2020版高考物理二轮复习:计算题规范练1(含答案)
2020高考物理二轮课标通用计算题专项训练
计算题专项训练(时间:80分钟满分:100分)题型专项能力训练第53页1.(14分)如图甲所示,水平传送带AB逆时针匀速转动,一个质量为m0=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点)。
已知传送带的速度保持不变,g取10 m/s2。
求:(1)物块与传送带间的动摩擦因数μ;(2)物块在传送带上的运动时间;(3)整个过程中系统产生的热量。
答案:(1)0.2(2)4.5 s(3)18 J解析:(1)由题中v-t图像可得,物块做匀变速运动的加速度a=ΔvΔt =4.02m/s2=2.0 m/s2由牛顿第二定律得F f=m0a得到物块与传送带间的动摩擦因数μ=m0am0g =2.010=0.2。
(2)由题中v-t图像可知,物块初速度大小v=4 m/s、传送带速度大小v'=2 m/s,物块在传送带上滑动t1=3 s后,与传送带相对静止。
前2 s内物块的位移大小x1=v2t1'=4 m,向右后1 s内的位移大小x2=v'2t1″=1 m,向左3 s内位移x=x1-x2=3 m,向右物块再向左运动时间t2=xv'=1.5 s物块在传送带上运动时间t=t1+t2=4.5 s。
(3)物块在传送带上滑动的3 s内,传送带的位移x'=v't1=6 m,向左;物块的位移x=x1-x2=3 m,向右相对位移为Δx'=x'+x=9 m所以转化的热能E Q=F f×Δx'=18 J。
2.(14分)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。
两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。
【推荐】高考物理复习题:计算题规范练含答案
计算题规范练(一)1.(16分)风洞实验室可以给实验环境提供恒定的水平风力,在风洞中,有一长为L的轻杆上端的转轴固定在天花板上,正中间套有一个质量为m的小环,当轻杆竖直放置时,小环恰可在杆上静止,此时水平风力大小为F,已知F>mg,最大静摩擦力等于滑动摩擦力,则:(1)轻杆和小环之间的动摩擦因数μ为多大?(2)若将轻杆旋转45°角后并固定,此时释放小环,小环加速度为多大?(3)若将轻杆旋转45°角后并固定,此时释放小环,到达轻杆底端时速度为多大?2.(16分)下端有一挡板的光滑斜面,一轻弹簧的两端分别连接有两个质量均为3 kg的物块A与B,静置在斜面上如图甲所示。
A物块在斜面上从弹簧的原长处由静止释放后下滑的加速度随弹簧的形变量的关系如图乙所示。
现让A物块从弹簧原长处以1.5 m/s的初速度沿斜面向上运动到最高位置时,B物块恰好对挡板无压力(重力加速度取10 m/s2)。
求:(1)斜面的倾角θ;(2)A物块运动到最高位置时弹簧的弹性势能;(3)A物块到最高位置后继续运动过程中的最大速度。
3.(20分)某地华侨城极速空间站通过人工制造和控制气流,能够将游客在一个特定的空间里吹浮起来,让人能体会到天空翱翔的奇妙感觉。
其装置示意图如图所示,假设风洞内向上的总风量和风速保持不变,体验者通过调整身姿,来改变所受的向上风力大小,人体可上下移动的空间总高度为H。
人体所受风力大小与正对面积成正比,水平横躺时受风面积最大,站立时受风面积为水平横躺时的1 10。
当人体与竖直方向成某一倾斜角时,受风面积为水平横躺时的12,恰好可以静止或匀速漂移。
体验者开始时,先以站立身姿从A点下落,经过某处B点,立即调整为水平横躺身姿(不计调整过程的时间和速度变化),运动到最低点C处恰好减速为零。
(重力加速度为g)求:(1)体验者从A到C的运动过程中的最大加速度;(2)B点的高度;(3)体验者从A至B动能的增量ΔE k1与从B至C克服风力做的功W2之比。
2020高考物理二轮复习:计算题综合训练二 Word版含答案
计算题综合训练二1. 如图所示,两根等高光滑的14圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开头下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与导轨电接触良好.求:(1) 棒到达最低点时的速度大小和通过电阻R的电流.(2) 棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.(3) 若棒在拉力作用下,从cd开头以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?2. 如图所示,质量为M的光滑长木板静止在光滑水平地面上,左端固定一劲度系数为k的水平轻质弹簧,右侧用一不行伸长的细绳连接于竖直墙上,细绳所能承受的最大拉力为FT.使一质量为m、初速度为v0的小物体,在木板上无摩擦地向左滑动而后压缩弹簧,细绳被拉断,不计细绳被拉断时的能量损失.弹簧的弹性势能表达式为Ep =12kx2(k为弹簧的劲度系数,x为弹簧的形变量).(1) 要使细绳被拉断,v0应满足怎样的条件?(2) 若小物体最终离开长木板时相对地面速度恰好为零,请在坐标系中定性画出从小物体接触弹簧到与弹簧分别的过程小物体的v t图象.(3) 若长木板在细绳拉断后被加速的过程中,所能获得的最大加速度为aM ,求此时小物体的速度.3. 如图甲所示的装置是由加速器、电场偏转器和磁场偏转器构成.加速器两板a、b间加图乙所示变化电压uab,水平放置的电场偏转器两板间加恒定电压U0,极板长度为l,板间距离为d,磁场偏转器中分布着垂直纸面对里的左右有界、上下无界的匀强磁场B,磁场的宽度为D.很多质量为m、带电荷量为+q的粒子从静止开头,经过加速器加速后从与电场偏转器上板距离为23d的位置水平射入.已知U0=1 000 V,B=36 T,粒子的比荷qm=8×107C/kg,粒子在加速器中运动时间远小于Uab的周期,粒子经电场偏转后沿竖直方向的位移为y,速度方向与水平方向的夹角为θ,y与tanθ的关系图象如图丙所示.不考虑粒子受到的重力.甲乙。
2020届人教版高考物理二轮实验+计算基础练习(1)含答案
2020届人教版高考物理二轮实验+计算基础练习(1)含答案1、某同学利用拉力传感器来验证力的平行四边形定则,实验装置如图甲所示。
在贴有白纸的竖直板上,有一水平细杆MN,细杆上安装有两个可沿细杆移动的拉力传感器A、B,传感器与计算机相连接。
两条不可伸长的轻质细线AC、BC(AC>BC)的一端结于C点,另一端分别与传感器A、B相连。
结点C下用轻细线悬挂重力为G的钩码D。
实验时,先将拉力传感器A、B靠在一起,然后不断缓慢增大两个传感器A、B间的距离d,传感器将记录的AC、BC绳的张力数据传输给计算机进行处理,得到如图乙所示张力F随距离d的变化图线。
AB间的距离每增加0.2 m,就在竖直板的白纸上记录一次A、B、C点的位置。
则在本次实验中,所用钩码的重力G=_______N;当AB间距离为1.00 m时,AC绳的张力大小F=_______N;A实验中记录A、B、C点位置的目的是______ 。
【解析】当AB靠在一起时,AC绳拉力为零,BC绳拉力等于钩码的重力,可知G=30.0 N。
由图可知,当AB间距离为1.00 m时,AC绳的张力大小F A=18.0 N。
实验中记录A、B、C点位置的目的是记录AC、BC绳张力的方向。
答案:30.018.0记录AC、BC绳张力的方向2、(创新预测)斜面长度为4 m,一个尺寸可以忽略不计的滑块以不同的初速度v从斜面顶端沿斜面下滑时,其下滑距离x与初速度二次方的关系图象(即x-图象)如图所示。
(1)求滑块下滑的加速度大小;(2)若滑块下滑的初速度为5.0 m/s,则滑块沿斜面下滑的时间为多长?【解析】(1)由=2ax推知,题中图线斜率为,所以滑块下滑的加速度大小a=2 m/s2。
(2)由题中图象可推知,当滑块的初速度为4 m/s时,滑块刚好滑到斜面最低点,故滑块下滑的初速度为5.0 m/s时能滑到斜面最低点。
设滑块在斜面上的滑动时间为t,则x=v0t-at2,代入数据解得t=1 s,t=4 s(舍去)。
2020届高考物理通用二轮题:能量和动量练习及答案
2020届高考物理通用二轮题:能量和动量练习及答案二轮高考:能量和动量1、(2019·吉林省模拟)如图所示,可视为质点的物体从倾角为α的斜面顶端由静止释放,它滑到底端时速度大小为v1;若它由斜面顶端沿竖直方向自由落下,末速度大小为v,已知v1是v的k倍,且k<1。
