二次函数中的三角形面积

合集下载

二次函数中三角形面积最大值问题的处理方法

二次函数中三角形面积最大值问题的处理方法

二次函数中三角形面积最大值问题的处理方法二次函数是高中数学中一个经常出现的重要知识点,它在数学中有着广泛的应用,其中一个重要的应用就是处理三角形面积最大值问题。

在本文中,我们将介绍二次函数在处理三角形面积最大值问题中的基本方法和应用技巧。

1. 三角形面积最大值问题的基本原理三角形面积最大值问题指的是给定三边长度为a、b、c,求出以这三条边为边长的三角形的面积最大值。

根据海伦公式,三角形面积公式为:S = √[p(p-a)(p-b)(p-c)]其中p=(a+b+c)/2,是三角形半周长。

我们可以通过求解出上式的最大值来得到三角形的最大面积。

2. 二次函数相关知识介绍二次函数是形如y=ax^2+bx+c的函数,其中a、b、c 是常数,而x是自变量。

二次函数在数学中有着广泛的应用,其标准形式为:y=ax^2+bx+c(a≠0)其中a表示二次函数的开口方向和大小,常被称为二次函数的开口因子;b表示二次函数的对称轴的位置,常被称为二次函数的对称轴;c表示二次函数在y轴上的截距,即当x=0时,二次函数的函数值。

3. 二次函数求解三角形面积最大值的应用在二次函数求解三角形面积最大值的应用中,我们可以将三角形面积公式中的p表示为:p=(a+b+c)/2 = (x+y+z)/2然后使用二次函数y=f(x)表示√[p(p-a)(p-b)(p-c)],其中x、y、z分别表示三角形的三边长度a、b、c。

由于p=(x+y+z)/2是一个常数,因此我们可以将其视为一个固定值,从而将y=f(x)表示为:y=√[(x+y+z)/2(x+y+z)/2-x(x+y+z)/2-y(x+y+z)/2+z(x+y+z)/2]化简得:y=√[xyz(x+y+z)]这就是一个二次函数的标准形式。

通过求解这个二次函数的最大值,我们就可以得到三角形的最大面积。

4. 二次函数求解三角形面积最大值的具体方法为了求解上述的二次函数的最大值,我们需要使用二次函数y=f(x)的顶点公式:x=-b/2a,y=f(-b/2a)其中x=-b/2a即为二次函数的对称轴坐标,f(-b/2a)即为二次函数的顶点坐标。

二次函数中三角形面积问题

二次函数中三角形面积问题

二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。

解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。

2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)

2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)

一、知识梳理1.三角形面积公式:S 2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)=21×底×高2.平行四边形的性质:对边相等、对角相等、对角线互相平分3.判别式法求最值:通过判别式判断二次方程的根的情况,进而求出最值二、问题分析1.三角形面积最值存在性问题:∙利用二次函数的性质和对称性,找到合适的底和高,计算三角形的面积;∙设置关于底和高的二次方程,利用判别式判断方程的根的情况,进而求出面积的最值。

2.平行四边形存在性问题:∙利用二次函数的对称性和性质,找到满足平行四边形性质的点;∙利用平行四边形的性质证明这些点构成平行四边形。

三、例题解析【例1】已知抛物线y=x2−2x和直线y=2x+b相交于A、B两点,且∠AOB=90°,其中O为坐标原点。

求△AOB的面积。

【答案】联立方程组:y=x2−2x,y=2x+b.​消去y得:x2−4x−b=0.由于直线与抛物线有两个交点,所以判别式Δ>0:Δ=16+4b>0⇒b>−4.设交点A、B坐标分别为(x1,y1)和(x2,y2),由韦达定理得:x1+x2=4,x1x2=−b.​由于∠AOB=90,所以x1x2+y1y2=0。

代入y1=2x1+b和y2=2x2+b,解得:−b+(2x1+b)(2x2+b)=0.化简得:−b−4b+8b+b2=0⇒b2+3b=0.解得:b=−3或b=0。

当b=0时,A、B坐标分别为(0,0)和(4,8),点A和点O重合,不符合条件。

因此,b =−3,代入方程组得A (1,-1),B (3,3)。

所以,△AOB 的面积为:S =21×∣O A ∣×∣O B ∣=21×2211)()(-+×2233)()(+=21×2×18=3.【例2】抛物线6221y 2--=x x 与x 轴相交于点A 、点B ,与y 轴相交于点C 。

