第三章 平稳时间序列分析

合集下载

第三章线性平稳时间序列模型资料

第三章线性平稳时间序列模型资料

纯随机性
(k) 0,k 0
各序列值之间没有任何相关关系,即为 “没有记忆” 的序列
方差齐性(平稳) DX t (0) 2 根据马尔可夫定理,只有方差齐性假定成立时,
用最小二乘法得到的未知参数估计值才是准确的、
有效的
上一页 下一页 返回本节首页
(三)纯随机性检验
1.检验原理 2.假设条件 3.检验统计量 4.判别原则 5.应用举例
原假设:延迟期数小于或等于 期m 的序列
值之间相互独立
H 0:1 2 m 0,m 1
H
:至少存在某个
1
k

0,m 1,k

m
m
备择假设:延迟期数小于或等于 期的序
列值之间有相关性
上一页 下一页 返回本节首页
3.检验统计量
Q统计量 (大样本)
m
Q n
ˆ
(2)自相关图检验(判断准则)
平稳序列通常具有短期相关性。该性质用自相 关系数来描述就是随着延迟期数的增加,平稳序 列的自相关系数会很快地衰减向零。
若时间序列的自相关函数在k>3时都落入置 信区间,且逐渐趋于零,则该时间序列具有平稳 性;
若时间序列的自相关函数更多地落在置信区间 外面,则该时间序列就不具有平稳性。
严平稳
严平稳是一种条件比较苛刻的平稳性定义,它认为只 有当序列所有的统计性质都不会随着时间的推移而 发生变化时,该序列才能被认为平稳。
宽平稳
宽平稳是使用序列的特征统计量来定义的一种平稳性。 它认为序列的统计性质主要由它的低阶矩决定,所 以只要保证序列低阶矩平稳(二阶),就能保证序 列的主要性质近似稳定。
返回例题
例1居民消费价格指数自相关图

第三章线性平稳时间序列模型

第三章线性平稳时间序列模型
(2) Exsεt = 0, ∀s < t 那么我们就说xt遵循一个一阶自回归或AR(1)随机过程。
可见,AR(1)模型中,xt在t时刻值依赖于两部分,一部分依 模型中, 时刻值依赖于两部分, 可见 模型中 时刻值依赖于两部分 赖于它的前一期的值x 另一部分是依赖于与x 赖于它的前一期的值 t-1;另一部分是依赖于与 t-1不相关 的部分ε 的部分 t 可将AR(1)模型写成另一种形式: 模型写成另一种形式: 可将 模型写成另一种形式
xt = ϕ1xt −1 + ϕ2 xt −2 +L+ ϕ p xt − p + εt
其中: (1) p ≠ 0 (2) εt是白噪声序列 (3) Exsε t = 0, ∀s < t
E (ε t ) = 0,Var (ε t ) = σ ε2 , E (ε t ε s ) = 0, s ≠ t
那么我们就说xt遵循一个p阶自回归或AR(p)随机过程。
例如: ARIMA(2,1,2)表示先对时间序列进行一阶差分,使之 转化为平稳序列,然后对平稳序列建立ARMA(2,2)模型。 ARIMA(p,0,q)就相当于ARMA(p,q)。 ARIMA(p,0,0)就相当于AR(p)。 ARIMA(0,0,q)就相当于MA(q)。 对于一个ARIMA(p,d,q)也可以用推移算子B表示如下 ϕ (B )(1 − B) d xt = θ ( B)ε t 其中: ϕ (B ) = 1 − ϕ 1 B − ϕ 2 B 2 − L − ϕ p B p
(二).二阶自回归模型,AR(2)
1.设{xt}为零均值的随机序列,如果关于xt的合适模型为: 其中:
xt = ϕ1xt −1 + ϕ2 xt −2 + εt

