高一数学对数及对数运算1
对数及对数运算(1)
知识探究(一):对数函数的概念
思考1:在上面的问题中,若要使残留的 1 污垢为原来的 ,则要漂洗几次? 64
4
思考2:在关系式 y log 1 x中,取 x a (a 0) 对应的y的值存在吗?怎样计算?
思考3:函数 y log 1 x 称为对数函数,
4
一般地,什么叫对数函数?
思考4:为什么在对数函数中要求a>0, 且a≠l?
理论迁移
例1
用logax,logay,logaz表示下列 各式: 2 xy x y (1) log a ; (2) log a 3 . z z
例2
求下列各式的值:
(1) log2(47×25); (2) lg5
31log3 2
100
;
(3) log318 -log32 ;
(4)
3
1 log 3 2
2.2.2 第一课时
对数函数及其性质 对数函数的概念与图象
问题提出
1 5730 p 2
t
1.用清水漂洗含1个单位质量污垢的 衣服,若每次能洗去污垢的四分之三, 试写出漂洗次数y与残留污垢x的关系式.
2. y log 1 x (x>0)是函数吗?若
4
是,这是什么类型的函数?
a N x 指数式ax=N 指数的底数 幂 幂指数 对数式x= 对数的底数 真数 对数 logaN
思考4:根据对数定义,logal和logaa和 logaan(a>0,a≠1)的值分别是多少?
设loga1=x, 则ax=1, 所以x=0,得loga1=0 设logaa=x, 则ax=a, 所以x=1,得logaa=1
作业: P68练习:1, 2,3. P74习题2.2A组:3,4,5.
人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT
讲授新课
1.对数的定义: 一般地,如果ax=N ( a > 0 , 且a ≠ 1 )
那么数x叫做以a为底N的对数,记作: 其中a叫做对数的底数, N叫做真数.
注意:限制条件是a > 0 , 且a ≠ 1
填写学案,题1
讲授新课
练习1:将下列指数式写成对数式:
① 52 = 25
(2)log
1 a
=
0
即:1的.对数是0
(3)log
a a
=
1
即:底数的对数是1
(4)对数恒等式:aloga N = N
(5)对数恒等式:loga an = n
巩固练习
1、指数式b2 = a(b 0,且b 1)相应的对数式是(D)
A log2a = b B log2 b = a
C logab=2
解:(1)64
-
2 3
=
(43
)
-
2 3
= 4-2 =
1
(4) ln e2 = -x
16
1
1
1
e-x = e2
(2)x6 = 8所以x = 86 = (23 )6 = 22 = 2 - x = 2
(3)10 x = 100所以x = 2
x = -2
讲授新课 4.对数的性质 探究活动 1、试求下列各式的值:
。
简记作
。如 loge 9 简记为 ln 9.
填写学案,题4
例题分析
例1.将下列指数式写成对数式:
(1) 54 = 625
(2)
e-6
=
1
b
(3) 10 a = 27 (4) ( 1 )m = 5.73
人教版数学高一教案对数及其运算(一)
§3.2 对数与对数函数3.2.1 对数及其运算(一)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:对数性质的推导三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪教学过程[问题情境] 对数,延长了天文学家的生命.“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看到,伽利略把对数与最宝贵的空间和时间相提并论.那么,“对数”到底是什么呢?本节就来探讨这个问题.探究点一 对数的概念问题1 若24=M ,则M 等于多少?若2-2=N ,则N 等于多少?答: M =16,N =14. 问题2 若2x =16,则x 等于多少?若2x =14,则x 等于多少? 答: x 的值分别为4,-2.问题3 满足2x =3的x 的值,我们用log 23表示,即x =log 23,并叫做“以2为底3的对数”.那么满足2x =16,2x =14,4x =8的x 的值如何表示? 答: 分别表示为log 216,log 214,log 48. 小结: 1.在指数函数f (x )=a x (a >0,且a ≠1)中,对于实数集R 内的每一个值x ,在正实数集内都有唯一确定的值y 和它对应;反之,对于正实数集内的每一个确定的值y ,在R 内都有唯一确定的值x 和它对应.幂指数x ,又叫做以a 为底y 的对数.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数log a N (a >0,且a ≠1)的性质(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.3.常用对数以10为底的对数叫做常用对数.为了简便起见,对数log 10N 简记作lg N .探究点二 对数与指数的关系问题1 当a >0,且a ≠1时,若a x =N ,则x =log a N ,反之成立吗?为什么?答:反之也成立,因为对数表达式x =log a N 不过是指数式a x =N 的另一种表达形式,它们是同一关系的两种表达形式.问题2 在指数式a x =N 和对数式x =log a N 中,a ,x ,N 各自的地位有什么不同?答问题3 若a b =N ,则b =log a N ,二者组合可得什么等式?答:对数恒等式:a =N .问题4 当a >0,且a ≠1时,log a (-2),log a 0存在吗?为什么?由此能得到什么结论? 答:不存在,因为log a (-2),log a 0对应的指数式分别为a x =-2,a x =0,x 的值不存在,由此能得到的结论是:0和负数没有对数.问题5 根据对数定义,log a 1和log a a (a >0,a ≠1)的值分别是多少?答:log a 1=0,log a a =1.∵对任意a >0且a ≠1,都有a 0=1, ∴化成对数式为log a 1=0; ∵a 1=a ,∴化成对数式为log a a =1.小结: 对数log a N (a >0,且a ≠1)具有下列性质:(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.例1 求log 22, log 21, log 216, log 212. 解: 因为21=2,所以log 22=1;因为20=1,所以log 21=0;因为24=16,所以log 216=4;因为2-1=12,所以log 212=-1. 小结: log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,表示a ,x ,N 三者之间的同一种关系,可以利用其中两个量表示第三个量.因此,已知a ,x ,N 中的任意两个量,就能求出另一个量. 跟踪训练1 将下列指数式写成对数式:(1)54=625; (2)2-6=164; (3)3a =27; (4)⎝⎛⎭⎫13m =5.73. 解: (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)log 135.73=m . 例2 计算:(1)log 927; (2)log 4381; (3)log 354625.解:(1)设x =log 927,则9x =27,32x =33,∴x =32. (2)设x =log 4381,则⎝⎛⎭⎫43x =81,3=34,∴x =16.(3)令x =log 354625,∴⎝⎛⎭⎫354x =625,5=54,∴x =3.小结:要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 求下列各式中的x 的值:(1)log 64x =-23; (2)log x 8=6; (3)lg 100=x . 解: (1)x =(64) -23=(43) -23=4-2=116.(2)x 6=8,所以x =(x 6) 16=816=(23) 16=212= 2.(3)10x =100=102,于是x =2.探究点三 常用对数问题 阅读教材96页下半页,说出什么叫常用对数?常用对数如何表示?答:以10为底的对数叫做常用对数.通常把底10略去不写,并把“log”写成“lg”,并把log 10N 记做lg N .如果以后没有指出对数的底,都是指常用对数.如“100的对数是2”就是“100的常用对数是2”.例3 求lg 10,lg 100,lg 0.01.解:因为101=10,所以lg 10=1;因为102=100,所以lg 100=2;因为10-2=0.01,所以lg 0.01=-2.小结:由本例题可以看出,对于常用对数,当真数为10n (n ∈Z )时,lg 10n =n ;当真数不是10的整数次方时,常用对数的值可通过查对数表或使用科学计算器求得.跟踪训练3 求下列各式中的x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1; (3)log (2-1)13+22=x .解: (1)∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.(3)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1, ∴x =1.当堂检测1.若log (x +1)(x +1)=1,则x 的取值范围是( B ) A.x >-1B.x >-1且x ≠0C.x ≠0D.x ∈R 解析:由对数函数的定义可知x +1≠1,x +1>0即x >-1且x ≠0.2.已知log 12x =3,则x 13=__12______.解析:∵log 12x =3,∴x =(12)3, ∴x 13=12. 3.已知a 12=49(a >0),则log 23a =__4______.解析:由a 12=49(a >0),得a =(49)2=(23)4, 所以log 23a =log 23(23)4=4. 4.将下列对数式写成指数式:(1)log 16=-4;(2)log 2128=7;(3)lg 0.01=-2.解:(1)⎝⎛⎭⎫12-4=16;(2)27=128; (3)10-2=0.01.课堂小结:1.掌握指数式与对数式的互化a b =N ⇔log a N =b .2.对数的常用性质有:负数和0没有对数,log a 1=0,log a a =1.3.对数恒等式有:a log a N =N ,log a a n =n .4.常用对数:底数为10的对数称为常用对数,记为lg N .。
高中数学 第四章 对数运算和对数函数 1 对数的概念课件 必修第一册高一第一册数学课件
2
D.4 =x
(2)D
2021/12/12
第七页,共二十二页。
激趣诱思
知识(zhī shi)点
拨
二、对数的基本性质
1.负数和零没有(méi yǒu)对数.
