2015年重庆市高考数学试卷(文科)
2015年高考文数真题试卷(重庆卷)【答案加解析】
2015年高考文数真题试卷(重庆卷)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的1.(2015·重庆)已知集合,,则()A. B. C. D.2.(2015·重庆)“”是“”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件3.(2015·重庆)函数的定义域是()A. B. C. D.4.(2015·重庆)重庆市2013年各月的平均气温(°C)数据的茎叶图如下则这组数据中的中位数是()A. 19B. 20C. 21.5D. 235.(2015·重庆)某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.(2015·重庆)若,,则()A. B. C. D.7.(2015·重庆)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A. B. C. D.8.(2015·重庆)执行如图(8)所示的程序框图,则输出s的值为()A. B. C. D.9.(2015·重庆)设双曲线的右焦点是F,左、右顶点分别是过F做的垂线与双曲线交于B,C两点,若,则双曲线的渐近线的斜率为()A. B. C. D.10.(2015·重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A. B. C. D.二.填空题:本大题共5小题,每小题5分,共25分,把答案写在答题卡相应的位置11.(2015·重庆)复数的实部为________ .12.(2015·重庆)若点在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为________ .13.(2015·重庆)设的内角A,B,C的对边分别为a,b,c,且,,,则c=________14.(2015重庆)设,则的最大值为________ .15.(2015重庆)在区间上随机地选择一个数p,则方程有两个负根的概率为________ .三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤16.(2015·重庆)已知等差数列满足=2,前3项和=, 问:(1)求的通项公式(2)设等比数列满足= ,= ,求前n项和.(1)求的通项公式(2)设等比数列满足,,求前n项和.17.(2015·重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y关于t的回归方程(2)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中18.(2015·重庆)已知函数:(1)求的最小周期和最小值;(2)将函数的图像上每一点的横坐标伸长到原谅的两倍,纵坐标不变,得到函数的图像。
2015年普通高等学校招生全国统一考试文科数学(重庆卷)
2015年普通高等学校招生全国统一考试重庆文科数学数学试题卷(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.(2015重庆,文1)已知集合A={1,2,3},B={1,3},则A ∩B=( ) A.{2} B.{1,2} C.{1,3} D.{1,2,3} 答案:C解析:因为A={1,2,3},B={1,3},所以A ∩B={1,3}. 2.(2015重庆,文2)“x=1”是“x 2-2x+1=0”的( ) A.充要条件 B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 答案:A解析:当x=1时,x 2-2x+1=12-2×1+1=0;当x 2-2x+1=0时,有(x-1)2=0,即x=1,故“x=1”是“x 2-2x+1=0”的充要条件. 3.(2015重庆,文3)函数f (x )=log 2(x 2+2x-3)的定义域是 ( ) A.[-3,1] B.(-3,1) C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞) 答案:D解析:要使函数有意义,应满足x 2+2x-3>0,解得x>1或x<-3,故函数的定义域是(-∞,-3)∪(1,+∞). 4.(2015重庆,文4)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( ) A.19 B.20 C.21.5D.23答案:B解析:由茎叶图知,这组数据的中位数是20+202=20. 5.(2015重庆,文5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2答案:B解析:由三视图可知,该几何体是一个组合体,其中左边是半个圆锥,底面半径为1,高为1,所以其体积V 1=13π·12·1·12=π6;右边是一个圆柱,底面半径为1,高为2,所以其体积V 2=π·12·2=2π,故该几何体的体积为V=V 1+V 2=π6+2π=13π6.6.(2015重庆,文6)若tan α=13,tan(α+β)=12,则tan β= ( )A.17B.16C.57D.56答案:A解析:tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tan (α+β)tanα=12-131+12×13=17.7.(2015重庆,文7)已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a+b ),则a 与b 的夹角为( ) A.π3B.π2C.2π3D.5π6答案:C解析:因为a ⊥(2a+b ),所以a ·(2a+b )=0,即2|a|2+a ·b=0.设a 与b 的夹角为θ,则有2|a |2+|a ||b |cos θ=0.又|b |=4|a |,所以2|a |2+4|a |2cos θ=0,则cos θ=-12,从而θ=2π3.8.(2015重庆,文8)执行如图所示的程序框图,则输出s 的值为( )A.34B.56C.1112D.2524答案:D解析:由程序框图可知,输出的s=12+14+16+18=2524,所以输出结果为2524. 9.(2015重庆,文9)设双曲线x 2a 2−y 2b2=1(a>0,b>0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( ) A.±12B.±√22C.±1D.±√2答案:C解析:依题意知A 1(-a ,0),A 2(a ,0),F (c ,0),不妨设点B 在点F 的上方,点C 在点F 的下方,则B (c ,b 2a ),C (c ,-b 2a),因为A 1B ⊥A 2C ,所以k A 1B ·k A 2C =-1. 而k A 1B =b 2a-0c -(-a )=b2a (c+a ),k A 2C=0-(-b2a )a -c=b 2a (a -c ),所以b 2a (c+a )·b 2a (a -c )=-1,即b4a 2(a 2-c 2)=-1,所以b 4=a 2b 2,从而b 2=a 2,即b=a ,所以ba=1,故双曲线的渐近线的斜率为±1.10.(2015重庆,文10)若不等式组{x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A.-3B.1C.43D.3 答案:B解析:如图,要使不等式组表示的平面区域为三角形,则不等式x-y+2m ≥0表示的平面区域为直线x-y+2m=0下方的区域,且-2m<2,即m>-1.这时平面区域为三角形ABC.由{x +y -2=0,x +2y -2=0,解得{x =2,y =0,则A (2,0).由{x +y -2=0,x -y +2m =0,解得{x =1-m ,y =1+m ,则B (1-m ,1+m ). 同理C (2-4m 3,2+2m3),M (-2m ,0). 因为S △ABC =S △ABM -S △ACM =12·(2+2m )·[(1+m )-2+2m3]=(m+1)23,由已知得(m+1)23=43,解得m=1(m=-3<-1舍去).二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(2015重庆,文11)复数(1+2i)i 的实部为 . 答案:-2解析:因为(1+2i)i =i +2i 2=-2+i,所以其实部等于-2.12.(2015重庆,文12)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为 . 答案:x+2y-5=0解析:设坐标原点为O ,依题意,切线l 与OP 垂直,而k OP =2,所以k l =-12,于是切线l 的方程为y-2=-12(x-1),即x+2y-5=0. 13.(2015重庆,文13)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a=2,cos C=-14,3sin A=2sin B ,则c= . 答案:4解析:由于3sin A=2sin B ,根据正弦定理可得3a=2b ,又a=2,所以b=3.于是由余弦定理可得c=√a 2+b 2-2abcosC =√22+32-2×2×3×(-14)=4.14.(2015重庆,文14)设a ,b>0,a+b=5,则√a +1+√b +3的最大值为 . 答案:3√2解析:因为a ,b>0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是√a +1+√b +3=√x +√y ,而(√x +√y )2=x+y+2√xy≤x+y+(x+y )=18,所以√x +√y≤3√2.此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2.15.(2015重庆,文15)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px+3p-2=0有两个负根的概率为 . 答案:23解析:当方程x 2+2px+3p-2=0有两个负根x 1和x 2时,应有{ Δ=(2p )2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,0≤p ≤5,解得{ p ≥2或p ≤1,p >0,p >23,0≤p ≤5,所以23<p ≤1或2≤p ≤5,即p ∈(23,1]∪[2,5],由几何概型的概率计算公式可知所求概率为(1-23)+(5-2)5=23.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(1)小问7分,(2)小问6分)(2015重庆,文16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得a 1+2d=2,3a 1+3×22d=92, 化简得a 1+2d=2,a 1+d=32, 解得a 1=1,d=12,故通项公式a n =1+n -12,即a n =n+12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b4b 1=8,从而q=2,故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n-1.17.(本小题满分13分,(1)小问10分,(2)小问3分)(2015重庆,文17)随着我国经济的发展,(年底余额)如下表:(1)求y 关于t 的回归方程y ^=b ^t+a ^;(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款. 附:回归方程y ^=b ^t+a ^中,b ^=∑i=1nt i y i -nt y∑i=1n t i 2-nt2,a ^=y −b ^t .解:(1)列表计算如下:这里n=5,t =1n ∑i=1n t i =155=3,y =1n ∑i=1n y i =365=7.2. 又l tt =∑i=1nt i 2-n t 2=55-5×32=10,l ty =∑i=1n t i y i -n t y =120-5×3×7.2=12,从而b ^=l tyl tt=1210=1.2,a ^=y −b ^t =7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t+3.6.(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元). 18.(本小题满分13分,(1)小问7分,(2)小问6分) (2015重庆,文18)已知函数f (x )=12sin 2x-√3cos 2x. (1)求f (x )的最小正周期和最小值; (2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈[π2,π]时,求g (x )的值域.解:(1)f (x )=12sin 2x-√3cos 2x=12sin 2x-√32(1+cos 2x )=12sin 2x-√32cos 2x-√32=sin (2x -π3)−√32,因此f (x )的最小正周期为π,最小值为-2+√32. (2)由条件可知:g (x )=sin (x -π3)−√32.当x ∈[π2,π]时,有x-π3∈[π6,2π3],从而sin (x -π3)的值域为[12,1],那么sin (x -π3)−√32的值域为[1-√32,2-√32]. 故g (x )在区间[π2,π]上的值域是[1-√32,2-√32].19.(本小题满分12分,(1)小问4分,(2)小问8分) (2015重庆,文19)已知函数f (x )=ax 3+x 2(a ∈R )在x=-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f'(x )=3ax 2+2x ,因为f (x )在x=-43处取得极值,所以f'(-43)=0, 即3a ·169+2·(-43)=16a 3−83=0,解得a=12. (2)由(1)得g (x )=(12x 3+x 2)e x ,故g'(x )=(32x 2+2x)e x +(12x 3+x 2)e x=(12x 3+52x 2+2x)e x =12x (x+1)(x+4)e x . 令g'(x )=0,解得x=0,x=-1或x=-4. 当x<-4时,g'(x )<0,故g (x )为减函数; 当-4<x<-1时,g'(x )>0,故g (x )为增函数; 当-1<x<0时,g'(x )<0,故g (x )为减函数; 当x>0时,g'(x )>0,故g (x )为增函数.综上知g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 20.(本小题满分12分,(1)小问5分,(2)小问7分)(2015重庆,文20)如图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=π2,点D ,E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF ∥BC. (1)证明:AB ⊥平面PFE ;(2)若四棱锥P-DFBC 的体积为7,求线段BC 的长.(1)证明:如图,由DE=EC ,PD=PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因∠ABC=π2,EF∥BC,故AB⊥EF.从而AB与平面PFE内两条相交直线PE,EF都垂直,所以AB⊥平面PFE.(2)解:设BC=x,则在直角△ABC中,AB=√AC2-BC2=√36-x2,从而S△ABC=12AB·BC=12x√36-x2.由EF∥BC知,AFAB =AEAC=23,得△AFE∽△ABC,故S△AFES△ABC=(23)2=49,即S△AFE=49S△ABC.