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。

所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。

目前对平稳序列最常用的预测方法是线性最小方差预测。

线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。

在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。

二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。

线性平稳时间序列分析

线性平稳时间序列分析

线性平稳时间序列分析线性平稳时间序列分析是一种重要的时间序列分析方法,用于研究随时间变化的数据。

它基于一个核心假设,即数据的均值和方差在随时间推移的过程中保持不变。

线性平稳时间序列可以用数学模型来描述,通常使用自回归(AR)模型、滑动平均(MA)模型或自回归滑动平均(ARMA)模型。

这些模型基于该系列在某一时间点的值与该系列在过去时间点的值之间的线性关系。

为了进行线性平稳时间序列分析,首先需要检验数据是否满足平稳性的假设。

常用的检验方法包括ADF检验和单位根检验。

若数据不满足平稳性的假设,则需要通过差分操作将其转化为平稳时间序列。

在得到平稳的时间序列后,可以使用最小二乘法对时间序列进行模型拟合。

通过对数据进行模型拟合,我们可以得到模型的系数以及误差项的信息。

利用这些信息,可以进行时间序列的预测和分析。

在预测方面,线性平稳时间序列分析可以利用过去的观测值来预测未来的值。

预测方法包括简单的移动平均法和指数平滑法,以及更复杂的AR、MA和ARMA模型。

在分析时间序列方面,线性平稳时间序列分析可以通过模型的系数和误差项的信息来揭示数据的特征和规律。

例如,可以用模型的系数来检验是否存在滞后效应,用误差项的信息来检验模型的拟合程度。

总之,线性平稳时间序列分析是一种重要的时间序列分析方法,可以帮助我们研究随时间变化的数据。

通过对数据进行模型拟合、预测和分析,我们可以揭示数据的特征和规律,从而提供决策支持和预测能力。

线性平稳时间序列分析是一种重要的时间序列分析方法,它广泛应用于经济学、金融学、工程学等领域。

该方法基于数据的均值和方差在时间推移过程中保持不变的假设,旨在研究随时间变化的数据及其内在规律,以便进行预测、决策支持和其他分析。

在线性平稳时间序列分析中,首先需要检验数据是否符合平稳性的假设。

平稳性是指数据的均值和方差不随时间变化而发生显著变化。

为了检验平稳性,在实际应用中常常使用单位根检验或ADF检验等方法。

实验三平稳时间序列分析

实验三平稳时间序列分析
84.3
82.9
84.7
82.9
81.5
83.4
87.7
81.879.685 Nhomakorabea877.9
89.7
85.4
86.3
80.7
83.8
90.5
84.5
82.4
86.7
83
81.8
89.3
79.3
82.7
88
79.6
87.8
83.6
79.5
83.3
88.4
86.6
84.6
79.7
86
84.2
83
84.8
83.6
82.1
81.4
85
85.8
84.2
83.5
86.5
85
80.4
85.7
86.7
86.7
82.3
86.4
82.5
82
79.5
86.7
80.5
91.7
81.6
83.9
85.6
84.8
78.4
89.9
85
86.2
83
85.4
84.4
84.5
86.2
85.6
83.2
85.7
83.5
80.1
82.2
88.6
图2
自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。
纯随机性检验见下图:(图3)
图3
6阶以内P值显著小于0.05,可以认为这个拟合模型的残差序列不属于白躁声序列
(2)如果序列平稳且非白躁声,选折适当模型拟合序列的发展

计量经济学:平稳时间序列分析-差分方程与延迟算子

计量经济学:平稳时间序列分析-差分方程与延迟算子

f (t)
11 0
f (t1)
11
1
f (1)
11 t 1
t
, , 给出初值y-1, y-2,…,y-p以及 0 1
t 的值,即可得到yt。
定理:矩阵F的特征根满足的特征方程为
p 1 p1 2 p2 p1 p 0
1、具有相异特征根的p阶差分方程的通解
如果矩阵F的特征根是相异的,那么存在一个非奇异矩阵
1
0
0
F 0 1 0
0 0 0
p1 p
0
0
0 0 ,
1 0
t
0
Vt
0
0
则原p阶差分方程变为一阶向量差分方程
t Ft1 Vt
参照一阶向量差分方程的递归解法有
t
F
t
1 1
F tV0
F t1V1
F t2V2
FVt1 Vt

yt
yt 1
y1
y2
0
0
t 21
1
2 1 2 3
1 p 2 p
t p1
1
p 1 p 2
p p1
将此结果代入 ci t1iti1 即得
ci
p
p1 i
k1(i k )
k i
如果从t期开始迭代,则有
yt j
f ( j1)
11
yt 1
f y ( j1)
12
t2
f y ( j1)
11 0
f (t1)
11
1
f (1)
11 t 1
t
其中
f ( j)
11
c11j
c22j
cppj

第三章平稳时间序列分析

第三章平稳时间序列分析

欢迎共阅t P p t tt t t x B x x B x Bx x ===---221第3章 平稳时间序列分析一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。

3.1 方法性工具 3.1.1 差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x 以此类推:记t p x ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x 二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇3.1.2 延迟算子 一、定义延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。