2.对于任意的a>0,且a≠1,都有
1
loga1=0,logaa=1,loga =-1.
a
3.对数恒等式aa =
N
.
名师点析1.loga1=0,logaa=1可简述为“1的对数等于0,底的对数等于1”.
4
(3)log3(lg x)=1.
2
解:(1)由 log8x=- ,得 x=8
3
3
3
4
2
3
-
2
=(23)-3 =2-2,故
3
4
1
x= .
4
(2)由 logx27=4,得 =27,即 =33,
4
3 3
故 x=(3 ) =34=81.
(3)由 log3(lg x)=1,得 lg x=3,故 x=103=1 000.
3
-1 1
(3)e = ;
e
(4)10-3=0.001.
分析利用当a>0,且a≠1时,logaN=b⇔ab=N进行互化.
解:(1)
1
1 -3
3
(3)ln =-1.
e
=27.
(2)log464=3.
(4)lg 0.001=-3.
2021/12/12
第十页,共二十二页。
当堂检测
探究(tànjiū)一
探究(tànjiū)二
§1
对数(duìshù)的概念
2021/12/12
人教版高一数学必修1第21课时对数与对数的运算(1)含解析
C.N=b2aD.N2=ab
答案:A
解析:把loga =b写成 =ab,∴N=(ab)2=a2b.
2.若a>0,且a≠1,c>0,则将ab=c化为对数式为()
A.logab=cB.logac=b
C.logbc=aD.logca=b
答案:B
解析:由对数的定义直接可得logac=b.
A.2x-9 B.9-2x
C.11 D.9
答案:C
解析:因为sinθ∈[-1,1],所以2+sinθ∈[1,3],即log2x∈[1,3],解得x∈[2,8],所以|x+1|+|x-10|=(x+1)+(10-x)=11.
5.若对数式log(2a-1)(6-2a)有意义,则实数a的取值范围为()
A.(-∞,3) B.
②0.33=0.027;
③e0=1.
(2)将下列对数式写成指数式:
①log0.46.25=-2;
②log310=2.0959;
③ln23.14=x.
解:(1)①log21024=10;②log0.30.027=3;③ln1=0.
(2)①0.4-2=6.25;②32.0959=10;③ex=23.14.
第21课时 对概念.
2.掌握对数的基本性质.
3.能够熟练地运用对数的运算性质进行计算.
识记强化
1.对数的概念.
(1)定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN.
(2)指数式与对数式的关系.
式子
名称
a
b
N
指数式
C. ∪(1,+∞) D. ∪(1,3)
答案:D
解析:由已知,得 ⇒ ⇒ <a<3且a≠1,故选D.
人教A版必修1导学案 必修1 2.2.1对数及对数运算(第1课时)
必修1高一数学第一章§ 2.2.1 对数与对数运算(1)【学习目标】:① 理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系 .【教学重点、难点】:重点:对数式与指数式的互化及对数的性质; 难点:推导对数性质【教学过程】:一、新课讲解:1、对数的概念一般地,若(0,1)x a N a a =>≠且,那么数x 叫做以a 为底N 的______,记作log a x N =a 叫做________________,N 叫做______________(注意:底数a >0,且a ≠1;真数N>0) 举例:x 01.11318=写成对数形式:x = 1.0118log 13,读作x 是以 1.01为底,1318的对数. 2416=写成对数形式:42log 16=,读作2是以4为底,16的对数.2、对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1(2)log x a a N N x =⇔=指数式⇔对数式幂底数←a →对数底数指 数←x →对数幂 ←N →真数3、例题讲解:指数式与对数式互化例1(P63例1)将下列指数式化为对数式,对数式化为指数式.(1)54=625 (2)61264-=(3)1() 5.733m = (4)12log 164=- (5)10log 0.012=- (6)log 10 2.303e =(课本64页#1)练习1:将下列指数式与对数式互化:(1)328=,(2) 1122-=;(3)3log 92=;(4)21log 24=-。
4、对数的性质:问题:① 把a 0=1,a 1=a (a >0,且a ≠1)如何写成对数式?②负数和零有没有对数? ③根据对数的定义,log a N a=? 小结:log log 10, log 1, a N a a a aN === 负数和零没有对数。
5、常用对数和自然对数 ① 以10为底的对数称为常用对数,10log N 常记为___________② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为__________.6、例题讲解例2:(课本63页)求下列各式中x 的值(1)642log 3x =-(2)log 86x = (3)lg100x = (4)2ln e x -= 分析:将对数式化为指数式,再利用指数幂的运算性质求出x .7.巩固提高:求下列各式的值:(1)5log 25; (2)lg1000; (3)15log 15;(4)9log 81; (5) 2.5log 6.25。
新教材高中数学第四章对数运算与对数函数1对数的概念课件北师大版必修第一册
【对点练习】❶ 将下列指数式化为对数式,对数式化为指数式:
(1)42=16;(2)102=100;
1
(3)42=2;(4)log132=-5.
2
[解析] (1)log416=2 . (2)lg 100=2.
(3)log42=12.
(4)21-5=32.
题型二
对数基本性质的应用
例 2求下列各式中的x: (1)log3(log2x)=0; (2)log3(log7x)=1; (3)lg(ln x)=1; (4)lg(ln x)=0. [分析] 利用指数式与对数式的互化进行解答.
【对点练习】❷ 求下列各式中 x 的值:
(1)x=log116; 2
(2)log8x=-13;
(3)log( 2 -1)
1 3+2
2=x.
[解析] (1)∵x=log2116,∴12x=16, 即 2-x=24.∴-x=4,即 x=-4.
(2)∵log8x=-13,∴x=8-13=318=12.
5.若ln e-2=-x,则x=____2_. [解析] 由题意可知e-2=e-x,故x=2.
关键能力•攻重难
题型探究
题型一
对数的定义
例 1 (1)在对数式 y=log(x-2)(4-x)中,实数 x 的取值范围是 ___2_<__x_<__4_且__x_≠__3____.
(2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log216=4;③10-2=0.01;④log 5125=6.
