(全国通用版)2020年中考数学复习 第八单元 统计与概率 第27讲 统计练习
2020年中招数学复习考前训练:统计与概率
2020 中考2020年中招数学复习考前考点模拟导航练统计与概率(解析版)1.某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()A.2000只B.14000只C.21000只D.98000只2.一个不透明口袋中装有2个白球,3个红球,4个黄球,每个球除颜色不同外其它都相同,搅拌均匀后,小张从口袋中任意摸出一个球是红球的概率为()A.B.C.D.3.某区为了解15000名初中生的身高情况,抽取了500名学生进行身高测量,在这个问题中,样本是()A.500 B.500名学生C.500名学生的身高情况D.15000名学生的身高情况4.下列事件中,属于随机事件的是()A.通常水加热到100℃时沸腾B.测量孝感某天的最低气温,结果为﹣150℃C.一个袋中装有5个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中5.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6 6.不透明的袋子中装有10个红球、7个黄球、2个白球,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,然后放回去继续摸,如果前三次摸出的都是红球,那么第四次摸出()球的可能性最大.A.红B.黄C.白D.每种球的可能性一样大7.为了了解某校学生的课外阅读情况,随机抽查了10名学生周阅读用时数,结果如下表:周阅读用时数(小时) 4 5 8 12学生人数(人) 3 4 2 1则关于这10名学生周阅读所用时间,下列说法正确的是( )A .中位数是6.5B .众数是1C .平均数是3.9D .方差是6 8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,这20人中射击成绩为8环的人数是( )A .8B .7C .6D .109.随机闭合开关123S S S 、、中的两个,能让灯泡发光的概率是( )A .34B .23C .12D .1310.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67、59、61、59、63、57、70、59、65,这组数据的众数和中位数分别是( )A .59,63B .59,61C .59,59D .57,6111.“魅力凉都六盘水”某周连续7天的最高气温(单位°C )是26,24,23,18,22,22,25,则这组数据的中位数是( )A .18B .22C .23D .2412.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米)2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50 人数 2 3 2 4 5 2 1 1 则下列叙述正确的是( )A .这些运动员成绩的众数是 5B .这些运动员成绩的中位数是 2.302020 中考C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072513.有m个数的平均数是x,n个数的平均数为y,则这(m+n)个数的平均数为()A.x ym n++B.mx nym n++C.mx nyx y++D.2mx ny+14.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.1615.小黄在自家种的西瓜地里随意称了10个西瓜,重量(单位:斤)分别是:5,8,6,8,10,9,9,9,7,9.按市场价西瓜每斤2元的价格计算,你估算一下,小黄今天卖了350个西瓜约收入()A.160元B.700元C.5600 D.700016.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是_____.17.数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___. 18.一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是________.19.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.20.陕西影视作为陕西文化中的重要部分,不仅重数量,更重质量,重经济效益,更重社会效益,其借助《钱学森》、《脚尖上的信天游》、《百鸟朝凤》、《大漠雄心》等一批富有鲜明艺术与文化特色的优秀影视作品在全国乃至国际上都大放异彩,不仅形成了陕西影视创作百花齐放的繁荣景象,也大大提升了陕西影视的影响力,彰显了陕西文化自信,叫响了文化陕西品牌.某校组织全校学生在一周内观看了这四部陕西特色电影以后,随机抽取了部分学生进行主题为“你想跟别人推荐的电影”的问卷调查,要求学生必须从“A.《钱学森》,B.《脚尖上的信天游》,C.《百鸟朝凤》,D.《大漠雄心》”四部电影中选择一部,并根据调査结果,绘制了如下两幅不完整的统计图.请根据所给信息,解答下列问题:(1)本次调查的学生人数为________,请将条形统计图补充完整;(2)本次调查中,被学生选择最多的电影是____________;(3)若该校共有2000名学生,请你估计该校选择电影《百鸟朝凤》的有多少人?21.某校5月组织了学生参加“学习强国”知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:(1)频数分布直方图中,A组的频数a= ,并补全频数直方图;(2)扇形统计图中,D部分所占的圆心角n= 度;(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?2020 中考22.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:图书种类频数频率科普常识840 B名人传记816 0.34漫画丛书A0.25其它144 0.06(1)求该校八年级的人数占全校总人数的百分率.(2)求表中A,B的值.(3)该校学生平均每人读多少本课外书?23.某中学初三年级积极推进走班制教学.为了了解一段时间以来,“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据:“至善班”甲班20的名同学的数学成绩统计(满分为100 分)(单位:分)86,90,60,76,92,83,56,76,85,7096,96,90,68,78,80,68,96,85,81“至善班”乙班的20名同学的数学成绩统计(满分为100 分)(单位:分)78,96,75,76,82,87,60,54,87,72 100,82,78,86,70,92,76,80,98,78整理数据:(成绩得分用x表示)分数数量班级060x≤≤6070x≤<7080x≤<8090x≤<90100x≤≤甲班(人数) 1 3 4 6 6乙班(人数) 1 1 8 6 4分析数据,并回答下列问题:()1完成下表:平均数中位数众数甲班80.683a=乙班80.35b=78()2在“至善班”甲班的扇形图中,成绩在7080x≤<的扇形中,所对的圆心角α的度数为.估计全部“至善班”的1600人中优秀人数为人.(80分及以上为优秀).()3根据以上数据,你认为“至善班” 班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:2020 中考②24.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了部分学生,并将其结果绘制成如下不完整的条形图和扇形图.抽取的学生最喜欢体育活动的条形统计图抽取的学生最喜欢体育活动的扇形统计图请结合以上信息解答下列问题:(1)在这次调查中一共抽查了_____学生,扇形统计图中“乒乓球”所对应的圆心角为_____度,并请补全条形统计图;(2)己知该校共有1200名学生,请你估计该校最喜爱跑步的学生人数;(3)若在“排球、足球、跑步、乒乓球”四个活动项目任选两项设立课外兴趣小组,请用列表法或画树状图的方法求恰好选中“排球、乒乓球”这两项活动的概率.25.小军和小刚两位同学在学习”概率“时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次试验,实验的结果如下:向上点数 1 2 3 4 5 6 出现次数7 9 6 8 20 10 (1)计算“2点朝上”的频率和“5点朝上”的频率.(2)小军说:“根据实验,一次实验中出现3点朝上的概率是110”;小军的这一说法正确吗?为什么?(3)小刚说:“如果掷600次,那么出现6点朝上的次数正好是100次.”小刚的这一说法正确吗?为什么?参考答案1.B【解析】110(6+5+7+8+7+5+8+10+5+9)×2000=14000只.故选B.2.C.【解析】试题分析:根据概率公式用红球的个数除以球的总个数即可.小张从口袋中任意摸出一个球是红球的概率=31 2343=++.故选C.考点: 概率公式.3.C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某区为了解15000名初中生的身高情况,抽取了500名学生进行身高测量.在这个问题中,样本是500名学生的身高情况,故选C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.D【解析】A一定会发生,是必然事件;B一定不会发生,是不可能事件;C一定会发生,是必然事件;D在罚球线上投篮一次未投中是随机事件.故选D.5.D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.6.A【解析】先判断出那种颜色的球最多,然后根据颜色多的球摸出的可能性最大即可得出结论.【详解】解:∵10>7>2∴红球最多∴第四次摸出红球的可能性最大故选A.