记B 为延迟算子,有延迟算子的性质:1.10=B2.若c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B4.n t t n x x B -=5.)!(!!,)1()1(0i n i n C B C B in i i nni i n-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分3.2 ARMA 模型的性质 3.2.1 AR 模型定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε(3.4)AR(p)模型有三个限制条件:条件一:0≠p φ。

这个限制条件保证了模型的最高阶数为p 。

平稳时间序列分析

平稳时间序列分析

t Pp t tt t t x B x x B x Bxx ===---M221第3章 平稳时间序列分析一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。

方法性工具 差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x 记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x以此类推:记t px ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇ 延迟算子 一、定义延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。

记B 为延迟算子,有延迟算子的性质:1.10=B2.若c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B4.n t t nx x B-=5.)!(!!,)1()1(0i n i n CB C B i niinni in-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分ARMA 模型的性质 AR 模型定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t πΛ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφεAR(p)模型有三个限制条件: 条件一:0≠pφ。

这个限制条件保证了模型的最高阶数为p 。

条件二:t s E Var E t s t t ≠===,0)(,)(,0)(2εεσεεε。

第三章 线性平稳时间序列分析讲解

第三章 线性平稳时间序列分析讲解
的根的绝对值必须小于1,即满足 1 。
对于平稳的AR(1)模型,经过简单的计算易 得
3.2.2 二阶自回归过程AR(2)
• 当变量当前的取值主要与其前两时期的取 值状况有关,用数学模型来描述这种关系 就是如下的二阶自回归模型AR(2):
• 引入延迟算子 B 的表达形式为:
• 下面利用特征方程的根与模型参数1, 2 的关系,给出AR(2) 模型平稳的1, 2
• 延迟算子B 有如下性质:
t
• 定义如下形式方程为序列{zt : t 0, 1, 2, }
t 其的中线p性差1,分方1,程:,zt p为1zt实1 数,hpt
zt p

ht
的已
知函数。
• 特别地,当函数 ht 0 时,差分方程:
zt 1zt1 p zt p 0
称为齐次线性差分方程。否则,线性差分
线性平稳时间序列分析
• 在时间序列的统计分析中,平稳序列是一类重要 的随机序列。在这方面已经有了比较成熟的理论 知识,最常用的是ARMA(Autoregressive Moving Average)序列。用ARMA模型去近似地 描述动态数据在实际应用中有许多优点,例如它 是线性模型,只要给出少量参数就可完全确定模 型形式;另外,便于分析数据的结构和内在性质, 也便于在最小方差意义下进行最佳预测和控制。 本章将讨论ARMA模型的基本性质和特征,这是 时间序列统计分析中的重要理论基础。
• 3.3.1一阶移动平均过程MA(1)
• 图3.2为一个零均值的MA(1)序列200个模拟 数据。
• 类似于自回归模型的平稳性讨论,与移动 平均过程相联系的一个重要概念是可逆性。 对于零均值的MA(1)序列
X t t t1
3.3.2 q阶移动平均过程MA(q)

时间序列分析--第三章平稳时间序列分析

时间序列分析--第三章平稳时间序列分析

2019/9/23
课件
25
Green函数递推公式
原理 xt( BG )x(tB )tt (B)G(B)t t
方法
待定系数法
递推公式
2019/9/23
G G0j 1k j1kGjk, j1,2, ,其中 k 0k ,k ,kpp
非齐次线性差分方程的通解
齐次线性差分方程的通解和非齐次线性差分方程的
特解之和 z t
zt ztzt
2019/9/23
课件
10
3.2 ARMA模型的性质
AR模型(Auto Regression Model) MA模型(Moving Average Model) ARMA模型(Auto Regression Moving
2019/9/23
课件
38
例3.5:— (4 )x t x t 1 0 .5 x t 2t
自相关系数不规则衰减
2019/9/23
课件
39
偏自相关系数
定义
对于平稳AR(p)序列,所谓滞后k偏自相关系数就 是指在给定中间k-1个随机变量 的 xt1,xt2, ,xtk1 条件下,或者说,在剔除了中间k-1个随机变 量的干扰之后, x 对 tk x影t 响的相关度量。用数 学语言描述就是
2019/9/23
课件
29
例3.3:求平稳AR(1)模型的协方差
递推公式
k 1k11k0
平稳AR(1)模型的方差为
0