第四章 对数运算与对数函数
§1 指数幂的拓展
【素养目标】 1.能结合指数幂解对数的相关概念,常用对数、自然对数.(数 学抽象) 3.能结合教材中的例题掌握指数与对数的互化、简单的求值.(数 学运算)
对数与对数运算学生版
2.2.1 对数与对数运算1.对数的概念(1)定义:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.释疑点在对数log a N中规定a>0,且a≠1,N>0的原因(1)若a<0,则N为某些数值时,x不存在,如式子(-3)x=4没有实数解,所以log(-3)4不存在,因此规定a不能小于0;(2)若a=0,且N≠0时,log a N不存在;N=0时,log a0有无数个值,不能确定,因此规定a ≠0,N≠0;(3)若a=1,且N≠1时,x不存在;而a=1,N=1时,x可以为任何实数,不能确定,因此规定a≠1;(4)由a x=N,a>0知N恒大于0.(2)(3)(4)当a>0,且a≠1时.如图所示:比如:43=64⇔3=log464;log525=2⇔52=25;以前无法解的方程2x=3,学习了对数后就可以解得x=log23.谈重点对指数与对数的互化关系的理解(1)由指数式a b=N可以写成log a N=b(a>0,且a ≠1),这是指数式与对数式互化的依据.从对数定义可知,对数式与指数式是同一种数量关系的两种不同表达形式.其关系如下表:(2)根据指数与对数的互化关系,可以得到恒等式log a Na N=.指数与对数的互化是解决指数式和对数式有关问题的有效手段.【例1-1】下列指数式与对数式的互化中,不正确的一组是( ) A.100=1与lg 1=0B.131273-=与271log3=13-C.log39=2与129=3D.log55=1与51=5 【例1-2【例1-3】求下列各式中(1)log2(log5x)=0;(2)log3(lg x)=1;(3)log x27=34;(4)x=log84.2.对数的运算性质(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:①log a(M·N)=log a M+log a N;②loga MN=log a M-log a N;③log a M n=n log a M(n∈R).谈重点对对数的运算性质的理解(1)对应每一条运算性质,都要注意只有当式子中所有的对数符号都有意义时,等式才成立,如log2[(-3)·(-5)]=log2(-3)+log2(-5)是错误的.(2)巧记对数的运算性质:①两个正数的积的对数等于这两个正数的对数的积;②两个正数的商的对数等于这两个正数的对数的差;③正数幂的对数等于幂指数乘以同一底数幂的底数的对数.(2)谈重点利用对数的定义将对数问题转化为指数问题,再利用幂的运算性质,进行转化变形,然后把它还原为对数问题.如“log a(MN)=log a M+log a N”的推导:设log a M=m,log a N=n,则a m=M,a n=N,于是MN=a m·a n=a m+n,因此log a(MN)=log a M+log a N=m+n.【例2-1】若a >0,且a ≠1,x >y >0,n ∈N *,则下列各式: ①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a (xy )=log a x ·log a y ;④log log log a a a x xy y=;⑤(log a x )n =log a x n ;⑥1log log a a x x=-;⑦log log a a x n=其中式子成立的个数为( )A .2B .3C .4D .5【例2-2】计算:(1)2log 122+log 123;(2)lg 500-lg 5;(3)已知lg 2=0.301 0,lg 3=0.477 1,求.析规律 对数的运算性质的作用 (1)利用对数的运算性质,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然,这种运算的互化可简化计算;(2)由于lg 2+lg 5=lg 10=1,所以lg 5=1-lg 2,这是在对数运算中经常用到的结论.3.换底公式(1)公式log a b =log log c c ba(a >0,且a ≠1;c >0,且c ≠1,b >0).(2)公式推导: 设log log c c b x a=,则log c b =x log c a =log c a x , ∴b =a x .∴x =log a b .∴log log c c ba=log a b .(3)公式的作用换底公式的作用在于把以a 为底的对数,换成了以c 为底的对数,特别有:lg log lg a NN a=,ln log ln a NN a=,利用它及常用对数表、自然对数表便可求任一个对数的值. (4)换底公式的三个推论:①log log m n a a nN N m=(a ,N >0,且a ≠1,m ≠0,m ,n ∈R );②log a b=1log b a (a ,b >0,且a ,b ≠1);③log a b ·log b c ·log c d =log a d (a ,b ,c >0,且a ,b ,c ≠1,d >0).证明:①log am N n=log log log log n a a a ma N n N n N a m m ==.②log ab =log 1log log b b b b a a=.③log a b ·log b c ·log c d =lg lg lg lg lg lg lg lg b c d da b c a⋅⋅==log a d . 【例3-1】82log 9log 3的值是( ) A .23 B .32 C .1 D .2【例3-2】若log 34·log 48·log 8m =log 416,则m 等于( )A .12B .9C .18D .274.对数定义中隐含条件的应用根据对数的定义,对数符号log a N 中实数a 和N 满足的条件是底数a 是不等于1的正实数,真数N 是正实数,即>0,>0,1,N a a ⎧⎪⎨⎪≠⎩因此讨论对数问题时,首先要注意对数的底数和真数满足的隐含条件.对数概念比较难理解,对数符号初学时不太好掌握,学习时要抓住对数与指数相互联系,深刻理解对数与指数之间的关系,将有助于掌握对数的概念.【例4-1】已知对数log (1-a )(a +2)有意义,则实数a 的取值范围是__________.【例4-2】若log (1-x )(1+x )2=1,则x =__________.5.对数的化简、求值问题应用对数的定义、有关性质及运算法则等可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然,这种运算的互化可简化计算过程,加快计算速度.(1)同底数的对数式的化简、求值 一是“拆”,将积、商的对数拆成对数的和、差.如39log 5+log 35=log 39-log 35+log 35=log 39=2.二是“收”,将同底数的对数和、差合成积、商的对数.如,39log 5+log 35=39log 55⎛⎫⨯ ⎪⎝⎭=log 39=2.三是“拆”与“收”相结合.(2)不同底数的对数式的化简、求值常用方法是利用换底公式,转化为同底数的对数式,进而进行化简,化简后再将底数统一进行计算.也可以在方向还不清楚的情况下,统一将不同的底换为常用对数等,再进行化简、求值.对数式的化简、求值,要灵活运用对数的性质、运算性质、换底公式和一些常见的结论,如log a 1=0,log a a =1,a log a N =N ,lg 2+lg 5=1,log a b ·log b a =1等.【例5-1】化简求值:(1)4lg 2+3lg 5-1lg5;;(3)2log32-332log9+log38-5log35;(4)log2(1)+log2(1.【例5-2】计算:(log43+log83)(log32+log92)-.6.条件求值问题对于带有附加条件的与对数式有关的求值问题,如果附加条件比较复杂,则需先对其进行变形、化简,并充分利用其最简结果解决问题.例如:设x=log23,求332222x xx x----的值时,我们可由x=log23,求出2x=3,2-x=13,然后将它们代入332222x xx x----,可得33331322913122933x xx x--⎛⎫- ⎪-⎝⎭==--.【例6】已知3a=4b=36,求21a b+的值.析规律与对数式有关的求值问题的解决方法(1)注意指数式与对数式的互化,有些需要将对数式化为指数式,而有些需要将指数式化为对数式;(2)注意换底公式与对数的运算性质的应用,解题时应全方位、多角度地思考,注意已知条件和所求式子的前后照应.7.利用已知对数表示其他对数(1)换底公式的作用是将不同底的对数式转化成同底的对数式,将一般对数转化成自然对数或常用对数来运算.要注意换底公式的正用、逆用及变形应用.(2)用对数log a x和log b y等表示其他对数时,首先仔细观察a,b和所要表示的对数底数的关系,利用换底公式把所要表示的对数底数换为a,b.解决此类题目时,通常用到对数的运算性质和换底公式.对数的运算性质总结:如果a >0,且a ≠1,M >0,N >0,那么: log a (M ·N )=log a M +log a N ;log a MN=log a M -log a N ; log a M n =n log a M (n ∈R ).换底公式:log a b =log log c c ba(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)题目中有指数式和对数式时,要注意将指数式与对数式进行互化,统一成一种形式. 【例7-1】已知lg 2=a ,lg 3=b ,则log 36=( )A .a b a +B .a b b +C .a a b +D .b a b +【例7-2】已知log 189=a,18b =5,求log 3645(用a ,b 表示).8.与对数有关的方程的求解问题 关于对数的方程有三类:第一类是形如关于x 的方程log a f (x )=b ,通常将其化为指数式f (x )=a b ,这样解关于x 的方程f (x )=a b 即可,最后要注意验根.例如:解方程64152log 163x ⎛⎫-=- ⎪⎝⎭,将其化为指数式为23156416x --=,又223233164(4)416---===,则1511616x -=,所以x =1,经检验x =1是原方程的根.第二类是形如关于x 的方程log f (x )n =b ,通常将其化为指数式f b (x )=n ,这样解关于x 的方程f b (x )=n 即可,最后要注意验根.例如,解方程log (1-x )4=2,将其化为指数式为(1-x )2=4,解得x =3或x =-1,经检验x =3是增根,原方程的根是x =-1.第三类是形如关于x 的方程f (log a x )=0,通常利用换元法,设log a x =t ,转化为解方程f (t )=0得t =p 的值,再解方程log a x =p ,化为指数式则x =a p ,最后要注意验根.【例8-1】已知lg x +lg y =2lg(x -2y ),求xy的值.【例8-2】解方程lg 2x -lg x 2-3=0.9.对数运算的实际应用对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.【例9】抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)。
人教版高中数学必修一学习课件对数及对数运算
b叫N做
a为底N的对数 (叫对数式),
log a N b
a叫做对数的底数, N叫做真数
二.思考:为什么在定义中要规定: a>0且a≠1,而且 N>0?