二次函数图象中三角形面积计算问题_陆文娟

二次函数图象中三角形面积计算问题_陆文娟
初中数学教与学 ○解题思路与方法○
2012 年ຫໍສະໝຸດ 二次函数图象中三角形面积计算问题陆文娟
( 江苏省江阴市新桥中学, 214426 )
二次函数图象中的三角形面积计算及其 最值问题是初中数学中的重要题型之一 . 笔 者对如何熟练且准确地求解二次函数图象中 的三角形面积, 进行了初步整理, 现供同学们 参考. 一、 三角形的一边在坐标轴上 例1 抛物线 y = 1 ( x - 4) 2 顶点为 C, 与 2
B, 求 ABC 的面积. 直线 y = x 分别交于点 A、
% y B A O C x
4) , C( 2 , 0 ) 三点 . ( 1 ) 求抛物线的解析式; ( 2 ) 若点 M 为第三象限内抛物线上一动 点, 点 M 的横坐标为 m, AMB 的面积为 S. 求
图1
解析
0) , A( 2 , 2) , B( 8 , 8) . 易得 C( 4 ,
D A M O B C x
m (1 2
2
+m -4
)
=-
1 2 m - 2 m. 2 1 1 MD( x M - x A ) + MD( x B - x M ) 2 2 1 MD( x B - x A ) = - m2 - 4 m. 2 通过添加辅助线, 转化成有一边
则 S = S ADM + S BDM = 1 2 x 2 =
櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷櫷
{
(
P3 (
x1 = y1 =
3 + 槡 17 , 2
-7 + 槡 17 -7 - 槡 17 ; y2 = . 2 2
17 - 7 + 槡 17 , ∴ P2 3 + 槡 , 2 2 17 - 7 - 槡 17 . P3 3 - 槡 , 2 2 综上所述, 点 P 的坐标为: P1 ( 2 , 1) , P2 ( 3 + 槡 17 - 7 + 槡 17 , ), 2 2

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。

三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。

第一种求解三角形面积的方法是通过使用二次函数的半径求解。

首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。

这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。

第二种求解三角形面积的方法是使用三角函数求解。

有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。

举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。

这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。

第三种求解三角形面积的方法是使用二次函数求解。

如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。

椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。

这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。

以上就是介绍了三种求解三角形面积的方法。

不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。

二次函数中有关三角形面积的计算

二次函数中有关三角形面积的计算

二次函数中有关三角形面积的计算
例1 如图,经过点A(8,0)、B(0,4)的抛物线y=ax c
x 27
2(1)求抛物线的解析式;
(2)若一条与y 轴重合的直线l 以每秒2个单位长度的速度向右平移,分别交线段OA 、AB 和抛物线于点C 、D 和点E ,连接EA 、EB 、AB ,设直线l 移动的时间为t (0<t<4)秒,当t 为何值时,△ABE 的面积最大,最大面积是多少?
2.如图,已知抛物线c
y2经过A、B两点,A、B两点的坐标分
x
bx
别为(-1,0)、(0,-3)
(1)求抛物线的解析式;
(2)点E为抛物线的顶点,点C为抛物线与x 轴的另一个交点,点D为y 轴上一点,若DC=DE,求点D的坐标;
(3)在(2)的条件下,若点P为第四象限内抛物线上一动点,点P的横坐标为m , △DCP面积为S,求S关于m的函数关系式,并求出S的最大值。

二次函数中的三角形面积问题

二次函数中的三角形面积问题

探究
例1. 如图,抛物线 y = - x2 - 2x +3
与x轴交于点A、B(点A在点B右侧), 与y轴交于点C,若点E为第二象限 抛物线上一动点,连接BE、CE, 求四边形BOCE面积的最大值,并 求此时E点的坐标. (至少用2种方法)
中考链接
【中考链接1】
如图,已知二次函数
的图象与直
线 AC 相交于A ,C 两点,与 x 轴的另一个交点为 B ,
(2)连结 AC ,点 P 是位于线段 BC 上方的抛物线上一动
点,若直线 PC 将 △ABC 的面积分成 1 : 3 两部分,求
此时点 P 的坐标.
二次函数中的三角形面积问题
A
A
HB A
C
DB
C B
C
A
C D B
思想:化难为易、化斜为直 方法:公式法、割补法、铅垂法 、切线法
边在坐标轴上, 取三角形的底边
时,一般以坐标
轴上线段或以与 坐标轴平行的线 段为底边
底边