【点睛】此题考查的是比较可能性的大小,掌握颜色多的球摸出的可能性最大是解决此题的关键.7.D【解析】A:根据中位数、众数、平均数以及方差的概念以及求解方法逐一求出进而进行判断即可. 【详解】这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,∴这10名学生周阅读所用时间的中位数是:(5+5)÷2=10÷2=5,∴选项A不正确;∵这10名学生周阅读所用时间出现次数最多的是5小时,∴这10名学生周阅读所用时间的众数是5,∴选项B不正确;∵(4×3+5×4+8×2+12)÷10=60÷10=6∴这10名学生周阅读所用时间的平均数是6,∴选项C不正确;∵110×[3×(4-6)2+4×(5-6)2+2×(8-6)2+(12-6)2]=6,∴这10名学生周阅读所用时间的方差是6,∴选项D正确,故选D.【点睛】本题考查了加权平均数、中位数和众数、方差等,熟练掌握相关概念以及求解方法是解题的关键.8.C【解析】根据条形统计图的数据即可得到答案.【详解】由条形统计图可知射击成绩为8环的人数为6人,故选择C.【点睛】本题考查条形统计图,解题的关键是读懂条形统计图的信息.9.B【解析】分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.【详解】根据题意列出所有可能的情况,如下:共有6种情况,必须闭合开关3S灯炮才发光,即能让灯泡发光的概率是42 =63.故选B.【点睛】此题考查列表法与树状图法,解题关键在于列出所有结果的表格.10.B【解析】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.从小到大排列此数据为:57、59、59、59、61、63、65、67、70,数据59出现了三次最多为众数,61处在第5位为中位数.所以本题这组数据的中位数是61,众数是59.故选B.考点:中位数和众数11.C【解析】试题分析:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,最中间的数就是这组数据的中位数,所以这组数据的中位数是23.故答案选C.考点:中位数.12.B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.13.B【解析】根据m个数的平均数是x,n个数的平均数是y,得出这两组数据的和,把两个和相加,得到m+n个数字的和,用这个和除以两组数据的个数,即可得到平均数.【详解】∵m个数的平均数是x,n个数的平均数是y,∴m个数的和是mx,n个数的和是ny,∴这m+n个数字的和是mx+ny,∴这n+m个数字的平均数是mx ny m n++,故选B.【点睛】本题考查平均数,不管是怎样的数字要求平均数,我们考虑到方法是得到所有数字的和,用它去除以数字的个数.14.A【解析】试题分析:让小灯泡发光的情况数除以总情况数即为发光的概率.试题解析:共有4个开关,闭合其中两个开关,有AB,AC,AD,BC,BD,CD,共六种情况,只有闭合D才能使灯泡发光,即AD,BD,CD∴小灯泡发光的概率3162==.故选A.考点:概率公式.15.C【解析】先计算出样本数据的平均数,再用这个平均数×2×350计算即可. 【详解】解:10个西瓜的平均数是:(5+8+6+8+10+9+9+9+7+9)÷10=8(斤), 则这350个西瓜约收入是:8×2×350=5600元. 故选:C . 【点睛】本题考查了平均数的计算和利用样本估计总体的思想,属于基本题型,熟练掌握平均数的计算方法和利用样本估计总体的思想是解题的关键. 16.20% 【解析】用裸眼视力大于或等于5.0的人数除以总人数可得答案. 【详解】解:该校正常视力的学生占全体学生的比值是402030506040++++=0.2=20%,故答案为20%. 【点睛】本题考查了频数分布直方图的知识,解题的关键是仔细的读图并从中找到进一步解题的有关信息.17.0、 1、 1、 2.4. 【解析】根据平均数、中位数、众数、方差的定义求解即可. 【详解】平均数是:(1-3+1+0+1) ÷5=0; 中位数是:1; 众数是:1; 方差是:()()()222110330005⎡⎤-⨯+--+-⎣⎦=2.4. 故答案为: 0; 1;1; 2.4 【点睛】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数. 18.12 【解析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数. 【详解】∵小明共摸了100次,其中20次摸到黑球,则有80次摸到白球, ∴摸到黑球与摸到白球的次数之比为1:4, ∵这个口袋中有3个黑球, ∴共有白球3×4=12个, 故答案为:12. 【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可. 19.8 【解析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 【详解】解:设袋子里有x 个蓝球, 则2xx =0.8, 解得x =8. 即有8个蓝球. 【点睛】本题考查概率,能够根据公式列出式子是解答本题的关键.20.(1)120,图详见解析;(2)B 或《脚尖上的信天游》;(3)500. 【解析】(1)根据选项B 的条形统计图和扇形统计图求出总人数,再根据选项C 的扇形统计图即可得出答案;(2)根据扇形统计图即可得出答案;(3)根据扇形统计图得出选择电影《百鸟朝凤》的学生所占比例,再用2000乘以该比例即可得出答案.【详解】÷=(人),则选择C的人数为(1)由题意得,本次调查的学生人数为6655%120⨯=(人)12025%30故答案为:120,补充条形统计图如下图所示:(2)∵《脚尖上的信天游》被选择的占比为55%,超过一半人∴被学生选择最多的电影是《脚尖上的信天游》故答案为:B或《脚尖上的信天游》;⨯=(人)(3)由扇形统计图得:200025%500答:该校选择电影《百鸟朝风》的约有500人.【点睛】本题考查了条形统计图和扇形统计图、样本估计总体,掌握读懂统计图是解题关键.错因分析:容易题.失分原因可能是没有掌握用“样本估计总体”的思想求解.21.(1)16,图见解析;(2)126°;(3)约940名【解析】(1)先根据B组的频数和频率求出抽查的总人数,再用总人数乘以A组人数占总人数的百分比即可求出a的值,再求出C组人数,从而可补全条形统计图;(2)用360°乘以D组人数占总体的百分比即可;(3)先求出样本中优秀的百分比,再用总人数相乘即可得解.【详解】(1)总人数40÷20%=200(人);A组人数:200×8%=16(人);C组人数:200×25%=50(人);E组人数:200-16-40-50-70=24(人)直方图如图所示:(2)360°×(70÷200)=126°(3)2000×[(70+24)÷200]=940(名)【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)34%;(2)A的值为600,B的值为0.35;(3)2本.【分析】(1)八年级的人数占全校总人数的百分率=1-28%-38%;(2)由频率的意义可知B=1-(0.34+0.25+0.06),在求出频数,利用2400-(840+816+144)即可求出A的值,(3)先求出全校总人数,再求出该校学生平均每人读的本数即可.【详解】解:(1)八年级的百分率是:1﹣28%﹣38%=34%;(2)B=1﹣0.34﹣0.25﹣0.06=0.35,由816÷0.34=2400得图书总数是2400本,所以A=2400×0.25=600(本).故A的值为600,B的值为0.35;(3)因为八年级的人数是408人,占34%,所以求得全校人数有:408÷34%=1200(人),所以全校学生平均每人阅读:2400÷1200=2(本).【点睛】本题考查了频数分布表和扇形统计图的综合运用,其中分析频数分布表和频率的关系是解题关键.23.(2)96, 79 a b ==;(2)72;880︒;(3)甲,理由详见解析【解析】(1)根据众数,中位数的定义即可解决问题.(2)根据圆心角=360°×百分比,计算即可,利用样本估计总体的思想解决问题. (3)根据优秀率,中位数,平均数的大小即可判断.答案不唯一,合理即可. 【详解】(1)将甲班成绩重新整理如下:56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96, 其中96出现次数做多, ∴众数a =96(分), 将乙班成绩重新整理如下:54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100, 其中中位数b =78802+=79(分), 故答案为:96,79;(2)成绩在70≤x <80的扇形中,所对的圆心角α的度数为360°×420=72°, 估计全部“至善班”的1600人中优秀人数为1600×2240=880(人). 故答案为:72°;880(3)甲所选取做样本的同学的学习效果更好一些,你所做判断的理由是:甲的优秀率高,甲的中位数比乙的中位数大,故答案为:甲,甲的优秀率高,甲的中位数比乙的中位数大. 【点睛】本题考查扇形统计图,样本估计总体的思想,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)150,36.补全如图见解析;(2)估计该校最喜爱跑步的学生为312人;(3)恰好选中“排球、乒乓球”这两项活动的概率为16. 【解析】(1) 由排球人数及其斯占百分比可得总人数,用360°乘以乒乓球人数所占比例可得其对应圆心角度数,总人数乘以足球对应的百分比可得其人数,从而补全图形;(2)用总人数乘以样本中跑步人数所占比例即可得;(3)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①排球、④乒乓球”两项活动的结果数,然后根据概率公式计算.【详解】(1)调查中抽查的学生总数为:2114%=150÷扇形统计图中“乒乓球”所对应的圆心角为:15360=36150︒⨯︒故答案为:150,36.补全条形统计图如图.(2)估计该校最喜爱跑步的学生人数有:391200312150⨯=(人)(3)(如图)∴21126 P==【点睛】本题考查了列表法或树状图法:通过列表法或树状图法列出所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.25.解:(1)2点朝上出现的频率为320;5点朝上的概率为13;(2)小军的说法不正确,(3)小刚的说法是不正确的.【解析】(1)直接利用概率公式计算即可;(2)利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可;(3)利用随机事件发生的概率的意义直接回答即可确定答案.【详解】(1)2点朝上出现的频率=960=320;5点朝上的概率=2060=13;(2)小军的说法不正确,因为3点朝上的概率为110,不能说明3点朝上这一事件发生的概率就是110,只有当实验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近,才可以将这个频率的稳定值作为该事件发生的概率.(3)小刚的说法是不正确的,因为不确定事件发生具有随机性,所以6点朝上出现的次数不一定是100次.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解“大量重复试验下事件发生的频率可以估计该事件发生的概率”,难度一般.。