2
1 12
协方差函数的递推公式为
k
1k
2 112
,k1
2019/9/23
课件

时间序列分析方法 第03章 平稳ARMA模型

时间序列分析方法  第03章 平稳ARMA模型

第三章 平稳ARMA 过程一元ARMA 模型是描述时间序列动态性质的基本模型。

通过介绍ARMA 模型,可以了解一些重要的时间序列的基本概念,并且为描述单变量时间序列的动态性质提供一类十分有用的模型。

§3.1 预期、平稳性和遍历性3.1.1 预期和随机过程假设可以观察到一个样本容量为T 的随机变量t Y 的样本:},,,{21T y y y这意味着这些随机变量之间的是相互独立且同分布的。

例3.1 假设T 个随机变量的集合为:},,,{21T εεε ,),0(~2σεN i 且相互独立,我们称其为高斯白噪声过程产生的样本。

对于一个随机变量t Y 而言,它是t 时刻的随机变量,因此即使在t 时刻实验,它也可以具有不同的取值,假设进行多次试验,其方式可能是进行多次整个时间序列的试验,获得I 个时间序列:+∞=-∞=t t t y }{)1(,+∞=-∞=t t t y }{)2(,…,+∞=-∞=t t I t y }{)(将其中仅仅是t 时刻的观测值抽取出来,得到序列:},,,{)()2()1(I t t t y y y ,这个序列便是对随机变量t Y 在t 时刻的I 次观测值,也是一种简单随机子样。

定义3.1 假设随机变量t Y 是定义在相同概率空间},,{P ℜΩ上的随机变量,则称随机变量集合},2,1,0,{ ±±=t Y t 为随机过程。

例3.2 假设随机变量t Y 的概率密度函数为:]21exp[21)(22t t Y y y f t σσπ= 此时称此时密度为该过程的无条件密度,此过程也称为高斯过程或者正态过程。

定义3.2 可以利用各阶矩描述随机过程的数值特征:(1) 随机变量t Y 的数学期望定义为(假设积分收敛):⎰==+∞∞-tt Y t t t dy y f y Y E t )()(μ (3.1) 此时它是随机样本的概率极限:∑==∞→I i i t I t y I P Y E 1)(1lim)( (3.2) (2) 随机变量t Y 的方差定义为(假设积分收敛): 20)(t t t Y E μγ-= (3.3) 例3.3 几种重要类型的随机过程1) 假设},,{21 εε是一个高斯白噪声过程,随机过程t Y 为常数加上高斯白噪声过程:t t Y εμ+=则它的均值和方差分别为:μεμμ=+==)()(t t t E Y E2220)()(σεμγ==-=t t t t E Y E(2) 随机过程t Y 为时间的线性趋势加上高斯白噪声过程:t t t Y εβ+=则它的均值和方差分别为:t E t Y E t t t βεβμ=+==)()(2220)()(σεμγ==-=t t t t E Y E3.1.2 随机过程的自协方差函数将j 个时间间隔的随机变量构成一个随机向量),,,(1'=--j t t t t Y Y Y X ,通过随机试验可以获得该随机向量的简单随机样本。

(时间管理)第章平稳时间序列分析

(时间管理)第章平稳时间序列分析

(时间管理)第章平稳时间序列分析第3章平稳时间序列分析本章教学内容和要求:了解时间序列分析的方法性工具;理解且掌握ARMA模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模和预测。

本章教学重点和难点:利用软件进行模型的识别、参数的估计以及序列的建模和预测。

计划课时:21(讲授16课时,上机3课时、习题3课时)教学方法和手段:课堂讲授和上机操作§3.1方法性工具壹个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是壹个蕴含着关联信息的平稳序列。

于统计上,我么通常是建立壹个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。

ARMA(autoregressionmovingaverage)模型是目前最常用的壹个平稳序列拟合模型。

时间序列分析中壹些常用的方法性工具能够使我们的模型表达和序列分析更加简洁、方便。

壹、差分运算(壹)p阶差分相距壹期的俩个序列值之间的减法运算称为1阶差分运算。

记▽为的1阶差分:▽对1阶差分后的序列再进行壹次1阶差分运算称为2阶差分,记▽2为的2阶差分:▽2=▽-▽以此类推,对p-1阶差分厚序列再进行壹次1阶差分运算称为p阶差分。

记▽p为的p阶差分:▽p=▽p-1-▽p-1(二)k步差分相距k期的俩个序列值之间的减法运算称为k步差分运算。

记▽k为的k步差分:▽k=例:简单的序列::6,9,15,43,8,17,20,38,4,10,1阶差分:▽▽……▽,即1阶差分序列▽:3,6,28,-35,9,3,18,-34,6,2阶差分:▽2=▽-▽=3▽2=▽-▽=22……▽2=▽-▽=-40即2阶差分序列▽2:3,22,-63,-54,-6,16,-52,-40,2步差分:▽2▽2……▽2即2步差分序列:9,34,-7,-26,12,21,-16,-28二、延迟算子(滞后算子)(壹)定义延迟算子类似于壹个时间指针,当前序列值乘以壹个延迟算子,就相当于把当前序列值的时间向过去拨去了壹个时刻。