由AD=12AE,S△AFD=12S△AFE=12·49S△ABC=29S△ABC=19x√36-x2,从而四边形DFBC的面积为S DFBC=S△ABC-S△AFD=12x√36-x2−1 9x√36-x2=718x√36-x2.由(1)知,PE⊥平面ABC,所以PE为四棱锥P-DFBC的高.在直角△PEC中,PE=√PC2-EC2=√42-22=2√3.体积V P-DFBC=13·S DFBC·PE=13·718x√36-x2·2√3=7,故得x4-36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3√3.所以,BC=3或BC=3√3.21.(本小题满分12分,(1)小问5分,(2)小问7分)(2015重庆,文21)如图,椭圆x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+√2,|PF2|=2-√2,求椭圆的标准方程;(2)若|PQ|=λ|PF1|,且34≤λ<43,试确定椭圆离心率e的取值范围.解:(1)由椭圆的定义,2a=|PF1|+|PF2|=(2+√2)+(2-√2)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=√|PF1|2+|PF2|2=√(2+√2)2+(2-√2)2=2√3, 即c=√3,从而b=√a2-c2=1.故所求椭圆的标准方程为x 24+y2=1.(2)如图,由PF1⊥PQ,|PQ|=λ|PF1|,得|QF1|=√|PF1|2+|PQ|2=√1+λ2|PF1|.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,进而|PF1|+|PQ|+|QF1|=4a.于是(1+λ+√1+λ2)|PF1|=4a,解得|PF1|=1+λ+1+λ,故|PF2|=2a-|PF1|=√21+λ+√1+λ.由勾股定理得|PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2,从而(1+λ+√1+λ)2+(√21+λ+√1+λ)2=4c2,两边除以4a2,得(1+λ+√1+λ)√22(1+λ+√1+λ)=e2.若记t=1+λ+√1+λ2,则上式变成e2=4+(t-2)2t2=8(1t-14)2+12.由34≤λ<43,并注意到1+λ+√1+λ2关于λ的单调性,得3≤t<4,即14<1t≤13,进而12<e2≤59,即√22<e≤√53.。
2015年重庆高考数学文科试卷带详解
2015普通高等学校招生全国统一考试(重庆卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3},{1,3}A B ==,则A B ∩= ( ) A.{2} B.{1,2} C.{1,3} D. {1,2,3} 【参考答案】C.【测量目标】集合的运算.【试题分析】由交集的定义得{1,3}A ∩=B . 故选C.2. “1x =”是“2210x x -+=”的 ( ) A. 充要条件 B. 充分不必要条件 C.必要不充分条件 D. 既不充分也不必要条件 【参考答案】A. 【测量目标】充要条件.【试题分析】由“1x =”显然能推出“2210x x -+=”,故条件是充分的;又由“2210x x -+=”可得2(1)01x x -=⇒=,所以条件也是必要的;故选A.3. 函数22()log (23)f x x x =+-的定义域是 ( )A.[—3,1]B.(—3,1)C.(,3]-∞-∞∩[1,+)D. (,3)-∞-∞∪(1,+) 【参考答案】D.【测量目标】函数的定义域与二次不等式.【试题分析】由2230(3)(1)0x x x x +->⇒+->解得3x <-或1x >; 故选D.4. 重庆市2013年各月的平均气温(°C )数据的茎叶图如下第4题图则这组数据中的中位数是 ( ) A. 19 B. 20 C. 21.5 D.23 【参考答案】B.【测量目标】茎叶图与中位数.【试题分析】由茎叶图知,第六第七个数据均为20,所以中位数为20 故选B.5. 某几何体的三视图如图所示,则该几何体的体积为第5题图A.123+πB.136π C.73π D.52π【参考答案】B. 【测量目标】三视图.【试题分析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1;构成的一个组合体,故其体积为221132166ππ⨯1⨯+⨯π⨯1⨯=;故选B. 6. 若11tan ,tan()32a ab =+=,则tan b =( ) A.17 B.16 C.57D. 56【参考答案】A.【测量目标】正切差角公式.【试题分析】11tan()tan 123tan tan[()]111tan()tan 7123a b a b a b a a b a -+-=+-===+++⨯;故选A.7. 已知非零向量,a b r r 满足||4||,(2)b a a a b =+r r r r r且⊥则a r 与b r 的夹角为 ( )A.3π B.2πC.23πD.56π【参考答案】C.【测量目标】向量的数量积运算及向量的夹角.【试题分析】由已知可得2=0a a b a a b ⋅⇒+⋅=r r r r r r(2+)02;设a r 与b r 的夹角为θ,则有22||||||cos 0a a b θ+⋅=⇒r r r 222||1cos 24||a a θ=-=-r r ,又因为[0,]θ∈π,所以23θπ=; 故选C.8. 执行如下图所示的程序框图,则输出s 的值为 ( )第8题图A.34 B.56 C.1112D. 2524【参考答案】D. 【测量目标】程序框图.【试题分析】初始条件:s =0,k =0;第1次判断0<8,是,k =2,s =11022+=; 第2次判断2<8,是,k =4,s =113244+=;第3次判断4<8,是,k =6, s =31114612+=;第4次判断6<8,是,k =6,s =1112512824+=; 第5次判断8<8,否,输出s =2524.9. 设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为 ( )A.12±B.2±C.1±D.【参考答案】C.【测量目标】双曲线的几何性质.【试题分析】由已知得右焦点F (c ,0)(其中222,0c a b c =+>),2212(,0),(,0),(,),(,)b b A a A a B c C c a a --;从而21(,)b A B c a a =+-uuu r ,22(,)b A C c a a =-uuu r ,又因为12A B A C ⊥,即22()()()()0b b c a c a a a -⋅++-⋅=;化简得2211b ba a=⇒=±,即双曲线的渐进线的斜率为1±;故选C.10. 若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为 ( )A.3-B. 1C.43D.3 【参考答案】B. 【测量目标】线性规划. 【试题分析】第10题图如图,由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形ABC ,且其面积等于43,再注意到直线AB :x +y -2=0与直线BC :x -y +2m =0互相垂直,所以三角形ABC 是直角三角形;易知,A (2,0),B (1-m ,m +1),C(2422,33m m -+); 从而11224=|22||1||22|||2233ABC m S m m m ++⋅+-+⋅=△,化简得:2(1)4m +=,解得m =-3,或m =1;检验知当m =-3时,已知不等式组不能表示一个三角形区域,故舍去;所以m =1; 故选B.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.复数(12i)i +的实部为________. 【参考答案】-2【测量目标】复数运算.【试题分析】由于(1+2i)i=i+22i =-2+i,故知其实部为-2.12. 若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为___________. 【参考答案】x +2y -5=0 【测量目标】圆的切线.【试题分析】由点P (1,2)在以坐标原点为圆心的圆上知此圆的方程为:225x y +=,所以该圆在点P 处的切线方程为125x y ⨯+⨯=,即x +2y -5=0.13. 设△ABC 的内角A ,B ,C 的对边分别为,,a b c ,且12,cos 4a C ==-,3sin 2sin A B =,则c =________. 【参考答案】4【测量目标】正弦定理与余弦定理.【试题分析】由3sin 2sin A B =及正弦定理知:3a =2b ,又因为a =2,所以b =3; 由余弦定理得:22212cos 49223()164c a b ab C =+-=+-⨯⨯⨯-=,所以c =4; 14. 设,0,5ab a b >+=,________. 【参考答案】【测量目标】基本不等式.【试题分析】由2ab ≤22a b +两边同时加上22a b +得2()a b +≤222()a b +两边同时开方得:a b +0a >,0b >)且当且仅当a =b 时取“=”);==13a b +=+,即73,22a b ==时,“=”成立)15. 在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为________. 【参考答案】23. 【测量目标】复数运算.【试题分析】方程22320x px p ++-=有两个负根的充要条件是21212=4p 4(32)020320p x x p x x p ⎧--≥⎪+=-<⎨⎪=->⎩V 即213p <≤或2p ≥;又因为[0,5]p ∈,所以使方程22320x px p ++-=有两个负根的p 的取值范围为2(,1][2,5]3∪,故所求的概率2(1)(52)23503-+-=-.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分,(1)小问7分,(2)小问6分) 已知等差数列{}n a 满足3a =2,前3项和3S =92. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T . 【测量目标】(1)数列的通项公式;(2) 等比数列的前n 项和.【试题分析】(1)设{}n a 的公差为d ,则由已知条件得1132922,322a d a d ⨯+=+= 化简得11322,2a d a d +=+=解得111,2a d ==, 故通项公式112n n a -=+,即12n n a +=.(2)由(1)得14151511,82b b a +====. 设{}n b 的公比为q ,则3418b q b ==,从而q =2.故{}n b 的前n 项和 1(1)1(12)21112n n n n b q T q -⨯-===---. 17.(本小题满分13分,(1)小问10分,(2)小问3分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程ˆˆˆybt a =+ (2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款.附:回归方程ˆˆˆybt a =+中 1122211()(),()ˆ.nni i i ii i n ni i i i x x y y x y nxyb x x x nx ay bx ====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑【测量目标】:线性回归方程. 【试题分析】(1)列表计算如下ii ti y2i ti i t y1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里111151365,3,7.255n n i i i i n t t y y n n =========∑∑ 又22211555310,120537.212.nnny iny i i i i l tnt l t y nt y ===-=-⨯==-=-⨯⨯=∑∑从而12ˆˆˆ1.2,7.2 1.23 3.610ny ny l b a y bt l ====-=-⨯=.故所求回归方程为ˆ 1.2 3.6yt =+. (2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为ˆ 1.26 3.610.8y=⨯+= 18.(本小题满分13分,(1)小问7分,(2)小问6分)已知函数21()sin 22f x x x =. (1)求f (x )的最小周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈[,]2ππ时,求g (x )的值域.【测量目标】(1)三角函数的性质和恒等变换;(2)正弦函数的图象及性质. 【试题分析】(1) 211()sin 2sin 2(1cos 2)222f x x x x x =-=-+1sin 22sin(2)22232x x x π=--=--. ,因此()f x 的最小正周期为π,最小值为22+-.(2)由条件可知:()sin()3g x x π=-.当[,]2x π∈π时,有[,]363x ππ2π-=,从而sin()3x π-的值域为1[,1]2,那么sin()3x π--的值域为.故g()x 在区间[,]2ππ上的值域是. 19.(本小题满分12分,(1)小问4分,(2)小问8分) 已知函数32()()f x ax x a =+∈R 在x =43-处取得极值. (1)确定a 的值;(2)若()()e x g x f x =,讨论的单调性.【测量目标】(1)导数与极值;(2)导数与单调性. 【试题分析】 (1)对()f x 求导得2()32f x ax x '=+因为f (x )在43x =-处取得极值,所以4()03f '-=, 即16416832()09333a a ⨯+⨯-=-=,解得12a =.(2)由(1)得,321()e 2x g x x x ⎛⎫=+⎪⎝⎭, 故232323115()2e e 2e 2222x x x g x x x x x x x x ⎛⎫⎛⎫⎛⎫'=+++=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1(1)(4)e 2x x x x ++令()0g x '=,解得0,14x x x ==-=-或. 当4x <-时,()0g x '<,故g (x )为减函数; 当41x -<<-时,()0g x '>,故g (x )为增函数; 当10x -<<时,()0g x '<,故g (x )为减函数; 当0x >时,()0g x '>,故g (x )为增函数;综上知g (x )在(,4)-∞-和(-1,0)内为减函数,(4,1)(0,)--+∞和内为增函数. 20.(本小题满分12分,(1)小问5分,(2)小问7分) 如图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC =2π,点D 、E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF //BC .(1)证明:AB ⊥平面PFE.(2)若四棱锥P-DFBC 的体积为7,求线段BC 的长.第20题图【测量目标】(1)空间线面垂直关系;(2)锥体的体积;(3)方程思想.【试题分析】(1)证明:如图.由DE =EC ,PD =PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC ,又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因,2ABC EF BC π∠=∥,故AB ⊥EF . 