2020年中考数学复习每日一练 第二十七讲 《尺规作图》(包含答案)
2020年数学中考复习每日一练第二十七讲《尺规作图》一.选择题1.下列说法正确的是()A.用直尺和圆规作一条线段的垂直平分线的过程,是用“到线段两端距离相等的点在这条线段的垂直平分线上”B.用直尺和圆规作一个角的平分线的过程,是用“边角边”构造了全等三角形C.用直尺和圆规作一个角的平分线的过程,是用“到角的两边距离相等的点在这个角的平分线上”D.用直尺和圆规作一个角等于已知角的过程,是用“边角边”构造了全等三角形2.如图,仔细观察用直尺和圆规作出∠AOB的角平分线OE示意图,请你根据所学知识,说明画出的∠AOE=∠BOE的依据是()A.ASA B.SAS C.AAS D.SSS3.如图,在△ABC中,一位同学按以下步骤作图:(1)以点A为圆心,作与BC相交于C,E 两点的弧;(2)分别以点C和点E为圆心,适当长为半径作圆弧,两弧交于点P;(3)作射线AP,交BC于点D.则下列结论中错误的是()A.PE=PC B.ED=CD C.∠EAD=∠CAD D.∠BAE=∠CAD 4.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A.B.C.D.5.如图,点C在∠AOB的OB边上,用尺规作出了∠BCD=∠AOB.以下是排乱的作图过程:则正确的作图顺序是()①以C为圆心,OE长为半径画,交OB于点M.②作射线CD,则∠BCD=∠AOB.③以M为圆心,EF长为半径画弧,交于点D.④以O为圆心,任意长为半径画,分别交OA,OB于点E,F.A.①﹣②﹣③﹣④B.③﹣②﹣④﹣①C.④﹣①﹣③﹣②D.④﹣③﹣①﹣②6.作⊙O的内接正六边形ABCDEF,甲、乙两人的作法分别是:甲:第一步:在⊙O上任取一点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F.第二步:依次连接这六个点.乙:第一步:任作一直径AD.第二步:分别作OA,OD的中垂线与⊙O相交,交点从点A 开始,依次为点B,C,E,F.第三步:依次连接这六个点.对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲、乙均错误C.甲错误,乙正确D.甲、乙均正确7.如图,在∠AOB中,尺规作图如下:在射线OA、OB上,分别截取OD、OE,使OD=OE;分别以点D和点E为圆心、大于的长为半径作弧,两弧相交于点C;作射线OC,连结CE、CD.下列结论不一定成立的是()A.OE=EC B.CE=CD C.∠OEC=∠ODC D.∠ECO=∠DCO 8.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm9.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容如图,已知∠AOB,求作:∠AOB的角平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交☺于点N;②分别以点⊕为圆心,大于♡的长为半径画弧,两弧在⊗内部交于点C;③画射线OC,OC即为所求.()A.☺表示OA B.⊕表示M、C C.♡表示ON D.⊗表示∠AOB 10.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.3二.填空题11.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为.12.如图,用尺规作∠MON的平分线OP.由作图知△OAC≌△OBC,从而得OP平分∠MON,则此两个三角形全等的依据是.13.如图,已知线段AB,按下列要求自己完成画图并计算,延长线段AB到点C,使BC=2AB,取AC中点D;如果AB=6,则线段BD的长度为.14.如图,在边长是4×4,小正方形边长为1的正方形网格图中,线段AB的两个端点都在格点上,若以AB为斜边,则可以作出个格点直角三角形,并在答题卡的图中作出其中面积最大的格点直角三角形.15.小明分别以正六边形ABCDEF 的顶点B 、D 、F 为圆心,以BA 长为半径作圆弧,设计出如图所示的图案.若AB =1,则该图案外围轮廓的周长为 .16.如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A 、B ,小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ②分别以C ,D 为圆心,以大于, CD 长为半径作弧,两弧在∠NAB 内交于点E ;③作射线AE 交PQ 于点F ,若∠ABP =70°,则∠AFB = ,17.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于MN 长的一半为半径画弧,两弧交于点P ,连结AP 并延长,交BC 于点D ,则下列说法中,正确的有 .(填写序号) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.18.如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②;步骤3:连接AD ,交BC 延长线于点H;下列结论:①BH垂直平分线段AD;②AC平分∠BAD;③S=BC•AH;④A H△ABC =DH.其中一定正确的有(只填序号)三.解答题19.已知,如图,∠MON.(1)用直尺和圆规画出∠MON的平分线OA(保留作图痕迹,不写作法,不用证明)(2)在射线OA上任意选取一点P,再在射线OM上选取一点B,要求∠OBP为钝角.①在射线ON上找到所有使得PD=PB的点D.②写出∠OBP与∠ODP之间的数量关系,并证明.20.如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB、AD;(4)我们容易判断出线段AB、AD、BD的大小关系是AB+AD>BD,理由是.21.(1)如图1,在平行四边形ABCD中,点E1,E2是AB三等分点,点F1,F2是CD三等分点,E1F1,E2F2分别交AC于点G1,G2,求证:AG1=G1G2=G2C.(2)如图2,由64个边长为1的小正方形组成的一个网格图,线段MN的两个端点在格点上,请用一把无刻度的尺子,画出线段MN三等分点P,Q.(保留作图痕迹)22.如图,长方形纸片ABCD,点E在边AB上,M、N分别在射线BC和射线AD上,连接EM,EN,将三角形MBE沿EM折叠(把物体的一部分翻转和另一部分贴拢),点B落在点B′处;将三角形NAE沿EN折叠,点A落在点A’处.(1)若∠MEB=30°,∠NEA=45°,用直尺、量角器画出射线EB′与EA′;(2)若∠MEB=30°,∠NEA=45°,求∠A'EB'的度数;(3)若∠MEB=α,∠NEA=β,用含α、β的代数式表示∠A'EB'的度数.23.七(1)班的学习小组学习“线段中点”内容时得到一个很有意思的结论,请跟随他们一起思考.(1)发现:如图1,线段AB=12,点C,E,F在线段AB上,当点E,F是线段AC和线段BC的中点时,线段EF的长为;若点C在线段AB的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF与线段AB之间的数量关系为.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF,学习小组应用“线段中点”的结论很快做出了符合要求的专用绳EF,请你尝试着“复原”他们的想法:①在图中标出点E点F的位置,并简述画图方法;②请说明①题中所标示E,F点的理由.24.LED显示屏是一种平板显示器,可以显示计算机生成的动态图文画面.如图①是平面显示的8X8正三角形网格的示意图,其中每个小正三角形的边长均为1,位于AD中的处的输入光点P按②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长.参考答案一.选择题1.解:A.用直尺和圆规作一条线段的垂直平分线的过程,是用“到线段两端距离相等的点在这条线段的垂直平分线上“,所以A选项正确,符号题意;B.用直尺和圆规作一个角的平分线的过程,是用“边边边”构造了全等三角形,所以B选项错误,不符合题意;C.用直尺和圆规作一个角的平分线的过程,是用“是用“边边边”构造了全等三角形,所以C选项错误,不符合题意;D.用直尺和圆规作一个角等于已知角的过程,是用“边边边”构造了全等三角,所以D选项错误,不符合题意.故选:A.2.解:根据用直尺和圆规作出∠AOB的角平分线OE的过程可知:OD=OC,DE=CE,AE=AE,∴△ODE≌△OCE(SSS)∴∠AOE=∠BOE.故选:D.3.解:根据作图过程可知:AP是CE的垂直平分线,∴PE=PC,ED=CD,AE=AC,∴∠EAD=∠CAD.