三边
数坐在标形 结均在不坐合
轴上 标轴上
三边均不在坐标 轴上的三角形采 用割或补的方法 把它转化成易于 求出面积的图形
抛物线的顶点为 D,对称轴与 x 轴的交点为 E,连接
BC.其中A(-3,0),B(1,0)
(1)求直线 AC 的函数表达式;
(2)在抛物线上是否存在一点 M(不与C重合),使
S△ACM = S△ABC ? 若存在,求出点 M 的坐标;若不存
在,请说明理由.
探究
例2. 如图,已知抛物线 y = - x2 - 2x +3过点 O
ι 的直线 将
分成△面AB积C为
1 : 2的两部分,求该直线与抛物线的交

二次函数中的三角形面积问题教案

二次函数中的三角形面积问题教案

二次函数中的三角形面积问题教案《二次函数中的三角形面积问题教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容二次函数中的三角形面积问题教案球溪高级中学郭燕教学目标知识与技能1.复习巩固二次函数的性质;2.通过观察分析,能够概括总结出二次函数中三角形面积问题的基本类型;3.能够用直接法和割补法求二次函数中的三角形面积;过程与方法在求面积的过程中,体会数形结合和转化思想在二次函数三角形面积问题中的应用。

情感态度与价值观5.进一步培养学生学习数学的兴趣和增强学生学习的自信心6.在转化,建模的过程中,体验解决问题的方法,培养学生合作交流意识和探索精神。

二、教学重难点重点:直接法和割补法(铅垂法)求二次函数中的三角形面积问题;难点:二次函数中三角形面积的最值问题。

三、教学过程【复习旧知】1.已知二次函数,请用五点法在方格纸上画出草图,并结合图像尽可能多地写出你认为正确的结论。

师生活动:学生作图,思考,发言;教师总结二次函数的性质可从开口方向,顶点,与坐标轴的交点,对称轴,最值,增减性,对称性等方面研究。

设计意图:复习巩固五点法作二次函数草图,同时简单回顾二次函数的性质。

【问题探究】若二次函数与x轴交于A,B两点(B在A的左边),与y轴交于点C,顶点为点D。

【问题1】:任意连接ABCDO五点中的三个点,能组成哪些三角形?师生活动:学生思考后举手口答。

设计意图:引入今天的复习课内容——二次函数中的三角形面积问题。

【追问1】:在这四个三角形中,哪些三角形的面积比较好求,请写下来。

【追问2】:这些三角形面积为什么相对容易求解?——有一边在坐标轴上。

师生活动:学生思考求解,并积极发言,同时观察分析,总结规律。

设计意图:会利用公式直接计算至少有一边在坐标轴上的三角形面积。

【追问3】:若二次函数与y轴的交点关于对称轴的对称点为点E,你能求出和的面积吗?【追问4】:这两个三角形面积为什么也相对容易求解?——有一边平行于坐标轴。

二次函数中三角形面积问题小结练习

二次函数中三角形面积问题小结练习

二次函数中三角形面积问题一、学情剖析:这一节课的教课对象是九年级的学生.从学习内容角度看,学生已经接触了一次函数、反比率函数、二次函数,能够娴熟地剖析函数的图像及其性质,同时学习本节课以前学习过求三角形的面积的几何方法,这都为本节课做好了知识贮备作用;从学习能力方面看,在这个阶段的学生已经具备了必定的察看、剖析、归纳归纳的能力,并且擅长合作沟通、敢于研究;从认知能力角度看,九年级的学生已经能进行数形联合解决几何问题,对于本节课的学习有必定的帮助 .二、教材剖析:本课时的教课内容是湘教版九年级下册第一章第五节的内容,属于综合题 . 