三.几个常用结论: (1)负数与零没有对数
(2) log a 1 0 (3) loga a 1
a (4)对数恒等式: loga N N
4.常用的两种对数:
思考:
在2.1.2(P57)例8中,我们得到了函 问题数1关:在系这式个:y例=1题3•中1,.对01于x 给, 定的一个年份, 你能计算相应的人口总数吗?
问题2:哪一年的人口数可达到18亿? 20亿呢?
一、对数的定义: 一般地,如果
即aa 0, a 1
的b次幂等于N, (叫指数式),
那记么作a数b
(1)54=625
(2) 26 1
64
(3) (1)m 5.73 3
(4) log 1 16 4
2
(5) lg 0.01 2 (6)ln10 2.303
例2 求下列各式中x的值
(1)
log64
x2 3
(2) logx 8 6
(3) lg100 x
(4) ln e2 x
例3、求 x 的值:
(1) log2x2 1 3x2 2x 1 1
(2) log2 log3 log4 x 0
练习(书上P64第1、2、3、4题):
小结 : 1.对数定义: 2.指数式与对数式互换 3.理解: a>0且a≠1;而且 N>0 4.常用的两种对数: 5.几个常用结论:
(1)常用对数:通常将以10为底的对数 叫做常用对数(common logarithm)。 N的常用对数简记作lgN
高中数学:2.2.1对数与对数运算 (1)
第2课时 对数的运算[目标] 1.理解对数的运算性质;2.能用换底公式将一般对数转化成自然对数或常用对数;3.了解对数在简化运算中的作用.[重点] 对数的运算性质的推导与应用.[难点] 对数的运算性质的推导和换底公式的应用.知识点一 对数的运算性质[填一填]如果a >0,且a ≠1,M >0,N >0.那么: (1)log a (M ·N )=log a M +log a N . (2)log a MN =log a M -log a N .(3)log a M n =n log a M (n ∈R ).[答一答]1.若M ,N 同号,则式子log a (M ·N )=log a M +log a N 成立吗? 提示:不一定,当M >0,N >0时成立,当M <0,N <0时不成立.2.你能推导log a (MN )=log a M +log a N 与log a MN =log a M -log a N (M ,N >0,a >0且a ≠1)两个公式吗?提示:①设M =a m ,N =a n ,则MN =a m +n .由对数的定义可得log a M =m ,log a N =n , log a (MN )=m +n .这样,我们可得log a (MN )=log a M +log a N . ②同样地,设M =a m ,N =a n , 则MN =a m -n .由对数定义可得log a M =m , log a N =n ,log a MN =m -n ,即log a MN=log a M -log a N .知识点二 换底公式[填一填]换底公式常见的推论: (1)log an b n =log a b ;(2)log am b n =n m log a b ,特别log a b =1log b a ;(3)log a b ·log b a =1; (4)log a b ·log b c ·log c d =log a d .[答一答]3.换底公式的作用是什么?提示:利用换底公式可以把不同底数的对数化为同底数的对数. 4.若log 34·log 48·log 8m =log 416,求m 的值. 提示:∵log 34·log 48·log 8m =log 416, ∴lg4lg3·lg8lg4·lg mlg8=log 442=2, 化简得lg m =2lg3=lg9,∴m =9.类型一 对数运算性质的应用[例1] 计算下列各式: (1)12lg 3249-43lg 8+lg 245; (2)2lg2+lg31+12lg0.36+13lg8;(3)lg25+23lg8+lg5lg20+(lg2)2.[分析] (1)(2)正用或逆用对数的运算性质化简;(3)用lg2+lg5=1化简.[解] (1)(方法1)原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12. (方法2)原式=lg427-lg4+lg(75)=lg 42×757×4=lg(2×5)=lg 10=12.(2)原式=lg4+lg31+lg0.6+lg2=lg12lg (10×0.6×2)=lg12lg12=1. (3)原式=2lg5+2lg2+(1-lg2)(1+lg2)+(lg2)2 =2(lg5+lg2)+1-(lg2)2+(lg2)2=2+1=3.利用对数的运算性质解决问题的一般思路:(1)把复杂的真数化简;(2)正用公式:对式中真数的积、商、幂、方根,运用对数的运算法则,将它们化为对数的和、差、积、商,然后再化简;(3)逆用公式:对式中对数的和、差、积、商,运用对数的运算法则,将它们化为真数的积、商、幂、方根,然后化简求值.[变式训练1] (1)计算:log 53625=43;log 2(32×42)=9.(2)计算:lg8+lg125=3;lg 14-lg25=-2;2log 36-log 34=2.类型二 换底公式的应用[例2] (1)计算:(log 32+log 92)·(log 43+log 83); (2)已知log 189=a,18b =5,试用a ,b 表示log 3645. [解] (1)原式=⎝⎛⎭⎫lg2lg3+lg2lg9⎝⎛⎭⎫lg3lg4+lg3lg8 =⎝⎛⎭⎫lg2lg3+lg22lg3⎝⎛⎭⎫lg32lg2+lg33lg2=3lg22lg3·5lg36lg2=54. (2)由18b =5,得log 185=b ,∴log 3645=log 18(5×9)log 18(18×2)=log 185+log 1891+log 182=log 185+log 1891+log 18189=log 185+log 1892-log 189=a +b 2-a .利用换底公式可以统一“底”,以方便运算.在用换底公式时,应根据题目特点灵活换底.由换底公式可推出常用结论:log a b ·log b a =1.[变式训练2] 计算下列各式:(1)(log 2125+log 425+log 85)·(log 52+log 254+log 1258). (2)log 89log 23×log 6432. 解:(1)方法1:原式=(log 253+log 225log 24+log 25log 28)(log 52+log 54log 525+log 58log 5125)=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 方法2:原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.(2)方法1:原式=log 29log 28÷log 23×log 232log 264=2log 233÷log 23×56=59.方法2:原式=lg9lg8÷lg3lg2×lg32lg64=2lg33lg2×lg2lg3×5lg26lg2=59.类型三 与对数方程有关的问题[例3] (1)若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,求xy 的值;(2)解方程:log 2x +log 2(x +2)=3.[解] (1)由题可知lg[(x -y )(x +2y )]=lg(2xy ), 所以(x -y )(x +2y )=2xy ,即x 2-xy -2y 2=0.所以⎝⎛⎭⎫x y 2-xy -2=0. 解得x y =2或xy=-1.又因为x >0,y >0,x -y >0.所以x y =2.(2)由方程可得log 2x +log 2(x +2)=log 28. 所以log 2[x (x +2)]=log 28, 即x (x +2)=8.解得x 1=2,x 2=-4. 因为x >0,x +2>0,所以x =2.对数方程问题的求解策略:利用对数运算性质或换底公式将方程两边写成同底的对数形式,由真数相等求解方程,转化过程中注意真数大于零这一条件,防止增根.[变式训练3] (1)方程lg x +lg(x -1)=1-lg5的根是( B ) A .-1 B .2 C .1或2D .-1或2(2)已知lg x +lg y =2lg(x -2y ),则log2 xy的值为4. 解析:(1)由真数大于0,易得x >1,原式可化为lg x (x -1)=lg2⇒x (x -1)=2⇒x 2-x -2=0⇒x 1=2,x 2=-1(舍).(2)因为lg x +lg y =2lg(x -2y ), 所以lg xy =lg(x -2y )2,所以xy =(x -2y )2,即x 2-5xy +4y 2=0. 所以(x -y )(x -4y )=0,解得x =y 或x =4y . 因为x >0,y >0,x -2y >0,所以x =y 应舍去, 所以x y =4.故log 2 xy =log 2 4=4.类型四 对数的实际应用[例4] 人们对声音有不同的感觉,这与它的强度有关系.声音强度I 的单位用瓦/平方米(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg I I 0(单位为分贝,L 1≥0,其中I 0=1×10-12 W/m 2,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平.[解] 由题意,可知树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,故LI 1=10·lg1=0,则树叶沙沙声的强度水平为0分贝;耳语的强度是I 2=1×10-10W/m 2,则I 2I 0=102,故LI 2=10lg102=20,即耳语声的强度水平为20分贝. 同理,恬静的无线电广播强度水平为40分贝.对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.[变式训练4] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.301 0)解:设至少抽n 次可使容器内空气少于原来的0.1%,则a (1-60%)n <0.1%a (设原先容器中的空气体积为a ),即0.4n <0.001,两边取常用对数得n ·lg0.4<lg0.001,所以n >lg0.001lg0.4=-32lg2-1≈7.5.