物理化学第七章 电化学

合集下载

物理化学-第七章-电化学

物理化学-第七章-电化学
解: 电极反应: Ag e Ag
通入的总电量:Q I t 0.23060 360库仑
电极上起化学反应物质的量:
n Q 360 0 00373mol zF 196500
析出Ag的质量: m=n×MAg=0.00373×107.88=0.403g
二、电导、电导率和摩尔电导率
体积与浓度的关系如何呢?
c n V
(mol·m-3)
若n为1mol
Vm

1 c
m

Vm


c
S·m2·mol-1
注意:c的单位:mol﹒m-3
3.电导、电导率和摩尔电导率之间的关系
G 1 R
K l A
G K
m


Vm


c
例: 298K时,将0.02mol·dm-3的KCl溶液放入 电导池,测其电阻为82.4Ω,若用同一电导池充 0.0025mol.dm-3的K2SO4溶液,测其电阻为 326Ω,已知298K时,0.02mol·dm-3的KCl溶液 的电导率为0.2768S.m-1 (1)求电导池常数; (2)0.0025mol.dm-3的K2SO4溶液的电率; (3)0.0025mol.dm-3的K2SO4溶液的摩尔电 导率。
★电池 汽车、宇宙飞船、照明、通讯、 生化和医学等方面都要用不同类型的化学 电源。
★ ⒊电分析 ★ ⒋生物电化学
§7-1 电解质溶液的导电性质 一、电解质溶液的导电机理
1.导体: 能够导电的物体叫导体。
第一类: 靠导体内部自由电子的定向运动而导电的物体
如 金属导体
石墨
性质:
A.自由电子作定向移动而导电
F:法拉第常数,即反应1mol电荷物质所需电量 1F=96500库仑/摩尔

物理化学第7章 电化学

物理化学第7章 电化学

放置含有1 mol电解质的溶液,这时溶液所具有的
电导称为摩尔电导率 Λ m
Λ m
def
kVm
=
k c
Vm是含有1 mol电解质的溶液
的体积,单位为 m3 mol1,c 是电解
质溶液的浓度,单位为 mol m3 。
摩尔电导率的单位 S m2 mol1
注意:
Λ 在 后面要注明所取的基本单元。 m
b、强电解质: 弱电解质:
强电解质的Λ m

c
的关系
随着浓度下降,Λ 升高,通 m
常当浓度降至 0.001mol dm3 以下
时,Λ 与 m
c 之间呈线性关系。德
国科学家Kohlrausch总结的经验
式为:
Λ m
=Λm (1
c)
是与电解质性质有关的常数
将直线外推至 c 0
得到无限稀释摩尔电导率Λm
-
- 电源 +
e-
+
e-




CuCl2
电解池
阳极上发生氧化作用
2Cl aq Cl2(g) 2e
阴极上发生还原作用
Cu2 aq 2e Cu(s)
三、法拉第定律
Faraday 归纳了多次实验结果,于1833年总结出该定律
1、内容:当电流通过电解质溶液时,通过电极 的电荷量与发生电极反应的物质的量成正比;
作电解池 阴极: Zn2 2e Zn(s)
阳极 2Ag(s) 2Cl 2AgCl(s) 2e
净反应: 2Ag(s) ZnCl2 Zn(s) 2AgCl(s)
2.能量变化可逆。要求通过的电流无限小。
二、可逆电极的种类
1、第一类电极

物理化学课件第七章_电化学

物理化学课件第七章_电化学
16
§7.2 电解质溶液的电导
一、电导G、电导率 、摩尔电导率m
二、电导的测定: 电阻R电导G 电导率 三、电导率和摩尔电导率随浓度的变化 四、离子独立运动定律
17
一、电导G、电导率 、摩尔电导率m
电阻:R=U/I(欧姆定律) 电阻率: = R(A / l) 单位: m
对于弱电解质:
m:全部电离,离子间无作用力
m :部分电离,离子间有作用力
若电离度比较小,离子浓度比较低,则相互作用力可
忽略,导电能力全部决定于电离度。
= m / m
31
电离度
= m / m
M + A c c
(1-1价型) MA 平衡时: c(1 - )
(c ) 2 Kc c(1 )
15

1.20 g 1 (1) Q nzF 3 96500 C mol 197.0 g mol-1 = 1763 C
(2) t Q 1763 C 7.05104 s I 0.025 A
(3) n(O2 ) 3 n(Au) 4 1.20 g 3 mol = 3 4.57 10 4 197.0 g mol1
⒊ 电化学分析 ⒋ 生物电化学
2