从而AB 与平面PEF 内两条相交直线PE ,EF 都垂直, 所以AB ⊥平面PFE .(2)解:设=BC x ,则在直角△ABC 中,AB =从而1122ABC S AB BC =⋅=△由EF ∥BC 知23AF AE AB AC ==,得△AEF ∽△ABC ,故224==39AEF ABC S S △△(), 即49AEF ABC S S =△△. 由12AD AE =,11421==22999AFD AFE ABC ABC S S S S =⋅=△△△△从而四边形DFBC的面积为117=2918DFBC ABC ADF S S S =-=△△.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P-DFBC 的高. 在直角△PEC 中,PE ==体积11773318P DFBC DFBC V S PE -=⋅⋅=⨯=, 故得42362430x x -+=,解得22927x x ==或,由于x >0,可得3x x ==或所以3BC =或BC =21、(本小题满分12分,(1)小问5分,(2)小问7分)如图,椭圆22221x y a b +=(a >b >0)的左右焦点分别为12,F F ,且过2F 的直线交椭圆于P ,Q 两点,且PQ ⊥1PF .(1)若1||2PF =,2||2PF =,求椭圆的标准方程. (2)若|PQ |=1||PF λ,且34≤λ≤43,试确定椭圆离心率的取值范围.第21题图【测量目标】(1)椭圆的标准方程;(2)椭圆的定义;(3)函数与方程思想. 【试题分析】标准文案大全 (1)由椭圆的定义,122||||(2(24a PF PF =+=+=,故a =2.设椭圆的半焦距为c ,由已知12PF PF ⊥,因此122||c F F ====c =从而1b == 故所求椭圆的标准方程为2214x y +=. (2)如图,由11,||||PF PQ PQ PF λ=⊥,得11|||QF PF ==由椭圆的定义,1212||||2,||||2PF PF a QF QF a +=+=,进而11||||||4PF PQ QF a ++=于是1(1||4PF a λ+=解得1||PF =21||2||PF a PF =-=由勾股定理得222221212||||(2)4|PF |PF F F c c +===,从而2224c ⎛⎫+=, 两边除以24a2e =,若记1t λ=+,则上式变成22224(2)111842t e t t +-⎛⎫==-+ ⎪⎝⎭. 由34≤43λ≤,并注意到1λ+λ的单调性,得3≤t ≤4,即11143t ≤≤,进而212e ≤≤59,即2e ≤。
2015年重庆市高考数学试卷(文科)答案与解析
2015年市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•)已知集合A={1,2,3},B={1,3},则A∩B=( )A . {2}B . {1,2}C . {1,3}D . {1,2,3}考点:交集及其运算. 专题:集合. 分析:直接利用集合的交集的求法求解即可. 解答:解:集合A={1,2,3},B={1,3},则A∩B={1,3}. 故选:C .点评:本题考查交集的求法,考查计算能力.2.(5分)(2015•)“x=1”是“x 2﹣2x+1=0”的( )A . 充要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件考点:充要条件. 专题:简易逻辑. 分析: 先求出方程x 2﹣2x+1=0的解,再和x=1比较,从而得到答案.解答: 解:由x 2﹣2x+1=0,解得:x=1, 故“x=1”是“x 2﹣2x+1=0”的充要条件,故选:A .点评:本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.3.(5分)(2015•)函数f (x )=log 2(x 2+2x ﹣3)的定义域是( )A . [﹣3,1]B . (﹣3,1)C . (﹣∞,﹣3]∪[1,+∞)D . (﹣∞,﹣3)∪(1,+∞)考点:一元二次不等式的解法;对数函数的定义域. 专题:函数的性质及应用;不等式. 分析:利用对数函数的真数大于0求得函数定义域. 解答: 解:由题意得:x 2+2x ﹣3>0,即(x ﹣1)(x+3)>0解得x >1或x <﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选D .点评:本题主要考查函数的定义域的求法.属简单题型.高考常考题型.4.(5分)(2015•)市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是( )A.19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解答:解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.(5分)(2015•)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.解答:解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体,几何体的体积为:=.故选:B.点评:本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.(5分)(2015•)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.考点:两角和与差的正切函数.专题:三角函数的求值.分析:由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.解答:解:∵tanα=,tan(α+β)=,则tanβ=tan[(α+β)﹣α]===,故选:A.点评:本题主要考查两角差的正切公式的应用,属于基础题.7.(5分)(2015•)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.解答:解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.点评:本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.(5分)(2015•)执行如图所示的程序框图,则输出s的值为()A.B.C.D.考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8时不满足条件k<8,退出循环,输出s的值为.解答:解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)(2015•)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.±B.±C.±1D.±考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得A(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,1即可得出双曲线的渐近线的斜率.解答:解:由题意,A(﹣a,0),A2(a,0),B(c,),C(c,﹣),1∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.点评:本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.(5分)(2015•)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1C.D.3考点:二元一次不等式(组)与平面区域.专题:开放型;不等式的解法及应用.分析:作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.解答:解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即C(2,0),则C(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则C(2,0),F(0,1),由,解得,即A(1﹣m,1+m),由,解得,即B(,).|AF|=1+m﹣1=m,则三角形ABC的面积S=×m×2+(﹣)=,即m2+m﹣2=0,解得m=1或m=﹣2(舍),故选:B点评:本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(5分)(2015•)复数(1+2i)i的实部为﹣2 .考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=﹣1.解答:解:(1+2i)i=i+2i2=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.点评:本题考查了复数的运算以及复数的认识;注意i2=﹣1.属于基础题.12.(5分)(2015•)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0 .考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.解答:解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即 x+2y﹣5=0,故答案为:x+2y﹣5=0.点评:本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.(5分)(2015•)设△ABC的角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,13.则c= 4 .考点:正弦定理的应用.专题:解三角形.分析:由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.解答:解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)(2015•)设a,b>0,a+b=5,则的最大值为 3 .考点:函数最值的应用.专题:计算题;函数的性质及应用.分析:利用柯西不等式,即可求出的最大值.解答:解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.点评:本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.15.(5分)(2015•)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.考点:几何概型.专题:开放型;概率与统计.分析:由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.解答:解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:点评:本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{a}的公差为d,则由已知条件列式求得首项和公差,代入等差数n列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n}前n项和T n.解答:解:(Ⅰ)设等差数列{a}的公差为d,则由已知条件得:n,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.点评:本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n项和,是中档题.17.(13分)(2015•)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2010 2011 2012 2013 2014时间代号t 1 2 3 45 储蓄存款y (千亿元) 567 810(Ⅰ)求y 关于t 的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中 .考点:回归分析的初步应用.专题:计算题;概率与统计.分析: (Ⅰ)利用公式求出a ,b ,即可求y 关于t 的回归方程=t+.(Ⅱ)t=6,代入回归方程,即可预测该地区2015年的人民币储蓄存款.解答:解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y 关于t 的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).点评:本题考查线性回归方程,考查学生的计算能力,属于中档题.18.(13分)(2015•)已知函数f (x )=sin2x ﹣cos 2x .(Ⅰ)求f (x )的最小周期和最小值;(Ⅱ)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈时,求g (x )的值域.考点:三角函数中的恒等变换应用;函数y=Asin (ωx+φ)的图象变换. 专题: 三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[,π]时,可得x﹣的围,即可求得g(x)的值域.解答:解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].点评:本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.19.(12分)(2015•)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.考点:函数在某点取得极值的条件.专题:综合题;导数的综合应用.分析:(Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=处取得极值,可得f′(﹣)=0,即可确定a的值;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,利用导数的正负可得g(x)的单调性.解答:解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=处取得极值,∴f′(﹣)=0,∴3a•+2•(﹣)=0,∴a=;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,∴g′(x)=(x2+2x)e x+(x3+x2)e x=x(x+1)(x+4)e x,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)为减函数,在(﹣4,﹣1)和(0,+∞)为增函数.点评:本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.20.(12分)(2015•)如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E 在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:开放型;空间位置关系与距离.分析:(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC,由EF∥BC可得△AFE≌△A BC,求得S△AFE=S△ABC,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC 的高,求得PE,由体积V P﹣DFBC=S DFBC•PE=7,即可解得线段BC的长.解答:解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB•BC=x,由EF∥BC知,得△AFE≌△AB C,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD==S△ABC=S△ABC=x,从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD=x﹣x=x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积V P﹣DFBC=S DFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.点评:本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.21.(13分)(2015•)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值围.考点:椭圆的简单性质.专题:开放型;圆锥曲线中的最值与围问题.分析:(I)由椭圆的定义可得:2a=|PF|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,1利用勾股定理可得2c=|F1F2|=,解得c.利用b2=a2﹣c2.即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|=,代入化简.令t=1+λ,则上式化为e2=,解出即可.解答:解:(I)由椭圆的定义可得:2a=|PF|+|PF2|=(2+)+(2﹣)=4,解得a=2.1设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|===2,∴c=.∴b2=a2﹣c2=1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|==,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|=,由勾股定理可得:2c=|F1F2|=,∴+=4c2,∴+=e2.令t=1+λ,则上式化为=,∵t=1+λ,且≤λ<,∴t关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值围是.点评:本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.。
