二次函数中三角形面积问题

合集下载

二次函数中三角形面积最大值问题的处理方法

二次函数中三角形面积最大值问题的处理方法

二次函数中三角形面积最大值问题的处理方法二次函数是高中数学中一个经常出现的重要知识点,它在数学中有着广泛的应用,其中一个重要的应用就是处理三角形面积最大值问题。

在本文中,我们将介绍二次函数在处理三角形面积最大值问题中的基本方法和应用技巧。

1. 三角形面积最大值问题的基本原理三角形面积最大值问题指的是给定三边长度为a、b、c,求出以这三条边为边长的三角形的面积最大值。

根据海伦公式,三角形面积公式为:S = √[p(p-a)(p-b)(p-c)]其中p=(a+b+c)/2,是三角形半周长。

我们可以通过求解出上式的最大值来得到三角形的最大面积。

2. 二次函数相关知识介绍二次函数是形如y=ax^2+bx+c的函数,其中a、b、c 是常数,而x是自变量。

二次函数在数学中有着广泛的应用,其标准形式为:y=ax^2+bx+c(a≠0)其中a表示二次函数的开口方向和大小,常被称为二次函数的开口因子;b表示二次函数的对称轴的位置,常被称为二次函数的对称轴;c表示二次函数在y轴上的截距,即当x=0时,二次函数的函数值。

3. 二次函数求解三角形面积最大值的应用在二次函数求解三角形面积最大值的应用中,我们可以将三角形面积公式中的p表示为:p=(a+b+c)/2 = (x+y+z)/2然后使用二次函数y=f(x)表示√[p(p-a)(p-b)(p-c)],其中x、y、z分别表示三角形的三边长度a、b、c。

由于p=(x+y+z)/2是一个常数,因此我们可以将其视为一个固定值,从而将y=f(x)表示为:y=√[(x+y+z)/2(x+y+z)/2-x(x+y+z)/2-y(x+y+z)/2+z(x+y+z)/2]化简得:y=√[xyz(x+y+z)]这就是一个二次函数的标准形式。

通过求解这个二次函数的最大值,我们就可以得到三角形的最大面积。

4. 二次函数求解三角形面积最大值的具体方法为了求解上述的二次函数的最大值,我们需要使用二次函数y=f(x)的顶点公式:x=-b/2a,y=f(-b/2a)其中x=-b/2a即为二次函数的对称轴坐标,f(-b/2a)即为二次函数的顶点坐标。

二次函数求三角形面积最大值的典型题目

二次函数求三角形面积最大值的典型题目

二次函数求三角形面积最大值的典型题目篇一:哎呀呀,说到二次函数求三角形面积最大值的题目,这可真是让我头疼了好一阵子呢!就比如说有这么一道题:在平面直角坐标系中,有一个二次函数图像,然后给了一堆点的坐标,让咱们求由这些点构成的三角形面积的最大值。

这可咋整?我一开始看到这题,那真是脑袋都大了!心里就想:“这啥呀?怎么这么难!”我瞪大眼睛,死死地盯着题目,手里的笔都快被我捏出汗来了。

我同桌小明呢,他倒是挺自信,还跟我说:“这有啥难的,看我的!”我心里暗暗不服气,哼,你就吹吧!然后老师开始讲题啦,老师说:“同学们,咱们得先找到这个二次函数的顶点坐标,这就好比是找到宝藏的钥匙!”我一听,宝藏?这比喻还挺有意思的。

老师接着说:“然后再看看那些给定的点,能不能通过一些巧妙的方法把三角形的面积表示出来。

”我就在那拼命点头,好像听懂了,其实心里还是有点迷糊。

我扭头看看后面的学霸小红,她一脸轻松,好像这题对她来说就是小菜一碟。

我忍不住问她:“小红,你咋这么厉害,这题你都懂啦?”小红笑了笑说:“多做几道类似的题,你也能懂!”我又埋头苦想,想着要是能像玩游戏一样,一下子就找到解题的秘诀该多好啊!经过一番折腾,我终于有点明白了。

原来求这个三角形面积最大值,就像是爬山,得找到那个最高的山峰,而我们要找的就是能让面积最大的那个点或者那条线。

你说,数学咋就这么难呢?但我就不信我搞不定它!我一定要把这些难题都攻克下来,让数学成为我的强项!总之,我觉得做这种二次函数求三角形面积最大值的题目,虽然过程很艰难,但只要我们不放弃,多思考,多练习,就一定能找到解题的窍门,取得胜利!篇二:哎呀!说起二次函数求三角形面积最大值的题目,这可真是让我又爱又恨呀!有一次上课,数学老师在黑板上出了一道这样的题:已知一个二次函数图像,还有三角形的三个顶点坐标都在这个函数图像上,让我们求三角形面积的最大值。