(一)电解质溶液 ☆ (二)可逆电池电动势 ☆ (三)不可逆电极过程
3
§7.1 离子的迁移
1.电解质溶液的导电机理
能够导电的物质称为导体。 第一类导体:金属——靠自由电子的迁移导电。 第二类导体:电解质溶液,熔融电解质,固体电解 质——靠离子的迁移导电。 电解质溶液的连续导电过程必须在电化学装置中 实现,而且总是伴随着电化学反应及化学能和电能 相互转换发生。

物理化学电子课件第七章电化学基础

物理化学电子课件第七章电化学基础

第一节 电化学的基本概念
三、离子的电迁移和迁移数
3. 离子迁移数 t有多种测定方法,这里主要介绍希托夫(Hittorf) 法。其原理是:分别测定离子迁出或迁入相应电极区的物质的量及发 生电极反应的物质的量,然后通过物料衡算得到离子迁移数。实验装 置如图7-3所示。
第一节 电化学的基本概念
三、离子的电迁移和迁移数 实验测定中的物料衡算思路为:电解后某离子剩余的物质的量
在电解池和原电池中,一般规定:在电极上发生氧化反应(失电 子)的电极为阳极,发生还原反应(得电子)的电极为阴极;电势较 高的电极为正极,电势较低的电极为负极。下面分别对电解池和原电 池进行讨论。
上述反应发生在电极与溶液的界面处,称为电极反应。电解池中
发生的总的化学反应称为电解反应,此处为
2HCl(l)
第二节 电解质溶液
表7-2 25 ℃时几种浓度KCl水溶液的电导率
第二节 电解质溶液
四、摩尔电导率与浓度的关系
科尔劳施 (Kolrausch)对电解质溶液的摩尔电导率进行了深入的 研究,根据实验结果得出结论:在很稀的溶液中,强电解质的摩尔电 导率Λm与其浓度c的平方根呈直线关系,即科尔劳施经验式:
2. 在稀溶液中,电解质的浓度和价型是影响γ±的主要因素。离子 强度I正是为反映这两个因素的综合影响而提出的,其定义为:
即溶液中每种离子的质量摩尔浓度乘以该离子电荷数的平方,所 得诸项之和的一半称为离子强度。
第二节 电解质溶液
3.德拜-休克尔极限公式 子活度因子 γi及离子的平均活度因子γ±的计算公式:
n电解后=该离子电解前的物质的量n电解前±该离子参与电极反应的物质的 量n反应±该离子迁移的物质的量n迁移,即
式(7-7)中的正负号根据电极反应是增加还是减少该离子在溶 液中的量以及该离子是迁入还是迁出来确定。

物理化学第七章电化学

物理化学第七章电化学

第七章 《电化学》一、选择题1.用铂作电极电解一些可溶性碱的水溶液, 在阴、阳两电极上可分别获得氢气和氧气。

所得各种产物的量主要取决于( )。

A. 电解液的本性;B. 电解温度和压力;C. 电解液浓度;D. 通过电极的电量。

2.采用电导法测定HAc 的电离平衡常数时, 应用了惠斯登电桥。

作为电桥平衡点的示零仪器,不能选用( )。

A. 通用示波器;B. 耳机;C. 交流毫伏表;D. 直流检流计。

3.电解质溶液的电导率随浓度变化的规律为:( )。

A. 随浓度增大而单调地增大;B. 随浓度增大而单调地减小;C. 随浓度增大而先增大后减小;D. 随浓度增大而先减小后增大。

4.离子独立运动定律适用于( )。

A. 强电解质溶液;B. 弱电解质溶液;C. 无限稀电解质溶液;D. 理想稀溶液。

5.在论述离子的无限稀释的摩尔电导率的影响因素时,错误的讲法是( )。

A. 认为与溶剂性质有关;B. 认为与温度有关;C. 认为与共存的离子性质有关;D. 认为与离子本性有关。

6.25℃无限稀释的KCl 摩尔电导率为130 S · m 2 · mol -1,已知Cl -的迁移数为0.505,则K +离子的摩尔电导率为(单位:S · m 2 · mol -1)( )。