第3章平稳时间序列分析

第3章平稳时间序列分析
Byt yt1 B(Byt ) B( yt1 ) yt2
记为 B2 yt yt2 。一般地,对任意整数 k,定义
Bk yt ytk
(二)延迟算子的性质
1. B0 1, Bc c 2. B(c xt ) c B( xt ) c xt1, c为任意常数 3. B( xt yt ) xt1 yt1
4 x=x(-1)-0.5x(-2)+u
3 2 1 0 -1 -2 -3 -4
10 20 30 40 50 60 70 80 90 100
X
(3)生成非平稳序列 xt = -1.1xt-1+ ut, ut IID(0, 1) 的 Eviews程序:
smpl @first @last series u=nrnd smpl @first @first series x=0 smpl @first+1 @last series x=-1.1*x(-1)+u
xt xs
yt ys
所以,以后我们重点讨论中心化时间序列。
AR模型的算子表示: 令 (B) 1 1B 2B2 pB p 则 AR( p) 模型可表示为
(B)xt t
(二)AR模型平稳性判别
1. 判别原因: 要拟合一个平稳序列,用来拟合的模型显然 也应该是平稳的。 AR 模型是常用的平稳序列的 拟合模型之一,但并非所有的 AR 模型都是平稳 的 ,而非平稳的AR模型在实际应用中是没有意义 的。
4. (Bm Bn )xt Bm xt Bn xt xtm xtn
5. Bm Bn xt BnBm xt Bmn xt xtmn
n
6. (1 B)n (1)nCni Bi i0
7. B[ B xt ] B[ B xt ]

第3章平稳时间序列分析

第3章平稳时间序列分析

时间序列分析
(1) X t = X t −1 − 0.5 X t − 2 + at
• 自相关函数呈现出“伪周期”性
• 理论偏自相关函数
⎧2 ,k =1 ⎪3 ⎪ φkk = ⎨−0.5 , k = 2 ⎪0 ,k ≥ 3 ⎪ ⎩
• 样本偏自相关图
时间序列分析
(2) X t = − X t −1 − 0.5 X t − 2 + at
由于格林函数描述了系统的动态性,那么在随 机扰动序列已知的情况下,格林函数就完全 能够确定系统的行为,从而根据已知的扰动 序列和格林函数便可确定系统的响应 拟合AR(p)模型的过程也就是使相关序列独立 化的过程.
时间序列分析
• 平稳性的Green函数判别法
欲使序列平稳,则格林函数应满足
当j → ∞时,有G j → 0
ρ k 减小,且以指数速度减小,越来越与0接近,
这种现象称为拖尾.
时间序列分析
4、AR(1)的PACF (1) PACF的求解
AR (1)的 PACF 按照 PACF的递推公式有:
ρ 2 − ρ1φ11 φ12 − φ12 φ11 = ρ1; φ 22 = = =0 2 1 − ρ1φ11 1 − φ1 φ21 = φ11 − φ 22φ11 = φ1 ρ 3 − ρ 2φ 21 − ρ1φ 22 φ13 − φ12φ1 − 0 = =0 φ33 = 2 1 − ρ1φ 21 − ρ 2φ 22 1 − φ1 − 0
时间序列分析
(三)AR(1)的统计特征
1、 AR(1)的方差:
• 平稳AR(1)模型的传递形式为
∞ ∞ at i Xt = = ∑ (φ1 B) at = ∑ φ1i at −i 1 − φ1 B i =0 i =0

时间管理-第三章平稳时间序列分析1s

时间管理-第三章平稳时间序列分析1s

其中 Ci , (i 1, 2) 为任意实数,
本章结构
1. 方法性工具 2. ARMA模型 3. 平稳序列建模 4. 序列预测
3.2 ARMA模型
AR模型(Auto Regression Model) MA模型(Moving Average Model) ARMA模型(Auto Regression Moving
例 y(k 1) ay(k) b 显然是一个一阶非齐次差分方程。
解:求相应的齐次差分方程的通解, 则有
k1 ak 0, a
∴ y(k) ak 是相应的齐次方程的通解。 下面求特解,设 y(k) 常数 d ,则
d ad b,
d b 1 a
故原方程的通解为



c
t
pp
复根场合
zt

rt (c1eit
c2eit ) c33t



c
p

t p
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解
zt a1 zt1 a2 zt2 a p zt p h(t)
n
(1 B)n (1)i Cni Bi i0
C
i n

n! i!(n i)!
用延迟算子表示差分运算
p 阶差分
p
p xt (1 B) p xt
(1)i
C
i p
xt
i
i0
k 步差分
k xt xtk (1 B k )xt
线性差分方程
非齐次线性差分方程的通解
齐次线性差分方程的通解 zt 和非齐次线性差分方程的特