当时我一看,脑袋就嗡嗡响,这啥呀?我就开始在草稿纸上乱画,心里想着:“这咋这么难呢?”同桌小明凑过来,瞅了瞅我的草稿纸,说:“你这算的啥呀,思路都不对!”我瞪了他一眼,回道:“那你行你上啊!”然后我俩就你一句我一句地争论起来。

二次函数与面积

二次函数与面积

二次函数与面积求三角形的面积: (1)直接用面积公式计算;如图:抛物线与x 轴交于A 、B 两点,P 是抛物线上一点。

则S △ABP=21AB •PE(2)割补法;如图:直线MN 与抛物线交于M 、N ,与y 轴交于E , 则S △MON=S △OEM+S △OEN(3)铅垂高法;如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

BC铅垂高水平宽 haA1、如图,抛物线经过A(-1,0),B(3,0),C(0,-3)三点,点P在第二象限的抛物线上,S△POB=S△PCO,求P点的坐标。

2、如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,- 3).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB。

3、如图,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),连接PA、PB,S△PAB=6,求P点的坐标。

4、如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点()3 0,C ,与x 轴交于A 、B 两点,点B 的坐标为()0 3,-。

(1) 求二次函数的解析式及顶点D 的坐标;(2) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标。

5、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92). (1)求抛物线的函数表达式;(2)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.6、如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使△ABC面积有最大值,若存在,求出这个最大值;若不存在,请说明理由;7、如图,已知抛物线经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.。

二次函数中三角形问题(含问题详解)

二次函数中三角形问题(含问题详解)

二次函数中的三角形一.与三角形面积例1:如图,已知在同一坐标系中,直线22k y kx =+-与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,(),0,(21x B x A 两点。

C 是抛物线的顶点。

(1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021<⋅x x 。

①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S ∆∆=?如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由。

例2:已知抛物线)1(3)4(2-+---=m x m x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求m 的取值范围;(2)若0<m ,直线1-=kx y 经过点A ,与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式; (3)若A 点在B 点左边,在第一象限内,(2)中所得的抛物线上是否存在一点P ,使直线P A 平分ACD ∆的面积?若存在,求出P 点的坐标;若不存在,请说明理由。

例3.已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。

(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。

A BC DO E x y(第25题图)例4.如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.二.与三角形形状例5. 如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.图2图1例 6.如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.x 图①x 图②x 图③例7. 已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.例8.如图,在直角坐标系中,点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方, 那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)(第25题图)三.二次函数与三角形相似 例9:已知一次函数1243--=x y 的图象分别交x 轴、y 轴于A 、C 两点, (1)求出A 、C 两点的坐标;(2)在x 轴上找出点B ,使ACB ∆∽AOC ∆,若抛物线过A 、B 、C 三点,求出此抛物线的解析式; (3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同速度沿AC 、BA 向C 、A 运动,连结PQ ,使m AP =,是否存在m 的值,使以A 、P 、Q 为顶点的三角形与ABC ∆相似,若存在,求出所有m 的值;若不存在,请说明理由。

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。

三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。

第一种求解三角形面积的方法是通过使用二次函数的半径求解。

首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。

这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。

第二种求解三角形面积的方法是使用三角函数求解。

有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。

举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。

这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。

第三种求解三角形面积的方法是使用二次函数求解。

如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。

椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。

这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。

以上就是介绍了三种求解三角形面积的方法。

不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。

278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。

抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。

思想分析这个问题是二次函数中的常见面积问题。

该方法不是唯一的。

可以使用截补法,但是有点麻烦。

如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。

掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。

答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。

将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。

初中数学二次函数中三角形面积问题解析

初中数学二次函数中三角形面积问题解析

∙∙∙∙初中数学二次函数中三角形面积问题解析一、命题意图二次函数中三角形面积相结合的题目是近年来中考数学中常见的问题,题型常考常新,体现了数形结合、化归转化、分类讨论数学思想等。