A. 130;B. 0.479;C. 65.7;D. 64.35。

7.已知298K 时,NaCl ,HCOONa 和HCl 无限稀释的摩尔电导率分别是1.264×102、1.046×102和4.261×102 S · m 2 · mol -1。

实验测得298 K 时,0.01 mol · dm -3HCOOH 水溶液的电导率是5.07×102 S · m -1。

298 K 时,0.01 mol · dm -3HCOOH 水溶液的解离度为( )。

物理化学答案——第七章-电化学

物理化学答案——第七章-电化学

第七章 电化学(一)基本公式和内容提要1 Faraday (法拉第)定律定义:当电流通过电解质溶液时,通过每个电极的电量与发生在该电极上电极反应的物质的量成正比。

Q = nzF2 离子迁移数定义:每种离子所传输的电量在通过溶液的总电量中所占的分数,以t 表示 Q r t Q r r ++++-==+, Q r t Qr r ---+-==+3 电导G ,电导率κ,摩尔电导率m Λ1I G RU -==1κρ=, A G lκ=m m V cκκΛ== 1c e l ll K R R Aκρ===其中,cell l K A=为电导池常数,c 为电解质的浓度,单位是mol/m 34 离子独立运动定律m ∞Λ = v+()m A λ∞+ + v-()m B λ∞-对于强电解质,在浓度较低的范围内,有下列经验关系(科尔劳乌施经验关系):(1m m β∞Λ=Λ-对于弱电解质: m m α∞Λ=Λ (其中,α为解离度)5 离子平均活度a ±和离子平均活度系数γ±电解质的活度:(/)v v v va a a a m m θγ+-+-±±±===其中,1/()v v v γγγ+-±+-= , 1/()v v vm m m +-±+-=6 德拜-休克尔极限公式ln Az z γ±+-=-式中I 为溶液离子强度212i iI m z =∑;在298 K 的水溶液中,11221.172kg molA -=,上式适用于10.01m ol kg I -≤ 的稀溶液。

7 可逆电池热力学r m G n E Fθθ∆=- (只做电功) r mG nEF ∆=-(只做电功)ln R T E K nFθθ=()()r mr m p pG ES nF T T∂∆∂∆=-=∂∂式中,()p E T∂∂是电池电动势随温度的变化率,称为电池电动势的温度系数。

物理化学第七章电化学

物理化学第七章电化学

§7-2 离子的迁移数
通电前后各区域物质的量的变化情况:
上述结果表明: 电解后:三个区域的溶液都是电中性的 电解后,两电极附近的阴极区和阳极区中,浓度变化不相同。
Q u 1 = n阴 Q_ u 3 式中 n阴 、 n阳 分别表示阴极区和阳极区内电解质克当量数(物质 的量)的减少。 2、离子的迁移数 某种离子的迁移数ti是指该离子迁移的电量Q+与通过溶液的总电 n阳
§7-1 电化学的基本概念和法拉第定律
如图所示:
§7-1 电化学的基本概念和法拉第定律
直流电源与两电极相连接,电流方向是电源外电路中由正极流 向负极,而电子流动的方向正好与之相反,是由电源外电路中由 负极流向正极。 电极反应 :电子流到电极上,那么在电极上就会进行有电子得失 的化学反应 规定 :发生氧化反应(也就是失去电子的反应)的电极就称为阳 极 发生还原反应(也就是得到电子的反应)的电极称为阴极。
m
§7—3 溶液的电导率和摩尔电导率
2、电导的测定,电导率和摩尔电导率的计算: 电导是电阻的倒数,因而可 电阻箱电阻 通过测定电解质溶液在某一 电导池中的电阻来确定其电 电可 导变 导,测定电阻可通过惠茨通 池电 电容 (wheatstone)电桥: 容( 如图示: )抵

A
D
阻待 测 电
B C
检零器
,这种离子的浓度反而降低了。
电解质实例: 1、两个惰性电极组成的电解池,假想可分为三个部分: 阴极区、中间区、阳极区 2、电解池中的溶液含有16克当量/mol的1—1型电解质。 3、通过电解池的总电量为4F(4mol F) 4、负离子的迁移速度U-是正离子迁移速度U+的3倍。
§7-2 离子的迁移数 如图所示:

物理化学第七章-2019-4-29

物理化学第七章-2019-4-29


- zEF
第七章 电化学
如何把化学反应转变成电能?
1.该化学反应是氧化还原反应,或包含有氧化 还原的过程。
2.有适当的装置,使化学反应分别通过在电极 上的反应来完成。 3.有两个电极和与电极建立电化学反应平衡的 相应电解质。 4.有其他附属设备,组成一个完整的电路。
= (1.482×10-2 -1.5×10-4) S·m-1=1.467×10-2 S·m-1
故 c=k /Λm∞=1.467×10-2 S.m-1/(2.785×10-2S·m2·mol-1)
= 0.5268 mol.m-3
第七章 电化学
根据电导的测定得出 25℃ 时氯化银饱和水溶液 的电导率为 3.41×10-4 S·m-1。已知同温度下配制此溶 液所用的水的电导率 1.60×10-4S·m-1。试计算 25℃时 氯化银的溶解度。
查表7.3.1,得25 ℃,0.1 molkg-1 H2SO4 的 g=0.265
a g b / b 0.265 0.1587 0.0421 a a 0.04213 7.46210-5
第七章 电化学
7.3.3 德拜-休克尔极限公式 1. 电解质溶液的离子强度I定义:
b
=
(b+v+
bv-
)1/ v
m = m$ + RT lnav
a± = g±(b±/b$)
与一般活度因子定义类似!
第七章 电化学
试利用表7.3.1数据计算25℃时0.1mol kg-1 H2SO4
水溶液中b、 a、及 a。
解:b (b b-- )1/ [(2b)2 b]1/ 3 41/ 3 b 0.1587mol kg-1
= (61.92×10-4+76.34×10-4) S·m2·mol-1 = 138.26×10-4S·m2·mol-1

物理化学第七章电化学

物理化学第七章电化学

第七章 电化学7.1 电极过程、电解质溶液及法拉第定律原电池:化学能转化为电能(当与外部导体接通时,电极上的反应会自发进行,化学能转化为电能,又称化学电源)电解池:电能转化为化学能(外电势大于分解电压,非自发反应强制进行) 共同特点:(1)溶液内部:离子定向移动导电(2)电极与电解质界面进行的得失电子的反应----电极反应(两个电极反应之和为总的化学反应,原电池称为电池反应,电解池称为电解反应)不同点:(1)原电池中电子在外电路中流动的方向是从阳极到阴极,而电流的方向则是从阴极到阳极,所以阴极的电势高,阳极的电势低,阴极是正极,阳极是负极;(2)在电解池中,电子从外电源的负极流向电解池的阴极,而电流则从外电源的正极流向电解池的阳极,再通过溶液流到阴极,所以电解池中,阳极的电势高,阴极的电势低,故阳极为正极,阴极为负极。

不过在溶液内部阳离子总是向阴极移动,而阴离子则向阳极移动。

两种导体:第一类导体(又称金属导体,如金属,石墨);第二类导体(又称离子导体,如电解质溶液,熔融电解质)法拉第定律:描述通过电极的电量与发生电极反应的物质的量之间的关系 F z Q ξ==F n 电F -- 法拉第常数; F = Le = 96485.309 C/mol = 96500C/mol Q --通过电极的电量;z -- 电极反应的电荷数(即转移电子数),取正值; ξ--电极反应的反应进度;结论: 通过电极的电量,正比于电极反应的反应进度与电极反应电荷数的乘积,比例系数为法拉第常数。

依据法拉第定律,人们可以通过测定电极反应的反应物或产物的物质的量的变化来计算电路中通过的电量。

相应的测量装置称为电量计或库仑计coulometer,通常有银库仑计和铜库仑计 。

7.2 离子的迁移数1. 离子迁移数:电解质溶液中每一种离子所传输的电量在通过的总电量中所占的百分数,用 tB 表示1=∑±=-++t 或显然有1:t t离子的迁移数主要取决于溶液中离子的运动速度,与离子的价数无关,但离子的运动速度会受到温度、浓度等因素影响。