第三章平稳时间序列分析-3

第三章平稳时间序列分析-3

n
Q(ˆ )
2 t
t1
n
( xt 1 xt1 p xt p 1 t1 q tq )2 t 1
实际中最常用的参数估计方法是条件最小二乘估 计法
条件最小二乘估计
假设条件:过去未观测到的序列值为0,即
xt 0 , t 0
从而 t
(B) (B) xt
xt
t
i xt1
i 1
由时序图可见,无周期性和单调趋势,序列平稳
序列自相关图
除延迟1阶在2倍标准差外,其它都在2倍标准差范围内 波动,平稳,自相关系数1阶截尾。
所以可考虑拟合模型MA(1)
序列偏自相关图
显然,偏自相关系数拖尾。
【例3.9】 1880-1985全球气表平均温度改变值差分序列
由时序图可见,无周期性和单调趋势,序列平稳
s
t
特别当φ0=0 时,称为中心化ARMA(p,q)模型
系数多项式
引进延迟算子,中心化ARMA(p,q)模型 可简记为 (B)xt (B)t
其中p阶自回归系数多项式:
(B) 11B 2B2 pBp
q阶移动平均系数多项式:
(B) 11B 2B2 q Bq
2、平稳条件与可逆条件
ARMA(p,q)模型的平稳条件 P阶自回归系数多项式Φ(B)=0的根都在单 位圆外,即ARMA(p,q)模型的平稳性完全由 其自回归部分的平稳性决定
Pr
2 n
ˆk
2 n
0.95
Pr
2 n
ˆkk
2 n
0.95
模型定阶的经验方法:
若样本(偏)自相关系数在最初d阶明显大于2 倍标准差,后面几乎95%的值都落在2倍
标准差范围内,且衰减为小值波动的过程 很突然。这时常视为截尾,截尾阶数为d。

第三章平稳时间序列分析

第三章平稳时间序列分析
(1)xt 0.8xt1 t (2)xt 1.1xt1 t
(3)xt xt1 0.5xt2 t
(4)xt xt1 0.5xt1 t
例3.1平稳序列时序图
(1)xt 0.8xt1 t
(3)xt xt1 0.5xt2 t
例3.1非平稳序列时序图
(2)xt 1.1xt1 t
❖ 判别方法
▪ 单位根判别法 ▪ 平稳域判别法
自回归方程的解
❖ 任一个中心化 AR( p)模型 (B)xt t都可以视为一个非齐次 线性差分方程,它的通解求法如下
(1)求齐次线性差分方程 (B)xt 0的一个通解 xt
d
p2m
m
xt
cjt
j1 t 1
c
j
t j
rjt (c1 j cos t j c2 j sin t j )
E[(xt Eˆxt )(xtk Eˆxtk )] kk E[(xtk Eˆxtk )2 ]
xt ,xtk xt1 ,
, xtk1
E[(xt Eˆxt )(xtk Eˆxkt E[(xtk Eˆxtk )2 ]
1 1
0 p
Green函数定义
❖ AR模型的传递形式
xt
t
(B)
p i 1
1
ki
i
B
t
p i 1
ki (i B) j t
j0
p
kii jt j
j0 i1
G jt j j0
❖其中系数 {G j , j 1,2,} 称为Green函数
Green函数递推公式
❖ 原理
xt (BG)x(t
❖ 线性差分方程对应的特征根的性质对判断模型的 平稳性有着非常重要的意义

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析轴表示序列取值。

时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。

根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。

如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。

从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳。

procarimadata=e某ample3_1;identifyvar=某nlag=8;run;图一图二样本自相关图图三样本逆自相关图2图四样本偏自相关图图五纯随机检验图实验结果分析:(1)由图一我们可以知道序列样本的序列均值为-0.06595,标准差为1.561613,观察值个数为84个。

(2)根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。

我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向0.03衰减的速度非常快,延迟5阶之后自相关系数即在0.03值附近波动。