尽人皆知,函数是初中代数的核心,学习本节课以前,学生学习了一次函数、反比率函数、二次函数,并且接触了三角形等几何问题,这对本节课的学习打下了知识基础 .这节课的内容是初中代数和几何的交融,对于培育学生的综合能力特别重要 .三、教课目的:依据《数学课程标准》,联合教材与学生实质,详细目标设定为下边几个方面:1、知识与能力:会解决一般的二次函数中的三角形面积问题.2、过程与方法目标1.在研究反比率函数图像的性质过程中,培育学生察看、剖析、归纳、归纳能力,同时培育学生表达能力 .? 体验数形联合和分类议论思想2.在绘图过程中,培育学生着手操作能力;3.在自主研究合作沟经过程中,学生学会与别人沟通,锻炼了社交能力和语言表达能力 .3、感情态度与价值观目标1.在沟通研究中学生相互合作沟通,促使同窗友情;2、在找点、绘图的过程表现了数学图形的美,培育学生审美情味,同时让学生体验到着手的乐趣四、教课要点与难点教课要点:会解决一般的二次函数中的三角形面积问题.教课难点:二次函数中的三角形的极点存在动点时的面积问题.五、教课策略:本课以教师为主导、学生为主体为原则,采纳启迪式和议论式教课方法.教课过程:六、教具:多媒体七、教课过程设计本节课设计了七个教课环节三、解题反省,学习新知一、创建情境、引二、着手操作、研究新知入讲堂四、加强练习、稳固五、讲堂小结、六、作业部署新知梳理新知八、教课过程活动一:复习回首1.问:( 1):三角形的面积是怎么求的?( 2)二次函数中三角形面积问题该怎么解决呢?设计企图:复习三角形面积的一般求法,图形比较熟习,温故而知新,为新知识的学习作准备。

二次函数中有关三角形面积的求解课件

二次函数中有关三角形面积的求解课件

D
实例二:直角三角形面积的求解
总结词
利用直角三角形性质,结合二次函数图像,求出三角形面 积。
详细描述
直角三角形的一边为x轴,另一边与二次函数图像交点构 成高,通过求出交点坐标和底边的长度,可以计算出三角 形的面积。
公式
$S = frac{1}{2} times text{底} times text{高}$
总结词
通过已知条件确定底和高
详细描述
在二次函数和三角形中,底和高通常是通过已知条件确定的。例如,如果知道三角形的两个顶点坐标 ,可以通过两点间的距离公式计算底和高的长度。
问题二:如何确定三角形的底和高?
总结词
通过作图确定底和高
详细描述
在二次函数的图像上,可以通过作图的方式确定三角形的底 和高。例如,可以作一条与$x$轴平行的线段,与二次函数的 图像交于两点,这两点间的距离即为三角形的底,线段的高 度即为三角形的高。
问题三:如何利用二次函数求三角形的面积?
总结词
利用公式计算面积
详细描述
三角形的面积可以通过公式 $frac{1}{2} times text{底} times text{高}$计算得出。 如果已知三角形的底和高, 可以直接代入公式计算面积

总结词
通过图像观察面积
详细描述
在二次函数的图像上,可以 通过观察的方式确定三角形 的面积。例如,可以观察抛 物线与$x$轴围成的图形,其
详细描述
二次函数的顶点可以通过公式$-frac{b}{2a}$计算得出,其中$a$、 $b$、$c$分别为二次函数$f(x)=ax^2+bx+c$的系数。
总结词
通过图像确定顶点
详细描述
二次函数的图像是一个抛物线,顶点是抛物线的最低点或最高点。通 过观察图像,可以确定顶点的位置。