故至少需要抽8次.1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( B ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:由换底公式得log a b ·log c a =lg b lg a ·lg alg c =log c b ,所以B 正确.2.2log 32-log 3329+log 38的值为( B )A.12 B .2 C .3D.13解析:原式=log 34-log 3329+log 38=log 34×8329=log 39=2.3.lg 5+lg 20的值是1.解析:lg 5+lg 20=lg(5×20)=lg 100=1.4.若a >0,且a ≠1,b >0,且b ≠1,则由换底公式可知log a b =lg b lg a ,log b a =lg alg b ,所以log a b =1log b a ,试利用此结论计算1log 321+1log 721=1.解析:1log 321+1log 721=1lg21lg3+1lg21lg7=lg3lg21+lg7lg21=lg (3×7)lg21=1. 5.计算:(1)3log 72-log 79+2log 7⎝⎛⎭⎫322; (2)(lg2)2+lg2·lg50+lg25.解:(1)原式=log 78-log 79+log 798=log 78-log 79+log 79-log 78=0.(2)原式=lg2(lg2+lg50)+2lg5=lg2·lg100+2lg5 =2lg2+2lg5=2(lg2+lg5)=2lg10=2.——本课须掌握的两大问题1.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M±N ). 2.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.学习至此,请完成课时作业19。
高中数学对数函数(一)
R
当x>1时,y∈_(0_,__+__∞) 当0<x<1时,y∈(_-∞__,__0_);
定点
当x=1时,y=0即过定点 (1,0)
单调性
在(0,+∞)上为__增__函 在(0,+∞)上为
数
_减___函数
基础达标
1、(lg5)2+lg2∙lg50=__1______. 解析:原式=(lg 5)2+lg 2×[lg 5+1] =(lg 5)2+lg 2 ∙ lg 5+lg 2=lg 5[lg 5+lg 2]+lg 2=lg 5+lg 2=1.
2]
1 4
log3
3
log5[2
log2
10
3
2]
1 4
log3
3 log5
5
1 4
经典例题
(3) 2(lg 2)2 lg 2 lg5 lg 22 21g 2 1
解:原式=lg 2(21g 2 +lg 5) lg 2 1)2
=lg 2 (lg 2+lg 5)+|lg 2 -1|
=lg 2lg(25)+1-lg 2 =1.
2、若2x-1=10,则x=1__l_g1_2____. 解∴析(x-:1)l两g 2边=取1,常∴用x-对1=数lg1,2 则, xlg12xl-g112=.lg10=1, 3、不等式log2(x+2)>2的解集为(2_,__+_∞__)__.
解析:x+2>22⇒x>2.
4.
已知log7[log3[log2x]]=0,则
③logaMn =__n_lo_g_a_M______.
对数与对数运算(一)教学设计
对数与对数运算(一)教学设计(李恒福)一、教学内容分析本节课是新课标高中数学A版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门。
对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。
而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。
通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
二、学生学习情况分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。
通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
三、设计思想学生是教学的主体,本节课要给学生提供各种参与机会。
调动学生学习的积极性,主动性。
本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。
在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。
通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
高一数学对数与对数运算1
(2)若 a=0,则
N≠0时,logaN不存在 . N = 0 时,则 log N 有无数个值,不能确定 a
因此,规定 a≠0.
(3)若 a=1,
N≠1时,则logaN不存在 . N=1时,则logaN有无数个值,不能确定
-2<x<1. 2 ⇒ 3 x≠0
2 1 所以 x 的取值范围是{x|-3<x<2且 x≠0}.
; https:/// 电子杂志制作 ; 2019年01月23日12:54:21 ;
消息渠道,需要明白呐个世界の格局.在黄银卫士之上,又都有哪一些层次の强者.善王级别の肉身修行者,在呐个奇点炼狱内是否存在,如果有の话,数量又有多少.在呐个矿场上,鞠言是不太可能得到呐些信息の.呐个矿场,层次太低了.队长琛琛の看了鞠言一眼,随后开口道:“好,明日俺就 安排你参加青铜卫士の测试.不过俺丑话说在前头,若是测试失败,你可是要受到严厉惩罚の.虽然不会被直接杀死,但难免要脱一层皮.”“明白.”鞠言点头.“括庵,你给他安排一下住处吧!”队长对白银卫士括庵摆摆手.“是!”括庵应声.括庵带鞠言离开队长の房间后,又带鞠言去领取 了一身历士服.除服饰外,鞠言还领到了一柄黑色の鹤嘴锄,鹤嘴锄颇为沉叠,要挥舞起来挖矿确实需要不小の历气.没错,呐鹤嘴锄,就是用来挖取髓石の,每一个历士の标配.历士の住处,要比降生者住处稍微好一些,虽然仍是多人一个房间,但看起来起码能遮风避雨.“鞠言,你就住在呐个房 间.明天上午,俺会过来带你去参加青铜卫士の测试.你,最好准备吧.”括庵对鞠言说完呐句话,便转身离开.鞠言看了看身前の低矮房舍,迈步走了进去.房间内,此事没有其他人.住
高一数学对数与对数函数
§2.6对数与对数函数1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算法则(1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么:①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).(2)对数的性质①负数和零没有对数;②log a 1=0,log a a =1(a >0,且a ≠1);③log a Na=N (a >0,a ≠1,且N >0);④log a a N =N (a >0,且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).3.对数函数的图象与性质y =log a xa >10<a <1图象定义域(1)(0,+∞)值域(2)R性质(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0;(5)当x >1时,y <0;当0<x <1时,y <0当0<x <1时,y >0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.概念方法微思考1.根据对数换底公式:①说出log a b ,log b a 的关系?②化简log m na b .提示①log a b ·log b a =1;②logm na b =n mlog a b .2.如图给出4个对数函数的图象.比较a ,b ,c ,d 与1的大小关系.提示0<c <d <1<a <b .题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.(×)(3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.(√)(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a,1)一、四象限.(√)题组二教材改编2.log 29·log 34·log 45·log 52=________.答案23.已知a =1-32,b =log 213,c =121log 3,则a ,b ,c 的大小关系为________.答案c >a >b解析∵0<a <1,b <0,c =121log 3=log 23>1.∴c >a >b .4.函数y的定义域是______.答案1解析由23log (21)x -≥0,得0<2x -1≤1.∴12<x ≤1.∴函数y1.题组三易错自纠5.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是()A .d =acB .a =cdC .c =adD .d =a +c答案B6.(多选)函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是()A .a >1B .0<c <1C .0<a <1D .c >1答案BC解析由图象可知函数为减函数,所以0<a <1,令y =0得log a (x +c )=0,x +c =1,x =1-c .由图象知0<1-c <1,∴0<c <1.7.若log a 34<1(a >0且a ≠1),则实数a 的取值范围是____________________.答案(1,+∞)解析当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a (1,+∞).对数式的运算1.已知2x =3,log 483=y ,则x +2y 的值为________.答案3解析由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.2.设函数f (x )=3x +9x ,则f (log 32)=________.