如果将三角形这一平面图形问题与二次函数相结合,就需要学生以逻辑思维和空间思维相结合的方式进行学习,以培养学生逻辑思维与空间思维能力相结合的基本数学思想,让学生学会自主思考问题的过程。

二、考点及对应的考纲要求初中数学课程教学中关于三角形面积问题的讨论一直是教学重点,这其中牵涉了二次函数与几何问题的融合,是初中数学课程中的一个难点。

求面积常用的方法:(1)直接法,若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的高,那么三角形的面积能直接用公式算出来。

(2)简单的组合,解决问题的途径常需要进行图形割补、等积变形等图形变换。

(3)面积不变同底等高或等底等高的转换,利用平行线得到三角形同底等高进行面积转化。

(4)如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”. 可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半。

三、试题讲解过程如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,-4)三点.(1)求该抛物线的解析式; (2)若点D 是该抛物线上一动点,且在第四象限,当∆面积最大时,求点D 的坐标.解:(1)解法一: 由题意得,c=-4, ∴⎩⎨⎧=-+=--0441604b a b a ,解得:⎩⎨⎧-==31b a , ∴=x y 解法二: 由题意得,设y=a (x+1)(x-4), ∴∴y=(x+1)(x-4), ∴432--=x x y ,(2)解法一:由(1)可知,y=x 2-3x -4,设点D 为(x, x 2-3x -4),过点D 作DE ∥OC 交BC 设直线BC 的解析式为y=kx +b,则∙∙∙⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4, ∴E (x, x -4)∴DE=(x -4)-(x 2-3x -4)= -x 2+4x,∵a=-1<0, ∴当x=2时, DE 取最大值,S △BCD 解法二:由(1)可知,y=x 2-3x -4, 设点D 为(x,y ),过点D 作DF ⊥OB 于点F,S △BCD =S 梯形OCDF +S △BDF -S △OBC=21x (4-y )+21(-y )(4-x )-8 =2x -2y -8=2x -2(x 2-3x -4)-8=-2x 2+8x,∵a=-2<0, ∴当x=2时, S △BCD 取最大值,∴D (2,-6解法三:由(1)可知,y=x 2-3x -4, 过点D 作DE ∥设直线BC 的解析式为y=kx +b, 则⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4,∴设直线DE 的解析式为y=x +d,则x 2-3x -4=x +d, x 2∴当△=(-4)2-4(-4-d )=0, d=-8, S △BCD 取最大值, ∴x 2-4x +4=0, ∴(x-2)2=0, ∴x 1=x 2=2, ∴D (2,-6). 四、试题的拓展延伸及变式分析如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,3)三点.(1)若点D 是抛物线的对称轴上一点,当ACD ∆求点D 的坐标;(2)在(1)的情况下,抛物线上是否存在除点A 得PCD ∆ 的面积与ACD ∆P 的坐标;若不存在,请说明理由.解:(1)∵抛物线c bx ax y ++=2经过A (1,0),B (3∴抛物线的对称轴l 是x=231+=2, ∵△ACD 的周长=AD+AC+CD, AC 是定值, ∴当AD+CD 最小时,△ACD 的周长最小,∵点A 、点B 关于对称轴l 对称,∴连接BC 交l 于点D ,即点D 为所求的点, 设直线BC 的解析式为n kx y +=,∴ ⎩⎨⎧=+=033n k n ,∴⎩⎨⎧=-=31n k ,∴直线BC 的解析式为3+-=x y ,∙∙当x=2时,y=-x+3=-2+3=1,∴点D 的坐标是(2,1).(2)解:由(1)可知,∵抛物线c bx ax y ++=2经过A (1,0),B (3,0),C (0,3)三点,∴c=3, ∴⎩⎨⎧=++=++033903b a b a ,解得:⎩⎨⎧-==41b a ,∴342+-=x x y ,解法一:如图,①过点A 作AP 1∥CD 交抛物线于点P 1,∴设直线AP 1的解析式为d x y +-=, ∴∴d=1,∴直线AP 1的解析式为1+-=x y , 解方程1+-x =342+-x x ,(x-1)(x-2)∴x 1=1, x 2=2,当x 1=1时,11+-=x y =0当x 2=2时,12+-=x y =-1,∴点P 1②设直线AP 1交y 轴于点E (0,1)把直线BC 向上平移2个单位交抛物线于P 2得直线P 2P 3的解析式为5+-=x y ,解方程5+-x =342+-x x , x 2-3x -2=0,∴x 3=2173+, x 4=2173-, 当x 3=2173+时,53+-=x y =2177-, 当x 4=2173-时,54+-=x y =2177+, ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 解法二:如图,过A 点作AE∥y 轴,交BC 于点E .则E 点的纵坐标为231=+-.∴ AE=2. 设点P 为(n ,342+-n n ),过P 点作PF∥y 轴,交BC 于点F ,则点F 为(n ,n -3),PF∥AE. 若PF =AE ,则△PCD 与△ACD 的面积相等.∙∙①若P 点在直线BC 的下方,则PF =(n -3)-(342+-n n )=n 2-∴n n 32+-=2.解得21=n ,12=n .当2=n 时,3-n-2∴P 1点坐标为(2,-1). 同理 当1=n 时,P 点坐标为(1,0)(不合题意,舍去).②若P 点在直线BC 的上方,则PF=(342+-n n )-(n -3)=n n 32-∴232=-n n .解得21733+=n ,4=n 当21733+=n 时,P 点的纵坐标为2177221733-=++-; 当21734-=n 时,P 点的纵坐标为2177221733+=+--. ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 在以上问题的分析中研究思路为:(1)分析图形的成因;(2)识别图形的形状;(3)找出图形的计算方法。