二次函数三角形面积最大值公式

二次函数三角形面积最大值公式

二次函数三角形面积最大值公式二次函数三角形面积最大值公式是指在已知三角形两边和夹角的情况下,求出三角形面积最大值的公式。

这个公式在数学中有着广泛的应用,特别是在优化问题中经常出现。

首先,我们来看一下二次函数的基本形式:y=ax^2+bx+c。

其中,a、b、c都是常数,x是自变量,y是因变量。

二次函数的图像是一个开口向上或向下的抛物线。

接下来,我们来考虑如何利用二次函数求解三角形面积最大值。

假设已知三角形两边的长度分别为a和b,夹角为θ。

我们可以将三角形分成两个直角三角形,其中一个直角三角形的底边长度为x,高为h1;另一个直角三角形的底边长度为a-x,高为h2。

由于两个直角三角形的高相等,所以h1=h2=h。

根据正弦定理,我们可以得到:a/sinθ=b/sin(π-θ)=(a-x)/sinθ化简后得到:x=a/2(1-cosθ)将x代入三角形面积公式S=1/2ab*sinθ中,得到:S=a^2sinθ/4(1-cosθ)将二次函数的基本形式代入上式中,得到:S=a^2/4(1-cosθ)×sinθ将sinθ和cosθ表示为自变量x的函数,得到:sinθ=2t/(1+t^2),cosθ=(1-t^2)/(1+t^2)其中,t=tan(θ/2)。

将sinθ和cosθ代入S的公式中,得到:S=a^2/4(1-t^2)/(1+t^2)×2t/(1+t^2)化简后得到:S=a^2t/(2(1+t^2))由于t=tan(θ/2),所以t的取值范围是(-∞,+∞)。