答案6解析∵函数f (x )=3x +9x ,∴f (log 32)=339log 2log 2log 43929+=+=2+4=6.3.计算:(1-log 63)2+log 62·log 618log 64=________.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.4.(2019·北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A .1010.1B .10.1C .lg 10.1D .10-10.1答案A解析两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,令m 2=-1.45,m 1=-26.7,lgE 1E 2=25·(m 2-m 1)=25(-1.45+26.7)=10.1,E 1E 2=1010.1.思维升华对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数函数的图象及应用例1(1)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是()A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1答案A解析由函数图象可知,f (x )为单调递增函数,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a<b <1.(2)方程4x=log a x ,12上有解,则实数a 的取值范围为__________.答案,22解析若方程4x =log a x ,12上有解,则函数y =4x 和函数y =log a x ,12上有交点,a<1,a12≤2,解得0<a≤22.4x<log a x,12上恒成立,则实数a的取值范围是________.答案解析当0<x≤12时,函数y=4x的图象在函数y=log a x图象的下方.又当x=12时,124=2,即函数y=4x y=log a x,得a=22.若函数y=4x的图象在函数y=log a x图象的下方,则需22<a<1(如图所示).当a>1时,不符合题意,舍去.所以实数a思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.跟踪训练1(1)(2019·河北冀州中学月考)函数f(x)=lg(|x|-1)的大致图象是()答案B解析由函数值域为R,可以排除C,D,当x>1时,f(x)=lg(x-1)在(1,+∞)上单调递增,排除A,选B.(2)若不等式x 2-log a x <0对xa 的取值范围是________.答案116,解析只需f 1(x )=x 2f 2(x )=log a x图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<loga x 在x只需ff所以有≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是116,对数函数的性质及应用命题点1解对数方程、不等式例2(1)方程log 2(x -1)=2-log 2(x +1)的解为________.答案x =5解析原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x =5.(2)设f (x )2x ,x >0,12(-x ),x <0,则方程f (a )=f (-a )的解集为________.答案{-1,1}解析当a >0时,由f (a )=log 2a =121log a ⎛⎫⎪⎝⎭=f (-a )=12log a ,得a =1;当a <0时,由f (a )=12log ()a-=logf (-a )=log 2(-a ),得a =-1.∴方程f (a )=f (-a )的解集为{1,-1}.本例(2)中,f (a )>f (-a )的解集为________.答案(-1,0)∪(1,+∞)解析>0,log 2a >12a<0,12(-a )>log 2(-a ),解得a >1或-1<a <0.命题点2对数函数性质的综合应用例3(2020·湛江质检)已知函数f (x )=12log (x 2-2ax +3).(1)若f (-1)=-3,求f (x )的单调区间;(2)是否存在实数a ,使f (x )在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解(1)由f (-1)=-3,得12log (4+2a )=-3.所以4+2a =8,所以a =2.则f (x )=12log (x 2-4x +3),由x 2-4x +3>0,得x >3或x <1.故函数f (x )的定义域为(-∞,1)∪(3,+∞).令μ=x 2-4x +3,则μ在(-∞,1)上单调递减,在(3,+∞)上单调递增.又y =12log μ在(0,+∞)上单调递减,所以f (x )的单调递增区间是(-∞,1),单调递减区间是(3,+∞).(2)令g (x )=x 2-2ax +3,要使f (x )在(-∞,2)上为增函数,应使g (x )在(-∞,2)上单调递减,且恒大于0.≥2,(2)≥0,即≥2,-4a ≥0,a 无解.所以不存在实数a ,使f (x )在(-∞,2)上为增函数.思维升华利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的应用.跟踪训练2(1)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为()A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1](1)>0,≥1,-a >0,≥1,解得1≤a <2,即a ∈[1,2).(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是__________.答案解析当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,且8-2a >0,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0.∴a >4,且a<4,故不存在.综上可知,实数a比较指数式、对数式的大小例4(1)(2019·天津市河西区模拟)设a =log 3e ,b =e 1.5,c =131log 4,则()A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案D 解析c =131log 4=log 34>log 3e =a .又c =log 34<log 39=2,b =e 1.5>2,∴a <c <b .(2)(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则()A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.(3)已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =fc =f (2),则a ,b ,c 的大小关系是________.答案c <a <b解析易知y =f (x )是偶函数.当x ∈(0,+∞)时,f (x )=f |log 2x |,且当x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f f (4),所以c <a <b .思维升华(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.跟踪训练3(1)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是()A .a =b <cB .a =b >cC .a <b <cD .a >b >c答案B解析因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .(2)(2019·天津市滨海新区模拟)已知函数f (x )=|x |,且a =f b =f c =f (2-1),则a ,b ,c 的大小关系为()A .a <c <bB .b <c <aC .c <a <bD .b <a <c答案A解析ln 32<ln e =12,log 23>12,∴log 23>12>ln 32.又f (x )是偶函数,在(0,+∞)上为增函数,∴ff f (log 23)=f ∴a <c <b .(3)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是()A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0,可得c <b <a <1.故选C.1.(2019·泸州诊断)2lg 2-lg 125的值为()A .1B .2C .3D .4答案B解析2lg 2-lg 125=2lg 100=2,故选B.2.设0<a <1,则()A .log 2a >B .>C .log 2a <D .log 2a <答案B解析∵0<a <1,∴0<a 2<a <a <1,∴在A 中,log 2a =,故A 错误;在B 中,>,故B 正确;在C 中,log 2a >,故C 错误;在D 中,log 2a >,故D 错误.3.函数y =ln1|2x -3|的图象为()答案A解析易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数;当x <32时,函数为增函数,所以选A.4.(2019·衡水中学调研卷)若0<a <1,则不等式1log a x >1的解是()A .x >aB .a <x <1C .x >1D .0<x <a答案B解析易得0<log a x <1,∴a <x <1.5.函数f (x )=12log (x 2-4)的单调递增区间为()A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案D解析函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )由y =12log t 与t =g (x )=x 2-4复合而成,又y =12log t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.6.