2015年重庆市高考数学试卷文科-真题
2015年重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}2.(5分)“x=1”是“x2﹣2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件3.(5分)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1]B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)4.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.235.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C. D.6.(5分)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.7.(5分)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C. D.8.(5分)执行如图所示的程序框图,则输出s的值为()A.B.C.D.9.(5分)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±10.(5分)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.3二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)复数(1+2i)i的实部为.12.(5分)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.13.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=.14.(5分)设a,b>0,a+b=5,则+的最大值为.15.(5分)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.17.(13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号t12345储蓄存款y(千亿元)567810(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.18.(13分)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.19.(12分)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.20.(12分)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.21.(13分)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.2015年重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}【分析】直接利用集合的交集的求法求解即可.【解答】解:集合A={1,2,3},B={1,3},则A∩B={1,3}.故选:C.【点评】本题考查交集的求法,考查计算能力.2.(5分)“x=1”是“x2﹣2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】先求出方程x2﹣2x+1=0的解,再和x=1比较,从而得到答案.【解答】解:由x2﹣2x+1=0,解得:x=1,故“x=1”是“x2﹣2x+1=0”的充要条件,故选:A.【点评】本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.3.(5分)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1]B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)【分析】利用对数函数的真数大于0求得函数定义域.【解答】解:由题意得:x2+2x﹣3>0,即(x﹣1)(x+3)>0解得x>1或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选:D.【点评】本题主要考查函数的定义域的求法.属简单题型.高考常考题型.4.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B.【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C. D.【分析】利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.【解答】解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体,几何体的体积为:=.故选:B.【点评】本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.(5分)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.【分析】由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.【解答】解:∵tanα=,tan(α+β)=,则tanβ=tan[(α+β)﹣α]===,故选:A.【点评】本题主要考查两角差的正切公式的应用,属于基础题.7.(5分)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C. D.【分析】由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.【解答】解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选:C.【点评】本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.(5分)执行如图所示的程序框图,则输出s的值为()A.B.C.D.【分析】模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8时不满足条件k<8,退出循环,输出s的值为.【解答】解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.【点评】本题主要考查了循环结构的程序框图,属于基础题.9.(5分)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±【分析】求得A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,即可得出双曲线的渐近线的斜率.【解答】解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.【点评】本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.(5分)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.3【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).则三角形ABC的面积S△ABC =S△ADB﹣S△ADC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍),故选:B.【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)复数(1+2i)i的实部为﹣2.【分析】利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=﹣1.【解答】解:(1+2i)i=i+2i2=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.【点评】本题考查了复数的运算以及复数的认识;注意i2=﹣1.属于基础题.12.(5分)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0.【分析】由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.【解答】解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即x+2y﹣5=0,故答案为:x+2y﹣5=0.【点评】本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.13.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=4.【分析】由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.【解答】解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)设a,b>0,a+b=5,则+的最大值为3.【分析】利用柯西不等式,即可求出的最大值.【解答】解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.【点评】本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.15.(5分)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.【分析】由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.【解答】解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:【点评】本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.【分析】(Ⅰ)设等差数列{a n}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n}前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.【点评】本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n项和,是中档题.17.(13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号t12345储蓄存款y(千亿元)567810(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.【分析】(Ⅰ)利用公式求出a,b,即可求y关于t的回归方程=t+.(Ⅱ)t=6,代入回归方程,即可预测该地区2015年的人民币储蓄存款.【解答】解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y关于t的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).【点评】本题考查线性回归方程,考查学生的计算能力,属于中档题.18.(13分)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.【分析】(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x ﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x ∈[,π]时,可得x﹣的范围,即可求得g(x)的值域.【解答】解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x ﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].【点评】本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.19.(12分)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.【分析】(Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=处取得极值,可得f′(﹣)=0,即可确定a的值;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,利用导数的正负可得g(x)的单调性.【解答】解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=处取得极值,∴f′(﹣)=0,∴3a•+2•(﹣)=0,∴a=;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,∴g′(x)=(x2+2x)e x+(x3+x2)e x=x(x+1)(x+4)e x,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)内为增函数.【点评】本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.20.