小相等.我们用 表示每种点数出现的可能6性大小.
第五页,共十七页。
合作探究,形成新知
问题4 掷一枚质地均匀的骰子,向上的一面的点数有几种可能? 出现向上一面的点数是1的可能性是多少?其他点数呢?
由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可 能性大小相等,都是全部可能结果总数分之一.
第四页,共十七页。
合作探究,形成新知
问题3 掷一枚质地均匀的骰子,向上的一面的点数有多少种可能? 分别是什么? 向上的点数是1、2、3、4、5、6的可能性的大小相等吗? 它们都是总数的几分之几?
掷一枚质地均匀的骰子,向上的一面的点数有6种可能,即1,2, 3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷1 出,所以每种点数出
(1)点数为2; (2)点数为奇数; (3)点数大于2且小于5.
解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,
3,4,5,6,共6种.这些点数出现的可能性相等.
(1)点数为2有1种可能,因此P(点数为2)=
第十一页,共十七页。
.1 6
例题分析,深化提高
(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为

人教版九年级上册数学《用频率估计概率》概率初步PPT教学课件(第1课时)

人教版九年级上册数学《用频率估计概率》概率初步PPT教学课件(第1课时)

新知探究 跟踪训练
一粒木质中国象棋“兵”,它的正面雕刻一个“兵”字, 它的反面是平的.将它从一定高度下掷,落地反弹后可 能是“兵”字面朝上,也可能是“兵”字面朝下.由于 棋子的两面不均匀,为了估计“兵”字面朝上的概率, 某试验小组做了棋子下掷的试验,试验数据如下表: (1) 请将数据表补充完整;
实验次数 20 40 60 80 100 120 140 160
(3) 这个试验说明了什么问题? 在图钉落地试验中,“钉帽着地”的频率随着试验次 数的增加,稳定在常数56.5%附近.
频率
概率
试验值或使用时的统计 值
理论值
区 别
与试验次数的变化有关 与试验次数的变化无关
与试验人、试验时间、 与试验人、试验时间、
试验地点有关
试验地点无关
联 系
试验次数越多,频率越趋向于概率
(2)根据上表的数据,在下图中标注出对应的点.
正面向上的频率 1 0.5
O 100 200 300 400 抛掷次数
请同学们根据试验所得的数据想一想:“正面向上” 的频率有什么规律?
可以发现,在重复抛掷一枚硬币时,“正面向上” 的频率在0.5附近摆动. 随着抛掷次数的增加,在0.5附 近摆动的幅度越来越小.
填完表后,从表中可以看出,随着柑橘质量的增加, 柑橘损坏的频率越来越稳定.柑橘总质量为500 kg时的 损坏频率为0.103,于是可以估计柑橘损坏的概率为0.1 (结果保留小数点后一位).由此可知,柑橘完好的概率 为0.9.
解:根据估计的概率可以知道,在10 000kg柑橘中完好 柑橘的质量为10 000×0.9=9 000(kg), 完好柑橘的实际成本为 (元/kg) 设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000, 解得 x≈2.8. 因此,出售柑橘时每千克定价大约2.8元可获利润5 000

人教版初中数学概率初步ppt1

人教版初中数学概率初步ppt1


4.做好这类题首先要让学生对所给材 料有准 确的把 握,然 后充分 调动已 有的知 识和经 验再迁 移到文 段中来 。开放 性试题 ,虽然 没有规 定唯一 的答案 ,可以 各抒已 见,但 在答题 时要就 材料内 容来回 答问题 。

5.木质材料由纵向纤维构成,只在纵 向上具 备强度 和韧性 ,横向 容易折 断。榫 卯通过 变换其 受力方 式,使 受力点 作用于 纵向, 避弱就 强。

10.剪纸艺术传达着人们美好的情感, 美化着 人们的 生活, 而且能 够填补 创作者 精神上 的空缺 ,使沉 浸于艺 术中的 人们忘 掉一切 烦恼。 或许这 便是它 能在民 间顽强 地生长 ,延续 至今而 生命力 旺盛不 衰的原 因吧。
感谢观看,欢迎指导!
1 000
B.了解一批电视机的使用寿命适合用抽样调查
C.若甲组数据的标准差 S甲=0.31,乙组数据的标 准差 S乙=0.25,则乙组数据比甲组数据稳定
D.在一个装有白球和绿球的袋中摸球,摸出黑球
是不可能事件
(1)小明的讲义夹里放了大小相同的试卷共 12 页,其中语文 4 页、数学 2 页、英语 6 页,他随机地从 讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率
第25章 整理与复习
• 复习目标:
1.理解随机事件的定义及概率的定义; 2.能够用列举法计算简单事件的发生概率,能够通
过重复试验,用事件发生的频率估计概率; 3.通过实例进一步丰富对概率的认识,并能解决一
些简单的实际问题.
知识梳理,构建体系
(1)举例说明什么是随机事件. (2)在什么条件下,可以通过列举法得到随机事
1
2
(1)如图所示是四张质地相同的卡片. 将卡片洗 匀后,背面朝上放置在桌面上.