这是一个短期相关的样本自相关图。

所以根据样本自相关图的相关性质,可以认为该序列平稳。

(3)根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列样本属于非白噪声序列。

procarimadata=e某ample3_1;identifyvar=某nlag=8minicp=(0:5)q=(0:5);run;IDENTIFY命令输出的最小信息量结果3某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。

建模的基本步骤如下:A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。

第三章平稳时间序列分析优秀课件 (2)

第三章平稳时间序列分析优秀课件 (2)

xt1t1Bi0(1B)i
t
i0
i 1
ti
Green函数为
Gj 1j,j0,1,
平稳AR(1)模型的方差
2
V(a xt) r G 2 jV(at) r
2j 1
j 0
j 0
211 2
协方差函数
在平稳AR(p)模型两边同乘 x t k ,k 1,再求期望
E ( x t x t k ) 1 E ( x t 1 x t k ) p E ( x t p x t k ) E ( t x t k )
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解z t
z t a 1 z t 1 a 2 z t 2 a p z t p h ( t)
非齐次线性差分方程的通解
齐次线性差分方程的通解和非齐次线性差分方程的
特解之和 z t
zt ztzt
特征根
平稳域
1 1
2 1
4 2
2
2 1
2 1
4
2
2
{1,221 ,2 且 11 }
例3.1平稳性判别
模 型
特征根判别
(1)
1 0.8
(2)
1 1.1
(3)
1
1 2
i
2
1i 2
(4)
1
1 2
3
2
1 2
3
平稳域判别
结 论
0.8
平稳
1.1
非 平稳
2 0 .5 ,21 0 .5 ,21 1 .5 平稳
2 0 .5 ,21 1 .5 ,21 0 .5
非 平稳
平稳AR模型的统计性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 3 2 2
2 0.5,2 1 1.5,2 1 0.5
平稳AR模型的统计性质
均值 方差 协方差 自相关系数 偏自相关系数
均值
如果AR(p)模型满足平稳性条件,则有
Ext E(0 1xt 1 p xt p t )
j
平稳AR(1)模型的方差
2 2j 2 Var( xt ) G 2 Var ( ) j t 1 2 1 j 0 j 0 1
方差
平稳AR模型的传递形式
xt G j t j
j 0
两边求方差得
2 Var( xt ) G 2 j , G j为Green函数 j 0
齐次线性差分方程
zt a1 zt 1 a2 zt 2 a p zt p 0
齐次线性差分方程的解
特征方程 p a1p1 a2p2 a p 0
特征方程的根称为特征根, 记作
齐次线性差分方程的通解
不相等实数根场合
t zt c11 c2 t2 c p tp
根据平稳序列均值为常数,且{ t }为白噪声序列,有 推导出
Ext , E( t ) 0 , t T

1 1 p
0
Green函数定义
AR模型的传递形式
p ki xt t ki (i B) j t ( B) i 1 1 i B i 1 j 0 p
例3.4:求平稳AR(2)模型的协方差
平稳AR(2)模型的协方差函数递推公式为
1 2 2 0 (1 )(1 )(1 ) 2 1 2 1 2 1 0 1 1 2 k 1 k 1 2 k 2,k 2
{1,2 , ,p 特征根都在单位圆内}
对于低阶自回归模型用平稳域的方法判别模型的 平稳性通常更为简便。
AR(1)模型平稳条件
方程结构
xt xt t
特征根

<1
平稳域
AR(2)模型的平稳条件
方程结构
xt 1 xt 1 2 xt 2 t
(1 k B k )( G j B j ) t t
k 1 j 0 p
方法:待定系数法
[1 (G j kG j k )B j ] t t
j 1 k 1

j
G j kG j k 0
k 1
j
G0 1 j G j kG j k,j 1, 2, k 1
t
ki i t j
j j 0 i 1

p
G j t j
j 0
其中系数 {G j , j 1,2,} 称为Green函数
Green函数递推公式
原理
( B) xt t ( B)G( B) t t xt G( B) t
k 1 k 1 2 k 2 p k p , k 1
例3.3:求平稳AR(1)模型的协方差
递推公式
k 1 k 1 1k 0
2 0 1 12
平稳AR(1)模型的方差为
协方差函数的递推公式为
2 k 1k 2 , k 1 1 1
协方差函数
在平稳AR(p)模型两边同乘
xt k , k 1
,再求期望
E( xt xt k ) 1E( xt 1xt k ) p E( xt p xt k ) E( t xt k )
根据
E( t xt k ) 0
得协方差函数的递推公式
zt zt zt
时序分析与线性差分方程的关系
常用的时间序列模型和某些模型的自协方差函数 和自相关函数都可以视为线性差分方程 线性差分方程对应的特征根的性质对判断模型的 平稳性有着非常重要的意义
本章结构
1. 方法性工具 2. ARMA模型 3. 平稳序列建模 4. 序列预测
3.2 ARMA模型
k , k p 其中k 0, k p
例3.2:求平稳AR(1)模型的方差
平稳AR(1)模型的Green函数
t i i xt (1B) t 1 t i 1 1B i 0 i 0
Green函数为
G j 1 , j 0,1,
p
xt
t
( B)