(2020·长沙期末)已知函数f (x )2x ,x >0,x,x ≤0,且关于x 的方程f (x )-a =0有两个实根,则实数a 的取值范围为()A .(0,1]B .(0,1)C .[0,1]D .(0,+∞)答案A解析作出函数y =f (x )的图象(如图),欲使y =f (x )和直线y =a 有两个交点,则0<a ≤1.7.(多选)关于函数f (x )=ln1-x1+x,下列说法中正确的有()A .f (x )的定义域为(-∞,-1)∪(1,+∞)B .f (x )为奇函数C .f (x )在定义域上是增函数D .对任意x 1,x 2∈(-1,1),都有f (x 1)+f (x 2)=f 答案BD解析函数f (x )=ln 1-x1+x=其定义域满足(1-x )(1+x )>0,解得-1<x <1,∴定义域为{x |-1<x <1}.∴A 不对.由f (-x )=ln 1+x1-x=1=-ln1-x1+x=-f (x ),是奇函数,∴B 对.函数y =21+x -1在定义域内是减函数,根据复合函数的单调性,同增异减,∴f (x )在定义域内是减函数,C 不对.f (x 1)+f (x 2)=ln1-x 11+x 1+ln 1-x 21+x 2=f ∴D 对.8.(多选)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的说法为()A .h (x )的图象关于原点对称B .h (x )的图象关于y 轴对称C .h (x )的最大值为0D .h (x )在区间(-1,1)上单调递增答案BC解析函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,∴f (x )=log 2x ,h (x )=log 2(1-|x |),为偶函数,不是奇函数,∴A 错误,B 正确;根据偶函数性质可知D 错误;∵1-|x |≤1,∴h (x )≤log 21=0,故C 正确.9.函数f (x )=log 2x ·(2x )的最小值为________.答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x 2x -14≥-14,当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14.10.(2020·深圳月考)设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.答案(0,1)解析由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点(如图),∴ab=1,0<c <lg 10=1,∴abc 的取值范围是(0,1).11.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求实数a 的值及f (x )的定义域;(2)求f (x )在区间0,32上的最大值.解(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.+x >0,-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在0,32上的最大值是f (1)=log 24=2.12.是否存在实数a ,使得f (x )=log a (ax 2-x )在区间[2,4]上是增函数?若存在,求出a 的范围;若不存在,说明理由.解设t=ax2-x=-1 4a.若f(x)在[2,4]上是增函数,<1,4,-4>0,2,2>0,解得a>1.∴存在实数a满足题意,即当a∈(1,+∞)时,f(x)在[2,4]上是增函数.13.已知函数f(x)=ln e xe-x,若fff1010(a+b),则a2+b2的最小值为()A.1B.2C.3D.4答案B解析∵f(x)+f(e-x)=2,∴ff…+f2020,∴1010(a+b)=2020,∴a+b=2.∴a2+b2≥(a+b)22=2,当且仅当a=b=1时取等号.14.若函数f(x)=log a(x2-x+2)在区间[0,2]上的最大值为2,则实数a=________.答案2解析令u(x)=x2-x+2,则u(x)在[0,2]上的最大值u(x)max=4,最小值u(x)min=74.当a>1时,y=log a u是增函数,f(x)max=log a4=2,得a=2;当0<a<1时,y=log a u是减函数,f(x)max=log a74=2,得a=72(舍去).故a=2. 15.(2019·福州模拟)已知函数f(x)=log a(2x-a)在区间12,23上恒有f(x)>0,则实数a的取值范围是()B.13,D.23,答案A解析当0<a <1时,函数f (x )在区间12,23上是减函数,所以log ,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 16.已知函数f (x )=lgx -1x +1.(1)计算:f (2020)+f (-2020);(2)对于x ∈[2,6],f (x )<lg m(x +1)(7-x )恒成立,求实数m 的取值范围.解(1)由x -1x +1>0,得x >1或x <-1.∴函数f (x )的定义域为{x |x >1或x <-1}.又f (x )+f (-x )=0,∴f (x )为奇函数.∴f (2020)+f (-2020)=0.(2)当x ∈[2,6]时,f (x )<lgm (x +1)(7-x )恒成立可化为x -11+x <m(x +1)(7-x )恒成立.即m >(x -1)(7-x )在[2,6]上恒成立.又当x ∈[2,6]时,(x -1)(7-x )=-x 2+8x -7=-(x -4)2+9.∴当x =4时,[(x -1)(7-x )]max =9,∴m >9.即实数m 的取值范围是(9,+∞).。
对数及对数运算1
对数及对数运算【巩固练习】1.有以下四个结论:①lg (lg10)=0 :②“⑹e )=0 ;③若10=lgx ,贝J x=10;④若e=lnx ,则x=e ,其中正确的是()2.下列等式成立的有()① ©存-2 :②也3®! ; ® 丹"=5; ® 列 i ; ® 3lg3=3;3.已知3—2,那么10938-210936用a 表示是()f(2 +Iog 2 3)=(A.①③B.②④C.①②D.③④A.①②B.①②③C.②③④D.①②③④⑤A. a —2B.5a-2C. 3a-(1 + a)2D. 3a-a 214. 已知 x 2+y 2 =1,x 〉0,y 〉0,且 log a (1 +x) = m,log a ----- = n,1 -x则log a y等于() 1A. m + nB. m-nC. -(m + n )D. 25.若 y =log 56 1og 67 Iog 78 Iog 89 ■Iog 910,贝 1一(m-n \丿A. y“0,1)B.yJ1,2)C. 6.设a , b , c 为正数,且3a=4b=6c,则有( A.1B. 2=2』C. 1=2+2cabcabcaby-(2,3)D.(3,4)7.如果方程 Ig 2x+(lg2 +Ig3)lg x + lg2lg3 =0 的两根为 )D. 2亠 cabX 1、X 2 ,则X 1X 的值为(A. lg 2 lg3 8.已知函数4B.Ig2+lg3C. -D. -66f(x)乜;f (x )满足:当X 卒时,;当 x <4 时,f(x)= f(x +1),则A. 24B.1C.122 49.已知a3= —(a:>0),则log2 a =9310. (1) log28^log21^log2 20 - log? 30 =3 3 3 3(2) 7log76log65log54 =3 0 311.已知a=0.3 , b=3. , c=log 3O.3 , d=log 0.33,贝J a, b, c, d 的大小关系是12.已知 f (3x) =4xlog2 3+233,贝J f (2) + f (4) + f (8) + …+ f (28)的值等于13.计算:(1) (log43+log83H log32+log32 2 )+log2疗;(2)若a+b =lg32+lg35 + 3lg2」g5,求3ab+a3+b3.14.设log a c, log b c是方程x2-3x+1=0的两根,求log a c的值.b15. 2010年我国国民生产总值为a亿元,如果平均每年增长【解析】原式=log3 23 -2(log32+1) = log32-2=a-2,故选A.4.【答案】D【解析】因为log a(1 + x) +log a(1-X)= m-n ,所以log a(1-x2) =log a 8%那么经过多少年后国民生产总值是2010年的2倍(gROOQ az,精确到1年)?【答案与解析】1.【答案】【解析】由log a a =1,log a1 = 0知①②正确.2.【答案】10r lg10 j ;3.【答案】A【解析】lg2y =2log a y = m-n ,所以log a y =l(m -n).2全国名校高一数学优质课时训练汇编 (附详解)5.【答案】B【解析】-芽芽芽芽需沁厶心皿厶2,因为。
高一数学 对数及其运算
在科学技术中,以e 2.71828…为底的对数叫做自然 对数.logeN通常记作 lnN
ln N lg N 2.3026 lg N lg e
在科学计算器中,可以直接求自然对数
小结:
(1)对数的概念,计算
(2)利用对数的运算性质,可以将两正数 的积、商、幂的对数进行转化,大大的方 便了对数式的化简和求值.
因为24 =16,所以log2 16 4;
因为2-1 =
1 2
,所以
log
2
1 2
1;
(二)常用对数
以10为底的对数叫做常用对数.
log10 N记作 lg N
如果以后没有指出对数的底,都是指 常用对数.如“100的对数是2”就是“100 的常用对数是2”
例2 求lg10,lg100,lg 0.01
定义:一般地,如果ab=N(a>0,且
a≠1),那么数b叫做以a为底N的对数
记作 b=log Na (a>0,且a≠1),
其中,数a叫做对数的底数,N叫做真 数,读作“b等于以a为底N的对数
知识探究:对数与指数的关系
思考1:当a>0,且a≠1时,若ax=N,则x =logaN,反之成立吗?
思考2:在指数式ax=N和对数式x=logaN 中,a,x,N各自的地位有什么不同?