因此,S的最大值可以通过求解二次函数y=ax^2+bx+c的顶点坐标来得到。

其中,a=a^2/2,b=0,c=0。

因此,顶点坐标为(x,y)=(0,a^2/4)。

将x=tan(θ/2)代入上式中,得到:S=a^2/8sin(θ/2)这就是二次函数三角形面积最大值公式。

通过这个公式,我们可以在已知三角形两边和夹角的情况下求出三角形面积的最大值。

二次函数背景下三角形面积最值问题的几种解法

二次函数背景下三角形面积最值问题的几种解法

数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。

二次函数中的三角形面积问题

二次函数中的三角形面积问题

二次函数中的三角形面积问题嘿,朋友们,今天咱们聊聊二次函数中的三角形面积问题。

听起来是不是有点儿高深?别担心,我会让这事儿变得轻松有趣,咱们就像喝着咖啡一样,悠闲地聊聊数学。

你知道吗?二次函数就是那种像抛物线一样的东西,弯弯的,像是个超级调皮的孩子,爱玩各种花样。

不过,今天我们不讨论它的调皮,而是看看它怎么跟三角形扯上关系。

想象一下,在一个坐标平面上,我们有一条二次函数的曲线,还有三角形的顶点。

哇哦,听起来像是数学界的浪漫故事,对吧?想象你在草地上画了个大大的三角形,三角形的三个顶点分别在二次函数的曲线上和坐标轴上。

这里就有趣了,咱们的目标就是计算这个三角形的面积。

通常,面积公式是底乘高除以二,简单吧?可是,底和高在这里就不那么简单了。

底边可能就在坐标轴上,而高则是从顶点垂直下来的那条线。

这里的二次函数会给你提供一些挑战,想象一下,曲线的形状不断变化,三角形的面积也随之变化,真是让人心跳加速!这就像是人生,总有变化,时不时来点儿惊喜。

我们需要用一些数学的办法来捕捉这些变化。

用代数来表示二次函数,你可能会遇到类似y = ax² + bx + c的公式。

就像是在玩拼图,咱们要找到合适的a、b、c来让这个图形更完美。

然后,咱们再找三角形的底边长度和高。

底边是两点之间的距离,简单,直接用坐标去算就行。

至于高嘛,嘿,那就得依赖咱们的二次函数了。

从顶点向底边做个垂线,嘿,终于找到了!不过,有时候高会随着顶点的变化而变化,这可真让人挠头。

就像你找不到车钥匙一样,慌张又无奈。

接下来就进入了大计算环节,咱们得把找到的底和高代入面积公式,哇哦,面积就出来了!每当这个时候,简直就像解开了一个大难题,心里那个爽,简直比吃了蜜糖还甜。

可是,有些时候面积会让你惊讶,比如说,底边太小,或者高太短,结果三角形的面积居然小得像个小虫子。

哈哈,这时候就真得思考一下,怎么才能把这个三角形做得更大,变得更美丽。

如果我们把这个问题放在实际生活中,嘿,三角形的面积就代表了一个实际的空间,像是画画的时候,想要把画面做得更丰富。

求二次函数之内接三角形求面积的方法

求二次函数之内接三角形求面积的方法

S CAB

1 32 2
3
(3)、假设存在符合条件的点 P,设 P 点的横坐标为 x,△PAB 的铅垂高为 h,
则 h y1 y2 (x2 2x 3) (x 3) x2 3x
9 由 S△ PAB= 8 S△ CAB
1 3 (x2 3x) 9 3
= 1 ������������ × ������������
2
AD 即为铅垂高,BF 即为 B 点与 C 点的水平宽。
明白了这个原理,让我们一起来看一下二次函数内接三角形求面积的题型。
例题 1:
如图 12-2,抛物线顶点坐标为点 C(1,4),交 x 轴于点 A(3,0),交 y 轴于点 B.
(1)求抛物线和直线 AB 的解析式;
设直线 AB 的解析式为: y2 kx b
由 y1 x2 2x 3求得 B 点的坐标为 (0,3)
y C
BDLeabharlann 1 O1x A图 12-2
把 A(3,0) , B(0,3) 代入 y2 kx b 中,解得: k 1,b 3 ,所以 y2 x 3 .
(2)、因为 C 点坐标为(1,4),所以当 x=1时,y1=4,y2=2,所以 CD=4-2=2 ,
向下的函数,所以把二次函数一般式化成顶点式即可求出面积的最大值。
讲了这么多,相信同学们已经跃跃欲试了,请自己动手做一下面这个习题↓↓↓
得: 2
8
化简得: 4x2 12x 9 0
|PE|即为铅垂高 h,h 等于 P,E 两点纵坐标之差
x 3 解得, 2

x

3 2
代入
y1

x2

九年级数学上册28.3二次函数中的三角形面积问题说课稿

九年级数学上册28.3二次函数中的三角形面积问题说课稿
3.对二次函数与坐标轴围成的三角形面积最值问题感到困惑。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设情境:以实际问题为背景,引发学生对二次函数与三角形面积问题的思考;
2.分组讨论:组织学生进行合作交流,让学生在讨论中相互启发,共同解决问题;
3.激励评价:对
3.合理安排课堂时间,关注学生的学习进度,对学习困难的学生给予个别辅导。
课后评估教学效果:
1.课后收集学生的作业和数学日记,分析他们的学习效果和困惑;
2.与学生进行交流,了解他们对课堂知识的掌握程度;
3.反思自己的教学过程,针对学生的反馈,调整教学策略。
具体反思和改进措施:
1.针对学生对知识点的掌握情况,调整教学内容和难度,确保学生能扎实掌握基础知识;
2.提高题:布置一些富有挑战性的题目,培养学生的解题能力和创新思维。
3.实践题:布置与实际生活相关的二次函数与三角形面积问题,让学生将所学知识应用于生活实践。
作业的目的在于:巩固所学知识,提高学生的应用能力;培养学生的独立思考和解决问题的能力;增强学生对数学学科的兴趣和信心。
五、板书设计与教学反思
(一)板书设计
2.问题驱动的教学:以实际问题为载体,引导学生运用所学知识解决问题,提高学生的知识运用和问题解决能力。
3.合作学习:组织学生进行分组讨论和合作交流,培养学生的团队协作能力和沟通能力,同时通过互相启发,提高学生的思维品质。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
1.教具:三角板、直尺、计算器等,用于直观演示和操作,帮助学生理解二次函数图像与三角形面积的关系。
(三)互动方式
为实现师生互动和生生互动,我计划采取以下措施:

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法
二次函数中三角形面积问题的三种求解方法
求二次函数中三角形面积问题是一个常见的数学问题,很多学生和老师都有求解它的困惑。