则物体与斜面间的动摩擦因数为()A.(1-k)sinαB.(1-k)cosαC.(1-k2)tanαD.1-k2 tanα2、(2019·吉林调研)如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,杆的竖直部分光滑。
杆的两部分各套有质量均为1 kg的小球A和B,A、B球间用一不可伸长的细绳相连。
初始A、B均处于静止状态,已知OA=3 m,OB=4 m,若A球在水平拉力的作用下向右缓慢地移动1 m,小球A与水平杆间的动摩擦因数μ=0.2(取g=10 m/s2),那么该过程中拉力F做功为()A.4 J B.6 JC.10 J D.14 J3、如图所示,一倾角为37°的斜面固定在水平地面上,重为4 N的滑块从距离水平面高度为0.6 m处由静止释放,沿斜面向下运动,已知滑块与斜面间的动摩擦因数为0.5,重力加速度g取10 m/s2,以水平地面为重力势能等于零的参考面.滑块从静止运动到斜面底端的过程中,下列说法正确的是(AC)A.滑块的重力势能减少2.4 JB.滑块的动能增加0.48 JC.滑块的机械能减少1.6 JD.滑块因摩擦生热0.96 J4、高空坠物极易对行人造成伤害。
若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A.10 N B.102 NC.103 N D.104 N5、质量为M的小车静止在水平面上,静止在小车左端的质量为m的小球突然获得一个水平向右的初速度v0,并沿曲面运动,若曲面很长,小球不可能从右端离开,不计一切阻力,对于运动过程分析正确的是(重力加速度为g)(AC)A.小球沿小车上升的最大高度小于v20 2gB.小球回到小车左端的速度大小仍为v0 C.小球和小车组成的系统机械能守恒D.小球到最高点的速度为m v0 M6、如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量为m(m<M)的小球从槽高h处开始自由下滑,下列说法正确的是()A.在以后的运动过程中,小球和槽在水平方向动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.全过程小球和槽、弹簧所组成的系统机械能守恒,且水平方向动量守恒D.被弹簧反弹后,小球和槽的机械能守恒,但小球不能回到槽高h处7、(2019·安徽“江南十校”联考)如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后B物块刚好能落入正前方的沙坑中。
重庆2020人教高考物理二轮实验和计算题选练一及答案
重庆2020人教高考物理二轮实验和计算题选练一及答案1、两位同学用如图甲所示装置,通过半径相同的A、B两球的碰撞来验证动量守恒定律.(1)(多选)实验中必须满足的条件是________.A.斜槽轨道尽量光滑以减小误差B.斜槽轨道末端的切线必须水平C.入射球A每次必须从轨道的同一位置由静止滚下D.两球的质量必须相等(2)测量所得入射球A的质量为m A,被碰撞小球B的质量为m B,图甲中O 点是小球抛出点在水平地面上的垂直投影,实验时,先让入射球A从斜轨上的起始位置由静止释放,找到其平均落点的位置P,测得平抛射程为OP;再将入射球A从斜轨上起始位置由静止释放,与小球B相撞,分别找到球A和球B相撞后的平均落点M、N,测得平抛射程分别为OM和ON.当所测物理量满足表达式__________________时,即说明两球碰撞中动量守恒;如果满足表达式____________________时,则说明两球的碰撞为完全弹性碰撞.(3)乙同学也用上述两球进行实验,但将实验装置进行了改装,如图乙所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球A、球B与木条的撞击点.实验时,首先将木条竖直立在轨道末端右侧并与轨道接触,让入射球A从斜轨上起始位置由静止释放,撞击点为B′;然后将木条平移到图中所示位置,入射球A从斜轨上起始位置由静止释放,确定其撞击点P′;再将入射球A 从斜轨上起始位置由静止释放,与球B相撞,确定球A和球B相撞后的撞击点分别为M′和N′.测得B′与N′、P′、M′各点的高度差分别为h1、h2、h3.若所测物理量满足表达式________________时,则说明球A和球B碰撞中动量守恒.【参考答案】(1)BC(2)m A OP=m A OM+m B ON m A OP2=m A OM2+m B ON2(3)m Ah2=m A h3+m Bh1解析:(1)该实验中,通过平抛运动的基本规律来求解碰撞前后的速度,必须保证每次小球都做平抛运动,斜槽轨道可以存在摩擦,轨道末端必须水平,A 选项错误,B选项正确;入射球每次都要从同一高度由静止滚下,要保证碰撞前的速度相同,C选项正确;为了使小球碰后不被反弹,要求入射小球质量大于被碰小球质量,D选项错误.(2)两球从同一高度下落,下落时间相同,水平速度之比等于水平方向位移之比,即OP=v0t,OM=v1t,ON=v2t,若两球相碰前后的动量守恒,满足m A v0=m A v1+m B v2,联立解得,m A OP=m A OM+m B ON.如果是弹性碰撞,则机械能守恒,12m A v2=12m A v21+12m B v22,代入数据解得,m A OP2=m A OM2+m B ON2.(3)小球做平抛运动,竖直方向上,h=12gt2,水平方向上,x=v t,解得初速度v=x g2h,碰撞过程动量守恒,m A v A=m A v A′+m B v B′,联立解得,m Ah2=m Ah3+m Bh1.2、ETC是日前世界上最先进的路桥收费方式,它通过安装在车辆挡风玻璃上的车载电子标签与设在收费站ETC通道上的微波天线进行短程通信,利用网络与银行进行后台结算处理,从而实现车辆不停车就能支付路桥费的目的.2015年我国ETC已实现全国联网,大大缩短了车辆通过收费站的时间,假设一辆汽车以10 m/s的速度驶向收费站,若进入人工收费通道,它从距收费窗口20 m处开始匀减速,至窗口处恰好停止,再用10 s时间完成交费,若进入ETC通道,它从某位置开始匀减速,当速度减至5 m/s后,再以此速度匀速行驶5 m即可完成交费,若两种情况下,汽车减速时加速度相同,求:(1)汽车进入ETC 通道减速行驶的位移大小;(2)汽车从开始减速到交费完成,从ETC 通道比从人工收费通道通行节省的时间.【参考答案】(1)15 m (2)11 s解析:(1)汽车进入人工收费通道后做匀减速直线运动,根据速度—位移公式可知,a =v 22x =2.5 m/s 2.汽车进入ETC 通道后,做匀减速直线运动的时间t 1=v -v ′a =2 s.匀减速运动的位移x 1=v 2-v ′22a =15 m.(2)汽车在ETC 收费通道,匀减速运动的时间t 1=2 s.匀速行驶的时间t 2=x ′v ′=1 s. 从开始减速到交费完成所需的时间t =t 1+t 2=3 s.在人工收费通道,匀减速直线运动的时间t 3=v a=4 s. 汽车进入人工收费通道,从开始减速到交费完成所需的时间t ′=14 s. 节省的时间Δt =t ′-t =11 s.3、物体中的原子总是在不停地做热运动,原子热运动越激烈,物体温度越高;反之,温度就越低.所以,只要降低原子运动速度,就能降低物体温度.“激光致冷”的原理就是利用大量光子阻碍原子运动,使其减速,从而降低了物体温度.使原子减速的物理过程可以简化为如下情况:如图所示,某原子的动量大小为p 0.将一束激光(即大量具有相同动量的光子流)沿与原子运动的相反方向照射原子,原子每吸收一个动量大小为p 1的光子后自身不稳定,又立即发射一个动量大小为p 2的光子,原子通过不断吸收和发射光子而减速.(已知p 1、p 2均远小于p 0,普朗克常量为h ,忽略原子受重力的影响)(1)若动量大小为p 0的原子在吸收一个光子后,又向自身运动方向发射一个光子,求原子发射光子后动量p 的大小;(2)从长时间来看,该原子不断吸收和发射光子,且向各个方向发射光子的概率相同,原子吸收光子的平均时间间隔为t 0.求动量大小为p 0的原子在减速到零的过程中,原子与光子发生“吸收-发射”这一相互作用所需要的次数n 和原子受到的平均作用力f 的大小;(3)根据量子理论,原子只能在吸收或发射特定频率的光子时,发生能级跃迁并同时伴随动量的变化.