t
(1 B)
i i 1
p
(3)求非齐次线性差分方程 (B) xt t 的通解 x
xt c j t
j 1 j 1 t 1 d p 2 m j d 1
t
xt xt

c j (c1 j cos tw j c2 j sin t j )
用延迟算子表示差分运算
p 阶差分
p xt (1 B) p xt (1)i C ip xt i
i 0 p
k 步差分
k xt xt k (1 B k ) xt
线性差分方程
线性差分方程
zt a1 zt 1 a2 zt 2 a p zt p h(t )
k 步差分
k xt xt xt k
延迟算子
延迟算子类似于一个时间指针,当前序列值乘以 一个延迟算子,就相当于把当前序列值的时间向 过去拨了一个时刻 记B为延迟算子,有
xt 1 Bxt xt 2 B 2 xt xt p B xt , p 1
p
延迟算子的性质
特别当 0 0 时,称为中心化 AR( p) 模型
AR(P)序列中心化变换
称 { yt } 为 {xt } 的中心化序列 ,令

0
1 1 p
yt xt
自回归系数多项式
引进延迟算子,中心化 AR( p ) 模型又可以简记 为
( B) xt t
t j 1 t j
m
ki t ] 0 i 1 1 i B
p
c1,
, cp2m , c1 j , c2 j ( j 1,
, m)
成立的条件
j 1 j 1
, j 1, 2, , j 1, 2, , p 2m ,m
平稳域判别
对于一个 AR( p) 模型而言,如果没有平稳性的要求, 实际上也就意味着对参数向量没有任何限制,它 们可以取遍维欧氏空间的任意一点 如果加上了平稳性限制,参数向量就只能取维欧 氏空间的一个子集,使得特征根都在单位圆内的 系数集合
1 , 2 ,, p
有相等实根场合1 2 d
t zt (c1 c2t cd t d 1 )1 cd 1td 1 c p tp
复根场合
zt r t (c1eit c2eit ) c33t
t c p p
第三章
平稳时间序列分析
本章结构
1. 方法性工具 2. ARMA模型 3. 平稳序列建模 4. 序列预测
3.1 方法性工具
本节结构
差分运算 延迟算子 线性差分方程
差分运算
一阶差分
xt xt xt 1
p 阶差分
p xt p1 xt p1 xt 1
xt c j t
j 1 j 1 t 1 d p 2m j d 1
c r (c
j t j j 1 t j
m
1j
cos t j c2 j sin t j )
(2)求非齐次线性差分方程 (B) xt
xt
t 的一个特解
ki t 1 B i 1 i
(4) xt xt 1 0.5xt 1 t
例3.1平稳序列时序图
(1) xt 0.8xt 1 t
(3) xt xt 1 0.5xt 2 t
例3.1非平稳序列时序图
(2) xt 1.1xt 1 t
(4) xt xt 1 0.5xt 1 t
本节结构
AR模型(Auto Regression Model) MA模型(Moving Average Model) ARMA模型(Auto Regression Moving Average model)
AR模型的定义
具有如下结构的模型称为 p 阶自回归模型,简 记为 AR( p)
t j 1 t j
m
ki t i 1 1 i B
p
单位根检验
自回归序列平稳,要求
lim xt lim[ c j t
j 1 t t j 1 t 1 d p 2 m j d 1

c j (c1 j cos tw j c2 j sin t j )
{1 , 2 2 1,且2 1 1}
AR(2)的平稳域
{1 , 2 2 1,且 2 1 1}
例3.1:考察如下四个模型的平稳性
(1) xt 0.8xt 1 t
(2) xt 1.1xt 1 t
(3) xt xt 1 0.5xt 2 t
xt 0 1 xt 1 2 xt 2 p xt p t p 0 2 E ( t ) 0,Var( t ) , E ( t s ) 0, s t Ex 0, s t s t
例3.1平稳性判别
模 型
(1) (2) (3)
特征根判别
1 0.8
相关文档
最新文档