物理化学(印永嘉)-第七章-电化学

物理化学(印永嘉)-第七章-电化学
返回目录 退出
第七章 电化学
4. 离子独立运动定律及离子摩尔电导率
柯尔劳许:“在无限稀释时,所有电解质全部电离, 离子间的一切作用力均可忽略。因此离子在一定电场 作用下的迁移速率只取决于该种离子的本性而与共存 的其它离子的性质无关。”
(1)由于无限稀释时离子间一切相互作用均可忽略,所以
M A Mz A z-
返回目录 退出
Faraday
第七章 电化学
电量计(库仑计)
以电极上析出(固体或气体)或溶解的物质的 量测定电量。如:铜电量计,银电量计和气体电 量计。 例:阴极上析出0.4025g银,则通过的电量为: Q=nF=(0.4025/109) 96500=356.3C 阴极上析出0.2016g铜,则通过的电量为: Q=nF=(0.2016/63.5) 2 96500=612.7C
c/ moldm-3 0.01
0.10 1.00
1000g水中 KCl的质量 (单位为g) 0.74625
7.47896 76.6276
电导率/(Sm-1) 0℃ 0.077364
0.71379 6.5176
18℃ 0.122052
1.11667 9.7838
25℃ 0.140877
1.28560 11.1342
返回目录
退出
2. 法拉第定律
当电流通过电解质溶液时,通过电极的电量Q与 发生电极反应的物质的量n成正比。即Q=nF 其中: n:电极反应时得失电子的物质的量 F:为法拉第常数 F =L e =6.02210231.6022 10-19 =96485 C mol-1 通常取值为1F=96.5kC· mol-1
第一节 第二节 第三节 第四节 第五节

物理化学 第七章电化学总结

物理化学  第七章电化学总结
阳极部电解质物质的量的减少 正离子所传导的电量(Q ) 2. 阴极部电解质物质的量的减少 负离子所传导的电量(Q ) 正离子的迁移速率(ν+) r = 负离子的迁移速率(ν-) r
如果正、负离子荷电量不等,如果电极本身也发生反 应,情况就要复杂一些。
29
(2)迁移数 transfer number 某种离子运载的电流与通过溶液的总电流之比 称为该离子的迁移数, 以t 表示。

即每有1mol Ag+被还原或1molAg沉积下来,通过的 电量一定为96500C
21
2+ + 2e对于电极反应:Cu = Cu
z=2, Q=96500C 时:
Q 96500 C 0.5mol zF 2 96500 mol 1 C
n(Cu ) (Cu )
n(Cu) (Cu) 0.5mol
49
3.摩尔电导率与浓度的关系
例1例2例3例4例5
0.04 HCl 0.03 0.02 NaOH
0.01
0 0
AgNO3 CH3COOH 0.5 1.0 1.5
•随着电解质浓度c降低, 离子间引力减小, 离子 运动速度增加,故摩尔 电导率m增大。
m/(S m2 mol-1)
c , F , v , m 。
F=L· e
=6.0221367×1023 mol-1×1.6022×10-19 C =96485.309 C· -1 mol
≈96500 C· -1 mol
19
对各种电解质溶液, 每通过96485.309C的电量,
在任一电极上发生得失1mol电子的反应, 同时相
对应的电极反应的物质的量亦为1mol(所选取的 基本粒子荷一价电).

物理化学第七章 电化学

物理化学第七章 电化学

CdCl2 a Cd
Q Id t
t 电流表:指示测定时,电路中 的电流变化。
界面移动法可以较精确地测定离子迁移数,关键是如 何寻找一种指示溶液,能与被测溶液之间形成一清晰界面。 形成清晰界面的条件:
n电解后=该离子电解前的物质的量n电解前±该离子参与 电极反应的物质的量n反应±该离子迁移的物质的量n迁

由实验数据计算离子的迁移数时,如果所用电极也参加电极 反应时,应加以考虑。
例:用两个银电极电解AgNO3水溶液,在电解前,溶液中每1kg 水含43.50mnol AgNO3。实验后,银库仑计中有0.723mmol 的Ag 沉积。由分析知,电解后阳极区有23.14g水和1.390mmolAgNO3。 试计算t(Ag+)和t(NO3-)。 解:用银电极电解AgNO3溶液时,电极反应:
导电机理 电子导体:电子定向运动 离子导体:离子在溶液中定向迁移 电流流经导体 不发生化学变化 发生电解反应 温度升高 导电性下降 导电性上升
原电池和电解池的共同特点: 当外电路接通时在电极与溶液的界面上有电子得失的 反应发生,溶液内部有离子做定向迁移运动。
电极反应:把电极上进行的有电子得失的化学反应. 两个电极反应的总和对原电池叫电池反应,对电解池叫电解 反应。 注意:阴离子在阳极失去电子,失去电子通过外线路流向电源 正极.阳离子在阴极得到电子. 发生氧化反应的电极叫阳极,发生还原反应的电极叫阴极. 正负极依电势高低来定.
阳极:Ag→Ag++e阴极:Ag++e→Ag
电解前阳极区在23.14g水中有AgNO3为:
43.50 23.14 1.007mmol 1000
由库仑计中有0.723mmol的Ag沉积,则在电解池的阳极也有相 同数量的Ag被氧化为Ag+ 所以Ag+迁出阳极区的摩尔数为: (n电解前+n反应)-n电解后=1.007+0.723-1.390=0.340mmol