此外,运动的原子在吸收光子过程中会受到类似机械波的多普勒效应的影响,即光源与观察者相对靠近时,观察者接收到的光频率会增大,而相对远离时则减小,这一频率的“偏移量”会随着两者相对速度的变化而变化.为使该原子能够吸收相向运动的激光光子,请定性判断激光光子的频率ν和原子发生跃迁时的能量变化ΔE 与h 的比值之间应有怎样的大小关系.【参考答案】(1)p 0-p 1-p 2 (2)p 0p 1 p 1t 0(3)ν<ΔE h 解析:(1)分析题意可知,原子吸收和放出一个光子后,整体动量守恒. 以原子初动量方向为正,p 0-p 1=p +p 2.解得原子放出光子后的动量p =p 0-p 1-p 2.(2)原子向各个方向均匀地发射光子,放出的所有光子总动量为零.设原子经n 次相互作用后速度变为零,p 0-np 1=0,解得n =p 0p 1. 根据动量定理可知,f·nt 0=p 0.解得,f =p 0nt 0=p 1t 0.(3)根据能级跃迁规律可知,静止的原子吸收光子发生跃迁,跃迁频率ν0=ΔE h .考虑多普勒效应,由于光子与原子相向运动,原子接收到的光子频率会增大.所以为使原子能够发生跃迁,照射原子的激光光子频率ν<ΔE h .4、如图所示,两个轻质弹簧的劲度系数分别为k 1=1 N/cm 、k 2=2 N/cm ,它们一端固定在质量为m =1 kg 的物体A 上,另一端分别固定于水平地面上的Q 点和一固定轻质薄板的P 点(两弹簧均呈竖直状态),当物体A 平衡时,下方弹簧恰好处于原长,若只把A 换成质量为3 m 的物体B(弹簧均在弹性限度内),当物体B 平衡时,求:下方弹簧所受弹力大小(重力加速度为g =10 m/s 2).【参考答案】203N解析:当物体A 平衡时,下方弹簧为原长,上方的弹簧处于伸长状态,mg =k 2x 2.当物体B 处于平衡状态时,上方弹簧增加的伸长量为x 1,下方弹簧被压缩的长度为x 1,根据胡克定律和平衡条件可知,k 1x 1+k 2(x 1+x 2)=3mg.联立解得,x 1=2mg k 1+k 2. 下方弹簧所受弹力大小F =k 1x 1=2mg·k 1k 1+k 2=203N. 5、如图所示,水平面AB 光滑,粗糙半圆轨道BC 竖直放置.圆弧半径为R ,AB 长度为4R.在AB 上方、直径BC 左侧存在水平向右、场强大小为E 的匀强电场.一带电量为+q 、质量为m 的小球自A 点由静止释放,经过B 点后,沿半圆轨道运动到C 点.在C 点,小球对轨道的压力大小为mg ,已知E =mg q ,水平面和半圆轨道均绝缘.求:(1)小球运动到B点时的速度大小;(2)小球运动到C点时的速度大小;(3)小球从B点运动到C点过程中克服阻力做的功.【参考答案】(1)8gR(2)2gR(3)mgR解析:(1)小球运动到B点的过程中,电场力做功.根据动能定理,qE·4R=12m v2B-0.其中E=mg q.联立解得,v B=8gR.(2)小球运动到C点时,根据牛顿第二定律,2mg=m v C2 R.解得,v C=2gR.(3)小球从B运动到C点的过程,根据动能定理,-W f-2mgR=12m v C2-12m v B2解得,W f=mgR.。
【2020】高考物理二轮复习专题测试:-功和能含解析附参考答案
B.两物体机械能的变化量相等
C.a的重力势能的减小量等于两物体总动能的增加量
D.绳的拉力对a所做的功与对b所做的功的代数和为零
【解析】选A、D.。由运动的合成与分解知识可知,va=vbcosθ,θ为拉b的绳与水平面的夹角,因此物体a的速度小于物体b的速度,而两物体的质量又相同,所以a的动能小于b的动能,A正确;a物体下降时,a的机械能的减少量等于b物体的动能增加量和b克服摩擦力做功之和,B错误;a的重力势能减小量等于两物体总动能的增加量与b克服摩擦力所做的功之和,C错误;绳的拉力对a所做的功等于a的机械能的减少量,绳的拉力对b所做的功等于b的动能增加量和克服摩擦力做功之和,D正确.。
2.(20xx·福建高考)如图,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动.。质量不同、形状相同的两物块分别置于两弹簧上端.。现用外力作用在物块上,使两弹簧具有相同的压缩量,若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块( )
4.(20xx·重庆高考)某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k1和k2倍,最大速率分别为v1和v2,则( )
A.v2=k1v1B.C.v2= v1D.v2=k2v1
【解题指南】解答本题时应注意以下两点:
(1)机车的功率为其牵引力的功率.。
(2)当机车达到最大速率时,牵引力和阻力等大反向.。
【解析】选C.。根据x=错误!未找到引用源.。t和Wf=μmgx可判断,两次克服摩擦力所做的功Wf2=2Wf1.。由动能定理得WF1-Wf1=错误!未找到引用源.。mv2和WF2-Wf2=错误!未找到引用源.。m(2v)2,整理可判断WF2<4WF1,故选项C正确.。
(课标版)2020高考物理二轮复习计算题规范练2(含解析)
计算题规范练2时间:45分钟1.如图甲所示,质量M=2 kg、长L=1 m的木板静止在粗糙的水平地面上,在木板的左端放置一质量m=1 kg、大小可以忽略的铁块,假设最大静摩擦力等于滑动摩擦力.(g 取10 m/s2)(1)若在铁块上施加一随时间增大的水平力F=kt(k是常数),通过摩擦力传感器描绘出铁块受到木板的摩擦力F f随时间t变化的图象如图乙所示,求木板与地面间的动摩擦因数μ1和木板与铁块间的动摩擦因数μ2;(2)若在铁块上施加恒力F,使铁块从木板上滑落,求F的大小范围;(3)若在铁块上施加向右的恒力F′=8 N,求铁块运动到木板右端所用的时间.答案:(1)0.1 0.5 (2)F>6 N (3)1 s解析:(1)由图乙可以看出,0~1 s时间内,M、m均没有滑动,由平衡条件得:F f1=F =kt2~3 s内,M、m相对静止,但整体相对地面一起向右运动,故t=1 s时有:F f2=μ1(m+M)g=3 N解得:μ1=0.13 s后,M、m相对滑动,m受到滑动摩擦力,则有:μ2mg=5 N解得:μ2=0.5(2)要使铁块从木板上滑落,必须使铁块的加速度大于木板的加速度,设铁块的加速度为a1,木板的加速度为a2,由牛顿第二定律得:对铁块:F-μ2mg=ma1对木板:μ2mg-μ1(m+M)g=Ma2当a1>a2时铁块才能从木板上滑落代入数据解得:F>6 N(3)当F′=8 N时,由牛顿第二定律得:对铁块:F′-μ2mg=ma11解得:a′1=3 m/s2对木板:μ2mg-μ1(m+M)g=Ma′2解得:a′2=1 m/s2设铁块运动到木板右端所用的时间为t,则有:12a ′1t 2-12a ′2t 2=L 解得:t =1 s2.(2019·全国卷Ⅲ)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少?(3)A 和B 都停止后,A 与B 之间的距离是多少?答案:(1)v A =4.0 m/s v B =1.0 m/s (2)B 0.50 m(3)0.91 m解析:(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正,由动量守恒定律和题给条件有0=m A v A -m B v B ①E k =12m A v 2A +12m B v 2B ② 联立①②式并代入题给数据得v A =4.0 m/s ,v B =1.0 m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④s B =v B t -12at 2 ⑤v B -at =0 ⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2 ⑦联立③④⑤⑥⑦式并代入题给数据得s A =1.75 m ,s B =0.25 m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为s =0.25 m +0.25 m =0.50 m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有 12m A v A ′2-12m A v 2A =-μm A g (2l +sB ) ⑩ 联立③⑧⑩式并代入题给数据得v A ′=7 m/s ⑪ 故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有m A (-v A ′)=m A v A ″+m B v B ″ ⑫12m A v A ′2=12m A v A ″2+12m B v B ″2 ⑬ 联立⑪⑫⑬式并代入题给数据得v A ″=375 m/s ,v B ″=-275m/s ⑭ 这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮由④⑭⑮式及题给数据得 s A ′=0.63 m ,s B ′=0.28 m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s ′=s A ′+s B ′=0.91 m ⑰3.