所以A、B、C选项都正确.故选:D.4.解:已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,画法正确的是B、C、D选项,不符合题意.A选项错误,符合题意;故选:A.5.解:根据作一个角等于已知角的过程可知:④以O为圆心,任意长为半径画,分别交OA,OB于点E,F.①以C为圆心,OE长为半径画,交OB于点M.③以M为圆心,EF长为半径画弧,交于点D.②作射线CD,则∠BCD=∠AOB.故选:C.6.解:甲:由作图可知,AB=BO=AO,即△AOB为等边三角形,同理可得△BOC,△COD,△DOE,△EOF,△AOF均为等边三角形,故AB=BC=CD=DE=EF=FA,∠ABC=∠BCD=∠CDE=∠DEF=∠AFE=∠FAB=120°,所以六边形ABCDEF为正六边形;乙:由作图可得,BA=BO=AO,即△ABO为等边三角形,同理可得△AOF,△COD,△DOE均为等边三角形,故∠EOF=∠BOC=60°,而BO=CO=EO=FO,所以△BOC,△EOF均为等边三角形,所以AB=BC=CD=DE=EF=FA,∠ABC=∠BCD=∠CDE=∠DEF=∠AFE=∠FAB=120°,所以六边形ABCDEF为正六边形;因此,甲、乙两人的作法均正确,故选:D.7.解:根据作图过程可知:OE=OD,EC=DC,OC=OC∴△OEC≌△ODC(SSS)∴∠OEC=∠ODC∠ECO=∠DCO.所以B、C、D选项都成立.所以A选项不成立.故选:A.8.解:由画图可知:DE是AB的垂直平分线,∴AF=BF,AG=BG,∵△GBC的周长为14cm,即BC+BG+CG=14cm,∴BC+AC=14cm,∵△ABC的周长为26cm,即AB+BC+AC=26cm,∴AB=12cm,∴BF=6cm.故选:A.9.解:作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC,OC即为所求.故选:D.10.解:由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=30°∴∠DAB=30°∴∠C=90°,∴∠CAB=60°∴∠CAD=30°∴CD=AD=3.故选:D.二.填空题(共8小题)11.解:∵⊙O与AD,CF,BC相切于点A,E,B,∴FA=FE,CE=CB=2,设AF=FE=x,在Rt△DFC中,∵DF2+CD2=CF2,∴(2﹣x)2+22=(2+x)2,解得x=,∴DF=,=•DC•DF=×2×=,∴S△CDF故答案为.12.解:由基本作图得OA=OB,AC=BC,而OC为公共边,所以利用“SSS”可判断△AOC≌△BOC,所以∠AOC=∠BOC.故答案为:SSS.13.解:如图,点C,D即为所求.∵BC=2AB,AB=6,∴BC=12,∴AC=AB+BC=6+12=18,∵AD=DC,∴AD=AC=9,∴BD=AD﹣AC=9﹣6=3,故答案为3.14.解:如图所示:线段AB的两个端点都在格点上,以AB为斜边,可以作出4个格点直角三角形,△ABC的面积最大.故答案为4.15.解:由题意可知:∵正六边形ABCDEF六个边相等都等于1,六个内角相等都等于120°,∴图案外围轮廓的周长为三个半径为1、圆心角为240度的弧长之和,即图案外围轮廓的周长为:3×=4π.故答案为4π.16.解:∵MN∥PQ,∴∠NAF=∠BFA,由题意得:AF平分∠NAB,∴∠NAF=∠BAF,∴∠BFA=∠BAF,∵∠ABP=∠BFA+∠BAF,∴∠ABP=2∠BFA=70°,∴∠AFB=70°÷2=35°,故答案为:35°.17.①证明:连接NP,MP,在△ANP与△AMP中,∵,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②证明:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∠ADC=60°,故此选项正确;③证明:∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④证明:∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=AC•CD=AC•AD,∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=1:3,故此选项正确;故答案为:①②③④.18.解:连接CD,BD.由作图可知,AC=CD,BA=BD,∴BH垂直平分线段AD,故①④正确,∴S△ABC=•BC•AH,故③正确,无法判断②正确,故②错误,故答案为①③④三.解答题(共6小题)19.解:如图,(1)OA即为所求;(2)①点D1、D2即为所求;②∠OBP=∠OD1P,∠OBP+∠OD2P=180°.证明:分别作PE⊥AM于点E,PF⊥AM于点F ∵OA平分∠MON∴PE=PF∵PB=PD1∴Rt△BPE≌Rt△D1PF∴∠PBE=∠PD1F∴∠OBP=∠OD1P同理可证∠PBE=∠PD2F∵∠OBP+∠PBE=180°∴∠OBP+∠OD2P=180°.20.解:如图,(1)射线AC即为所求;(2)直线BD与射线AC相交于点O;(3)AB、AD即为所求;(4)线段AB、AD、BD的大小关系是AB+AD>BD,理由是:两点之间线段最短.故答案为:两点之间线段最短.21.(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD∥BC,∵DF1=CD,AE1=AB,∴DF1=AE1,∴四边形ADF1E1是平行四边形,∴AD∥E1F1,∴E1G1∥BC,∴==,同法可证:==,∴AG1=CG2=AC,∴AG1=G1G2=G2C.(2)如图,点P,Q即为所求.22.解:(1)图形如图1中所示:(2)与翻折可知:∠AEA′=2∠AEN=90°,∠BEB′=2∠BEM=60°,∴∠A′EB′=180°﹣90°﹣60°=30°.(3)当α+β≤90°时,∠A′EB′=180°﹣2(α+β),当α+β>90°时,∠A′EB′=2(α+β)﹣180°.23.解:(1)如图1中,∵EC=AC,CF=BC,∴EF=EC+CF=(AC+BC)=AB=6.如图2中,∵EC=AC,CF=BC,∴EF=EC﹣CF=(AC﹣BC)=AB.故答案为6, AB.(2)①如图3中,在CD上取得M,使得AC=CM,F为BM的中点,点E与C重合.②∵F为BM的中点,∴MF=FB,∵AB=AC+CM+MF+FM,CM=AC,∴AB=2CM+2MF=2(CM+MF)=2EF,∵AB=40m,∴EF=20m,∵AC+BD<20m,∵点E与C重合,EF=20m,∴CF=20m,∴点F落在线段CD上.24.解:(1)光点P经过的路径如图所示.(2)光点P经过的路径总长=2π×2=4π.。
统计与概率(原卷版)--备战中考数学抢分秘籍(全国通用)
统计与概率--备战中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①数据的整理、描述和分析。
②概率问题。
统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。
1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。
2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!中考数学关于统计与概率的知识点考察分析考点知识点分析考察频率数据的整理和描述 1.极差:一组数据中最大数据和最小数据的差.2.频数、频率:数据分组后落在各小组内的数据叫做频数;每一个小组的频数与样本容量的比值叫做这个小组的频率.3.统计表:利用表格处理数据,可以帮助我们找到数据分布的规律.4.统计图:条形图、扇形图、折线图、直方图.★★★★★数据的分析 1.平均数2.中位数:几个数据按从小到大的顺序排列时,处于最中间的一个数据(或是中间两个数据的平均数)是这组数据的中位数.3.众数:一组数据中出现次数最多的那个数据.4.方差★★★★☆典例1.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如图:①m =,n =;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.典例2.某中学为了解学生每学期诵读经典的情况,在全校范围内随机抽查了部分学生上一学期阅读量,学校将阅读量分成优秀、良好、较好、一般四个等级,绘制如下统计表:等级一般较好良好优秀阅读量/本3456频数12a144频率0.240.40b c请根据统计表中提供的信息,解答下列问题:(1)本次调查一共随机抽取了__________名学生;表中=a_________,b=_________,c=_________.(2)求所抽查学生阅读量的众数和平均数.(3)样本数据中优秀等级学生有4人,其中仅有1名男生.现从中任选派2名学生去参加读书分享会,请用树状图法或列表法求所选2名同学中有男生的概率典例3.为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.参加四个社团活动人数统计表社团活动舞蹈篮球围棋足球人数503080参加四个社团活动人数扇形统计图请根据以上信息,回答下列问题:(1)抽取的学生共有人,其中参加围棋社的有人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.中考统计与概率是基础题。
人教版中考数学第一轮复习第八章 统计与概率
第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
河南省中考数学总复习第一部分考点全解第八章统计与概率第27讲概率(35分)课件
10.(2018·开封一模)随着科技的迅猛发展,人与人之间的沟通方式更多样,便捷, 某校数学兴趣小组设计了“你最喜欢的沟通方式”的调查问卷(每人必选且只选一 种),在全校范围内随机调查了部分学生,并将调查结果绘制了如下两幅尚不完整的 统计图.