物理化学第七章 电化学(72)

物理化学第七章 电化学(72)

电解质溶液的电导率可以看着是相距1m的两电极间放置 体积为1m3的电解质溶液的电导。
(3)摩尔电导率m 摩尔电导率---单位浓度的电解质溶液的电导率, 单位为S· 2· -1 m mol
m c
例题:在291K时,浓度为10mol· -3 的CuSO 4 溶液的电导率为 m 0.1434 S· -1,试求CuSO4的摩尔电导率 m (CuSO4 ) 和 ( 1 CuSO4 ) m 2 1 的摩尔电导率 m ( CuSO4 ) 2 解: 0.1434S m1 m (CuSO4 ) 14.34 103 S m2 mol 1 c(CuSO4 ) 10mol m3
1 0.1434S m 1 m ( CuSO4 ) 7.17 103 S m 2 mol 1 1 2 2 10mol m 3 c( CuSO4 ) 2 注意:
1.计算时浓度c的单位应采用mol· -3表示。 m 2. 在使用摩尔电导率这个量时,应将浓度为c的物质的基本 单元置于 m 后的括号内,以免出错。
单位:m 2 · -1· -1 V s
u t u u
u t u u
已知OH-离子的迁移速度是K+离子的3倍。
通电后:
电解质溶液中各区仍保持电中性,中部溶液浓度不变,但是 阴、阳两极部的浓度互不相同,且两极部的浓度比原溶液都 有所下降,但降低程度不同。
离子电迁移过程中的规律:
2 t ( SO4 ) 1 t (Cu 2 ) 0.711
§7.3 电导、电导率和摩尔电Fra bibliotek率• 3.1 定义
(1)电导G 电导---电阻的倒数,单位为S
G 1
R
1S 11
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电鳗点亮彩灯
研究人员模仿电鳗发明了新电池
电化学
值得探讨的问题
2020年7月29日
1. 一个电池的构件由那些? 2. 单个电池的电压能否超过5V? 3. 实际电池有12V或100V以上,如何做? 4. 化学能源以电化学方式进行时效率更高? 5. 如何提高可充放电池的寿命? 6. 如何设计电池?
7. 电镀的目的是什么?
7.1.4 离子的电迁移率和迁移数
电迁移现象: 离子在电场作用下做定向移动
1. 离子的电迁移速率u :与离子和溶剂性质有关,
同时与电场强度dE/dl 有关,一般有
u
u
dE dl
u
u
dE dl
u+、u-: 称为正、负离子的电迁移率, 亦称离子淌度(ionic mobility)
FaradLeabharlann y第 七 章 电 化电化学
引言
2020年7月29日
电化学:化学能 电能间相互转换规律的科学
电解
电能
化学能
原电池、电解池:
电池
实现化学能与电能之间相互转换的装置
本章研究电解质溶液的导电机理、原电池、电解等
电化学
2020年7月29日
电化学
2020年7月29日
电化学
2020年7月29日
例: 电解食盐水
阳极反应: 2Cl- → Cl2 + 2e阴极反应: 2H2O+ 2e- → H2+2OH电池反应:两个电极反应总结果
2H2O+2Cl- =H2+Cl2+2OH-
电解池
电化学
2020年7月29日
7.1.3 法拉第定律
(1) 实验发现
对不同电解质溶液,通过 96485.309C电荷量,
电化学
2020年7月29日
7.1 电化学基本概念 7.2 电解质溶液的电导及其应用 7.3 电解质溶液的热力学性质 7.4 可逆电池与电池电动势 7.5 原电池热力学 7.6 电极电势与电极的种类 7.7 电池设计原理与应用 7.8 电极极化与电解 7.9 应用电化学
引言 基本要求 小结 作业 测验 说明
8. 如何通过电解方法制取物质? 9. 如何利用电化学原理进行环境保护?
电化学
7.1 电化学基本概念
2020年7月29日
7.1.1 导体的分类 7.1.2 原电池与电解池 7.1.3 法拉第定律 7.1.4 离子的电迁移率和迁移数
电化学
7.1.1 导体的分类
2020年7月29日