如图所示的平面直角坐标系xOy ,在第一象限内有平行于y 轴的匀强电场,方向沿y 轴正方向;在第四象限的正三角形abc 区域内有匀强磁场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行.一质量为m 、电荷量为q 的粒子,从y 轴上的P (0,3h )点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a (2h,0)点进入第四象限,又经过磁场从y 轴上的某点进入第三象限,且速度与y 轴负方向成30°角,不计粒子所受的重力.求:(1)电场强度E 的大小;(2)粒子到达a 点时速度的大小和方向;(3)abc 区域内磁场的磁感应强度B 的最小值,并求粒子从P 点到离开第四象限所经历的时间.答案:(1)3mv 202qh(2)2v 0 方向与x 轴正方向成60°角斜向右下方(3)2mv 0qL 4h v 0+πL 6v 0解析:(1)粒子运动轨迹如图所示:粒子带负电,在电场中做类平抛运动,则:水平方向:2h =v 0t 1竖直方向:3h =12·qE mt 21 解得:E =3mv 202qh (2)粒子到达a 点时沿y 轴负方向的分速度 v y =at 1=3v 0 粒子速度:v =v 20+v 2y =2v 0tan θ=v y v 0= 3解得:θ=60°即粒子在a 点的速度方向指向第四象限与x 轴正方向成60°角. (3)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =m v 2r 因为粒子从y 轴上的某点进入第三象限,且速度与y 轴负方向成30°角,且θ=60°,所以粒子只能从磁场的ab 边射出,当粒子从b 点射出时,r 最大,此时磁场的磁感应强度有最小值,则:r =L解得:B =2mv 0qL粒子在电场中运动时间:t 1=2h v 0在磁场中运动时间: t 2=16T =16×2πL 2v 0=πL 6v 0做匀速直线运动时间:t 3=4h 2v 0=2h v 0 故运动的总时间:t =t 1+t 2+t 3=4h v 0+πL 6v 0.。
2020届人教版高考物理二轮实验+计算基础练习含答案
2020届人教版高考物理二轮实验+计算基础练习含答案1、利用图甲所示的装置可测量滑块在斜面上运动的加速度。
一斜面上安装有两个光电门,其中光电门乙固定在斜面上靠近底端处,光电门甲的位置可移动。
当一带有遮光片的滑块自斜面上滑下时,与两个光电门都相连的计时器可以显示出遮光片从光电门甲至乙所用的时间t。
改变光电门甲的位置进行多次测量,每次都使滑块从同一点由静止开始下滑,并用米尺测量甲、乙之间的距离x,记下相应的t值;所得数据如表所示。
x/m 0.500 0.600 0.700 0.800 0.900 0.950t/ms 292.9 371.5 452.3 552.8 673.8 776.4/(m·s-1) 1.71 1.62 1.55 1.45 1.34 1.22完成下列填空和作图:(1)若滑块所受摩擦力为一常量,滑块加速度的大小a、滑块经过光电门乙时的、测量值x和t四个物理量之间所满足的关系式是。
瞬时速度vt(2)根据表中给出的数据,在图乙给出的坐标纸上画出-t图线。
(3)由所画出的-t图线,得出滑块加速度的大小为a=_______ m/s2(保留2位有效数字)。
【解析】(1)由运动学公式x=v0t+at2=(v t-at)t+at2=-at2+v t t,变形为=-at+v t,从此式可知,-t图线是一条斜率为负值的直线。
(2)根据题目提供的数据描点,然后用一条直线连接这些点,所得图象如图所示。
(3)由图线知斜率绝对值为k=m/s2=1.0 m/s2,又由=-at+v t知,斜率的绝对值为a,故有a=1.0 m/s2,即a=2.0 m/s2。
答案:(1) =-at+v t或x=-at2+v t t(2)见解析图(3)2.0(1.8~2.2范围内均正确)2、如图所示,在成都天府大道某处安装了一台500万像素的固定雷达测速仪,可以准确抓拍超速车辆以及测量运动车辆的加速度。
一辆汽车正从A点迎面驶向测速仪B,若测速仪与汽车相距355 m,此时测速仪发出超声波,同时车由于紧急情况而急刹车,汽车运动到C处与超声波相遇,当测速仪接收到反射回来的超声波信号时,汽车恰好停止于D点,且此时汽车与测速仪相距335 m,忽略测速仪安装高度的影响,可简化为图乙所示分析(已知超声波速度为340 m/s)。
重庆2020人教高考物理二轮实验和计算题选练及答案
重庆2020人教高考物理二轮实验和计算题选练及答案1、在“验证机械能守恒定律”的实验(1)实验室提供了铁架台、夹子、导线、纸带等器材.为完成此实验,除了所给的器材,从图中还必须选取的实验器材是________.(2)下列方法有助于减小实验误差的是________.A.在重锤的正下方地面铺海绵B.必须从纸带上第一个点开始计算验证机械能是否守恒C.重复多次实验,重物必须从同一位置开始下落D.重物的密度尽量大一些(3)完成实验后,小明用刻度尺测量纸带距离时如图(乙),已知打点计时器每0.02 s打一个点,则B点对应的速度v B=________m/s.若H点对应的速度为v H,重物下落的高度为h BH,重物质量为m,当地重力加速度为g,为得出实验结论完成实验,需要比较mgh BH与________的大小关系(用题中字母表示).【参考答案】(1)电磁打点计时器和学生电源或者是电火花计时器毫米刻度尺(2)D(3)1.35 m/s 12m v2H-12m v2B解析:(1)该实验中可以选用电磁打点计时器和学生电源或者是电火花计时器.在实验中需要刻度尺测量纸带上点与点间的距离从而可知道重锤下降的距离,故需要毫米刻度尺.(2)在重锤的正下方地面铺海绵,目的是保护仪器,A选项错误;该实验是比较重力势能的减少量与动能增加量的关系,不一定要从纸带上第一个点开始计算验证,B 选项错误;重复多次实验时,重物不需要从同一位置开始下落,C 选项错误;选重物的密度尽量大一些,可以减小摩擦阻力和空气阻力的影响,从而减少实验误差,D 选项正确.(3)根据刻度尺的读数规则可知,AC 之间的距离x AC =5.40 cm.根据匀变速直线运动的规律可知,一段时间内的平均速度等于中间时刻的瞬时速度,B 点瞬时速度的大小v B =x AC 2T =1.35 m/s.根据机械能守恒可知,mgh BH =12m v 2H -12m v 2B .2、如图所示,一长为200 m 的列车沿平直的轨道以80 m/s 的速度匀速行驶,当车头行驶到进站口O 点时,列车接到停车指令,立即匀减速停车,因OA 段铁轨不能停车,整个列车只能停在AB 段内,已知OA =1 200 m ,OB =2 000 m ,求:(1)列车减速运动的加速度的取值范围;(2)列车减速运动的最长时间.【参考答案】(1)1.6 m/s 2≤a ≤167 m/s 2 (2)50 s 解析:(1)设列车做匀减速直线运动,运动到A 点速度为0时,加速度为a 1.根据匀减速直线运动规律可知,刹车的距离,x OA +L =v 202a 1,解得a 1=167 m/s 2. 设运动到B 点速度为0时,加速度为a 2.刹车的距离x OB =v 202a 2,解得a 2=1.6 m/s 2. 列车减速运动的加速度取值范围为1.6 m/s 2≤a ≤167 m/s 2.(2)加速度最小时,列车减速的时间最长,t max =v 0a min=50 s. 3、花岗岩、大理石等装修材料都不同程度地含有放射性元素氡222,人长期吸入后会对呼吸系统造成损害.设有一静止的氡核(222 86Rn)发生衰变生成钋(218 84Po),若放出5.6 MeV 的核能全部转化为动能.