请结合图中所给的信息解答下列问题. (1)这次统计共抽查了_________名学生;在扇形统计图中,“Q Q ”所对应的扇形圆 心角的度数为_________; (2)请将条形统计图补充完整; (3)若该校共有 2 500 名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少 人?
4.频率与概率的区别和联系 (1)区别:概率是一个确定的数,客观存在的,只要有事件存在,就有一个概率存 在,与试验次数无关;频率是随机变化的,具有随机性,试验前不能确定. (2)联系:一般地,在大量重复试验时,如果事件 A 发生的频率mn 稳定于某个常数 P 附近,那么事件 A 发生的概率 P(A)=P(0≤P(A)≤1). 5.几何概型的概率公式: P(A)=全部构结成果事所件构A的成区的域区长域度长度面积面或积体或积体积.
3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正
数的概率是( D ) A .12
B .59
C .49
D .23
4.(2018·省实验四模)某商店进行“迎五一,大促销”摸奖活动,凡是有购物小
票的顾客均可摸球一次,摸到白球即可获奖.规则如下:一个不透明的袋子中装有
10 个黑球和若干白球,它们除颜色不同外,其余均相同,从袋子中随机摸出一个球,
(4)某天甲,乙两名同学都想从“微信”“QQ”“电话”三种沟通方式中选一种方 式与对方联系,请用列表或画树状图的方法求出甲,乙两名同学恰好选择同一种沟通 方式的概率.
2020年江西省中考数学单元复习卷:第8单元 统计与概率
第八单元限时检测卷 (时间:120分钟 分值:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列各项调查中合理的是( )A .对“您觉得该不该在公共场所禁烟”做民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B .为了了解全校同学对课程的喜欢情况,对某班男同学进行抽样调查C .“长征-3B 火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D .采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受 2.下列说法正确的是( ) A .明天会下雨是必然事件 B .不可能事件发生的概率是0C .在水平的桌面上任意抛掷一枚图钉,一定针尖向下D .投掷一枚质地均匀的硬币1 000次,正面朝下的次数一定是500次3.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为( )(第3题)A .12B .45C .49D .594.(2019徐州)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( )A .40,37B .40,39C .39,40D .40,385.某校为了解学生的出行方式,随机从全校2 000名学生中抽取了300名学生进行调查,并根据调查结果绘制如图所示的条形统计图,下列说法不正确的是()(第5题)A.样本中步行人数最少B.本次抽样的样本容量是300C.样本中坐公共汽车的人数占总数的50%D.全校步行、骑自行车的人数的总和与坐公共汽车的人数一定相等6.对某种学生快餐(300 g)营养成分的统计如图所示,根据统计图,下列结论错误的是()(第6题)A.这种快餐中,脂肪有30gB.这种快餐中,蛋白质含量最多C.表示碳水化合物的扇形的圆心角是144°D.最多的营养成分是最少的8倍二、填空题(本大题共6小题,每小题3分,共18分)7.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是__________.(填“必然事件”“随机事件”或“不可能事件”)8.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是__________.9.(2019柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:__________.(结果精确到0.01)10.若数据x1,x2,x3,x4,x5的平均数为2,则数据x1+1,x2-1,x3+2,x4-2,x5+5的平均数为__________.11.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__________万人.(第11题)12.(2019雅安)在两个暗盒中,各自装有编号为1,2,3的三个球,球除编号外无其他区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为__________.三、(本大题共5小题,每小题6分,共30分)13.(2019南通)第一个盒中有2个白球、1个黄球,第二个盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.14.(2019镇江)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.15.(2019黄石)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.16.(2019湘潭)2018年高一新生开始,湖南全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考.(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.17.(2019齐齐哈尔)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多;D.了解较少;D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有__________名;(2)请补全条形图;(3)扇形图中的选项“D.了解较少”部分所占扇形的圆心角的大小为______°;(4)若该校共有2 000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?四、(本大题共3小题,每小题8分,共24分)18.(2019锦州)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是__________;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.19.(2019河池)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表.(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2 000名学生,估计该校参加音乐兴趣班的学生有多少人?20.(2019湘潭)每年5月份是心理健康宣传月,某中学开展以“关心他人、关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2 000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20名师生测评分数如下:85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.②数据整理:将收集的数据进行分组并评价等级:④依据统计信息回答下列问题:(1)统计表中的a=__________;(2)心理测评等级为C等的师生人数所占扇形的圆心角度数为________;(3)学校决定对E等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?五、(本大题共2小题,每小题9分,共18分)21.(2019怀化)某射箭队准备从王方、李明二人中选拔1人参加射箭比赛,在选拔赛中,两人各射箭10次的成绩(单位:环数)如下:(1)王方10次射箭得分情况李明10次射箭得分情况(2)(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适.22.(2019德州)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:整理数据:(2)秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.六、(本题共12分)23.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名老师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5.甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:(1)m =__________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是________(填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.参考答案1.D 2.B 3.C 4.B 5.D 6.D 7.必然事件 8.13 9.0.95 10.3 11.23.4 12.5913.解:画树状图如下:共有6种等可能的结果数,其中取出的2个球中有1个白球、1个黄球的结果数为3,所以取出的2个球中有1个白球、1个黄球的概率是36=12.14.解:画树状图如下:共有9种等可能的情况数,其中小丽和小明在同一天值日的有3种, ∴小丽和小明在同一天值日的概率是39=13.15.解:(1)(m ,n )所有可能出现的结果有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3).(2)数字之和为奇数的概率=49,数字之和为偶数的概率=59,49≠ 59,∴这个游戏不公平. 16.解:(1)画树状图如下:由树状图知,共有12种等可能的选法.所有等可能的选法有“物、政、化”、“物、政、地”、“物、政、生”、“物、化、地”、“物、化、生”、“物、地、生”、“历、政、化”、“历、政、地”、“历、政、生”、“历、化、地”、“历、化、生”、“历、地、生”.(2)画树状图如下:由树状图知,共有9种等可能的结果,其中他们恰好都选中政治的只有1种结果,所以他们恰好都选中政治的概率为19.17.解:(1)100. (2)补全条形图略. (3)108.(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生有 2 000×20+40100=1 200(名).答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有1 200名. 18.解:(1)14.(2)画树状图如下:由树状图知共有12种等可能的结果数,其中甲组抽到A 小区,同时乙组抽到C 小区的结果数为1,∴甲组抽到A 小区,同时乙组抽到C 小区的概率为112.19.解:(1)本次调查的样本容量为100人, a =30%,b =40,c =20%. (2)折线图补充略.(3)估计该校参加音乐兴趣班的学生有2 000×20%=400(人). 答:估计该校参加音乐兴趣班的学生有400人. 20.解:(1)7. (2)90°.(3)2 000×120=100(名).答:估计有100名师生需要参加团队心理辅导. 21.解:(1)王方10次射箭得分情况李明10(2)王方的平均数=110×(6+14+8+27+30)=8.5.李明的平均数=110×(48+27+10)=8.5.(3)∵s 2王方=110×[(6-8.5)2+2×(7-8.5)2+(8-8.5)2+3×(9-8.5)2+3×(10-8.5)2]=1.85,s 2李明=110×[6×(8-8.5)2+3×(9-8.5)2+(10-8.5)2]=0.45, ∴s 2王方>s 2李明.∴应选派李明参加比赛合适. 22.解:(1)4,74,78.(2)200×210+300×110=40+30=70(人).答:估计两个年级体质健康等级达到优秀的学生共有70人.(3)七年级学生的体质健康情况更好.理由如下:七年级优秀人数多,不及格的人数少. 23.解:(1)96.5.(2)王.理由如下:根据中位数即可判断,甲校的王老师成绩在各自学校参与测试老师中成绩的名次相比较更靠前.(3)甲校96分以上(含96分)的人数为180×2030=120(人),∴乙校96分以上(含96分)的人数为2×120-100=140(人). 答:估计乙校96分以上(含96分)的总人数为140人.。
初中数学基础知识1第八单元统计与概率第27课时《统计》
第27课时 统 计
(2)抽样调查 定义:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方 法称为抽样调查. a.调查全国中小学生课外阅读情况;(调查范围大) b.某市中学生的视力情况;(调查范围大) c.检查一批电热水壶的使用寿命.(具有破坏性) 总结:一般当调查对象涉及面广、范围大、受条件限制或具有破坏性等时,采用抽 样调查.