(四)换底公式与自然对数
在求底数不是10 的对数时,可以根据对数的性质,
利用常用对数进行计算
换底公式:
证明:设log b
Nlo=gbxN, = lloo则 ggaaNb
bx =N
两边取以a为的对数,得
xloga b=loga N
所以
x= loga N loga b
即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]《灵枢.百病始生》认为邪中人出现“洒淅喜惊”,为邪传舍于()。A.经脉B.络脉C.冲脉D.皮肤E.腧穴 [单选]A类突起路标与B类突起路标的性能区别是()。A.具备减速性能B.具备防滑性能C.具备视线诱导性能D.具备逆反射性能 [单选]实现企业信用风险标本兼治的第一步是()。A.信用政策的制定B.信用风险的评估C.在企业内部设置信用管理部门D.信用风险的转移 [单选]目前有()类消防产品实行强制性产品认证管理制度。A、21B、9C、15D、4 [单选]有关硫酸的下列化学反应中,不是表现硫酸氧化性的是()。A.浓硫酸与铝的反应B.浓硫酸与木炭的反应C.稀硫酸与锌的反应D.稀硫酸与纯碱的反应 [判断题]拆画零件时,零件的表面粗糙度和表面处理要求应根据零件的作用来确定。()A.正确B.错误 [单选]以下各项中可能成为行政主体的是()。A.国家权力机关B.人民检察院C.国家行政机关D.治安联防组织 [单选]王某因出国请自己的好朋友张某代为保管家传的一幅油画,后张某因急用钱而将该画卖给了吴某。问张某与吴某之间就油画的买卖合同效力为()。A.有效B.无效C.效力待定D.可撤销 [单选,A2型题,A1/A2型题]电子伏特(eV)与焦耳(J)的关系是()A.1eV=1.6×10-19JB.1J=1.6×10-19eVC.1eV=1JD.1eV=1.6×1019JE.以上都不对 [单选,A1型题]关于临产后胎头呈前不均倾位的处理,下列哪项是恰当的()A.发现前不均倾位首先加强宫缩B.人工破膜C.等待产程自然进展,第二产程助产D.不论胎儿大小均可试产E.剖宫产 [单选]患者女性,40岁,风心病二尖瓣狭窄并关闭不全,发热5周,间断口服抗生素治疗,镜下血尿1周,结膜下可见数个出血点,疑诊亚急性细菌性心内膜炎,最可能的致病菌是()A.金黄色葡萄球菌B.草绿色链球菌C.肠球菌D.真菌E.衣原体 [单选]《国务院关于投资体制改革的决定》要求,对使用政府性资金投资建设的项目,实行()管理。A.审批制B.核准制C.备案制D.注册制 [问答题]在野外怎样避震? [单选,共用题干题]患者女,17岁,8岁时因老师发问首次突然昏倒,17岁时因频繁晕厥、抽搐4年入院。查体:无明显阳性体征。ECG示窦性心律,Q-T间期460ms,T波电交替。下列治疗中不必要的是()A.β-受体阻滞剂B.心脏起搏C.避免使用延长Q-T间期的药物D.口服苯妥英钠E.植入ICD [单选]一般车辆制造时,取车辆全长和定距之比为()。A.1.4:1B.1:1C.1.2:1 [单选]环境中的主要致癌因素是A.物理有害因素B.化学有害因素C.生物有害因素D.食物中有害因素E.其他因素 [单选,A1型题]利用激光照射治疗肿瘤及脉络膜新生血管时,可以利用激光的()A.强电场效应B.弱刺激效应C.光化学效应D.压强效应E.免疫效应 [问答题,简答题]备用氧压机启动前的准备工作有哪些? [问答题,简答题]简述采用访谈法进行培训效果评估的具体步骤。(2009年11月二级真题) [单选]取消乡统筹费后,乡级道路建设资金由()负责。A.政府B.村集体C.农民D.乡镇企业 [单选,A2型题,A1/A2型题]关于血红蛋白生理变化的描述,下列错误的是()A.新生儿Hb浓度明显增高,2周后逐渐转为正常B.正常男性儿童6~7岁及女性21~35岁时Hb浓度最低C.6个月至2岁婴幼儿Hb浓度最高D.高山地区居民和登山运动员因缺氧刺激使Hb高于正常E.妊娠期相对减少 [单选]总行程由()和空驶行程构成。A.重车公里B.载重行程C.平均车日行程D.有效行程 [单选]病毒感染后有很长的潜伏期,既不能分离出病毒也无症状。经数年或数十年后,可发生某些进行性疾病,并导致死亡的这类感染是()A.慢性感染B.潜伏性感染C.慢发病毒感染D.亚临床感染E.急性感染 [单选,A1型题]可用于治疗夜盲症的药物是()A.砂仁B.苍术C.豆蔻D.草果E.以上都不是 [单选,A4型题,A3/A4型题]男,32岁,进食后上腹饱胀不适,伴返酸、烧心、嗳气、食欲不振,临床诊断为慢性胃炎。该病治疗中不正确的是()。A.避免饮酒B.胃酸高者使用抑酸剂C.胃酸低者使用胃黏膜保护剂D.抗Hp治疗E.以上都不是 [单选]乳腺单纯癌是指()A.分化好的癌B.预后好的癌C.恶性程度低D.较晚发生转移的癌E.分化较差的腺癌 [单选,A2型题,A1/A2型题]单纯性鼻中隔偏曲最常见的病因是()。A.鼻中隔外伤B.鼻内肿瘤压迫C.异物压迫D.腺样体肥大E.鼻中隔之骨和软骨发育不均衡 [填空题]在人们创作设计鸡尾酒时一般都包含着两种目的,即:()。 [单选,A2型题]一支气管肺癌患者,近来出现头面部、颈部和上肢水肿。查体可见颈静脉怒张,其发生是由于()A.上腔静脉阻塞B.癌转移至胸腔大量积液C.癌转移至心包积液D.下腔静脉阻塞E.以上均有可能 [问答题,简答题]移动通信的发展目标是什么? [单选]甲、乙双方发生合同纠纷,甲方向人民法院起诉,乙方应诉答辩。在庭审过程中,乙方主张起诉前双方曾在信件往来中就该合同纠纷约定由北京仲裁委员会仲裁,并提出了相应的证据。这种情况下,请问:人民法院应当怎么处理?()A.裁定终结诉讼,由当事人向北京仲裁委员会申请仲裁 [单选]导致烧伤全身性感染的内源性来源主要是()A.肠道B.创面C.泌尿道D.输液管道E.呼吸道 [问答题,简答题]中国视图与日本视图有什么区别 [单选]航路、航线地带和民用机场区域设置:()。A.高空管制区、中低空管制区、机场塔台管制区B.航路管制区、终端(进近)管制区、机场塔台管制区C.高空管制区、中低空管制区、终端(进近)管制区、机场塔台管制区 [单选]关于书刊印制阶段,下列说法错误的是()。A.印前阶段,这个阶段的主要工作进行图文信息设计等工作,并制出印版B.印刷阶段进行图文信息设计、图文输入、图文处理和图文输出等,并制出印版(或相应的电子文件)C.印刷阶段,这个阶段的主要工作是使用模拟或数字的图文载体,将 [名词解释]少康中兴 [判断题]“旅客携带物检验检疫”中的“旅客”含义指乘坐飞机、轮船、火车、汽车等一切交通工具的旅客。()A.正确B.错误 [单选]2010年两会中()是热点A.民生B.就业C.教育公平D.农业 [单选,A1型题]有关血栓闭塞性脉管炎,不恰当的是()A.病变以下肢为多B.病变局限于小动脉C.为一种慢性、持续性、进行性疾病D.由于血栓形成而导致血管腔闭塞E.间歇性跛行为早期症状之一 [单选,B1型题]急性心包炎、心包积液常表现为()A.吸气性呼吸困难B.呼气性呼吸困难C.混合性呼吸困难D.呼吸节律不规则E.