(1)写出核反应方程;(2)求新核钋218的动能.(结果保留1位有效数字)【参考答案】(1)22286Rn→218 84Po+42He(2)2×10-14 J解析:(1)根据质量数和核电荷数守恒可知,核反应方程式为:22286Rn→218 84Po+42He.(2)以α离子的速度方向为正方向,核反应过程,系统动量守恒.m v0+M v=0.解得,v=-m v0M,负号表示方向与α离子速度方向相反.核能全部转化为动能,ΔE=12m v2+12M v2.联立解得,新核钋218的动能E k≈2×10-14 J.4、某大雾天气,一小汽车和一大客车在平直公路的同一车道上同向行驶,小汽车在后,其速度大小v1=30 m/s;大客车在前,其速度大小v2=10 m/s.在小汽车和大客车相距x0=25 m时两司机同时发现险情,此时小汽车司机马上以大小a1=8 m/s2的加速度刹车,而大客车立即以大小a2=2 m/s2的加速度加速前进.请通过计算判断两车是否相撞.【参考答案】两车不会相撞.解析:小汽车刹车做匀减速运动,当速度减至与大客车相等时,恰好追上大客车,此时两车恰好不会相撞.速度关系,v1-a1t=v2+a2t,代入数据解得,t=2 s.小汽车运动位移x1=v1t-12a1t2=44 m.大客车运动位移x2=v2t+12a2t2=24 m.由于x2+x0>x1,两车不会相撞.5、我们知道,根据光的粒子性,光的能量是不连续的,而是一份一份的,每一份叫一个光子,光子具有动量(hν/c)和能量(hν),当光子撞击到光滑的平面上时,可以像从墙上反弹回来的乒乓球一样改变运动方向,并给撞击物体以相应的作用力.光对被照射物体单位面积上所施加的压力叫光压.联想到人类很早就会制造并广泛使用的风帆,能否做出利用太阳光光压的“太阳帆”进行宇宙航行呢?1924年,俄国航天事业的先驱齐奥尔科夫斯基和其同事灿德尔明确提出“用照射到很薄的巨大反射镜上的太阳光所产生的推力获得宇宙速度”,首次提出了太阳帆的设想.但太阳光压很小,太阳光在地球附近的光压大约为10-6 N/m 2,但在微重力的太空,通过增大太阳帆面积,长达数月的持续加速,使得太阳帆可以达到甚至超过宇宙速度.IKAROS 是世界第一个成功在行星际空间运行的太阳帆.2010年5月21日发射,2010年12月8日,IKAROS 在距离金星80,800公里处飞行掠过,并进入延伸任务阶段.设太阳单位时间内向各个方向辐射的总能量为E ,太空中某太阳帆面积为S ,某时刻距太阳距离为r(r 很大,故太阳光可视为平行光,太阳帆位置的变化可以忽略),且帆面和太阳光传播方向垂直,太阳光频率为ν,真空中光速为c ,普朗克常量为h.(1)当一个太阳光子被帆面完全反射时,求光子动量的变化Δp ,判断光子对太阳帆面作用力的方向.(2)计算单位时间内到达该航天器太阳帆面的光子数.(3)事实上,到达太阳帆表面的光子一部分被反射,其余部分被吸收.被反射的光子数与入射光子总数的比,称为反射系数.若太阳帆的反射系数为ρ,求该时刻太阳光对太阳帆的作用力.【参考答案】(1)-2hνtc 与入射光子速度方向相反(2)ES 4πhνr 2 (3)(1+ρ)ES 4πcr 2解析:(1)以光子运动的初速度方向为正方向,光子动量的变化Δp =-p -p =-2hνc .根据动量定理可知,Ft =Δp ,解得F =-2hνtc. 光子对太阳帆面作用力的方向与入射光子速度方向相反.(2)每个光子能量E 0=hν.单位时间内到达太阳帆光能量E 总=E 4πr 2·S.单位时间内到达该航天器太阳帆面的光子数N=E总E0=ES4πhνr2.(3)反射光子和吸收光子均会对太阳帆产生作用力.在时间Δt,根据动量定理可知,Ft=Δp反+Δp吸其中Δp反=2ρNΔp·Δt=2ρES4πcr2·ΔtΔp吸=(1-ρ)NΔp·Δt=(1-ρ)ES4πcr2·Δt.联立解得,F=(1+ρ)ES 4πcr2.。
2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)
回扣练8:动量定理和动量守恒定律1.将一个光滑的半圆形槽置于光滑的水平面上如图,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A 点正上方由静止开始落下,从A 点落入槽内,则下列说法中正确的是( )A .小球在半圆槽内运动的过程中,机械能守恒B .小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C .小球在半圆槽内由B 点向C 点运动的过程中,小球与半圆槽组成的系统动量守恒D .小球从C 点离开半圆槽后,一定还会从C 点落回半圆槽解析:选D.只有重力做功时物体机械能守恒,小球在半圆槽内运动由B 到C 过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,故A 错误.小球在槽内运动的前半过程中,左侧物体对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B 错误.小球自半圆槽的最低点B 向C 点运动的过程中,系统在水平方向所受合外力为零,故小球与半圆槽在水平方向动量守恒,故C 错误.小球离开C 点以后,既有竖直向上的分速度,又有与槽相同的水平分速度,小球做斜上抛运动,然后可以从C 点落回半圆槽,故D 正确.故选D.2.如图所示,质量为m 的A 球在水平面上静止放置,质量为2m的B 球向左运动速度大小为v 0,B 球与A 球碰撞且无机械能损失,碰后A 球速度大小为v 1,B 球的速度大小为v 2,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0,下列选项正确的是( ) A .e =1B .e =12C .e =13D .e =14解析:选A.AB 在碰撞的过程中,根据动量守恒可得,2mv 0=mv 1+2mv 2,在碰撞的过程中机械能守恒,可得12·2mv 20=12mv 21+12·2mv 22,解得v 1=43v 0,v 2=13v 0,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0=1,故A 正确,BCD 错误;故选A. 3.如图所示,AB 两小球静止在光滑水平面上,用轻弹簧相连接,A 球的质量小于B 球的质量.若用锤子敲击A 球使A 得到v 的速度,弹簧压缩到最短时的长度为L 1;若用锤子敲击B 球使B 得到v 的速度,弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定解析:选C.若用锤子敲击A 球,两球组成的系统动量守恒,当弹簧最短时,两者共速,则m A v =(m A +m B )v ′,解得v ′=m A v m A +m B ,弹性势能最大,最大为ΔE p =12m A v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B );若用锤子敲击B 球,同理可得m B v =(m A +m B )v ″,解得v ″=m B v m A +m B ,弹性势能最大为ΔE p =12m B v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B ),即两种情况下弹簧压缩最短时,弹性势能相等,故L 1=L 2,C 正确.4.如图所示,足够长的传送带以恒定的速率v 1逆时针运动,一质量为m 的物块以大小为v 2的初速度从左轮中心正上方的P 点冲上传送带,从此时起到物块再次回到P 点的过程中,下列说法正确的是( )A .合力对物块的冲量大小一定为2mv 2B .合力对物块的冲量大小一定为2mv 1C .合力对物块的冲量大小可能为零D .合力对物块做的功可能为零解析:选D.若v 2>v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,达到速度v 1后做匀速直线运动,可知物块再次回到P 点的速度大小为v 1,规定向左为正方向,根据动量定理得,合外力的冲量I 合=mv 1-m (-v 2)=mv 1+mv 2.根据动能定理知,合外力做功W 合=12mv 21-12mv 22;若v 2<v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,物块再次回到P 点的速度大小为v 2,规定向左为正方向,根据动量定理得,合外力的冲量为:I 合=mv 2-m (-v 2)=2mv 2;根据动能定理知,合外力做功为:W 合=12mv 22-12mv 22=0.