那么,我们应该如何求解这个问题呢?答案是:有三种求解方法。

第一种求解方法是使用牛顿勒让公式进行计算。

牛顿勒让公式是一种高级数学方法,它试图用参数表示二次函数上的点,然后把它们连接起来从而确定三角形的面积。

第二种求解方法是使用初等函数进行计算。

初等函数是指利用函数的一阶导数或二阶导数计算函数的极值,进而求得存在的三角形的面积。

第三种求解方法是使用微积分中的定积分。

定积分是指将该函数在指定的范围内进行积分,解出积分值,从而得出三角形的面积。

通过以上三种方法,我们可以求出二次函数中三角形的面积。

其中,牛顿勒让公式是一种高级数学方法,初等函数是一种直接使用函数的导数,定积分是把函数分段积分的方法。

而这三种方法对求解二次函数中三角形面积问题都有用处,都可以取得精确而完整的结果。

课 件 《二次函数中的三角形面积最值问题》

课     件 《二次函数中的三角形面积最值问题》
S=(水平距离× 铅锤高) ÷2
课堂小结
1、本节课你都收获了什么? 2、S=(水平距离× 铅锤高) ÷2
谢谢聆听!
解: 由抛物线的顶点坐标P(1,4),得对称轴为
x=1, 又因为B(3,0),所以A(-1,0)。
因此AB=3-(-1)=4,OC=3-0=3
S△ABC=(AB ×OC) ÷2 =(4 × 3)÷2
A
=6
y
P (1,4)
4 C3 (0,3)
2
1 铅锤高
O
2
水平距离
B(3,0) x
方法归纳
当三角形的一边在坐标轴上时,就以这边为底,作高 求面积即可。
二次函数中三角形面积的最值问题
课题分析
常见的类型有: 1.三角形的边在坐标轴上; 2.三角形的边均不在或不与坐标轴平行。
题型讲解
例1:已知抛物线y=-x2+2x+3与x轴交于A,B两点,其中A点位于B点的左侧, 与y轴交于C点,顶点为P,求 △ABC的面积。
分析:由图可知,△ ABC有一边AB在坐标轴上, 所以 △ABC的面积就是以AB边为底,OC为高来求。
分,这两部分的面积之和就是△PAC的面积 。
解:由A、C两点都在抛物线 y=-x2+2x+3 上,所以A ( 1,0), C(2,3)。
4P
令yAC=kx+b,将A(-1,0),C(2,3)代入得:ቤተ መጻሕፍቲ ባይዱ
-k+b=o 2k+b=3
解得
k=1 b=1
即yAC=x+1
令点P(m,-m2+2m+3 ),则B(m,m+1)
S=(水平距离× 铅锤高) ÷2