(12分)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.【分析】(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC ,由EF∥BC可得△AFE∽△ABC,求得S△AFE=S△ABC ,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积V P﹣DFBC=S DFBC•PE=7,即可解得线段BC的长.【解答】解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE ⊥平面ABC ,从而PE ⊥AB . 因为∠ABC=,EF ∥BC ,故AB ⊥EF ,从而AB 与平面PEF 内两条相交直线PE ,EF 都垂直, 所以AB ⊥平面PEF .(Ⅱ)设BC=x ,则在直角△ABC 中,AB==,从而S △ABC =AB•BC=x ,由EF ∥BC 知,得△AFE ∽△ABC ,故=()2=,即S △AFE =S △ABC ,由AD=AE ,S △AFD ==S △ABC =S △ABC =x,从而四边形DFBC 的面积为:S DFBC =S △ABC﹣S AFD =x ﹣x=x.由(Ⅰ)知,PE ⊥平面ABC ,所以PE 为四棱锥P ﹣DFBC 的高. 在直角△PEC 中,PE===2, 故体积V P ﹣DFBC =S DFBC •PE=x=7,故得x 4﹣36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x=3或x=3.所以:BC=3或BC=3.【点评】本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.21.(13分)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.【分析】(I)由椭圆的定义可得:2a=|PF1|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,利用勾股定理可得2c=|F1F2|=,解得c.利用b2=a2﹣c2.即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|=,代入化简.令t=1+λ,则上式化为e2=,解出即可.【解答】解:(I)由椭圆的定义可得:2a=|PF1|+|PF2|=(2+)+(2﹣)=4,解得a=2.设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|===2,∴c=.∴b2=a2﹣c2=1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|==,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|=,由勾股定理可得:2c=|F1F2|=,∴+=4c2,∴+=e2.令t=1+λ,则上式化为=,∵t=1+λ,且≤λ<,∴t关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值范围是.【点评】本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.。
2015年普通高等学校招生全国统一考试文科数学(重庆卷)
2015年普通高等学校招生全国统一考试重庆文科数学数学试题卷(文史类)共4页.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(2015重庆,文1)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}答案:C解析:因为A={1,2,3},B={1,3},所以A∩B={1,3}.2.(2015重庆,文2)“x=1”是“x2-2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案:A解析:当x=1时,x2-2x+1=12-2×1+1=0;当x2-2x+1=0时,有(x-1)2=0,即x=1,故“x=1”是“x2-2x+1=0”的充要条件.3.(2015重庆,文3)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)答案:D解析:要使函数有意义,应满足x2+2x-3>0,解得x>1或x<-3,故函数的定义域是(-∞,-3)∪(1,+∞).4.(2015重庆,文4)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是()A.19B.20C.21.5D.23答案:B解析:由茎叶图知,这组数据的中位数是=20.5.(2015重庆,文5)某几何体的三视图如图所示,则该几何体的体积为()A.+2πB.C. D.答案:B解析:由三视图可知,该几何体是一个组合体,其中左边是半个圆锥,底面半径为1,高为1,所以其体积V1=π·12·1·;右边是一个圆柱,底面半径为1,高为2,所以其体积V2=π·12·2=2π,故该几何体的体积为V=V1+V2=+2π=.6.(2015重庆,文6)若tan α=,tan(α+β)=,则tan β=()A. B. C. D.答案:A解析:tan β=tan[(α+β)-α]=--.7.(2015重庆,文7)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()A. B. C. D.答案:C解析:因为a⊥(2a+b),所以a·(2a+b)=0,即2|a|2+a·b=0.设a与b的夹角为θ,则有2|a|2+|a||b|cos θ=0.又|b|=4|a|,所以2|a|2+4|a|2cos θ=0,则cos θ=-,从而θ=.8.(2015重庆,文8)执行如图所示的程序框图,则输出s的值为()A. B. C. D.答案:D解析:由程序框图可知,输出的s=,所以输出结果为.9.(2015重庆,文9)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C两点.若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.±B.±C.±1D.±答案:C解析:依题意知A1(-a,0),A2(a,0),F(c,0),不妨设点B在点F的上方,点C在点F的下方,则B,C-,因为A1B⊥A2C,所以·=-1.而-------,所以·-=-1,即-=-1,所以b4=a2b2,从而b2=a2,即b=a,所以=1,故双曲线的渐近线的斜率为±1.10.(2015重庆,文10)若不等式组---表示的平面区域为三角形,且其面积等于,则m的值为()A.-3B.1C.D.3答案:B解析:如图,要使不等式组表示的平面区域为三角形,则不等式x-y+2m≥0表示的平面区域为直线x-y+2m=0下方的区域,且-2m<2,即m>-1.这时平面区域为三角形ABC.由--解得则A(2,0).由--解得-则B(1-m,1+m).同理C-,M(-2m,0).因为S△ABC=S△ABM-S△ACM=·(2+2m)·-,由已知得,解得m=1(m=-3<-1舍去).二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(2015重庆,文11)复数(1+2i)i的实部为.答案:-2解析:因为(1+2i)i=i+2i2=-2+i,所以其实部等于-2.12.(2015重庆,文12)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.答案:x+2y-5=0解析:设坐标原点为O,依题意,切线l与OP垂直,而k OP=2,所以k l=-,于是切线l的方程为y-2=-(x-1),即x+2y-5=0.13.(2015重庆,文13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-,3sin A=2sin B,则c=.答案:4解析:由于3sin A=2sin B,根据正弦定理可得3a=2b,又a=2,所以b=3.于是由余弦定理可得c=---=4.14.(2015重庆,文14)设a,b>0,a+b=5,则的最大值为.答案:3解析:因为a,b>0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是,而()2=x+y+2x+y+(x+y)=18,所以3.此时x=y,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,的最大值为3.15.(2015重庆,文15)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p-2=0有两个负根的概率为.答案:解析:当方程x2+2px+3p-2=0有两个负根x1和x2时,应有----解得或所以<p1或2p5,即p∈ ∪[2,5],由几何概型的概率计算公式可知所求概率为--.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分,(1)小问7分,(2)小问6分)(2015重庆,文16)已知等差数列{a n}满足a3=2,前3项和S3=.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b1=a1,b4=a15,求{b n}的前n项和T n.解:(1)设{a n}的公差为d,则由已知条件得a1+2d=2,3a1+d=,化简得a1+2d=2,a1+d=,解得a1=1,d=,故通项公式a n=1+-,即a n=.(2)由(1)得b1=1,b4=a15==8.设{b n}的公比为q,则q3==8,从而q=2,故{b n}的前n项和T n=----=2n-1.17.(本小题满分13分,(1)小问10分,(2)小问3分)(2015重庆,文17)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y关于t的回归方程t+;(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程t+中,--.解:(1)列表计算如下:这里n=5,t i==3,y i==7.2.又l tt=-n=55-5×32=10,l ty=t i y i-n=120-5×3×7.2=12,从而=1.2,=7.2-1.2×3=3.6,故所求回归方程为=1.2t+3.6.(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为=1.2×6+3.6=10.8(千亿元).18.(本小题满分13分,(1)小问7分,(2)小问6分)(2015重庆,文18)已知函数f(x)=sin 2x-cos2x.(1)求f(x)的最小正周期和最小值;(2)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈ 时,求g(x)的值域.解:(1)f(x)=sin 2x-cos2x=sin 2x-(1+cos 2x)=sin 2x-cos 2x-=sin-,因此f(x)的最小正周期为π,最小值为-.(2)由条件可知:g(x)=sin-.当x∈ 时,有x-∈,从而sin-的值域为,那么sin-的值域为--.故g(x)在区间上的值域是--.19.(本小题满分12分,(1)小问4分,(2)小问8分)(2015重庆,文19)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.(1)确定a的值;(2)若g(x)=f(x)e x,讨论g(x)的单调性.解:(1)对f(x)求导得f'(x)=3ax2+2x,因为f(x)在x=-处取得极值,所以f'-=0,即3a·+2·-=0,解得a=.(2)由(1)得g(x)=e x,故g'(x)=e x+e x=e x=x(x+1)(x+4)e x.令g'(x)=0,解得x=0,x=-1或x=-4.当x<-4时,g'(x)<0,故g(x)为减函数;当-4<x<-1时,g'(x)>0,故g(x)为增函数;当-1<x<0时,g'(x)<0,故g(x)为减函数;当x>0时,g'(x)>0,故g(x)为增函数.综上知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.20.(本小题满分12分,(1)小问5分,(2)小问7分)(2015重庆,文20)如图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(1)证明:AB⊥平面PFE;(2)若四棱锥P-DFBC的体积为7,求线段BC的长.(1)证明:如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因∠ABC=,EF∥BC,故AB⊥EF.从而AB与平面PFE内两条相交直线PE,EF都垂直,所以AB⊥平面PFE.(2)解:设BC=x,则在直角△ABC中,AB=--,从而S△ABC=AB·BC=-.,即S△AFE=S△ABC.由EF∥BC知,,得△AFE∽△ABC,故△△由AD=AE,S△AFD=S△AFE=·S△ABC=S△ABC=-,从而四边形DFBC的面积为S DFBC=S△ABC-S△AFD=---.由(1)知,PE⊥平面ABC,所以PE为四棱锥P-DFBC的高.在直角△PEC中,PE=--=2.体积V P-DFBC=·S DFBC·PE=·-·2=7,故得x4-36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以,BC=3或BC=3.21.(本小题满分12分,(1)小问5分,(2)小问7分)(2015重庆,文21)如图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PQ|=λ|PF1|,且λ<,试确定椭圆离心率e的取值范围.解:(1)由椭圆的定义,2a=|PF1|+|PF2|=(2+)+(2-=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=-=2,即c=,从而b=-=1.故所求椭圆的标准方程为+y2=1.(2)如图,由PF1⊥PQ,|PQ|=λ|PF1|,得|QF1|=|PF1|.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,进而|PF1|+|PQ|+|QF1|=4a.于是(1+λ+)|PF1|=4a,解得|PF1|=,故|PF2|=2a-|PF1|=.由勾股定理得|PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2,从而=4c2,两边除以4a2,得=e2.若记t=1+λ+,则上式变成e2=-=8-.由λ<,并注意到1+λ+关于λ的单调性,得3t<4,即,进而<e2,即<e.。
2015年高考文科数学重庆卷-答案
【解析】(Ⅰ)证明:如图,由 DE EC,PD PC 知, E 为等腰△PDC 中 DC 边的中点,故 PE AC ,又因为平面 PAC 平面 ABC ,平面 PAC 平面 ABC AC ,PE 平面 PAC ,PE AC ,所 以 PE 平面 ABC ,从而 PE AB . 因 ABC ,EF∥BC ,故 AB EF .
【考点】正切差角公式.
7.【答案】C
【解析】由已知可得 a
(2a
b)
0
2
2a
a
b
0
;设
r a
与
r b
的夹角为
,则有
2
|
a
2
|
|a|
| b | cos
0
cos 2 | a |2 1 ,又因为 [0,] ,所以 2 ;
4 | a |2 2
3
故选 C. 【提示】由已知向量垂直得到数量积为 0,于是得到非零向量 a,b 的模与夹角的关系,求出夹角的余弦值.
【考点】向量的数量积运算及向量的夹角.
8.【答案】D.