故D 正确,ABC 错误.故选D. 5.如图甲所示,工人利用倾斜钢板向车内搬运货物,用平行于钢板向上的力将货物从静止开始由钢板底端推送到顶端,到达顶端时速度刚好为零.若货物质量为100 kg ,钢板与地面的夹角为30°,钢板与货物间的滑动摩擦力始终为50 N ,整个过程中货物的速度—时间图象如图乙所示,重力加速度g 取10 m/s 2.下列说法正确的是( )A .0~2 s 内人对货物做的功为600 JB .整个过程中人对货物的推力的冲量为1 000 N·sC .0~2 s 和2~3 s 内货物所受推力之比为1∶2D .整个过程中货物始终处于超重状态解析:选A.0~2 s 内货物的加速度a 1=Δv Δt=0.5 m/s 2,根据牛顿第二定律:F 1-f -mg sin 30°=ma 1,解得F 1=600 N ;0~2 s 内货物的位移:x 1=12×2×1 m=1 m ;则人对货物做的功为W F =Fx 1=600 J ,选项A 正确;整个过程中,根据动量定理:I F -(f +mg sin 30°)t =0,解得整个过程中人对货物的推力的冲量为I F =(f +mg sin 30°)t =(50+100×10×0.5)×3=1 650 N·s,选项B 错误;2~3 s 内货物的加速度大小a 2=1 m/s 2,根据牛顿第二定律:f +mg sin 30°-F 2=ma 2所受推力F 2=450 N ;则0~2 s 和2~3 s 内货物所受推力之比为F 1∶F 2=600∶450=4∶3,选项C 错误;整个过程中货物的加速度先沿斜面向上,后向下,先超重后失重,选项D 错误;故选A.6.(多选)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s,所以碰撞后A 球的动量是2 kg·m/s;碰撞过程系统总动量守恒:m A v A +m B v B =-m A v A ′+m B v B ′所以碰撞后B 球的动量是10 kg·m/s,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,故C 正确,D 错误.碰撞前系统动能:p 2A 2m A +p 2B 2m B=622m A +622×2m A =27m A ,碰撞后系统动能为:p A ′22m A +p B ′22m B =222m A +1022×2m A =27m A,则碰撞前后系统机械能不变,碰撞是弹性碰撞,故A 正确,B 错误;故选AC.7.(多选)质量为M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量为m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2.则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.2 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m解析:选AD.可把小球和滑块水平方向的运动看作人船模型,设滑块M 在水平轨道上向右运动了x ,由滑块和小球系统在水平方向上动量守恒,有m M =x L -x,解得:x =0.3 m ,选项A 正确、B 错误.根据动量守恒定律,小球m 相对于初始位置上升到最大高度时小球和滑块速度都为零,由能量守恒定律可知,小球m 相对于初始位置可以上升的最大高度为0.45 m ,选项C 错误.此时杆与水平面的夹角为cos α=0.8,设小球从最低位置上升到最高位置过程中滑块M 在水平轨道上又向右运动了x ′,由滑块和小球系统在水平方向时动量守恒,有m M =x ′L cos α-x ′,解得:x ′=0.24 m .小球m 从初始位置到第一次到达最大高度的过程中,滑块在水平轨道上向右移动了x +x ′=0.3 m +0.24 m =0.54 m ,选项D 正确.8.(多选)如图所示,一辆质量为M =3 kg 的平板小车A 停靠在竖直光滑墙壁处,地面水平且光滑,一质量为m =1 kg 的小铁块B (可视为质点)放在平板小车A 最右端,平板小车A 上表面水平且与小铁块B 之间的动摩擦因数μ=0.5,平板小车A 的长度L =0.9 m .现给小铁块B 一个v 0=5 m/s 的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g =10 m/s 2.下列说法正确的是( )A .小铁块B 向左运动到达竖直墙壁时的速度为2 m/sB .小铁块B 与墙壁碰撞过程中所受墙壁的冲量为8 N·sC .小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为4 JD .小铁块B 在平板小车A 上运动的整个过程中系统损失的机械能为9 J解析:选BD.设小铁块B 向左运动到达竖直墙壁时的速度为v 1,根据动能定理得:-μmgL =12mv 21-12mv 20,解得:v 1=4 m/s ,选项A 错误.与竖直墙壁发生弹性碰撞,反弹速度为-4 m/s ,由动量定理可知,小铁块B 与墙壁碰撞过程中所受墙壁的冲量为I =2mv 1=8 N·s,选项B 正确.小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为μmgL =4.5 J ,选项C 错误.假设发生弹性碰撞后小铁块B 最终和平板小车A 达到的共同速度为v 2,根据动量守恒定律得:mv 1=(M +m )v 2,解得:v 2=1 m/s.设小铁块B 在平板小车A 上相对滑动的位移为x 时与平板小车A 达到共同速度v 2,则根据功能关系得:-μmgx =12(M +m )v 22-12mv 21,解得:x =1.2 m ,由于x >L ,说明小铁块B 在没有与平板小车A 达到共同速度时就滑出平板小车A ,所以小铁块B 在平板小车上运动的整个过程中系统损失的机械能为ΔE =2μmgL =9 J ,选项D 正确.9.(多选)在地面上以大小为v 1的初速度竖直向上抛出一质量为m 的皮球,皮球落地时速度大小为v 2.若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g .下列判断正确的是( )A .皮球上升的最大高度为v 212gB .皮球从抛出到落地过程中克服阻力做的功为12mv 21-12mv 22 C .皮球上升过程经历的时间为v 1gD .皮球从抛出到落地经历的时间为v 1+v 2g解析:选BD.减速上升的过程中受重力、阻力作用,故加速度大于g ,则上升的高度小于v 212g ,上升的时间小于v 1g,故AC 错误;皮球从抛出到落地过程中重力做功为零,根据动能定理得克服阻力做功为W f =12mv 21-12mv 22,故B 正确;用动量定理,结合数学知识,假设向下为正方向,设上升阶段的平均速度为v ,则:mgt 1+kvt 1=mv 1,由于平均速度乘以时间等于上升的高度,故有:h =vt 1,即:mgt 1+kh =mv 1 ①,同理,设下降阶段的平均速度为v ′,则下降过程:mgt 2-kv ′t 2=mv 2,即:mgt 2-kh =mv 2 ②,由①②得:mg (t 1+t 2)=m (v 1+v 2),解得:t =t 1+t 2=v 1+v 2g,故D 正确;故选BD. 10.(多选)如图所示,足够长的光滑水平导轨间距为2 m ,电阻不计,垂直导轨平面有磁感应强度为1 T 的匀强磁场,导轨上相隔一定距离放置两根长度略大于间距的金属棒,a 棒质量为1 kg ,电阻为5 Ω,b 棒质量为2 kg ,电阻为10 Ω.现给a 棒一个水平向右的初速度8 m/s ,当a 棒的速度减小为4 m/s 时,b 棒刚好碰到了障碍物,经过很短时间0.5 s 速度减为零(不反弹,且a 棒始终没有与b 棒发生碰撞),下列说法正确的是( )A .从上向下看回路产生逆时针方向的电流B .b 棒在碰撞前瞬间的速度大小为2 m/sC .碰撞过程中障碍物对b 棒的平均冲击力大小为6 ND .b 棒碰到障碍物后,a 棒继续滑行的距离为15 m解析:选ABD.