第27课时 统 计
2. 总体、个体、样本和样本容量 总体:所要考察对象的全体叫做总体; 个体:总体中的每一个考察对象叫做个体; 样本:从总体中所抽取的一部分个体叫做总体的一个样本; 样本容量:样本中个体的数目叫做样本容量. 【提分要点】1.总体、个体、样本三者的考察对象不是笼统的某人某物,而是某人 某物的数量指标;2.样本容量是样本中个体的数量.
第27课时 统 计
考点 2 平均数、中位数和众数
算术平 均数
一组数据:x1,x2,…,xn 的平均数 x =_n1_(_x_1+__x_2_+__…__+__x_n_)__
ቤተ መጻሕፍቲ ባይዱ
平均
x1 f1+x2 f2+…+xk fk
数 加权平 n 个数的加权平均数为____________n_____________,其中 f1,
各组频率之和等于 1
第27课时 统 计
考点 5 频数与频率
频数
定义 规律
统计时,落在各小组的数据__个__数______ 各小组的频数之和等于数据___总__数_____
频率
定义 规律
每个小组的___1_____与数据总数的比值 各小组的频率之和等于___频__数_____
第27课时 统 计
典例“串”考点
第27课时 统 计
第27课时 统 计
2020年中考数学考点总动员第27讲 图形的平移与旋转(含答案解析)
第27讲图形的平移与旋转1.图形的平移(1)定义:在平面内,将某一图形沿着某个方向移动一定的距离,这种图形运动称为平移;平移不改变图形的大小和形状.(2)平移的要素:平移方向、平移距离.(2)性质:①平移后的图形与原来的图形全等;②对应线段平行且相等,对应角相等;③对应点所连的线段平行且相等.2.图形的旋转(1)定义:把一个图形绕着某一个点O转动一定角度的图形变换叫做旋转,如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点;(2)要素:确定一个旋转运动的条件是要确定旋转中心、旋转方向和旋转角度;(3)性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.考点1:关于平移问题【例题1】在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是() A.向下移动1格 B.向上移动1格C.向上移动2格 D.向下移动2格解析:结合图形按平移的定义判断.【同步练】在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是(D)A.①或②B.③或④C.⑤或⑥D.①或⑨【解析】:根据题意可涂黑①和⑨,涂黑①时,可将左上和左下两个黑色正方形向右平移1个单位即可得;涂黑⑨时,可将左上和左下两个黑色正方形向右平移2个单位、再向下平移1个单位可得;故选:D.归纳:1.平移前后图形的形状、大小都不变,平移得到的对应线段与原线段平行且相等,对应角相等.2.判断时选择某一特殊点,验证其平移情况即可.考点2:关于旋转问题【例题2】(2016·娄底改编)如图,将等腰△ABC绕顶点B逆时针方向旋转角为α旋转到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别相交于点E、F.(1)试判断A1D和CF的数量关系;(2)当∠C=α时,判定四边形A1BCE的形状并说明理由.【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定及性质即可求解;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC =180°-α,在四边形A 1BCE 中,根据四边形的内角和得到∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,进而证得四边形A 1BCE 是平行四边形,由A 1B =BC 即邻边相等的平行四边形是菱形即可证明.【解析】:(1)∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C,∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C,∠A 1BD =∠CBC 1,在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C,A 1B =BC ∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D(ASA ),∴A 1D =CF ;(2)四边形A 1BCE 是菱形,∵将等腰△ABC 绕顶点B 逆时针方向旋转到△A 1BC 1的位置, ∴∠A 1=∠A,∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α,∵∠C =α,∴∠A 1=α,在四边形A 1BCE 中,∠A 1BC =360°-∠A 1-∠C-∠A 1EC =180°-α, ∴∠A 1=∠C,∠A 1BC =∠A 1EC , ∴四边形A 1BCE 是平行四边形, ∴A 1B =BC ,∴四边形A 1BCE 是菱形归纳:图形的旋转为背景的探究问题,常涉及的设问有:探究两条线段的数量关系、特殊四边形形状的判定,解决此类问题,需掌握如下方法:1.探究两条线段的数量关系一般指的是两条线段的倍数关系,常考虑利用特殊三角形、全等三角形、特殊四边形的性质或根据题中对应角的关系得到相似三角形,再根据相似三角形对应边成比例进行求解.2.探究特殊四边形的形状,通常先判定该四边形是否是平行四边形,再结合旋转的性质,根据其边或角的之间的等量关系进一步判定其为哪种特殊的平行四边形. 考点3:关于旋转的综合探究问题【例题3】(2018·湖北江汉·10分)问题:如图①,在Rt△ABC 中,AB=AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为 BC=DC+EC ; 探索:如图②,在Rt△ABC 与Rt△ADE 中,AB=AC ,AD=AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠ED C=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.一、选择题:1. (2017山东泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A 对应,则角α的大小为()A.30° B.60° C.90° D.120°【答案】C【解答】解:如图:显然,旋转角为90°,故选C.2. (2018·辽宁省抚顺市)(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1).故选:C.3. (2018·广西贺州·3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是.A.60° B.65° C.70° D.80°【答案】B【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.4. (2018·辽宁大连·3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【答案】C【解析】解:由题意可得:∠CBD=α,∠ACB=∠EDB.∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°.∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α.故选C.5. 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【答案】D【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D二、填空题:6. (2019•湖南常德•3分)如图,已知△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD绕点A 逆时针旋转45°得到△ACD′,且点D′、D、B三点在同一条直线上,则∠A BD的度数是.【答案】22.5°.【解答】解:∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD',∴∠AD'D=67.5°,∠D'AB=90°,∴∠ABD=22.5°.故答案为22.5°.7. (2019湖北宜昌3分)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2,将△AOB 绕点O 逆时针旋转90°,点B 的对应点B'的坐标是 .【答案】,3),【解答】解:如图,作B′H⊥y 轴于H .由题意:OA′=A′B′=2,∠B′A′H=60°,∴AH′=A′B′=1, ∴OH=3,3),8. (2019,山西,3分)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm.【答案】6210-【解析】过点A 作AG⊥DE 于点G ,由旋转可知:AD=AE ,∠DAE=90°,∠CAE=∠BAD=15° ∴∠AED=45°;在△AEF 中:∠AFD=∠AED+∠CAE=60° 在Rt△ADG 中:AG=DG=232=AD在Rt△AFG 中:2GF AF FG ====∴10CF AC AF =-=- 故答案为:6210-三、解答题:9. 如图所示,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE =CG ,连接BG 并延长交DE 于F ,将△DCE 绕点D 顺时针旋转90°得到△DAE′.(1)判断四边形E′BGD 是什么特殊四边形,并说明理由;(2)由△BCG 经过怎样的变换可得到△DAE′?请说出具体的变换过程.解:(1)四边形E′BGD 是平行四边形.理由:∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,∵将△DCE 绕点D 顺时针旋转90°得到△DAE′,∴CE =AE′, ∵CE =CG ,∴AE ′=CG ,∴BE ′=DG , ∴四边形E′BGD 是平行四边形;(2)∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°.∵∠BCD +∠DCE=180°,∴∠BCD =∠DCE=90°.在△BCG 和△DCE,⎩⎪⎨⎪⎧∠BCG=∠DCE BC =DC ∠CBG=∠CD E ,∴△BCG ≌△DCE(ASA );∴由△BCG 绕点C 顺时针旋转90°可得到△DCE,再绕点D 顺时针旋转90°得到△DAE′10. (2018·浙江宁波·10分)如图,在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连接BE .(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【考点】旋转的性质、全等三角形的判定与性质【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠D CB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°11. (2018·浙江临安·3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定【考点】梯形的性质和旋转的性质【分析】如图作辅助线,利用旋转和三角形全等证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,然后得出三角形的面积.【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.12. (2019•江苏苏州•8分)如图,ABC=,将线段AC绕点A旋转到AF的位置,使△中,点E在BC边上,AE AB得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65∠=︒,求FGC∠的度数.ACB∠=︒,28ABC(1)CAF BAE∠=∠∴∠=∠BAC EAFAE AB AC AF==又,()BAC EAF SAS∴△≌△EF BC∴=(2)65AB AE ABC=∠=︒,18065250BAE∴∠=︒-︒⨯=︒50FAG∴∠=︒BAC EAF又△≌△28F C∴∠=∠=︒502878FGC∴∠=︒+︒=︒13. (2019•湖北十堰•10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=2(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=1802α-故答案为:1802α-(2)AE=理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF∵AE=AD+DF+EF∴AE=CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG=8∵AC2=AE2+CE2,∴()2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.。