【解析】初始条件: s 0 , k 0 ; 第 1 次判断 0 8 ,是, k 2 , s 0 1 1 ;
22 第 2 次判断 2 8 ,是, k 4 , s 1 1 3 ;
244 第 3 次判断 4 8 ,是, k 6 , s 3 1 11 ;
a b 2(a2 b2 ) ( a 0 , b 0 )且当且仅当 a b 时取“ ”);
从而有 a 1 b 3 2(a 1 b 3) 29 3 2(当且仅当 a 1 b 3 ,即 a 7,b 3 时,“ ”
2
2
成立).
【提示】利用柯西不等式,即可求出的最大值.
2015年普通高等学校招生全国统一考试数学文试题(重庆卷,含解析)
2015年普通高等学校招生全国统一考试数学文试题(重庆卷,含解析)1. 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.2. 由等差数列的性质得64222240a a a =-=⨯-=,选B.3. 从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.4. 12log (2)0211x x x +<⇔+>⇔>-,因此选B.5. 这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A.6. 由题意22()(32)320a b a b a a b b -⋅+=-⋅-=,即223cos 20a ab b θ--=,所以23(cos 2033θ⨯--=,cos 2θ=,4πθ=,选A. 7. 由程序框图,k 的值依次为0,2,4,6,8,因此1111124612S =++=(此时6k =)还必须计算一次,因此可填1112s ≤,选C. 8. 圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,1)A --,6AB ===.选C. 9.3cos()10sin()5παπα-=-33cos cossin sin 1010sin cos cos sin55ππααππαα+-33cos tan sin 1010tan cossin55ππαππα+=-33cos 2tan sin105102tan cos sin555ππππππ+=- 33cos cos 2sin sin510510sincos55ππππππ+==155(cos cos )(cos cos )210101010sin 25πππππ++-3cos 103cos 10ππ==,选C.10. 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC⊥得2201b b a a c x a c-⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a ⇒<01b a ⇒<<,因此渐近线的斜率取值范围是(1,0)(0,1)-,选A.11.由a bi +=223a b +=,所以22()()3a bi a bi a b +-=+=. 12.二项展开式通项为7153521551()()2k kkkk k k T C x C x--+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.13. 由正弦定理得sin sin AB AD ADB B =∠=,解得sin ADB ∠=,45ADB ∠=︒,从而15BAD DAC ∠=︒=∠,所以18012030C =︒-︒-︒=︒,2cos30AC AB =︒=14. 首先由切割线定理得2PA PC PD =⋅,因此26123PD ==,9CD PD PC =-=,又:2:1CE ED =,因此6,3C E E D ==,再相交弦定理有A E E B C E E D ⋅=⋅,所以6329CE ED BE AE ⋅⨯===. 15. 直线l 的普通方程为2y x =+,由2cos24ρθ=得222(cos sin )4ρθθ-=,直角坐标方程为224x y -=,把2y x =+代入双曲线方程解得2x =-,因此交点.为(2,0)-,其极坐标为(2,)π.16. 由绝对值的性质知()f x 的最小值在1x =-或x a =时取得,若(1)215f a -=--=,32a =或72a =-,经检验均不合;若()5f a =,则15x +=,4a =或6a =-,经检验合题意,因此4a =或6a =-.(大题解析在后面)2015重庆数学文原题 及 答案。
2015年高考文科数学重庆卷及答案解析
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2015年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3}A =,{1,3}B =,则A B = ( )A .{2}B .{1,2}C .{1,3}D .{1,2,3} 2.“1x =”是“2210x x -+=”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .即不充分也不必要条件 3.函数22()log (23)f x x x =+-的定义域是( )A .[]3,1-B .(3,1)-C .(,3][1,)-∞-+∞D .(,3)(1,)-∞-+∞ 4.重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( )A .19B .20C .21.5D .23 5.某几何体的三视图如图所示,则该几何体的体积为( )A .12π3+B .13π6 C .7π3D .5π26.若1tan 3α=,1tan()2αβ+=,则tan β=( )A .17B .16C .57D .567.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( )A .π3B .π2C .2π3D .5π68.执行如图所示的程序框图,则输出s 的值为( )A .34B .56 C .1112 D .25249.设双曲线22221(0,0)x y a b a b-=>>的右焦点F ,左、右顶点分别是1A ,2A ,过F 作12A A 的垂线与双曲线交于B , C 两点.若12A B A C ⊥,则该双曲线的渐近线的斜率为( )A .12±B. C .1± D.10.若不等式组20,220,20,x y x y x y m +-⎧⎪+-⎨⎪-+⎩≤≥≥表示的平面区域为三角形,且其面积等于43,则m 的值为()姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)A .3-B .1C .43D .3二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.复数(12i)i +的实部为 .12.若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为 .13.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c = .14.设,0a b >,5a b +=,的最大值为 .15.在区间[]0,5上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)已知等差数列{}n a 满足32a =,前3项和392S =. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T .17.(本小题满分13分,(Ⅰ)小问10分,(Ⅱ)小问3分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(Ⅰ)求y 关于t 的回归方程ˆˆybt a =+; (Ⅱ)用所求回归方程预测该地区2015年(6)t =的人民币储蓄存款.附:回归方程ˆˆˆybt a =+中, 1221ˆni ii nii t yntybtnt ==-=-∑∑,ˆˆay bt =-. 18.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)已知函数21()sin 22f x x x =. (Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)将函数()f x 的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数()g x 的图象.当π,π2x ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.19.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)已知函数32()()f x ax x a =+∈R 在43x =-处取得极值. (Ⅰ)确定a 的值;(Ⅱ)若()()x g x f x e =,讨论()g x 的单调性.20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,π2ABC ∠=,点D ,E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F在线段AB 上,且EF BC ∥.(Ⅰ)证明:AB ⊥平面PFE ;(Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,程;数学试卷 第5页(共14页) 数学试卷 第6页(共14页)的取值范围.2015年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)答案解析一、选择题 1.【答案】C【解析】由交集的定义得{1,3}AB ∩=. 【提示】直接利用集合的交集的求法求解即可. 【考点】集合的运算. 2.【答案】A【解析】由“1x =”显然能推出“2210x x -+=”,故条件是充分的,又由“2210x x -+=”可得2(1)01x x -=⇒=,所以条件也是必要的,故选A .【提示】先求出方程2210x x -+=的解,再和1x =比较,从而得到答案.【考点】充要条件. 3.【答案】D【解析】由2230(3)(1)0x x x x +->⇒+->解得3x <-或1x >;故选D . 【提示】利用对数函数的真数大于0求得函数定义域. 【考点】函数的定义域,一元二次不等式. 4.【答案】B【解析】由茎叶图知,第六第七个数据均为20,所以中位数为20. 故选B .【提示】根据中位数的定义进行求解即可. 【考点】茎叶图与中位数. 5.【答案】B .a 与b 的夹角为,又因为[0,]θ∈π,所以数学试卷第7页(共14页)数学试卷第8页(共14页)数学试卷第9页(共14页)数学试卷第10页(共14页)数学试卷 第11页(共14页) 数学试卷 第12页(共14页)从而AB 与平面PEF 内两条相交直线PE EF ,都垂直,所以AB ⊥平面PFE .数学试卷 第13页(共14页) 数学试卷 第14页(共14页)12AB BC x =AF AE AB AC ==1429ABC S =△形D236x1173318DFBC S PE =⨯2430=,解得2x ,可得333x x ==或.4c。
2015年高考文科数学重庆卷(含详细答案)
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2015年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3}A =,{1,3}B =,则A B = ( )A .{2}B .{1,2}C .{1,3}D .{1,2,3} 2.“1x =”是“2210x x -+=”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .即不充分也不必要条件 3.函数22()log (23)f x x x =+-的定义域是( )A .[]3,1-B .(3,1)-C .(,3][1,)-∞-+∞D .(,3)(1,)-∞-+∞ 4.重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( )A .19B .20C .21.5D .23 5.某几何体的三视图如图所示,则该几何体的体积为( )A .12π3+B .13π6 C .7π3D .5π26.若1tan 3α=,1tan()2αβ+=,则tan β=( )A .17B .16C .57D .567.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( )A .π3B .π2C .2π3D .5π68.执行如图所示的程序框图,则输出s 的值为( )A .34B .56 C .1112 D .25249.设双曲线22221(0,0)x y a b a b-=>>的右焦点F ,左、右顶点分别是1A ,2A ,过F 作12A A 的垂线与双曲线交于B ,C 两点.若12A B A C ⊥,则该双曲线的渐近线的斜率为( ) A .12±B.C .1±D.10.若不等式组20,220,20,x y x y x y m +-⎧⎪+-⎨⎪-+⎩≤≥≥表示的平面区域为三角形,且其面积等于43,则m 的值为()姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)A .3-B .1C .43D .3二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.复数(12i)i +的实部为 .12.若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为 .13.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c = .14.设,0a b >,5a b +=,的最大值为 .15.在区间[]0,5上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)已知等差数列{}n a 满足32a =,前3项和392S =. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T .17.(本小题满分13分,(Ⅰ)小问10分,(Ⅱ)小问3分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(Ⅰ)求y 关于t 的回归方程ˆˆybt a =+; (Ⅱ)用所求回归方程预测该地区2015年(6)t =的人民币储蓄存款.附:回归方程ˆˆˆybt a =+中, 1221ˆni ii nii t yntybtnt ==-=-∑∑,ˆˆay bt =-. 18.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)已知函数21()sin 22f x x x =. (Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)将函数()f x 的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数()g x 的图象.当π,π2x ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.19.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)已知函数32()()f x ax x a =+∈R 在43x =-处取得极值. (Ⅰ)确定a 的值;(Ⅱ)若()()x g x f x e =,讨论()g x 的单调性.20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,π2ABC ∠=,点D ,E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F在线段AB 上,且EF BC ∥.(Ⅰ)证明:AB ⊥平面PFE ;(Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,程;的取值范围.数学试卷第5页(共26页)数学试卷第6页(共26页)2015年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)答案解析数学试卷第7页(共26页)数学试卷第8页(共26页);设a与b的夹角为2π;5 / 13数学试卷 第11页(共26页)数学试卷 第12页(共26页)检验知当3m =-时,已知不等式组不能表示一个三角形区域,故舍去;所以1m =;故选B .7 / 13数学试卷第15页(共26页)数学试卷第16页(共26页)9 / 13数学试卷第19页(共26页)数学试卷第20页(共26页)11 / 1312AB BC x =23AE AC ==1429ABC S =△ABC S S -△△1173318DFBC S PE =⨯2430+=,解得2x数学试卷第23页(共26页)数学试卷第24页(共26页)13 / 13。
2015年高考数学(文)试题(重庆卷)(有答案)
2015年普通高等学校招生全国统一考试(重庆卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3},B {1,3}A ,则A B = (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}2.“x 1”是“2x 210x ”的(A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件3.函数22(x)log (x 2x 3)f 的定义域是 (A) [3,1] (B) (3,1)(C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞4.重庆市2013年各月的平均气温(°C )数据的茎叶图如下则这组数据中的中位数是(A) 19 (B) 20 (C ) 21.5 (D )23 5.某几何体的三视图如图所示,则该几何体的体积为(A)123π+ (B)136π(C) 73π (D) 52π 6.若11tan ,tan()32,则tan = (A)17 (B) 16 (C) 57 (D) 567.已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为(A) 3 (B) 2(C) 23 (D) 568.执行如图(8)所示的程序框图,则输出s 的值为(A)34 (B) 56 (C) 1112 (D) 25249.设双曲线22221(a 0,b 0)x y a b的右焦点是F ,左、右顶点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为(A)12(B) 22 (C) 1 (D)2 10.若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为(A)-3 (B) 1 (C)43(D)3 二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.复数(12i)i 的实部为________.12.若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为___________. 13. 设ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,且12,cos ,4a C3sin 2sin A B ,则c=________. 14.设,0,5a ba b ,1++3a b 的最大值为 ________.15. 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
重庆市高考数学试题文科含解析
2015年重庆市高考数学试题(文科含解析)
2015年重庆市高考数学试题(文科含解析)
1.由于,故A、B、C均错,D是正确的,选D.