人教版《概率初步》ppt-精美1

人教版《概率初步》ppt-精美1

红黄 蓝
红黄 蓝
人教版《概率初步》ppt-精美1
解:由树状图得,所有可能出现的结果有27个,它们出现的可能性相等。
(1)三辆车全部继续直行的结果有1个,则 P(三辆车全部继续直行)= 1
(2)两辆车右转,一辆车左转的结果有3个,则
27
31
P(两辆车右转,一辆车左转)=
=
27 9
(3)至少有两辆车左转的结果有7个,则 P(至少有两辆车左转)=
7
27
人教版《概率初步》ppt-精美1
-9-
小结:
当一次试验要涉及3个或3个以上因素时,通常采用
画树状图法求概率。
运用画树状图法求概率的步骤如下:
①画树状图; ②由树状图确定公式P(A)=
m
中m和n的值;
n
③利用公式P(A)= m 计算事件概率。
n
人教版《概率初步》ppt-精美1
人教版《概率初步》ppt-精美1
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,5) (6,6)
P(点数相同)= 6 1 P(至少有枚骰子的3点6数是62 )=11
P(点数和是9)=
左 左 左 左 左 左 左 左 左直 直 直直 直 直 直 直 直 右 右 右右 右 右 右 右 右 左 左 左 直 直 直 右 右 右左 左 左直 直 直 右 右 右 左 左 左直 直 直 右 右 右 左 直 右 左 直 右 左 直 右左 直 右左 直 右 左 直 右 左 直 右左 直 右 左 直 右
4 1 36 9

课件《概率初步》PPT全文课件_人教版1

课件《概率初步》PPT全文课件_人教版1

3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
由表可知可能结果有36种,且它们出现的可
随机事件:在一定条件下可能发生也可能不发生的事件.
从列表可以看出,(m,n)一共有9种等可能的结果.
⑶一枚硬币正面向上、一枚硬币反面向上.
2 5 . 2 用 列 举 法 求 概 率 4.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
⑶至少有一枚骰子的点数为2(记为事件B)的结果有11种,即(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4, 2),(5,2),(6,2).
所以P(A)= .
4.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
(2)若关于x的一元二次方程ax2-2ax+a+3=0有实数根,则有Δ=(-2a)2-4a(a+3)=-12a≥0,∴a≤0.
4.一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.
⑴两枚硬币全部正面向上(记为事件A)的结果只有1种,即“正正”,所以P(A)= .
8.甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒 中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是( )
4),(2,5),(2,6),(1,2),(3,2),(4, 解:(1)四个数字-3,-1,0,2中,正数只有2一个,∴P(数字为正数)= .

人教版九年级上册数学《概率》概率初步PPT教学课件(第1课时)

人教版九年级上册数学《概率》概率初步PPT教学课件(第1课时)
解:(2)指向黄色有2种结果, P(指向黄色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
解:(2)∵黄色扇形的圆心角为240°, ∴指针指向黄色的概率为
.
探究新知
例2 如图是计算机中“扫雷”游戏 的画面.在一个有 9×9 个方格的正方形 雷区中,随机埋藏着 10颗地雷,每个方 格内最多只能埋藏 1 颗地雷.
探究新知
小王在游戏开始时随机地点击一个方格,
点击后出现了如图所示的情况.我们把与标号
(2)P(数字1)= 2 ; 7
(3)P(数字为奇数)= 4 . 7
求简单随机事件的概率
练习3 把一副普通扑克牌中的 13 张梅花牌洗匀后正面 向下放在桌子上,从中随机抽取一张,求下列事件的概率:
(1)抽出的牌是梅花 6; (2)抽出的牌带有人像; (3)抽出的牌上的数小于 5; (4)抽出的牌的花色是梅花.
练习巩固
练习2 如图是一个抽奖转盘,转盘分成 10个相同的扇形,指针固定,转动转盘后点 击抽奖停止,某个扇形会停在指针所指的位 置,(指针指向交线时当作指向右边的扇形) 求下列事件的概率: (1)中一等奖;
解:(3)点数大于2且小于5有2种可能,即点数为3,4, 因此P(点数大于2且小于5).
求简单随机事件的概率
例1 掷一枚质地均匀的骰子,观察向上一面的点数, 求下列事件的概率:
(1)点数为 2; (2)点数为奇数; (3)点数大于 2 且小于 5.
指定事件A发生的所有可能结果

人教版《概率初步》初中数学-教学课件1

人教版《概率初步》初中数学-教学课件1

1
2
A.7
B.7
3
4
C.7
D.7
12.一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别, 袋中的球已经搅匀,从口袋中取出一只球,取出红球的概率是14.
(1)取出白球的概率是多少? (2)如果袋中的白球有 18 只,那么袋中的红球有多少只? 解:(1)34 (2)6
拓展升华
13.(2016·济宁)如图,在 4×4 正方形网格中,黑色部分的图形构成一个轴对称图
并记住这样的教训。
知识点 2:必然事件、不可能事件、随机事件的概率 一般的,对于某事件 A 当 A 为随机事件时,P(A)的范围是 0<P(A)<1 , 当 A 为必然事件时,P(A)= 1 ; 当 A 为不可能事件时,P(A)= 0 .
2.袋子中有除颜色外都相同的黄球和红球共 10 个,其中红球 6 个,从中任意摸 出一个球,
(1)“摸出的球是白球”是 不可能 事件,它的概率是 0 ; 2
(2)“摸出的球是黄球”是 随机 事件,它的概率是 5 ;
(3)“摸出的球是黄球或红球”是 必然 事件,它的概率是 1 .
变式训练
3.(2014·北京)如图,有 6 张扑克牌,从中随机抽取 1 张,点数为偶数的概率是( D )
A.16
(2)出现 6 的概率是 0 ; (3)出现奇数的概率是 1 .
6.下列说法中,正确的是( D ) A.“明天降雨的概率是 80%”表示明天有 80%的时间降雨 B.“抛一枚硬币正面朝上的概率是 0.5”表示每抛硬币 2 次就有 1 次出现正面朝 上 C.“彩票中奖的概率是 1%”表示买 100 张彩票一定有 1 张会中奖 D.在同一年出生的 367 名学生中,至少有两人的生日是同一天
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档