二次函数中的三角形面积问题

二次函数中的三角形面积问题

探究
例1. 如图,抛物线 y = - x2 - 2x +3
与x轴交于点A、B(点A在点B右侧), 与y轴交于点C,若点E为第二象限 抛物线上一动点,连接BE、CE, 求四边形BOCE面积的最大值,并 求此时E点的坐标. (至少用2种方法)
中考链接
【中考链接1】
如图,已知二次函数
的图象与直
线 AC 相交于A ,C 两点,与 x 轴的另一个交点为 B ,
(2)连结 AC ,点 P 是位于线段 BC 上方的抛物线上一动
点,若直线 PC 将 △ABC 的面积分成 1 : 3 两部分,求
此时点 P 的坐标.
二次函数中的三角形面积问题
A
A
HB A
C
DB
C B
C
A
C D B
思想:化难为易、化斜为直 方法:公式法、割补法、铅垂法 、切线法
边在坐标轴上, 取三角形的底边
时,一般以坐标
轴上线段或以与 坐标轴平行的线 段为底边
底边

三边
数坐在标形 结均在不坐合
轴上 标轴上
三边均不在坐标 轴上的三角形采 用割或补的方法 把它转化成易于 求出面积的图形
抛物线的顶点为 D,对称轴与 x 轴的交点为 E,连接
BC.其中A(-3,0),B(1,0)
(1)求直线 AC 的函数表达式;
(2)在抛物线上是否存在一点 M(不与C重合),使
S△ACM = S△ABC ? 若存在,求出点 M 的坐标;若不存
在,请说明理由.
探究
例2. 如图,已知抛物线 y = - x2 - 2x +3过点 O
ι 的直线 将
分成△面AB积C为
1 : 2的两部分,求该直线与抛物线的交