(1)第一类导体 又称电子导体,如金属、石墨等。
电化学
注意
2020年7月29日
法拉第定律是自然科学中最准确的定 律之一,不受温度、压力、浓度、电极材 料和溶液性质的影响。
原因:本质为电荷守恒定律
电化学
2020年7月29日
(4) 电量计
测量电路中通过电荷量的装置
将电极置于电解质溶液中,串联到电路上,根 据通电后电极反应物质的量变化测所通电荷量。
A.自由电子作定向移动而导电 B.导电过程中导体本身不发生变化 C.温度升高,电阻也升高 D.导电总量全部由电子承担
电化学
2020年7月29日
(2)第二类导体 又称离子导体,如电解 质溶液、熔融电解质等。
A.正、负离子作反向移动而导电 B.导电过程中有化学反应发生 C.温度升高,电阻下降 D.导电总量分别由正、负离子分担
电化学
(2) 1mol电子的电荷量
2020年7月29日
F =Le=6.0221367×1023mol-1×1.60217733×10-19C = 96485.309C.mol-1≈96500 C·mol-1
式中:e 为电子的电荷量(或元电荷的电荷量)
法拉第常数: F = 96500C·mol-1
实验表明: 通过 1mol电荷量于溶液,会引起 1mol电子 对应的电极反应。
电化学
(3) 法拉第( Faraday )定律
2020年7月29日
通过溶液电荷量为Q 时,电极反应的量 n= Q / F = I t / F
I、t 分别为通过溶液的电流和时间
例:通过电荷量为 Q 时, 对反应 1mol Mz+ + z mol e- → 1mol M
Mz+ 在阴极上还原的量: (Q/zF) mol
电化学
2020年7月29日
(3) 电解池 利用电能产生化学反应的装置
电解池中的反应:ΔT,pGm > 0
电极反应: 阳极(正极):缺电子(电势高) 氧化:负离子→高价 + e-
阴极(负极):富电子(电势低) 还原:正离子+ e-→低价
离子运动:正离子→阴极 负离子→阳极
电解池
电化学
2020年7月29日
负极: 电势低的极称为负极,电子从负极
流向正极。在原电池中负极是阳极; 在电解池中负极是阴极。
电化学
2020年7月29日
阴极: 发生还原作用的极称为阴极,在原
电池中,阴极是正极;在电解池中, (Cathode) 阴极是负极。
阳极: 发生氧化作用的极称为阳极,在原
电池中,阳极是负极;在电解池中, (Anode) 阳极是正极。
电化学
(1) 电池
7.1.2 原电池与电解池
电能与化学能相互转换的装置
2020年7月29日
化学能
电能
组成: (1) 两个第1类导体+电解质溶液 (2) 电极1 + 电极2: 第1类导体+相关电解质溶液
电池1
电池2
电化学
电化学规定
2020年7月29日
正极: 电势高的极称为正极,电流从正极
流向负极。在原电池中正极是阴极; 在电解池中正极是阳极。
银电荷计
电解池
电化学
金属电量计
2020年7月29日
AgNO3为电解质,银电 极分别作阴阳极与线路 串联,根据电极增加或 减少量计算电荷量
CuSO4为电解质,铜电 极分别作阴阳极与线路 串联,根据电极增加或 减少量计算电荷量
Ag AgNO3 Ag 银电量计
Cu CuSO4 Cu 铜电量计
电化学
2020年7月29日
在电极上发生得失 1mol 电子 的电极反应
例:AgNO3溶液,阴极上发生 1mol 电子的反应 Ag+ + e-= Ag 产生 1 mol Ag
CuSO4溶液,阴极上发生1 mol电子 的反应 (1/2)Cu2+ + e- =(1/2)Cu 产生 (1/2) mol Cu
1mol电子的电荷量,记为 F=96485.309C·mol-1
电化学
2020年7月29日
(2) 原电池 利用两电极的反应产生电流的装置
作用:化学能 → 电能 原电池中的化学反应
电极反应:
ΔT , pGm≤0 自发
阳极(负极):富电子(电势低)
氧化:负离子→高价 + e-
阴极(正极):缺电子(电势高)
还原:正离子+ e-→低价
离子运动:正离子→阴极 负离子→阳极
相关文档
最新文档