2.由等差数列的性质得,选B.
3.从茎叶图知所有数据为8,9,12,15,18,20,20,
23,23,28,31,32,中间两个数为20,20,故中位数
为20,选B.
4.,因此选B.
5.这是一个三棱锥与半个圆柱的组合体,,选A.
6.由题意,即,所以,,,选A.
7.由程序框图,的值依次为0,2,4,6,8,因此(此时)还必须计算一次,因此可填,选C.
8.圆标准方程为,圆心为,半径为,因此,,即,.选 C.
9.
=,选C.
10.由题意,由双曲线的对称性知在轴上,设,由得,解
得,所以,所以,因此渐近线的斜率取值范围是,选A.
11.由得,即,所以.
12.二项展开式通项为,令,解得,因此的系数为.
13.由正弦定理得,即,解得,,从而,所以,.
14.首先由切割线定理得,因此,,又,因此,再相交弦
定理有,所以.
15.直线的普通方程为,由得,直角坐标方程为,把代入双曲线方程解得,因此交点.为,其极坐标为.
16.由绝对值的性质知的最小值在或时取得,若,或,经检验均不合;若,则,或,经检验合题意,因此或. (大题解析在后面)
2015重庆数学文原题及答案。
2015年重庆卷(文科数学)
2015年普通高等学校招生全国统一考试文科数学(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1,2,3A =,{}2,3B =,则A.A B =B.A B =∅IC.A B ⊂D.B A ⊂ 2.“1x =”是“2210x x -+=”的A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 3.函数22(x)log (23)f x x =+-的定义域是A.[3,1]-B.(3,1)-C.(,3][1,)-∞-+∞UD.(,3)(1,)-∞-+∞U4.重庆市2013年各月的平均气温(C o )数据的茎叶图如下:则这组数据的中位数是A .19B .20C .21.5D .235.某几何体的三视图如图所示,则该几何体的体积为正视图2 俯视图0 8 9 1 2 5 8 2 0 0 3 3 8 3 1 2A.123π+B.136π C.73π D.52π 6.若1tan 3α=,1tan()2αβ+=,则tan β=A.17B.16C.57D.566.若非零向量a r ,b r 满足4a b =r r ,且(2)a a b ⊥+r r r,则a r 与b r 的夹角为 A.3π B.2πC.23πD.56π8.执行如图所示的程序框图,则输出s 的值为 A.34 B.56 C.1112 D.25249.设双曲线22221x y a b-=(0a >,0b >)的右焦点为F ,左、右顶点分别是1A ,2A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为 A.12±B.2±1±D.10.若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m的值为A.3-B.1C.43D.3 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.11.复数(12)i i +的实部为 .12.若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程 .13.设ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且2a =,1cos 4C =-3sin 2sin A B =,则c = .14.设a ,0b >,5a b +=的最大值为 .15.在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)已知等差数列{}n a 满足32a =,前3项和392S =. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T . 17.(本小题满分13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄(Ⅰ)求y 关于t 的回归方程ˆˆˆybt a =+; (Ⅱ)用所求回归方程预测该地区2015年(6t =)的人民币储蓄存款.附:回归方程ˆˆˆybt a =+中,$1221ˆˆ,bt ni ii nii t y nt yb ay tnt ==-==--∑∑ 18.(本小题满分13分)已知函数21()sin 22f x x x =(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)将函数()f x 的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数()g x 的图像.当[,]2x ππ∈时,求()g x 的值域.19.(本小题满分12分)已知函数32()f x ax x =+(a R ∈)在43x =-处取得极值.(Ⅰ)确定a 的值;(Ⅱ)若()()x g x f x e =,讨论()g x 的单调性. 20.(本小题满分12分)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2ABC π∠=,点D ,E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且EF //BC . (Ⅰ)证明:AB ⊥平面PFE .(Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长.21.(本小题满分12分)如图,椭圆22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点,且1PQ PF ⊥.(Ⅰ)若12PF =22PF =求椭圆的标准方程. (Ⅱ)若1PQ PF λ=的取值范围.AB CD EFP。
2015年重庆市高考数学试卷(文科)最新修正版
2015年重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}2.(5分)“x=1”是“x2﹣2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件3.(5分)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1]B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)4.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.235.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C. D.6.(5分)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.7.(5分)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C. D.8.(5分)执行如图所示的程序框图,则输出s的值为()A.B.C.D.9.(5分)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±10.(5分)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.3二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)复数(1+2i)i的实部为.12.(5分)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.13.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=.14.(5分)设a,b>0,a+b=5,则+的最大值为.15.(5分)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.17.(13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.18.(13分)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.19.(12分)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.20.(12分)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.21.(13分)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.2015年重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}【分析】直接利用集合的交集的求法求解即可.【解答】解:集合A={1,2,3},B={1,3},则A∩B={1,3}.故选:C.【点评】本题考查交集的求法,考查计算能力.2.(5分)“x=1”是“x2﹣2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】先求出方程x2﹣2x+1=0的解,再和x=1比较,从而得到答案.【解答】解:由x2﹣2x+1=0,解得:x=1,故“x=1”是“x2﹣2x+1=0”的充要条件,故选:A.【点评】本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.3.(5分)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1]B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)【分析】利用对数函数的真数大于0求得函数定义域.【解答】解:由题意得:x2+2x﹣3>0,即(x﹣1)(x+3)>0解得x>1或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选:D.【点评】本题主要考查函数的定义域的求法.属简单题型.高考常考题型.4.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B.【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C. D.【分析】利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.【解答】解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体,几何体的体积为:=.故选:B.【点评】本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.(5分)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.【分析】由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.【解答】解:∵tanα=,tan(α+β)=,则tanβ=tan[(α+β)﹣α]===,故选:A.【点评】本题主要考查两角差的正切公式的应用,属于基础题.7.(5分)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C. D.【分析】由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.【解答】解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选:C.【点评】本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.(5分)执行如图所示的程序框图,则输出s的值为()A.B.C.D.【分析】模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8时不满足条件k<8,退出循环,输出s的值为.【解答】解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.【点评】本题主要考查了循环结构的程序框图,属于基础题.9.(5分)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±【分析】求得A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,即可得出双曲线的渐近线的斜率.【解答】解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.【点评】本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.(5分)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.3【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).=S△ADB﹣S△ADC则三角形ABC的面积S△ABC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍),故选:B.【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)复数(1+2i)i的实部为﹣2.【分析】利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=﹣1.【解答】解:(1+2i)i=i+2i2=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.【点评】本题考查了复数的运算以及复数的认识;注意i2=﹣1.属于基础题.12.(5分)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为x+2y﹣5=0.【分析】由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.【解答】解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即x+2y﹣5=0,故答案为:x+2y﹣5=0.【点评】本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.13.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=4.【分析】由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.【解答】解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)设a,b>0,a+b=5,则+的最大值为3.【分析】利用柯西不等式,即可求出的最大值.【解答】解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.【点评】本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.15.(5分)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.【分析】由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.【解答】解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:【点评】本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.【分析】(Ⅰ)设等差数列{a n}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n}前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.【点评】本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n项和,是中档题.17.(13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.【分析】(Ⅰ)利用公式求出a,b,即可求y关于t的回归方程=t+.(Ⅱ)t=6,代入回归方程,即可预测该地区2015年的人民币储蓄存款.【解答】解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y关于t的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).【点评】本题考查线性回归方程,考查学生的计算能力,属于中档题.18.(13分)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.【分析】(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x ﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[,π]时,可得x﹣的范围,即可求得g(x)的值域.【解答】解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x ﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].【点评】本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.19.(12分)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.【分析】(Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=处取得极值,可得f′(﹣)=0,即可确定a的值;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,利用导数的正负可得g(x)的单调性.