二次函数与三角形面积问题

二次函数与三角形面积问题

二次函数与三角形面积问题二次函数与三角形面积问题的关系是通过求解二次函数图像与x轴交点来得到三角形的面积。

具体而言,如果给定二次函数的表达式,我们可以求解方程f(x) = 0的解,这些解就是二次函数图像与x轴交点的横坐标。

通过这些横坐标,我们可以确定三角形的底边的长度。

同时,我们可以求解二次函数的最值来确定三角形的高,进而计算出三角形的面积。

首先,让我们来回顾一下二次函数的定义和性质。

二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c是实数且a不等于零。

二次函数的图像是一个抛物线,它的开口方向由a的正负号决定,当a 大于零时开口向上,当a小于零时开口向下。

二次函数的顶点是抛物线的最值点,当a大于零时顶点是最小值点,当a小于零时顶点是最大值点。

现在,让我们将二次函数与三角形面积问题联系起来。

假设我们有一个给定的二次函数f(x) = ax^2 + bx + c,我们希望求解该二次函数图像与x轴交点的横坐标,并计算出通过这些交点确定的三角形的面积。

首先,我们需要求解方程f(x) = 0,也就是求解ax^2 + bx + c = 0。

这可以通过使用求根公式来进行计算。

根据求根公式,对于一个二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。

根据这个公式,我们可以求解出具体的x值。

假设我们求解得到了两个根,x1和x2。

接下来,我们可以通过计算这两个根之间的距离来确定三角形的底边的长度。

根据数学知识,我们知道两个点(x1, 0)和(x2, 0)之间的距离等于|x2 - x1|。

因此,通过计算|x2 - x1|,我们可以得到底边的长度。

接下来,我们需要确定三角形的高。

为了做到这一点,我们需要找到二次函数的顶点。

二次函数的顶点的横坐标可以通过使用公式x = -b / (2a)来计算。

通过计算出的顶点横坐标,我们可以计算出顶点在x轴上的纵坐标。

二次函数中有关三角形面积的求解课件

二次函数中有关三角形面积的求解课件

D
实例二:直角三角形面积的求解
总结词
利用直角三角形性质,结合二次函数图像,求出三角形面 积。
详细描述
直角三角形的一边为x轴,另一边与二次函数图像交点构 成高,通过求出交点坐标和底边的长度,可以计算出三角 形的面积。
公式
$S = frac{1}{2} times text{底} times text{高}$
总结词
通过已知条件确定底和高
详细描述
在二次函数和三角形中,底和高通常是通过已知条件确定的。例如,如果知道三角形的两个顶点坐标 ,可以通过两点间的距离公式计算底和高的长度。
问题二:如何确定三角形的底和高?
总结词
通过作图确定底和高
详细描述
在二次函数的图像上,可以通过作图的方式确定三角形的底 和高。例如,可以作一条与$x$轴平行的线段,与二次函数的 图像交于两点,这两点间的距离即为三角形的底,线段的高 度即为三角形的高。
问题三:如何利用二次函数求三角形的面积?
总结词
利用公式计算面积
详细描述
三角形的面积可以通过公式 $frac{1}{2} times text{底} times text{高}$计算得出。 如果已知三角形的底和高, 可以直接代入公式计算面积

总结词
通过图像观察面积
详细描述
在二次函数的图像上,可以 通过观察的方式确定三角形 的面积。例如,可以观察抛 物线与$x$轴围成的图形,其
详细描述
二次函数的顶点可以通过公式$-frac{b}{2a}$计算得出,其中$a$、 $b$、$c$分别为二次函数$f(x)=ax^2+bx+c$的系数。
总结词
通过图像确定顶点
详细描述
二次函数的图像是一个抛物线,顶点是抛物线的最低点或最高点。通 过观察图像,可以确定顶点的位置。

二次函数三角形面积定值问题

二次函数三角形面积定值问题

二次函数三角形面积定值问题二次函数三角形面积定值问题是高中数学中的一个重要概念,也是考试中常考的难点之一。

本文将从三个方面进行探讨,分别是二次函数的定义和性质、三角形面积公式以及如何利用二次函数求解三角形面积定值问题。

一、二次函数的定义和性质二次函数是一种以 x 的平方为自变量的函数,通常的表达式为y=ax²+bx+c。

其中,a、b、c 分别是常数,a 不等于零。

二次函数的图像是一个开口朝上或朝下的抛物线,其中顶点坐标为(-b/2a, c-b²/4a)。

二次函数具有以下性质:1. 对称轴:二次函数的对称轴是过顶点的直线,方程为 x=-b/2a。

2. 零点:二次函数的零点是函数图像与 x 轴交点的横坐标,方程为 ax²+bx+c=0。

3. 单调性:当 a 大于零时,二次函数开口朝上,图像在顶点处取得最小值;当 a 小于零时,二次函数开口朝下,图像在顶点处取得最大值。

4. 范围:当 a 大于零时,二次函数的值域为 [c-b²/4a, +∞);当a 小于零时,二次函数的值域为 (-∞, c-b²/4a]。

二、三角形面积公式三角形面积公式是计算三角形面积的基本公式,其表达式为S=1/2bh,其中S 表示三角形面积,b 和h 分别表示底边和高。

此外,还有两个重要的推论:1. 海伦公式:当已知三角形的三边长 a、b、c 时,可以利用海伦公式求出三角形面积 S=sqrt[s(s-a)(s-b)(s-c)],其中s=(a+b+c)/2。