2023中考数学复习-专题28 统计与概率(练透)(学生版)
专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( )A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4 C .5 D .6 3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A .27B .29C .30D .31 4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是( )A .16B .13C .12 D .565.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是( )A .甲秧苗出苗更整齐B .乙秧苗出苗更整齐C .甲、乙出苗一样整齐D .无法确定甲、乙出苗谁更整齐 6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是( )A .49B .23C .12D .137.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm和212cm的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为()A.49B.59C.25D.359.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池数/节 4 5 6 7 8人数/人9 11 11 5 4A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是()A.小刚的平均分高B.小刚的中位数高C.小刚的方差小D.小刚最低分高二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a、b,把a、b作为点A的横、纵坐标;求点A(a,b)的个数为:__________;点A(a,b)在函数y x的图象上的概率为:______.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数5 10 15 20 25 30 每回进球次数3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m ______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm)如下:甲:172 168 175 169 174 167 166 169乙:164 175 174 165 162 173 172 175(1)甲、乙两名运动员跳高的平均成绩分别是多少?(2)分别求出甲、乙跳高成绩的方差;(3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm方可获得冠军,又应该选哪位运动员参赛?21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中 “篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表: 投篮次数n 10 50100 150 200 命中次数m 4 25 65 90 120命中率 0.4 0.5 0.65(1(2)这个运动员投篮命中的概率约是_____.(3)估计这个运动员3分球投篮15次能得多少分?23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级 平均分 中位数 众数 方差七年级 91 a89 45.2 八年级 9192.5 b 39.2请根据相关信息,回答以下问题:(1)直接写出表格中a,b的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活x )的学生人数是多少.动成绩优秀(90。
部编版2020届中考数学复习第八章统计与概率8.2事件的概率练习
事件的概率命题点1 概率的计算(8年1考)命题解读:题型为选择题,分值为3分。
主要考查一步概率的计算。
1.(2014·陕西中考)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )2.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,则卡片上的图形是中心对称图形的概率是。
命题点2 用列表法或画树状(形)图法解决概率问题(8年8考)命题解读:题型为解答题,分值为7分或8分。
主要考查利用列表法或画树状图法计算概率,利用概率知识判断游戏的公平性。
3.(2017·陕西中考)端午节“赛龙舟,吃粽子”是中华民族的传统习俗。
节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C)。
这些粽子除了馅不同,其余均相同。
粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子、一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子、一个红枣粽子和一个豆沙粽子。
根据以上情况,请你解答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率。
4.(2016·陕西中考)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动。
奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL)。
抽奖规则如下:①如图是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品。
(全国通用版)2019年中考数学复习第八单元统计与概率第27讲统计练习
考点1调查方式的选择
1.(2018·重庆B卷)下列调查中,最适合采用全面调查(普查)的是(D)
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的查
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为4.5首;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
教师
成绩
甲
乙
丙
笔试
80分
82分
78分
面试
76分
74分
78分
考点4方差
8.(2018·包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(B)
A.4,1B.4,2 C.5,1 D.5,2
9.(2018·邵阳)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐(C)
3.(1)补全扇形统计图的方法:
未知组百分比=100%-已知组百分比之和;
未知组 百分比= ×100%;
(2)未知组在扇形统计图中圆心角的度数=360°×该组所占样本的百分比.
中考数学总复习 第八单元 统计与概率 第27课时 统计数学课件
C.为了解神舟飞船设备零件的质量情况,选择抽样调查
D.为了解一批节能灯的使用寿命,选择抽样调查
采用全面调查;选项 D 了解节能灯的使
用寿命应选择抽样调查.
高频考向探究
探究二 平均数、众数、中位数
例 2 [2018·岳阳] 在“美丽乡村”评选活动中,某乡镇 7
个村的得分如下:98,90,88,96,92,96,86,这组数据的中位
1
7
高频考向探究
探究三 方差
例 3 初三体育素质测试,某小组 5 名同学成绩如下表所示,
编号
1
2
3
4
5
方差
平均成绩
得分
38
34
■
37
40
■
37
其中有两个数据被遮盖,那么被遮盖的两个数据依次是(
A.35,2
B.36,4
C.35,3
)
D.36,5
高频考向探究
[答案] B
[解析] ∵得分的平均成绩是 37,
甲
[答案] A
丙
高频考向探究
2.[2017·云南 12 题] 下列说法正确的是(
)
A.要了解某公司生产的 100 万只灯泡的使用寿命,可以采用抽样调查的方法
B.4 位同学的数学期末成绩分别为 100,95,105,110,则这 4 位同学数学期末成绩的中位数为 100
C.甲、乙两人各自跳远 10 次,若他们跳远成绩的平均数相同,甲、乙跳远成绩的方差分别为 0.51 和 0.62,则乙的表
现较甲更稳定
1
D.某次抽奖活动中,中奖的概率为 ,表示每抽奖 50 次就有一次中奖
50
高频考向探究
[答案] A
[解析] 了解某公司生产的 100 万只灯泡的使用寿命,属于破坏性的调查,适合抽样调查,A 正确;将 4 位同学的数学期
第27讲 与圆有关的位置关系(课件)中考数学一轮复习(全国通用)
1. 点和圆的位置关系
已知⊙O的半径为r,点P到圆心O的距离为d,则:
位置关系
图形
半径的关系,反过来已知点到圆心的距离与半径的关系,可
以确定该点与圆的位置关系.
定义
性质及判定
点在圆的外部
d > r 点P在圆外
点在圆周上
d = r 点P在圆上
点在圆的内部
内切
内含
O2
d
性质及判定
无
> + ⇔两圆外离
1个切点
= + ⇔两圆外切
两个交点
− < < + ⇔两圆相交
1个切点
= − ⇔两圆内切
R
r
O1
O2
d
r
相交
公共点个数
O1
R
d
O2
rd R
O1 O2
R
r d
O1 O2
无
0 ≤ < − ⇔两圆内含
∴圆A与圆C外切,圆B与圆C相交,圆A与圆B外离,
故选:D.
)
考点二 切线的性质与判定
1.切线的性质与判定
定义
线和圆只有一个公共点时,这条直线叫圆的切线,这个公共点叫做切点.
圆的切线垂直于过切点的半径.(实际上过切点的半径也可理解为过切点的直径或经过切点与圆心的直线.)
解题方法:当题目已知一条直线切圆于某一点时,通常作的辅助线是连接切点与圆心(这是圆中作辅助线的一
∴不能判定BC是⊙A切线;
故选:D.
)
考点二 切线的性质与判定
题型02 利用切线的性质求线段长
中考数学总复习 第八单元 统计与概率 第27课时 统计课件
组数
数据个数
频数分布直方图
2021/12/5
第十页,共二十页。
强化训练
考点(kǎo diǎn)一:统计初步知识
例1 (2018·内江)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽
取(chōu qǔ)400名考生的中考数学成绩进行统计分析,在这个问题中样本是指( )
A.C400 C. 被抽取的400名考生的中考数学成绩
据的样本,我们很难从一个个数字中直接看出样本所包含的信息,这时,我们用 频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
(2)用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平
均数、方差与标准差.