【解答】解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=处取得极值,∴f′(﹣)=0,∴3a•+2•(﹣)=0,∴a=;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,∴g′(x)=(x2+2x)e x+(x3+x2)e x=x(x+1)(x+4)e x,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)内为增函数.【点评】本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.20.(12分)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.【分析】(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC ,由EF∥BC可得△AFE∽△ABC,求得S△AFE=S△ABC ,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积V P﹣DFBC=S DFBC•PE=7,即可解得线段BC的长.【解答】解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S=AB•BC=x,△ABC由EF∥BC知,得△AFE∽△ABC,故=()2=,即S△AFE=S△ABC,==S△ABC=S△ABC=x,由AD=AE,S△AFD从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD=x﹣x=x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,=S DFBC•PE=x=7,故体积V P﹣DFBC故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.【点评】本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.21.(13分)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.【分析】(I)由椭圆的定义可得:2a=|PF1|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,利用勾股定理可得2c=|F1F2|=,解得c.利用b2=a2﹣c2.即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|=,代入化简.令t=1+λ,则上式化为e2=,解出即可.【解答】解:(I)由椭圆的定义可得:2a=|PF1|+|PF2|=(2+)+(2﹣)=4,解得a=2.设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|===2,∴c=.∴b2=a2﹣c2=1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|==,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|=,由勾股定理可得:2c=|F1F2|=,∴+=4c2,∴+=e2.令t=1+λ,则上式化为=,∵t=1+λ,且≤λ<,∴t关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值范围是.【点评】本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2015•重庆)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2} C.{1,3} D.{1,2,3}2.(5分)(2015•重庆)“x=1”是“x2﹣2x+1=0”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.(5分)(2015•重庆)函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1] B.(﹣3,1)C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3)∪(1,+∞)4.(5分)(2015•重庆)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.235.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C. D.6.(5分)(2015•重庆)若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.7.(5分)(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C. D.8.(5分)(2015•重庆)执行如图所示的程序框图,则输出s的值为()A.B.C.D.9.(5分)(2015•重庆)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±10.(5分)(2015•重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为()A.﹣3 B.1 C.D.3二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)(2015•重庆)复数(1+2i)i的实部为.12.(5分)(2015•重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.13.(5分)(2015•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c= .14.(5分)(2015•重庆)设a,b>0,a+b=5,则的最大值为.15.(5分)(2015•重庆)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•重庆)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.17.(13分)(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.18.(13分)(2015•重庆)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.19.(12分)(2015•重庆)已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.(Ⅰ)确定a的值;(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.20.(12分)(2015•重庆)如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.21.(13分)(2015•重庆)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+,|PF2|=2﹣,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.2015年重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【分析】直接利用集合的交集的求法求解即可.【解答】解:集合A={1,2,3},B={1,3},则A∩B={1,3}.故选:C.【点评】本题考查交集的求法,考查计算能力.2.【分析】先求出方程x2﹣2x+1=0的解,再和x=1比较,从而得到答案.【解答】解:由x2﹣2x+1=0,解得:x=1,故“x=1”是“x2﹣2x+1=0”的充要条件,故选:A.【点评】本题考察了充分必要条件,考察一元二次方程问题,是一道基础题.3.【分析】利用对数函数的真数大于0求得函数定义域.【解答】解:由题意得:x2+2x﹣3>0,即(x﹣1)(x+3)>0解得x>1或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选D.【点评】本题主要考查函数的定义域的求法.属简单题型.高考常考题型.4.【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.5.【分析】利用三视图判断直观图的形状,结合三视图的数据,求解几何体的体积即可.【解答】解:由题意可知几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧与一个底面半径为1,高为1的半圆锥组成的组合体,几何体的体积为:=.故选:B.【点评】本题考查三视图的作法,组合体的体积的求法,考查计算能力.6.【分析】由条件利用查两角差的正切公式,求得tanβ=tan[(α+β)﹣α]的值.【解答】解:∵tanα=,tan(α+β)=,则tanβ=tan[(α+β)﹣α]===,故选:A.【点评】本题主要考查两角差的正切公式的应用,属于基础题.7.【分析】由已知向量垂直得到数量积为0,于是得到非零向量的模与夹角的关系,求出夹角的余弦值.【解答】解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.【点评】本题考查了向量垂直的性质运用以及利用向量的数量积求向量的夹角;熟练运用公式是关键.8.【分析】模拟执行程序框图,依次写出每次循环得到的k,s的值,当k=8时不满足条件k<8,退出循环,输出s的值为.【解答】解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.【点评】本题主要考查了循环结构的程序框图,属于基础题.9.【分析】求得A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),利用A1B⊥A2C,可得,求出a=b,即可得出双曲线的渐近线的斜率.【解答】解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.【点评】本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.10.【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).则三角形ABC的面积S△ABC=S△ADB﹣S△ADC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍),故选:B【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.【分析】利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=﹣1.【解答】解:(1+2i)i=i+2i2=﹣2+i,所以此复数的实部为﹣2;故答案为:﹣2.【点评】本题考查了复数的运算以及复数的认识;注意i2=﹣1.属于基础题.12.【分析】由条件利用直线和圆相切的性质,两条直线垂直的性质求出切线的斜率,再利用点斜式求出该圆在点P处的切线的方程.【解答】解:由题意可得OP和切线垂直,故切线的斜率为﹣==﹣,故切线的方程为y﹣2=﹣(x﹣1),即 x+2y﹣5=0,故答案为:x+2y﹣5=0.【点评】本题主要考查直线和圆相切的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.13.【分析】由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.【解答】解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)(2015•重庆)设a,b>0,a+b=5,则的最大值为3.【分析】利用柯西不等式,即可求出的最大值.【解答】解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.【点评】本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.15.(5分)(2015•重庆)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.【分析】由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.【解答】解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:【点评】本题考查几何概型,涉及一元二次方程根的分布,属基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.【分析】(Ⅰ)设等差数列{a n}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n}前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.【点评】本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n项和,是中档题.17.【分析】(Ⅰ)利用公式求出a,b,即可求y关于t的回归方程=t+.(Ⅱ)t=6,代入回归方程,即可预测该地区2015年的人民币储蓄存款.【解答】解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y关于t的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).【点评】本题考查线性回归方程,考查学生的计算能力,属于中档题.18.【分析】(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[,π]时,可得x﹣的范围,即可求得g(x)的值域.【解答】解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].【点评】本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.19.【分析】(Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=处取得极值,可得f′(﹣)=0,即可确定a的值;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,利用导数的正负可得g(x)的单调性.【解答】解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=处取得极值,∴f ′(﹣)=0,∴3a •+2•(﹣)=0,∴a=;(Ⅱ)由(Ⅰ)得g(x)=(x3+x2)e x,∴g′(x)=(x2+2x)e x+(x3+x2)e x =x(x+1)(x+4)e x,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)内为增函数.【点评】本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.20.【分析】(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC,由EF∥BC可得△AFE∽△ABC,求得S△AFE =S△ABC,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积V P﹣DFBC =S DFBC•PE=7,即可解得线段BC的长.【解答】解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S△ABC =AB•BC=x,由EF∥BC 知,得△AFE∽△ABC,故=()2=,即S△AFE =S△ABC,由AD=AE,S△AFD ==S△ABC =S△ABC =x,从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD =x ﹣x =x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积V P﹣DFBC=S DFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.【点评】本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.21.【分析】(I)由椭圆的定义可得:2a=|PF1|+|PF2|,解得a.设椭圆的半焦距为c,由于PQ⊥PF1,利用勾股定理可得2c=|F1F2|=,解得c.利用b2=a2﹣c2.即可得出椭圆的标准方程.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=,由椭圆的定义可得:|PF1|+|PQ|+|QF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|,由勾股定理可得:2c=|F1F2|=,代入化简.令t=1+λ,则上式化为e2=,解出即可.【解答】解:(I)由椭圆的定义可得:2a=|PF1|+|PF2|=(2+)+(2﹣)=4,解得a=2.设椭圆的半焦距为c,∵PQ⊥PF1,∴2c=|F1F2|===2,∴c=.∴b2=a2﹣c2=1.∴椭圆的标准方程为.(II)如图所示,由PQ⊥PF1,|PQ|=λ|PF1|,∴|QF1|==,由椭圆的定义可得:2a=|PF1|+|PF2|=|QF1|+|QF2|,∴|PF1|+|PQ|+|QF1|=4a,∴|PF1|=4a,解得|PF1|=.|PF2|=2a﹣|PF1|=,由勾股定理可得:2c=|F1F2|=,∴+=4c2,∴+=e2.令t=1+λ,则上式化为=,∵t=1+λ,且≤λ<,∴t关于λ单调递增,∴3≤t<4.∴,∴,解得.∴椭圆离心率的取值范围是.【点评】本题考查了椭圆的定义标准方程及其性质、勾股定理、不等式的性质、“换元法”,考查了推理能力与计算能力,属于中档题.第11页(共11页)。