2. 正弦定理:当已知三角形的一个角度和两边长时,可以利用正弦定理求出第三边长,从而进一步计算出三角形面积。

正弦定理的表达式为 a/sinA=b/sinB=c/sinC。

三、利用二次函数求解三角形面积定值问题在高中数学中,经常会遇到给定三角形底边和两条高的长度,求解三角形面积的问题。

此类问题通常可以通过构建二次函数来解决。

以一个例子来说明:已知三角形底边长为 8,两条高分别为 6 和 10,求解该三角形的面积。

二次函数背景下三角形面积最值问题的几种解法

二次函数背景下三角形面积最值问题的几种解法

数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。

二次函数之三角形面积最大值专题

二次函数之三角形面积最大值专题

432y 2+-=x x 1221y 2++-=x x =max y 21ah S ABC 21=∆专题一:二次函数与面积问题------类型1:三角形面积的最大值一、知识点睛1.点P 是抛物线 上一动点。

若设点P 的横坐标为m ,则点P 的纵坐标可表示为: ,∴点P 的坐标可表示为:2.如右图,AB ∥x 轴,BC ∥y 轴。

则线段BC= ,AB=故:“竖直方向”上的线段长 = —“水平方向”上的线段长 = —3.二次函数的一般式为: ,顶点式为: 例如:将 化为顶点式为: ,开口向 ,顶点坐标: ∴当x= 时,二、铅垂法(割补求面积) 坐标系中三角形面积公式:S= •一点引铅垂线段的长•另两点的水平宽锐角三角形中过点C 引的铅垂线 钝角三角形中过点C 引的铅垂线锐角三角形中过点B 引的铅垂线 ah S ABC 21=∆ 铅垂法的优点: 1.任何一点引铅垂线都可以 2.任何形状的三角形都适用 3.与三角形在第几象限无关 4.与三角形在不在坐标系无关 ah S ABC 21=∆三、典例讲解例1.已知二次函数62343y 2++-=x x 交x 轴于A ,B 两点,交y 轴于点C 。

点P 是第一象限抛物线上一动点。

连结BC ,BP 和CP 。

当△BCP 面积最大时,求P 点坐标。

四、小试牛刀例2.如图,已知抛物线经过两点A(-3,0),B(0,3)且其对称轴为直线x= -1(1)求此抛物线的解析式(2)若点P 是抛物线上点A 与点B 之间的动点(不包括点A 点B )求△PAB 的面积最大值,并求出此时点P 的坐标。

五、能力提升1.如图,在平面直角坐标系中,抛物线34383y 2--=x x 与x 轴交于点A(-2,0),B(4,0),与直线323y -=x 交于点C(0,-3),直线323y -=x 与x 轴交于点D ,点P 是抛物线上第四象限上的一个动点,连接PC ,PD 。

当△PCD 面积最大时,求点P 坐标.2. 如图,已知抛物线c bx ++-=2x y 过(1,4)与(4,-5)两点,且与一直线1x y +=相交于A,C 两点,(1)求该抛物线解析式.(2)求A,C 两点的坐标.(3)若P 是抛物线上位于直线AC.上方的一个动点,求△APC 的面积的最大值.B C A O M N xy3.如图,抛物线经过A (-1,0)、B (3,0)、C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B 、C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB 、MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及最大面积;若不存在,说明理由.4.如图,在直角坐标系中,抛物线经过点A (0, 4), B(1, 0), C(5, 0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴.(2)在抛物线的对称轴上是否存在一点P ,使△PAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)连接AC,在直线AC 的下方的抛物线上,是否存在一点N,使△NAC 的面积最大?若存在,请求出点N 的坐标:若不存在,请说明理由.。

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法
二次函数中三角形面积问题的三种求解方法
求二次函数中三角形面积问题是一个常见的数学问题,很多学生和老师都有求解它的困惑。