根据右手定则可知,从上向下看回路产生逆时针方向的电流,选项A 正确;系统动量守恒,由动量守恒定律可知:m a v 0=m a v a +m b v b 解得v b =2 m/s ,选项B 正确;b 碰到障碍物时,回路的感应电动势:E =BL (v a -v b )=4 V ;回路的电流:I =E R a +R b =415 A ;b 棒所受的安培力:F b =BIL =815N ;b 与障碍物碰撞时,由动量定理:(F b -F )t =0-m b v b 解得:F =8.5 N ,选项C 错误;b 碰到障碍物后,a 继续做减速运动,直到停止,此时由动量定理:B IL Δt =m a v a ,其中I Δt =q =ΔΦR a +R b =BLx R a +R b联立解得x =15 m ,选项D 正确;故选ABD. 11.(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s解析:选AD.由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J+12×2×9 J=27 J E k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A、B沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A′>0,v B′<0),这显然是不符合实际的,因此C错误.验证选项A、D均满足E k≥E k′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).。
2020届人教版高考物理二轮实验+计算题练习题及答案
2020届人教版高考物理二轮实验+计算题练习题及答案1、在“测定匀变速直线运动加速度”的实验中:(1)除打点计时器(含纸带、复写纸)、小车、一端附有滑轮的长木板、细绳、钩码、导线及开关外,在下面的仪器和器材中,必须使用的有_______。
(填选项代号)A.电压合适的50 Hz交流电源B.电压可调的直流电源C.刻度尺D.秒表E.天平(2)实验过程中,下列做法正确的是_______。
(填选项代号)A.先接通电源,再使纸带运动B.先使纸带运动,再接通电源C.将接好纸带的小车停在靠近滑轮处D.将接好纸带的小车停在靠近打点计时器处【解析】(1)本实验需要的电源是电压合适的交流电源,还需要用刻度尺测量纸带点迹间的距离,故选A、C。
(2)实验过程中,要先接通电源,等到打点稳定后,再使纸带运动,要将接好纸带的小车停在靠近打点计时器处,这样可以打出较多的点,故选A、D。
答案:(1)A、C (2)A、D2、如图为两个足球运动员在赛前练习助攻进球的过程,其中BP在一条直线上,假设甲运动员在B处将足球以11 m/s 的速度沿直线的方向踢出,足球沿着地面向球门P处运动,足球运动的加速度大小为1 m/s2,在A位置的乙运动员发现甲运动员将足球踢出去后,经过1 s的反应时间,开始匀加速向连线上的C处奔去,乙运动员的最大速度为9 m/s,已知B、C两点间的距离为60.5 m,A、C两点间的距离为63 m。
(1)乙运动员以多大的加速度做匀加速运动,才能与足球同时运动到C位置?(2)乙运动员运动到C处后以一定的速度将足球沿CP方向踢出,已知足球从C向P做匀减速运动,足球运动的加速度大小仍然为1 m/s2,假设C点到P点的距离为9.5 m,守门员看到运动员在C处将足球沿CP方向水平踢出后,能够到达P 处扑球的时间为1 s,那么乙运动员在C处给足球的速度至少为多大,足球才能射进球门?【解析】(1)对于足球:x BC=v0t-at2代入数据得t=11 s=t-1 s=10 s乙运动员的运动时间t乙乙运动员的最大速度为9 m/s,乙运动员先加速后匀速到C处,设加速时间为t′,则x AC=t′+v m乙(t乙-t′)==1.5 m/s2代入数据求得t′=6 s,a乙(2)由题意知,足球从C到P时间最多为1 s,乙运动员给足球的速度最少为v,此时足球位移x CP=vt″-at″2,代入数据可得v=10 m/s答案:(1)1.5 m/s2(2)10 m/s3、如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点。
(广西专用)2020高考物理二轮复习计算题专项训练(含解析)
计算题专项训练(时间:80分钟满分:100分)1.(14分)如图甲所示,水平传送带AB逆时针匀速转动,一个质量为m0=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点)。
已知传送带的速度保持不变,g取10 m/s2。
求:(1)物块与传送带间的动摩擦因数μ;(2)物块在传送带上的运动时间;(3)整个过程中系统产生的热量。
答案:(1)0.2(2)4.5 s(3)18 J解析:(1)由题中v-t图像可得,物块做匀变速运动的加速度a=ΔvΔv =4.02m/s2=2.0m/s2由牛顿第二定律得F f=m0a得到物块与传送带间的动摩擦因数μ=v0vv0v =2.010=0.2。
(2)由题中v-t图像可知,物块初速度大小v=4m/s、传送带速度大小v'=2m/s,物块在传送带上滑动t1=3s后,与传送带相对静止。
前2s内物块的位移大小x1=v2t1'=4m,向右后1s内的位移大小x2=v'2t1″=1m,向左3s内位移x=x1-x2=3m,向右=1.5s物块再向左运动时间t2=vv'物块在传送带上运动时间t=t1+t2=4.5s。
(3)物块在传送带上滑动的3s内,传送带的位移x'=v't1=6m,向左;物块的位移x=x1-x2=3m,向右相对位移为Δx'=x'+x=9m所以转化的热能E Q=F f×Δx'=18J。
2.(14分)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。
两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。
右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上。
2020届高考物理课标版二轮复习训练题:12计算题+选考题组合练(1)
计算题+选考题组合练(1)1.长传突破是足球运动中运用远距离空中过顶传球突破对方防线的战术方法。
如图所示,防守队员甲在本方球门前某位置M抢截得球,将球停在地面上,利用对方压上进攻后来不及回防的时机,瞬间给予球一个速度v,使球斜飞入空中,最后落在对方禁区附近地面上P点处。
在队员甲踢球的同时,突前的同伴队员乙由球场中的N 点向P点做直线运动,队员乙在N点的初速度v1=2 m/s,队员乙在NP间先匀加速运动,加速度a=4 m/s2,速度达到v2=8 m/s后匀速运动。
经过一段时间后,队员乙恰好在球落在P点时与球相遇,已知MP的长度s=60 m,NP的长度L=11.5 m,将球员和球视为质点,忽略球在空中运动时的空气阻力,重力加速度取g=10 m/s2。
(1)求足球在空中的运动时间;(2)求队员甲在M点给予足球的速度v的大小。
答案(1)2 s (2)10√10 m/s解析(1)足球在空中的运动时间与队员乙的直线运动时间相同v 2=v1+at1得到t1=1.5 sv22-v12=2aL1,L-L1=v2t2得到t2=0.5 s足球在空中的运动时间t=t1+t2=2 s(2)足球在空中做抛体运动,水平方向有v0=s t得到v=30 m/s竖直方向有vy =g·t2得到vy=10 m/s则有v=√v02+v y2得到v=10√10 m/s2.(2019福建龙岩模拟)如图所示,质量m=1.0 kg 、电荷量q=4×10-3 C 的带负电小球(可视为质点)用长度l=0.8 m 的不可伸长的绝缘轻质细线悬吊在O 点,过O 点的竖直线右侧有竖直向下足够大的匀强电场,场强大小E=5×103 N/C 。
现将小球拉至A 处,此时,细线与竖直方向成θ角。
现由静止释放小球,在小球运动过程中细线始终未被拉断。
已知 cos θ=34,取重力加速度g=10 m/s 2。
(1)求小球第一次运动到最低点时的速度大小。
2020届高考物理课标版二轮习题:12计算题+选考题组合练(1) Word版含解析
姓名,年级:时间:计算题+选考题组合练(1)1。
长传突破是足球运动中运用远距离空中过顶传球突破对方防线的战术方法。
如图所示,防守队员甲在本方球门前某位置M抢截得球,将球停在地面上,利用对方压上进攻后来不及回防的时机,瞬间给予球一个速度v,使球斜飞入空中,最后落在对方禁区附近地面上P点处。