(3)一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的
强化训练
考点五:统计图表的综合(zōnghé)应用
例5 (2018·白银)“足球运球”是中考体育(tǐyù)必考项目之一.兰州市某学校为了解今年九年级学生足球运球的 掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D 四个等级进行统计,制 成了如下不完整的统计图.(说明:A 级:8分—10分, B级:7分—7.9分, C级:6分—6.9分, D级:1 分—5.9分) 根据所给信息,解答以下问题: (1)在扇形统计图中, C对应的扇形的圆心角是_______度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在_______等级; (4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
2021/12/5
第十八页,共二十页。
强化训练
2021/12/5
第十九页,共二十页。
2023届中考一轮复习 第八单元 统计与概率 第28讲 概率(含答案)
2023届中考一轮复习第八单元统计与概率第28讲概率一、选择题(共9小题)1. 下列语句描述的事件中,是随机事件的为( )A. 水能载舟,亦能覆舟B. 只手遮天,偷天换日C. 瓜熟蒂落,水到渠成D. 心想事成,万事如意2. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( )A. 49B. 13C. 29D. 193. 现有4张卡片,其中3张卡片正面上的字母是“A”,1张卡片正面上的字母是“B”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面字母相同的概率是( )A. 916B. 34C. 38D. 124. 刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A. 3√34πB. 3√32πC. 12πD. 14π5. 下列事件中,属于不可能事件的是( )A. 某个数的绝对值大于0B. 某个数的相反数等于它本身C. 任意一个五边形的外角和等于540∘D. 长分别为3,4,6的三条线段能围成一个三角形6. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A. 小亮明天的进球率为10%B. 小亮明天每射球10次必进球1次C. 小亮明天有可能进球D. 小亮明天肯定进球7. 在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为( )A. 310B. 110C. 19D. 188. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A. 23B. 16C. 13D. 129. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A. 47B. 37C. 27D. 17二、填空题(共6小题)10. 在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为710,则袋子内共有乒乓球的个数为.11. 某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.12. 在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为.13. 在−4,−2,1,2四个数中,随机取两个数分別作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.14. 如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.15. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.三、解答题(共4小题)16. 经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.17. 某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘).(1)若顾客选择方式一,则享受9折优惠的概率为.(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.18. 为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如图所示的两幅不完整的统计图.请你根据统计图解答下列问题.(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.19. 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如图不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.答案1. D2. A3. D4. B5. C【解析】A.某个数的绝对值大于0,是随机事件,故此选项错误;B.某个数的相反数等于它本身,是随机事件,故此选项错误;C.任意一个五边形的外角和等于540∘,是不可能事件,故此选项正确;D.长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.6. C7. B8. D9. A10. 1011. 2512. 2313. 1614. 11315. 10016. 画树状图:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,.所以P(两人之中至少有一人直行)=5917. (1)14(2)画树状图:由树状图可知共有12种等可能结果,两个指针指向同一个字母的结果只有2种:(A,A),(B,B),∴P(顾客享受8折优惠)=212=16.18. (1)120【解析】这次参与调查的村民人数为:24÷20%=120(人).(2)喜欢广场舞的人数为:120−24−15−30−9=42(人),补全的条形统计图如图1所示:(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:30120×360∘=90∘.(4)画树状图如图2所示:一共有12种等可能的情况出现,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:16.19. (1)100;35【解析】∵被调查的总人数m=10÷10%=100(人),∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35.(2)网购人数为100×15%=15(人),微信对应的百分比为40100×100%=40%,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人).(4)列表如表:共有12种等可能结果,这两位同学最认可的新生事物不一样的有10种,∴这两位同学最认可的新生事物不一样的概率为1012=56.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27讲 统计
重难点 分析、补全统计图表
(2018·黄石)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况,随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5 000步)(说明:“0~5 000”表示大于等于0,小于等于5 000,下同),B(5 001~10 000步),C(10 001~15 000步),D(15 000步以上),统计结果如图所示:
请依据统计结果回答下列问题:
(1)本次调查中,一共调查了30位好友;
(2)已知A 类好友人数是D 类好友人数的5倍. ①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为120度; ③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10 000步?
【自主解答】 解:(2)①设D 类人数为a ,则A 类人数为5a , 根据题意,得a +6+12+5a =30, 解得a =2,
即A 类人数为10,D 类人数为2. 补全条形图如图.
③估计大约6月1日这天行走的步数超过10 000步的好友人数为150×12+2
30=70(人).
方法指导
1.计算调查的样本总量:各组频数之和=某组频数
该组所占样本的百分比.
2.补全条形统计图的方法:
(1)未知组频数=样本容量-已知组频数之和;
(2)未知组频数=样本容量×该组所占样本的百分比. 3.(1)补全扇形统计图的方法:
未知组百分比=100%-已知组百分比之和; 未知组百分比=未知组频数
样本容量
×100%;
(2)未知组在扇形统计图中圆心角的度数=360°×该组所占样本的百分比.
4.样本估计总体: 总体中某组的个数=总体个数×样本中该组的百分比(频率).
【变式训练】 (2018·陕西)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学
兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A ,B ,C ,D 四组,绘制了如下统计图表:
“垃圾分类知识及投放情况”问卷测试成绩统计表
组别 分数/分 频数 各组总分/分 A 60<x≤70 38 2 581 B 70<x≤80 72 5 543 C 80<x≤90 60 5 100 D
90<x≤100
m
2 796
依据以上统计信息解答下列问题: (1)求得m =30,n =19%;
(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.
解: 本次全部测试成绩的平均数为2 581+5 543 +5 100 +2 796
200=80.1(分).
考点1 调查方式的选择
1.(2018·重庆B 卷)下列调查中,最适合采用全面调查(普查)的是(D )
A .对我市中学生每周课外阅读时间情况的调查
B .对我市市民知晓“礼让行人”交通新规情况的调查
C .对我市中学生观看电影《厉害了,我的国》情况的调查
D .对我国首艘国产航母002型各零部件质量情况的调查
2.(2018·贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识的掌握情况,小丽制定了如下方案,你认为最合理的是(D )
A .抽取乙校初二年级学生进行调查
B .在丙校随机抽取600名学生进行调查
C .随机抽取150名老师进行调查
D .在四个学校各随机抽取150名学生进行调查
考点2 总体、个体、样本、样本容量
3.为了解全校学生的上学方式,在全校1 000名学生中随机抽取了150名学生进行调查.下列说法中正确的是(D )
A .总体是全校学生
B .样本容量是1 000
C .个体是每名学生的上学时间
D .样本是随机抽取的150名学生的上学方式
考点3平均数、中位数、众数
4.(2018·泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):
35 38 42 44 40 47 45 45
则这组数据的中位数、平均数分别是(B)
A.42,42 B.43,42 C.43,43 D.44,43
5. (2018·十堰)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如下表所示:
鞋的尺码/cm23 23.5 24 24.5 25
销售量/双 1 3 3 6 2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为(A)
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
6.(2018·泰州)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂最关注的是众数.
7.(2018·宜宾)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师的笔试、面试成绩如表所示,综合成绩按照笔试占60%,面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为78.8分.
教师
甲乙丙
成绩
笔试80分82分78分
面试76分74分78分
考点4方差
8.(2018·包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(B)
A.4,1 B.4,2 C.5,1 D.5,2
9.(2018·邵阳)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐(C)
A.李飞或刘亮B.李飞C.刘亮D.无法确定
考点5分析统计图(表)
10.(2018·江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是(C)
A.最喜欢篮球的人数最多
B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生
D.最喜欢田径的人数占总人数的10%
11.(2018·新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级参加人数平均数中位数方差
甲班55 135 149 191
乙班55 135 151 110
某同学分析该表后得出如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数≥150为优秀);
③甲班成绩的波动比乙班大.
上述结论中,正确的是(D)
A.①② B.②③C.①③ D.①②③
12.(2018·怀化)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学对其兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
(1)学校这次调查共抽取了100名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;
(4)设该校共有学生2 000名,请你估计该校有多少名学生喜欢书法?
解:(2)“民乐”的人数为100×20%=20(人),
补全统计图如图.
(4)估计该校喜欢书法的学生人数为2 000×25%=500(人).
13. (2018·滨州)如果一组数据6,7,x,9,5 的平均数是2x,那么这组数据的方差为(A)
A.4 B.3 C.2 D.1
14.(2018·潍坊)某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为(D)
年龄19 20 21 22 2426
人数 1 1 x y 2 1
A.22,3 .22,4 .21,3 D.21,4 15.(2018·张家界)若一组数据a1,a2,a3的平均数为4,方差为3,那么数据a1+2,a2+2,a3+2的平均数和
方差分别是(B )
A .4,3
B .6,3
C .3,4
D .6,5
16.(2018·威海)为积极响应“弘扬传统文化”的号召,某学校倡导全校1 200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:
一周诗词诵背数量
3首 4首 5首 6首 7首 8首 人数
10
10
15
40
25
20
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为4.5首;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
解: (2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有1 200×40+25+20
120=850(人).
答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人. (3)活动启动之初的中位数是4.5首,众数是4首; 大赛比赛后一个月时的中位数是6首,众数是6首.
由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.。