那么,我们应该如何求解这个问题呢?答案是:有三种求解方法。

第一种求解方法是使用牛顿勒让公式进行计算。

牛顿勒让公式是一种高级数学方法,它试图用参数表示二次函数上的点,然后把它们连接起来从而确定三角形的面积。

第二种求解方法是使用初等函数进行计算。

初等函数是指利用函数的一阶导数或二阶导数计算函数的极值,进而求得存在的三角形的面积。

第三种求解方法是使用微积分中的定积分。

定积分是指将该函数在指定的范围内进行积分,解出积分值,从而得出三角形的面积。

通过以上三种方法,我们可以求出二次函数中三角形的面积。

其中,牛顿勒让公式是一种高级数学方法,初等函数是一种直接使用函数的导数,定积分是把函数分段积分的方法。

而这三种方法对求解二次函数中三角形面积问题都有用处,都可以取得精确而完整的结果。

课 件 《二次函数中的三角形面积最值问题》

课     件 《二次函数中的三角形面积最值问题》
S=(水平距离× 铅锤高) ÷2
课堂小结
1、本节课你都收获了什么? 2、S=(水平距离× 铅锤高) ÷2
谢谢聆听!
解: 由抛物线的顶点坐标P(1,4),得对称轴为
x=1, 又因为B(3,0),所以A(-1,0)。
因此AB=3-(-1)=4,OC=3-0=3
S△ABC=(AB ×OC) ÷2 =(4 × 3)÷2
A
=6
y
P (1,4)
4 C3 (0,3)
2
1 铅锤高
O
2
水平距离
B(3,0) x
方法归纳
当三角形的一边在坐标轴上时,就以这边为底,作高 求面积即可。
二次函数中三角形面积的最值问题
课题分析
常见的类型有: 1.三角形的边在坐标轴上; 2.三角形的边均不在或不与坐标轴平行。
题型讲解
例1:已知抛物线y=-x2+2x+3与x轴交于A,B两点,其中A点位于B点的左侧, 与y轴交于C点,顶点为P,求 △ABC的面积。
分析:由图可知,△ ABC有一边AB在坐标轴上, 所以 △ABC的面积就是以AB边为底,OC为高来求。
分,这两部分的面积之和就是△PAC的面积 。
解:由A、C两点都在抛物线 y=-x2+2x+3 上,所以A ( 1,0), C(2,3)。
4P
令yAC=kx+b,将A(-1,0),C(2,3)代入得:ቤተ መጻሕፍቲ ባይዱ
-k+b=o 2k+b=3
解得
k=1 b=1
即yAC=x+1
令点P(m,-m2+2m+3 ),则B(m,m+1)
S=(水平距离× 铅锤高) ÷2

二次函数三角形面积

二次函数三角形面积

二次函数三角形面积二次函数是高中数学中的重要内容之一,而二次函数与三角形面积之间的关系也是数学中的一个经典问题。

本文将通过简单的例子和详细的讲解,介绍二次函数与三角形面积的关系。

我们来看一个简单的例子:假设有一个三角形,它的底边长为3,高为2。

我们想要求这个三角形的面积。

这时我们可以使用二次函数来求解。

二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,x为自变量,y为因变量。

而三角形的面积可以通过底边长和高来计算,公式为S = 1/2 * 底边长 * 高。

我们可以将三角形的面积S表示为二次函数的形式,即S = ax^2 + bx + c。

由于我们已知底边长为3,高为2,代入公式可得2 = a * 3^2 + b * 3 + c。

接下来,我们需要求解二次函数的系数a、b、c。

由于已知三个点(3,2),我们可以通过代入这三个点的坐标来求解。

代入第一个点(3,2),可得2 = 9a + 3b + c。

接着,代入第二个点(0,c),可得c = a * 0^2 + b * 0 + c,即 c = c。

最后,代入第三个点(-3,2),可得2 = 9a - 3b + c。

通过以上三个方程,我们可以解得a、b、c的值。

进一步求解,我们可以得到二次函数的解析式。

在得到二次函数的解析式之后,我们可以进一步求解三角形的面积。

将求得的系数a、b、c代入二次函数的解析式中,我们可以得到三角形的面积函数S(x)。

通过对S(x)进行化简,我们可以得到一个简化的表达式,即二次函数与三角形面积的关系式。

在进一步讨论之前,我们可以先来看一下二次函数的图像。

由于二次函数是一个抛物线,它的图像可以分为两种情况:开口向上和开口向下。

当二次函数的系数a大于0时,它的图像开口向上;当系数a小于0时,它的图像开口向下。

对于开口向上的二次函数,它的最低点即为抛物线的顶点。

而顶点的横坐标就是二次函数的极值点。

我们可以通过求导来找到这个极值点。

二次函数与三角形的面积问题

二次函数与三角形的面积问题

二次函数与三角形的面积问题【教学目标】1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。

2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。

3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。

【教学重点和难点】1.运用2铅垂高水平宽⨯=s;2.运用y;3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。

【教学过程】类型一:三角形的某一条边在坐标轴上或者与坐标轴平行例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求:(1)抛物线解析式;(2)抛物线与x轴的交点A、B,与y轴交点C;(3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。