在队员甲踢球的同时,突前的同伴队员乙由球场中的N点向P点做直线运动,队员乙在N点的初速度v1=2 m/s,队员乙在NP间先匀加速运动,加速度a=4 m/s2,速度达到v2=8 m/s后匀速运动。
经过一段时间后,队员乙恰好在球落在P点时与球相遇,已知MP的长度s=60 m,NP的长度L=11.5 m,将球员和球视为质点,忽略球在空中运动时的空气阻力,重力加速度取g=10 m/s2.(1)求足球在空中的运动时间;(2)求队员甲在M点给予足球的速度v的大小。
答案(1)2 s (2)10√10 m/s解析(1)足球在空中的运动时间与队员乙的直线运动时间相同v2=v1+at1得到t1=1。
5 sv22—v12=2aL1,L-L1=v2t2得到t2=0.5 s足球在空中的运动时间t=t1+t2=2 s(2)足球在空中做抛体运动,水平方向有v0=st得到v0=30 m/s竖直方向有v y=g·t2得到v y=10 m/s则有v=√v02+v y2得到v=10√10 m/s2。
(2019福建龙岩模拟)如图所示,质量m=1.0 kg、电荷量q=4×10—3 C的带负电小球(可视为质点)用长度l=0.8 m的不可伸长的绝缘轻质细线悬吊在O点,过O点的竖直线右侧有竖直向下足够大的匀强电场,场强大小E=5×103 N/C。
现将小球拉至A处,此时,细线与竖直方向成θ角.现由静止释放小球,在小球运动过程中细线始终未被拉断。
已知,取重力加速度g=10 m/s2。
cos θ=34(1)求小球第一次运动到最低点时的速度大小。
2020届(人教)高考物理二轮提升练习计算题选(一)及答案
2020届(人教)高考物理二轮提升练习计算题选(一)及答案1、(2019·西安模拟)如图所示,在粗糙水平台阶上静止放置一质量m=0.5 kg的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s=5 m。
在台阶右侧固定了一个以O点为圆心的圆弧形挡板,并以O点为原点建立平面直角坐标系。
现用F=5 N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板(g取10 m/s2)。
(1)若小物块恰能击中挡板的上边缘P点,P点的坐标为(1.6 m,0.8 m),求其离开O点时的速度大小。
(2)为使小物块击中挡板,求拉力F作用的距离范围。
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值。
(结果可保留根式)【解题指导】解答本题应注意以下三点:(1)小物块从O到P做平抛运动。
(2)根据动能定理求出拉力F作用的距离。
(3)根据平抛运动的知识,结合圆的方程,根据动能定理求出击中挡板的小物块动能的最小值。
【解析】(1)小物块从O到P做平抛运动,则:水平方向:x=v0t竖直方向:y=gt2解得:v0=4 m/s(2)为使小物块击中挡板,小物块必须能运动到O点,设拉力F作用的最短距离为x1,由动能定理得:Fx1-μmgs=ΔE k-0=0解得:x1=2.5 m为使小物块不会飞出挡板,小物块的平抛初速度不能超过4 m/s;设拉力F作用的最长距离为x2,由动能定理得:Fx2-μmgs=m解得:x2=3.3 m故为使物块击中挡板,拉力F的作用距离范围为:2.5 m<x≤3.3 m(3)设小物块击中挡板的任意点坐标为(x,y),则有:x=v0′t′y=gt′2由动能定理得:mgy = E k-mv0′2又:x2+y2=R2由P点坐标可求得R2=3.2化简得:E k=+=+由数学方法可得:E kmin=2J答案:(1)4 m/s(2)2.5 m<x≤3.3 m(3)2J2、已知地球的自转周期和半径分别为T和R,地球同步卫星A的圆轨道半径为h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题规范练1
1.低碳、环保是未来汽车的发展方向.某汽车研发机构在汽车的车轮上安装了小型发电机,将减速时的部分动能转化并储存在蓄电池中,以达到节能的目的.在某次测试中,汽车以额定功率行驶一段距离后关闭发动机,测出了汽车动能E k 与位移s 的关系图象如图所示,其中①是关闭储能装置时的关系图线.②是开启储能装置时的关系图线,已知汽车的质量为1 000 kg ,设汽车运动过程中所受地面的阻力恒定,空气阻力不计,根据图象所给的信息,求:
(1)汽车的额定功率;
(2)汽车加速运动的时间;
(3)汽车开启储能装置后向蓄电池提供的电能.
解析:(1)汽车行驶过程中,所受地面的阻力对应关闭储能装置E k s 图线①的斜率大小
阻力F f =⎪⎪⎪⎪
⎪⎪ΔE k Δs =8×105 J 11-7×102 m =2×103 N 汽车匀速行驶的动能E k =12
mv 2m 代入数据解得v m =40 m/s
汽车的额定功率P 额=Fv =F f v m =80 kW.
(2)汽车在加速阶段发生的位移s 1=500 m
根据动能定理得P 额t -F f s 1=12mv 2m -12
mv 20 解得t =16.25 s.
(3)开启储能装置后,汽车向前减速运动的位移减少Δs =(11-8.5)×102 m =2.5×102 m
储能装置后向蓄电池提供的电能ΔE =F f Δs =5×105 J.
答案:(1)80 kW (2)16.25 s (3)5×105 J
2.如图所示,在倾角θ=30°,足够长的光滑绝缘斜面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B (均视为质点),A 球的带电荷量为+3q ,B 球带电荷量为-2q ,两球组成一带电系统.虚线MN 与PQ 平行且相距3L ,在虚线MN 、PQ 间加上平行斜面向上的匀强电场,场强E =
mg q
.现将带电小球A 和B 放在斜面上,A 球刚好在电场中,由静止释放.求:
(1)A 球从N 点运动到Q 点所用的时间;
(2)A 球到达的最高点距Q 点的距离.
解析:(1)设B 球进入电场前,带电系统的加速度为a ,运动时间为t 1
由牛顿第二定律得3qE -2mg sin θ=2ma ,
由匀变速运动公式得2L =12
at 21,v 1=at 1, 当B 球进入电场后,带电系统所受的合力为
F 合=3qE -2qE -2mg sin θ=0,
带电系统匀速运动的时间t 2=L v 1
,
联立以上各式并代入数据得,A 球从N 运动到Q 的时间 t =t 1+t 2=5
2L g
. (2)设A 球能到达的最高位置距Q 点的距离为x ,B 球仍在电场中,由动能定理得 3qE ·3L -2qE (L +x )-2mg (3L +x )sin θ=0,
联立以上各式并代入数据得x =43
L . 答案:(1)52L g (2)43
L 3.如图所示,在xOy 平面内y 轴与MN 边界之间有沿x 轴负方向的匀强电场,y 轴左侧和MN 边界右侧的空间有垂直纸面向里、磁感应强度大小相等的匀强磁场,MN 边界与y 轴平行且间距保持不变.一质量为m 、电荷量为-q 的粒子以速度v 0从坐标原点O 沿x 轴负方向射入磁场,每次经过磁场的时间均为t 0,粒子重力不计.
(1)求磁感应强度的大小B ;
(2)若t =5t 0时粒子回到原点O ,求电场区域的宽度d 和此时的电场强度E 0;
(3)若带电粒子能够回到原点O ,则电场强度E 应满足什么条件? 解析:(1)粒子在磁场中做圆周运动的周期T =2πm qB
,粒子每次经过磁场的时间为半个周期,则T =2t 0,解得B =πm qt 0
. (2)t =5t 0时粒子回到原点,轨迹如图甲所示,由几何关系有r 2=2r 1
由向心力公式有qBv 0=m v 20r 1,qBv 2=m v 2
2r 2
, 电场宽度d =
v 0+v 22t 0,解得d =32v 0t 0, 又v 2=v 0+qE 0m t 0,解得E 0=mv 0qt 0
.
(3)如图乙所示,由几何关系可知,要使粒子能够回到原点,则应满足n (2r 2′-2r 1)=2r 1(n =1,2,3,…),
由向心力公式有qBv 2′=m v 2′2r 2′,解得v 2′=n +1n
v 0, 根据动能定理有qEd =12mv 2′2-12
mv 20, 解得E =2n +1mv 03n 2qt 0
(n =1,2,3,…). 答案:(1)πm qt 0 (2)32v 0t 0 mv 0qt 0
(3)E =2n +1mv 03n 2qt 0(n =1,2,3,…)。