二次函数三角形面积

二次函数三角形面积

二次函数三角形面积二次函数是高中数学中的重要内容之一,而二次函数与三角形面积之间的关系也是数学中的一个经典问题。

本文将通过简单的例子和详细的讲解,介绍二次函数与三角形面积的关系。

我们来看一个简单的例子:假设有一个三角形,它的底边长为3,高为2。

我们想要求这个三角形的面积。

这时我们可以使用二次函数来求解。

二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,x为自变量,y为因变量。

而三角形的面积可以通过底边长和高来计算,公式为S = 1/2 * 底边长 * 高。

我们可以将三角形的面积S表示为二次函数的形式,即S = ax^2 + bx + c。

由于我们已知底边长为3,高为2,代入公式可得2 = a * 3^2 + b * 3 + c。

接下来,我们需要求解二次函数的系数a、b、c。

由于已知三个点(3,2),我们可以通过代入这三个点的坐标来求解。

代入第一个点(3,2),可得2 = 9a + 3b + c。

接着,代入第二个点(0,c),可得c = a * 0^2 + b * 0 + c,即 c = c。

最后,代入第三个点(-3,2),可得2 = 9a - 3b + c。

通过以上三个方程,我们可以解得a、b、c的值。

进一步求解,我们可以得到二次函数的解析式。

在得到二次函数的解析式之后,我们可以进一步求解三角形的面积。

将求得的系数a、b、c代入二次函数的解析式中,我们可以得到三角形的面积函数S(x)。

通过对S(x)进行化简,我们可以得到一个简化的表达式,即二次函数与三角形面积的关系式。

在进一步讨论之前,我们可以先来看一下二次函数的图像。

由于二次函数是一个抛物线,它的图像可以分为两种情况:开口向上和开口向下。

当二次函数的系数a大于0时,它的图像开口向上;当系数a小于0时,它的图像开口向下。

对于开口向上的二次函数,它的最低点即为抛物线的顶点。

而顶点的横坐标就是二次函数的极值点。

我们可以通过求导来找到这个极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C(3,1)
B (4,3) C(-1,1)
引题
如图:抛物线 y x 2 x 3 与 x 轴 交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
2
y D
F
C
B(3,0)
C(O,3) D(1,4)
F(0,4)
o
B
x
割补法 △BCD
引题
如图:抛物线 y x 2 x 3 与 x 轴 交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
9 1 9 2 S PAB S CAB , 3 ( x 3x) 3 8 2 8
练习:如图,在直角坐标系中,点A的坐标为(-2,0),连结
OA,将线段OA绕原点O顺时针旋转120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点的抛物线的解析式; (3)如果点P是(2)中的抛物线上的动点,且在x轴的下方, 那么△PAB是否有最大面积?若有,求出此时P点的坐标及 △PAB的最大面积;若没有,请说明理由.
y
C
A h
铅垂高
C
B D 1 O 1 图1 A B
x
水平宽 a 图2
水平宽 铅垂高 S 2
解: (1)抛物线解析式为 y1 ( x 1) 2 4,即y1 x 2 2 x 3
直线AB解析式为 y2 x 3.
y C B D
1
(2) C(1,4),当x 1 时,y1 4, y2 2.
二次函数中的三角形面积
陶朱初中 金戈
引题
如图:抛物线 y x 2 x 3 与 x 轴 交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
2
y D
C
A
o y D
C
B
x
y
C
y D
y D
C
A
o
B
x
A
o
B
x
o
B
x
A
o
x
△ABC
△ABD
△BCD
△ACD
以A、B、C、D为顶点的三角形有哪些?
2
y
C
A(-1,0) B(3,0) C(0,3)
A
o
B
x
△ABC
1 S ABC AB CO 2 1 S 2 x 3 与 x 轴 交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
2
A
h
A
D
铅垂高
C
B
D
水平宽
a
x
a
图12-1
y A
B A(-1,5) B(4,7) C C(2,1) x
o
割补法
新公式法
运用:
例:如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),
交y轴于点B。 (1)求抛物线和直线AB的解析式; (2)求△CAB的面积S△CAB ; (3)设点P是抛物线(在第一象限内)上的一个动点, 9 是否存在一点P,使S△PAB= S ,若存在,求出P点的坐标; 8 △CAB 若不存在,请说明理由。
2
y D
C
E
B(3,0)
C(O,3) D(1,4)
直线BC的解析式:y= –x+3
B
o
x
E(1,2)
△BCD
1 S△BCD= ×2×(1+2)= 3 2
DE=2
引题
2 y x 2x 3 与 x 轴 如图:抛物线
交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
P
CAB的铅锤高 CD 4 2 2.
1 S CAB 3 2 3 2 (3)设P点的横坐标为x,△PAB的铅垂高为h
Q
1
PQ y1 y2 (x2 2x 3) (x 3) x2 3x
A x
O
3 x 代入y 1 x 2 2x 3, 2 15 3 15 P( , ) y1 2 4 4
y
B
C
A
P
O M x
小 结:
二次函数中三角形面积的求法:
1、公 式 法
2、“割补法”
3、新公式法:水平宽与铅垂高乘积的一半
注意:点的坐标与线段长度之间的相互转化
学数学要善于反思与归纳,掌握
解决问题的方法,知一题懂一类,这 样你能达到事半功倍的效果!
y
C
E
D
A
o
x
△ACD
延伸拓展
我们如果把△ABC 放到直角坐标系中,
A( x , y ), B( x , y ), C( x , y ), D( x , y ), 水平宽: a x x 铅垂高: h AD y y , C B
A, A
B B
C C
D D
1 1 S ABC ah ( xc xB )( y A yD ) 2 2 y
y D
A(-1,0) B(3,0) D(1,4)
A
o D/ B
△ABD
1 S ABD AB DD 2 x 1 S ABD 4 4 8 2
可以直接利用面积公式:
三角形的一边平行(或垂直)于一条坐标轴
y A A y
B
B
o
C
C
x
o A(-1,6)
x
A(1,5) B(6,5)
引题
如图:抛物线 y x 2 x 3 与 x 轴 交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
2
y D
C
A
o y D
C
B
x
y
C
y D
y D
C
A
o
B
x
A
o
B
x
o
B
x
A
o
x
△ABC
△ABD
△BCD
△ACD
如何求这些三角形的面积呢?
引题
如图:抛物线 y x 2 x 3 与 x 轴 交于A、B两点(点A在点B的左侧),与 y 轴交于点C,点D是抛物线的顶点。
相关文档
最新文档