求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适方法求出图形的面积。

变式训练1.如图所示,已知抛物线()02≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。

(1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。

类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。

(歪歪三角形拦腰来一刀)关于2铅垂高水平宽⨯=∆S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.想一想:在直角坐标系中,水平宽如何求?铅垂高如何求?例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高D C y y CD -=,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方?xA BOCyPBC铅垂高水平宽 ha 图1图-2xCOy ABD 1 1变式训练2.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.变式训练3.如图,抛物线cbxxy++-=2与x轴交于A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.一般地,①所谓的铅垂高度,实际上就是横坐标相同的两个点的纵坐标差的绝对值,数学表达式为DC y y CD-=。

二次函数与三角形的面积问题

二次函数与三角形的面积问题

二次函数与三角形的面积问题【教学目标】1.能够根据二次函数中不同图形的特点选择适宜的方法解答图形的面积。

2.通过观察、分析、概括、总结等方法了解二次函数面积问题的根本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。

3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。

【教学重点和难点】1.运用2铅垂高水平宽⨯=s;2.运用y;3.将不规那么的图形分割成规那么图形,从而便于求出图形的总面积。

【教学过程】类型一:三角形的某一条边在坐标轴上或者与坐标轴平行例1.:抛物线的顶点为D〔1,-4〕,并经过点E〔4,5〕,求:〔1〕抛物线解析式;〔2〕抛物线与x轴的交点A、B,与y轴交点C;〔3〕求以下图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

解题思路:求出函数解析式________________;写出以下点的坐标:A______;B_______;C_______;求出以下线段的长:AO________;BO________;AB________;OC_________。

求出以下图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标; 3.求出相关线段的长;4.选择适宜方法求出图形的面积。

变式训练1.如下图,抛物线()02≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点C ,假设抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。

(1)求点A 和B 的坐标;(2)求此抛物线的解析式; 〔3〕求四边形ACPB 的面积。

类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。

〔歪歪三角形拦腰来一刀〕 关于2铅垂高水平宽⨯=∆S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽〞(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )〞.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.想一想:在直角坐标系中,水平宽如何求?铅垂高如何求?例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,假设存在,求出P 点的坐标;假设不存在,请说明理由.解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高D C y y CD -=,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方?xA BOCyPBC铅垂高水平宽 ha 图1图-2xCOy ABD 1 1变式训练2.如图,在直角坐标系中,点A的坐标为〔-2,0〕,连结OA,将线段OA绕原点O 顺时针旋转120°,得到线段OB.〔1〕求点B的坐标;〔2〕求经过A、O、B三点的抛物线的解析式;〔3〕在〔2〕中抛物线的对称轴上是否存在点C,使△BOC的周长最小?假设存在,求出点C的坐标;假设不存在,请说明理由.〔4〕如果点P是〔2〕中的抛物线上的动点,且在x轴的下方,那么△P AB 是否有最大面积?假设有,求出此时P点的坐标及△P AB的最大面积;假设没有,请说明理由.变式训练3.如图,抛物线cbxxy++-=2与x轴交于A(1,0),B(- 3,0)两点,〔1〕求该抛物线的解析式;〔2〕设〔1〕中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?假设存在,求出Q 点的坐标;假设不存在,请说明理由.〔3〕在〔1〕中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,假设存在,求出点P 的坐标及△PBC 的面积最大值.假设没有,请说明理由.一般地,①所谓的铅垂高度,实际上就是横坐标相同的两个点的纵坐标差的绝对值,数学表达式为DC y y CD -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中三角形面积问题
【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,
S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE
解:令x=0, y=3 点C的坐标为(0,3);
令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),
设AB所在直线的解析式为y=kx+b.
求出直线AB所在直线的解析式为y=-x+3.
设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)
CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3m
S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)
=1/2OB·CE
=1/2×3( -m2+3m)
=--3m2/2+9m/2
S△ABC最大值=4ac-b2/4a=27/8
【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB
解:S△ABC=S△OAC+S△OBC-S△OAB
=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB
=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3
=-3m2/2+9m/2
S△ABC最大值=4ac-b2/4a=27/8
【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。

解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0
当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。

SΔABC=(21/4-3)×3×1/2=27/8
【举一反三】
1.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.
如图,抛物线y=ax2+bx-5(a≠0)与x轴交于点A(-5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标.
3.如图抛物线y=ax2+bx+3与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,顶点为D,连接AC、CD、AD.(1)求该二次函数的解析式;(2)求△ACD的面积;
4.如图,已知抛物线与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m 为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.。

相关文档
最新文档